
Maintaining and Testing Separability in Demand Systems

Giancarlo Moschini; Daniele Moro; Richard D. Green

American Journal of Agricultural Economics, Vol. 76, No. 1. (Feb., 1994), pp. 61-73.

Stable URL:

http://links.jstor.org/sici?sici=0002-9092%28199402%2976%3A1%3C61%3AMATSID%3E2.0.CO%3B2-K

American Journal of Agricultural Economics is currently published by American Agricultural Economics Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/aaea.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Feb 22 14:53:46 2008

http://links.jstor.org/sici?sici=0002-9092%28199402%2976%3A1%3C61%3AMATSID%3E2.0.CO%3B2-K
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/aaea.html


Maintaining and Testing Separability 
in Demand Systems 
Giancarlo Moschini, Daniele Moro, and Richard D. Green 

We derive a general elasticity representation of the necessary and sufficient conditions 
for direct weak separability of the utility function. Parametric restrictions required to 
implement the separability conditions are presented for three common demand systems: 
the Almost Ideal, Translog, and Rotterdam. Our empirical application uses the 
Rotterdam model to test a few separable structures within a complete U.S. demand 
system emphasizing food commodities. Results, based on size-corrected likelihood ratio 
tests, provide support for commonly used separability assumptions about food and meat 
demand. 

Key words: Almost Ideal Demand System, conditional demand systems, demand 
analysis, duality, likelihood ratio test, Rotterdam model, separability, Translog model 

The concept of separability, originally intro- 
duced by Leontief and Sono, can be extremely 
useful for economic modeling because of its wide- 
ranging implications for the existence of con- 
sistent aggregates and the decentralization of 
optimization decisions (Blackorby, Primont, and 
Russell 1978). In demand analysis, an often in- 
voked separability assumption leads to the spec- 
ification of conditional (second stage) demand 
systems. For example, it is common to model 
demand for meats (beef, pork, and poultry) as 
a function of the price of these three meat ag- 
gregates and of total meat expenditure. Such a 
procedure is justified if the direct utility function 
is weakly separable in the appropriate partition, 
which provides the necessary and sufficient con- 
dition for conditional demand functions to exist. 

There are at least two undesirable features as- 
sociated with the empirical use of conditional 
demand systems. First, the first-stage income 
allocation often is left unspecified, or is ad hoc, 
which makes the resulting elasticity estimates of 
limited value. Second, although direct weak 
separability guarantees the existence of condi- 
tional demand systems, econometric problems 
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still may exist in estimation because group ex- 
penditures are endogenous (LaFrance). These 
limitations could be eschewed if weak separa- 
bility restrictions were built into a full demand 
system. Such a procedure, while still resulting 
in considerable degrees of freedom gain, would 
be free of the expenditure endogeneity problem 
discussed by LaFrance. Moreover, it would si- 
multaneously account for the first stage income 
allocation in a theoretically consistent fashion, 
and yield unconditional demand elasticities suit- 
able for policy and welfare analysis. However, 
the alternative of maintaining separability re- 
strictions within a full demand system is seldom 
adopted in empirical analysis. The first objec- 
tive of this paper is to show a systematic pro- 
cedure for maintaining separability restrictions 
in a full demand system within commonly used 
demand models. 

Although more attention could be paid to 
maintaining separability in demand models, the 
analyst cannot escape the fact that the conve- 
nience of an assumption is no substitute for its 
truth. Hence, legitimate interest exists in the 
empirical test of the validity of separability as- 
sumptions in demand models. A few demand 
studies have undertaken to test types of sepa- 
rability assumptions, including Byron, Jorgen- 
son and Lau; B-ett (1979b); and B-ett-and 
Choi. Pudney addresses the somewhat different 
issue of the determination of the appropriate 
grouping pattern, and related work is found in 
Baccouche and Laisney; and Nicol. Hayes, Wahl, 
and Williams aimed at testing quasi-separabil- 
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ity, but such separability is consistent with di- 
rect weak separability only if the subutility groups 
are homothetic (thus, in general, it cannot be 
used to justify second-stage demand systems). 
Alston, Carter, Green, and Pick followed Win- 
ters and tested necessary (but not sufficient) 
conditions for direct weak separability. Eales and 
Unnevehr apply separability arguments to in- 
vestigate alternative meat aggregates, but end 
up testing only a subset of the required restric- 
tions. Such overlooked details suggest that fur- 
ther attention to testing separability may be 
worthwhile. Our setup provides a unified frame- 
work for specifying and testing separability. It 
allows us to illustrate and clarify separability re- 
strictions for alternative demand systems (such 
as the Almost Ideal, Translog, and Rotterdam), 
which are typically derived in a very different 
fashion. 

Direct Separability and Demand Analysis 

To characterize separability, it is important to 
distinguish between symmetric and asymmetric 
separable structures (Blackorby, Primont, 
and Russell 1978). To review briefly, let q 
-- (q,, . . . , q,) denote the vector of consumer 
goods, p = ( p , ,  . . ., p,) denote the correspond- 
ing nominal price vector, and y denote total ex- 
penditures on the n goods (income, for short). 
The set of indices of the n goods is I = (1, . . . , 
n}, and these goods can be ordered in S sepa-
rable groups defined by the mutually exclusive 
and exhaustive partition I = { I , ,  . . . , I,) of the 
set I .  If U(q) is the utility function, then U(q) 
is ~ym~metrically directly separable in the par- 
tition I if it can be written as: 

where U".) are subutility functions that depend 
on a subset q h f  goods whose indices are in 
I ,  (s = 1, . . . , S). We assume uO(.) and the 
subutility functions U".) satisfy conditions typ- 
ically required of a utility function (in particu- 
lar, strong monotonicity, strict quasi-concavity, 
and differentiability). 

It is known that the separable structure in (1) 
imposes a number of restrictions on the substi- 
tution possibilities between goods in different 
groups. If h,(p, u) denotes the ith Hicksian 
(compensated) demand function, where u is a 
reference utility level, V(p, y) is the indirect utility 
function dual to U(q), and q,(p, y) is the ith 
Marshallian (ordinary) demand function, Gold- 
man and Uzawa showed that the Slutsky sub- 

Amer.  J .  Agr .  Econ. 

stitution terms between two goods in different 
groups are proportional to the income effects of 
the two goods involved: 

for all i E I ,  and k E I, ,  for all g # s.Note that 
the proportionality term p,,(p, y) is the same for 
all goods in the two groups involved. It is im- 
portant to emphasize that the restrictions in (2) 
are necessary and sufficient for the weakly sep- 
arable structure in (1). Hence, (2) summarizes 
all the relevant restrictions of the separable 
structure in (1) and can be used to maintain this 
form of separability or to test it. 

Asymmetric separability assumes weaker 
conditions on the utility function. For a group 
of goods indexed by I , ,  let I' be the set of in- 
dices of all other goods. Then the goods indexed 
by I, are directly separable from their comple- 
ment if U(q) can be written as 

Blackorby, Davidson, and Schworm point out 
that Goldman and Uzawa's result does not apply 
to the asymmetric structure in (3) because their 
proof essentially required that at least two goods 
be in any one separable group. Blackorby, 
Davidson, and Schworm provide alternative 
versions of the necessary and sufficient condi- 
tions for asymmetric weak separability. For our 
purposes it is useful to present the conditions in 
a form similar to (2). From their theorem 3 (ii), 
we have 

for some appropriately defined functions T(.)and 
S(.) and for all i E I, and k E 1'. From 
the identity q,(p, C(p, u)) -= h,(p, u), where 
C(p, u) is the cost function that inverts V(p, y), 
it follows that dhi/du = (dq,/dy)(dC/du). Hence, 
using (5), the restrictions in (4) can be stated as 

(6) 
dhi(p, V(P, Y)) - dq,(p, Y) dqk(p, Y) 

- P~(P,Y) ----
a ~ ,  a~ a~ 

for all i E I ,  and k E I " ,  where pk = [(dS/ 
d p k ) ( d ~ / d u ) 2 ] [ ( d E / d u ) ( d h k / a u ) ] - ' ,evaluated at 
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u = V(p ,  y). Note that pk depends on which q, 
in 1'. one is considering, but not on which qi in 
I, is being considered. Somewhat loosely, we 
can conclude from (6)that the asymmetric sep- 
arability restrictions reduce to those of sym-
metric separability if each good in I' is inter- 
preted as a separable group. 

Given the above, explicitly consider th? case 
in which the first t groups in the partition I con-
tain only one good each, such that the separable 
utility function can be written as 

(7 )  

U(q)= uO[q , ,. . .,q,, u t+ ' (q t+ ' ) ,  . . . , uS(qS)1 


Then, the combination of the results from Gold- 
man and Uzawa, and Blackorby, Davidson, and 
Schworm can be stated as follows. If we take 
any two goods ( i ,  j) E I, and any two goods (m ,  
k )  E I, ( i  = j or m = k is possible), for any two 
groups g f s,  it follows that the substitution terms 
between goods belonging to different groups are 
proportional to the respective income terms: 

Because (8 )is an alternative representation of 
the necessary and sufficient conditions, it sum- 
marizes the relevant empirical restrictions of di- 
rect weak separability.' It can be expressed in 
convenient elasticity form as follows. Let u, de-
note the Allen-Uzawa elasticity of substitution 
between goods i and j ,  such that u,, = ~, , /w, ,  
where q ,  = (dh,/dp,)(p,/q,)is the compensated 
cross-price elasticity and w, = p,q,/y is the ex- 
penditure share on good j. Also, define income 
elasticities as E, = (dq,/dy)(y/q,).Then, the re- 
strictions in (8 ) can be expressed as 

for all ( i ,  j) E I ,  and (m ,  k )  E I,, for all g # s. 

' Our approach here is geared toward econometric applications 
of separability. Alternatively, one could follow Varian's nonpara-
metric approach to consumer demand based on revealed prefer- 
ences. A necessary condition for weak separability is that the goods 
in the separable group satisfy the generalized axiom of revealed 
preferences (GARP). Sufficient conditions require that the data sat- 
isfy both GARP and the Afriat inequalities. Although such con- 
ditions can be readily checked, it is not clear how violations ought 
to be interpreted in a probabilistic sense. Also, Bamett and Choi 
argue that the use of the sufficient conditions may bias the non- 
parametric test toward rejection of separability. 
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Equation (9) defines a set of restrictions that 
can be maintained in any of the commonly used 
demand systems, or subjected to a statistical test. 
Note that if the subutility functions are homo- 
thetic, then ei = ej and = E,,  

2 and the restric- 
tions in (9 ) reduce to ui, = u,,. This is essen- 
tially the result obtained by Blackorby and Russell 
(1976),who proved that uik= ujkfor ( i ,  j) E I, 
and k @ I, (they considered the case of asym- 
metric weak separability) .3 

To implement the restrictions in (9 )  for the 
purpose of testing for separability, it is impor- 
tant to keep track of the number of restrictions 
that are implied by the assumed separable struc- 
ture. If n is the total number of goods, there are 
a total of 1/2 n(n - 1 )  cross-substitution terms 
dh,/dp, ( i  # k) .  If n, is the number of goods 
belonging to the sth group ( s  = 1, 2, . . ., S ) ,  
then there are 1/2[X,n,(n, - l ) ]  within-group 
cross-substitution terms. Taking the difference 
between these two quantities yields the number 
of substitution terms, say no,that pertain to goods 
belonging to different groups. Moreover, there 
will be 

proportionality coefficients p which completely 
identify the nocross-substitution terms given the 
income effects. Hence, n, = 1/2 S(S - l ) ,  and 
the number n, = (no- n,) of nonredundant re- 
strictions implied by equation ( 9 ) is4 

Homothetic Separability 

In addition to justifying conditional demand sys- 
tems, separability is useful in demand analysis 
because it can rationalize commodity aggrega- 

'Note that these elasticities need not equal unity unless the utility 
function uO(.)is itself homothetic. 
' For the case of nonhomothetic asymmetric weak separability, 

the restrictions in (9) become u , ~el = uIke, and can be expressed 
in convenient form by using compensated elasticities or Marshal- 
lian elasticities as well. In particular, equivalent expressions are q,k 
el = qlk E,, or E,IIE, = E,XE,,where 61 = (Jq,/Jp,)(p,/q,) are Mar- 
shallian elasticities. 

In a similar fashion, Theil (1976, pp. 68-69) discusses the 
number of unconstrained parameters under blockwise dependence 
(symmetric weak separability). Note that if more complex sepa- 
rability trees are considered (see below), the formula in (10) needs 
to be applied in a suitably recursive fashion. 
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tion. Clearly, direct weak separability means that, 
from the consumer point of view, goods be-
longing to a subutility function can be "aggre-
gated" in a composite commodity. However, if 
we are to aggregate across commodities for the 
purpose of modeling demand, we also need a 
consistent price index for the separable group of 
goods. For this result, it is typically required that 
the subutility functions of the goods being ag-
gregated be homothetic. Hence, when the focus 
is to test alternative commodity aggregates, as 
in Eales and Unnevehr, the hypothesis of inter-
est is that of homothetic weak separability. A 
homothetic subutility function UYq" with n, 
goods implies that E, = E, for all (i, j) E I,, and 
entails (n, - 1) additional restrictions. 

Separability Trees 

By putting further structure on the utility func-
tion, one can entertain complex separability hy-
potheses that put more structure on the way goods 
enter the utility function. An example is offered 
by the following utility function: 

To define the set of necessary and sufficient re-
strictions, one needs to determine the number of 
proportionality coefficients p. The fact that q,  
and U* form two separable groups in the utility 
function uO(.)requires one proportionality coef-
ficient. Similarly, the fact that 9, and U' form 
two separable groups within u*(.) gives another 
proportionality coefficient. Finally, q,, u', and 
uDform three separable partitions within u'(.) 
and thus entail three additional proportionality 
coefficients. Hence. we have a total of five u. 
proportionality coefficients. To see how man'y 
cross-substitution terms need to be constrained 
to be consistent with the structure of (1 l ) ,  note 
that the separability of (q,, u") in uO(.)entails 
six cross-substitution terms pertaining to goods 
belonging to different groups, whereas the sep-
arability of (q,, u B )in u"(.)and the separability 
of (q,, u", uD)in uB(.)entail five and eight 
such terms, respectively. Hence, for this ex-
ample, n, = 19 and n, = 5, which means that 
there are 14 independent restrictions implied by 
the structure in ( 11). 

' The utll~tytrees 2 and 3 cons~deredby Eales and Unnevehr 
have the structure of util~tyfunction ( 1  I ) .  They report testlng only 
9 restrict~onsIn each case, however, whereas we have shown that 
14 restrictions are requ~red. 

Separability and Flexible Demand Systems 

The separability conditions summarized by the 
elasticity restrictions of equation (9) can be 
maintained or tested upon a parametric specifi-
cation of a demand system. In what follows, three 
popular demand systems are considered in turn: 
the Almost Ideal, the Translog, and the Rotter-
dam demand systems. 

Almost Ideal Demand System 

From a specific parameterization of a PIGLOG 
cost function, the Almost Ideal demand system 
(ALIDS) of Deaton and Muellbauer is derived 
as 

where log(P) is a translog price index defined 

Homogeneity, adding-up, and symmetry require 
Z,a, = 1,  x,yr, = Z , y ,  = xipi = 0, and y, = 
y,,. For this demand model, the elasticities of 
substitution and the income elasticities can be 
written as 

Hence, the separability restrictions in (9) can be 
written as 

(w, + P,)(w~+ Pk)--
(w, + Pj)(wm + P m )  

where (i, j) E I , and (k, m) E I, for all g f s." 

These restrictions reduce to those reported by Eales and Un-
nevehr only if k = m, which y~eldsrestrictions appropriate for 
asymmetric separabil~ty. 
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It is evident that the restrictions in (16) in- 
volve prices and income [recall that the shares 
are defined as in (12)l. The restrictions can hold 
for every possible realization of prices and in- 
come (i.e., globally) only under very confining 
conditions. In particular, the restrictions in (16) 
will hold globally if Pi = Pk= Pj = Pm= 0 and 
y, = y,, = 0. These parametric restrictions have 
the unwanted implication of homotheticity for 
the separable groups and, in addition, force the 
income elasticities of goods in the separable group 
to equal unity (which is not necessary even un- 
der homothetic separability). The restrictiveness 
of such implications make the global separabil- 
ity restrictions totally undesirable for the pur- 
pose of maintaining or testing separability. In 
other words, the ALIDS model is separability- 
inflexible, a feature of a wide class of flexible 
functional forms (Blackorby, Primont, and Rus- 
sell 1977). 

To overcome this serious limitation, one may 
resort to different parametric specifications of 
demand.' Alternatively, if one wants to stick to 
the ALIDS specification, it may be of some in- 
terest to consider the separability restrictions at 
a point only, as suggested by Denny and Fuss, 
and by Jorgenson and ~ a u . ~  If the point of in- 
terest is the mean of the explanatory variables, 
it is convenient to scale all prices and income 
to equal unity at the mean. At such a point, then, 
wi = ai - P,aOand log(y/P) = - a,, so the 
restrictions in (16) can be written as 

for all (i, j) E I, and (k, m) E I,, for all g f s. 
Equation (17) defines a set of nonlinear restric- 
tions that involve only the parameters of the 
ALIDS model, and these restrictions can be either 
maintained or tested. 

Because parameter a, is virtually impossible 
to estimate in empirical applications, Deaton and 
Muellbauer suggest fixing a, before estimating 
all other parameters, and propose a possible cri- 

' For example, two separability-flexible specifications used in 
production applications are the Generalized Bamett of Diewert and 
Wales, as formulated by Blackorby, Schworm, and Fisher, and the 
FAST model of Moschini. 

The resulting 'local' test is also referred to as the 'approximate' 
separability test because it relies on the (local) approximation prop- 
erties of the flexible functional form used. Relying on such a local 
test to make inferences about separability has drawn some criticism 
(see Aizcorbe for a discussion). 
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terion for doing so. The reason for the estima- 
tion problem is that the likelihood function typ- 
ically is extremely flat in a,, suggesting the actual 
choice of a, does not matter for the approxi- 
mation properties of ALIDS.~Hence, an alter- 
native and particularly useful criterion in our 
context is to set a, = 0,  in which case the local 
restrictions in (17) simplify to the ones in (20) 
below. 

Often, a linear version of the ALIDS model 
is estimated, where the translog aggregator log(P) 
is substituted by a price index prior to estima- 
tion, say the Stone index log(P*) = Ziwilog(pi). 
In such case, scaling prices is very important, 
over and above the simplifications induced in 
the local separability restrictions, because the 
Stone price index is not invariant to the choice 
of units of measurement (Moschini and Vissa). 
An appropriate substitution elasticity formula for 
the linear ALIDS with the Stone price index, 
consistent with taking the Stone index as given 
in estimation, is (Chalfant) 

Hence, the separability restrictions for the linear 
ALIDS can be expressed as 

Yik + WiWk -
-

iw1+ Pi)(wk + Pk)
(19) 

Yjm + wjwm iwj + PJ)iwm+ Pm)' 

These restrictions are very similar to those of 
the nonlinear ALIDS model of equation (16). In 
particular, the local separability restrictions [at 
mean point (p, y) = (1,1)] reduce to'' 

If one were interested in testing for homo- 
thetic separability, the global test for weak sep- 
arability is clearly unchanged, given that it en- 
tails homotheticity of the subutility functions. 
The local test restrictions of (17) or (20), how- 
ever, must in this case be supplemented by re- 
strictions ai/Pi = a,/@,and a,/@,= am/@, 

In other words, one should expect that computed elasticities are 
not affected by choice of a, (although the estimated parameters 
clearly are), a proposition supported by our empirical experience. 

' O  Using elasticity formula (14) for the linear ALIDS model is 
appropriate only if one ensures that the parameters of the linear 
ALIDS model approximate the parameters of the nonlinear ALIDS 
model. If prices and income are scaled to equal one at the mean, 
the estimated parameters of linear ALIDS will approximate the pa- 
rameters of a nonlinear ALIDS with a. = 0 ,  in which case the 
elasticity formulae for nonlinear ALIDS also apply to the linear 
ALIDS (the problems discussed by Green and Alston do not arise). 
In such a case, local restrictions (17) and (20) are clearly identical. 
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Translog Model 

From a translog specification of the indirect util- 
ity function, the following demand system can 
be derived (Christensen, Jorgenson, and Lau): 

where normalization Z;al = 1 is adopted." Ho- 
mogeneity and adding-up are satisfied by (21), 
while symmetry requires yi j  = y,,. Moreover, it 
is convenient to impose the additional normal- 
ization ZiZ;y, = 0,  so that the translog can be 
aggregated exactly across consumers. l 2  With this 
aggregation condition, and defining parameter 
PI = XI y,, the translog demand model generates 
substitution and income elasticities that can be 
written as 

Y !  P IPl 

WiWJ W' W' + ,
(22) (T. = 

n 

1 + 2 B,log(p,) 
r= l 

Hence, the separability restrictions in (9) can be 
expressed as 

for all (i, j) E I , and (k, m) E I,, for all g # s. 

I '  A normalization is required here, although the choice is ar- 
bitrary (Christensen, Jorgenson, and Lau). The normalization adopted 
is convenient in that W ,  = a, at point (p,y) = (1, 1) (i.e., the mean 
point given our scaling convention). 

With this parametric restriction, the Translog model becomes 
a member of the generalized Gorman polar form family of pref- 
erences, similar to the ALIDS (Lewbel). 
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As for the case of ALIDS, the restrictions of 
(24) can be satisfied globally only under very 
strong conditions. Specifically, one needs Pi = 

p = p = pI = o  and y , ,  = yjm = 0, implying 
that the separable group aggregators are hom- 
othetic and the unconditional income elasticities 
of the goods involved are equal to one. Such 
undesirable global conditions again suggest con- 
sidering the separability restrictions at a point. 
If prices and income have been scaled to have 
a mean equal to unity, the separability restric- 
tions of (24) at the mean point can be expressed 
as 

Yik - f f , P k  - f f k P i  + f f r f f k  
(25) 

Yjm - f f j P m  - f f m P j  + f f j f f m  

As for the ALIDS model, if one wants to test 
for homothetic separability, the global test for 
weak separability is unchanged. The local test 
restrictions of (25), on the other hand, would 
have to be supplemented by restrictions c r , / P ,  = 

a1/Pjand a k / P k  = a m / P m .  

Rotterdam Model 

From a differential approximation to the Mar- 
shallian demand functions, the absolute price 
version of the Rotterdam model is written as 
(Theil 1980) 

where dlog(Q) = ~,wldlog(ql) is the Divisia 
volume index. Homogeneity, adding-up, and 
symmetry require Z18, = 1, Zjr I l = Zir l1= 0, 
and n,, = q,.Because of the parameterization 
chosen, substitution and income elasticities can 
be written as 

Hence the separability restrictions of (9) can here 
be expressed as 

for all (i, j )  E I, and (k, m) E I,, for all g # s. 
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The remarkable feature of this result is that 
the separability restrictions will hold not only 
locally (at a point), but also globally, without 
any further restriction. This sets the Rotterdam 
model apart from other functional forms, such 
as the Translog and ALIDS analyzed above, and 
would seem to suggest that the Rotterdam model 
is separability-flexible for the purpose of mod- 
eling weak separability. 

It should be understood, however, that the 
Rotterdam model provides a different type of 
approximation to the underlying demand sys- 
tem. Translog and ALIDS are approximations in 
the variable space. Although they are best in- 
terpreted as approximating functions, they could 
rebesent preferences exactly, at least over a re- 
gion of parameters satisfying regularity condi- 
tions. On the other hand, the Rotterdam model 
is best interpreted as an approximation in the 
parameter space. From an exact differential rep- 
resentation to an arbitrary demand system, the 
approximation is introduced by assuming that 
the Slutsky terms n,,and the real income terms 
8, are constant (and, in empirical application, log 
differentials are approximated by finite log dif- 
ferences). It follows that the Rotterdam model 
cannot be considered an exact representation of 
preferences unless very strong conditions are 
imposed.13 Hence, satisfying the separability re- 
strictions globally, with the minimum number 
of restrictions, does not make the 
Rotterdam model a separability-flexible repre- 
sentation of preferences. 

Regardless of the interpretation issues just 
discussed, equation (29) yields the simplest 
parametric representation of separability restric- 
tions among the three demand systems consid- 
ered. This simplicity has obvious attraction for 
empirical applications. The parametric conve-
nience of the Rotterdam model for direct weak 
separability does not necessarily carry over to 
other types of separability, a point clearly illus- 
trated by the case of homothetic weak separa- 
bility. Homotheticity for the subutility function 
Us(qs) implies that ei = ej for all (i, j) E I,. In 
view of (28), the additional restrictions that must 
be satisfied are 

It is not difficult to test or impose these addi- 

l 3  This is the so-called McFadden critique and is discussed by 
Theil (1975, pp. 101-05.) Of course, such a result does not detract 
at all from the usefulness of the Rotterdam model as a flexible 
approximation to an unknown demand system (Bamett 1979a; 
Mountain). 
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tional restrictions at a point. However, these re- 
strictions will hold globally only under un-
wanted strong conditions. In particular, the shares 
involved would need to be constant, which for 
the absolute-price version of the Rotterdam model 
in (26) requires wi= 4 ,  .rr, = 8.8- [for i # j, 
(i, j) E I , ] ,  and vii = Ol(Oi - l) . lk '  

Application to a U.S. Demand System 

To illustrate maintaining and testing separability 
restrictions, we apply the Rotterdam model to a 
U.S. data set emphasizing food demand, with 
particular attention to the meat group, reported 
in Blanciforti, Green, and King (henceforth 
BGK)." More exactly, we specify a seven-good 
demand system with the following goods: q, = 
nonfood; q, = fruits and vegetables; q, = cer-
eals and bakery products; q, = miscellaneous 
foods; q, = beef and veal; q, = pork; and, q, 
= poultry and fish. Fish and meat products are 
as in BGK's tables 5.A.6 and 5.A.8 (fish and 
poultry are aggregated by a Divisia index); sim- 
ilarly, the other three food aggregates are from 
BGK's tables 5.A. 10 and 5.A. 12. Finally, the 
nonfood commodity is a Divisia aggregate of ten 
nonfood categories reported in BGK's tables 
5.A. 1 and 5 . ~ .  3. l 6  The period covered by these 
data is 1947-78. 

We consider three different types of weakly 
separable structures, all of which are tested 
against the unrestricted utility function U(q). 
First, we postulate that food commodities are 
weakly separable from nonfood commodities, 
such that the utility function can be written as 

Following the earlier discussion, it is verified 
that this structure entails 5 nonredundant restric- 
tions relative to the unrestricted utility U(q). For 
the Rotterdam specification, these nonredundant 
restrictions can be represented as: 

l 4  Hence, for the shares of goods belonging to a homothetically 
separable group to be constant, the parameterization of the Rotter- 
dam model chosen here requires (for these goods) E, = 1, E,, = - 1, 
and E,, = 0. 

'* One reviewer correctly pointed out that whereas the theory dis- 
cussed earlier pertains to an individual consumer, our application 
(similar to most such applications) relies on aggregate data. The 
three models considered in this paper can, in principle, be consis- 
tent with the notion of a representative consumer. However, a rig- 
orous analysis of how aggregation across consumers may interact 
with separability restrictions is beyond the scope of the present ar- 
ticle. 

l6 Total expenditure was constructed as the sum of the expen- 
ditures on these aggregates. 
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The second hypothesis is that meat commodities 
are separable from other foods within the food 
group, in addition to food being separable from 
nonfood. In other words, the utility function is 
written as 

This structure entails 1 1 nonredundant restric- 
tions, which for the Rotterdam specification can 
be represented as (32) plus the following six re- 
strictions: 

The third hypothesis is that within food we have 
two (symmetrically) separable groups, meat and 
nonmeat, where food is still separable from 
nonfood. That is 

Structure (35) entails 13 nonredundant restric- 
tions. For the Rotterdam specification, these re- 
strictions can be represented as (32) plus (34) 
and the following two restrictions: 

For purpose of estimation, the demand model 
(which is nonlinear in the separable cases) can 
be written as a system of seemingly unrelated 
regressions: 

where Y, is a vector of w,dlog(q,) at time t, P 
is the vector of all coefficients to be estimated, 
Z, is the vector of the corresponding exogenous 
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variables at time t, and e, is a vector of error 
terms. Errors are assumed contemporaneously 
correlated but serially uncorrelated; in other 
words, E(e,) = 0,  E(e,e:) = fi for all t, and 
E(e,e,) = 0 for t # s.I7Assuming that the el's 
are multinormally distributed, maximum likeli- 
hood estimation is performed, yielding esti-
mators that are consistent, asymptotically nor-
mal, asymptotically efficient, and invariant to 
which equation is omitted. To implement the 
maximum likelihood estimator, we rely on an 
algorithm implemented in TSP version 4.2A. 

Testing Separability with the Wald Test 

The separability restrictions to be tested are 
nonlinear parametric restrictions, say g(P) = 0 
where g(.) is vector-valued. To test such para- 
metric restrictions, it is common to use the Wald 
test, which requires estimation of the unre-
stricted model only. The Wald test is compu- 
tationally appealing because with nonlinear re- 
strictions (such as those of separability) the 
formulation of the restricted model is somewhat 
cumbersome, especially when one has to deal 
simultaneously with other linear restrictions 
(homogeneity and symmetry) in a multi-equa- 
tion setting. Unfortunately, this procedure has a 
severe drawback in the context of separability 
tests because, in finite samples, the numerical 
value of the Wald test lacks invariance when 
nonlinear restrictions are involved (Dagenais and 
Dufour) . l a  

The Wald test for separability lacks invari- 
ance with respect to two computational proce- 
dures. First, it is not invariant with respect to 
the parametric formulation of the null hypoth- 
esis (Gregory and Veall). To illustrate, if g,(P) 
denotes the rth restriction to be tested, two 
(among many) equivalent representations of the 
separability restrictions are 

In addition, the Wald test is not invariant with 
respect to the choice of which nonredundant 
separability restrictions to use to represent the 

" One of the shares is omitted because of the well known sin- 
gularity problem of share equation systems 

I R  Essentially, thls is because the Wald test is based on a linear- 
izat~on of the nonlinear restrictions, and the l~nearizat~ons d ~ f f e r  
depending on the way in which the nonlinear restrictions are rep- 
resented. 
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null hypothesis. To illustrate, (32) represents five 
nonredundant restrictions implied by (3 1). 
However, there are many equivalent ways of 
expressing these five nonredundant restrictions. 
For example, in (32) we have used T,, and 0, 
in the denominator, but any T,, and 0,(j = 2, 
. . ., 7) could have been selected for this role. 

Results for the three structures discussed above, 
not reported here for space reasons, indicate that 
the noninvariance of the Wald test is a real prob- 
lem. One can readily generate wildly different 
values for Wald separability tests, showing that 
"obtaining any Wald Statistics you want," as 
Lafontaine and White put it, is quite easy. 

Testing Separability with the Likelihood Ratio 
Test 

An obvious test which is invariant for the non- 
linear restrictions of ,separab!lity is the likeli- 
hood ratio LR = 2[L(P) - L(P)], where L(.) de- 
notes the maximized value of the log-likelihood 
function, f3 is the unrestricted estimator of the 
parameter vector, and B is the estimated param- 
eter vector under the separability restrictions. A 
possible problem with LR in our context is the 
size of the test. Following Laitinen and Meis- 
ner, it is known that tests of restrictions in large 
demand systems are biased toward rejection. The 
reason for the bias is that one must use an es- 
timate of the contemporaneous covariance ma- 
trix instead of the true matrix. This suggests the 
need for a size-correction. 

There is no accepted way of size-correcting 
the LR test. The method proposed by Italianer 
has been found to work very well for linear re- 
strictions (De Boer and Harkema), and is a pos- 
sibility here. This method relies on a 'corrected' 
likelihood ratio LR,, defined as: 

, ~Z 

1+ NR)- -M(M + 1)
2 1LR, = LR 

MT 

where M is the number of equations, T is the 
number of time series observations (hence, there 
are MT effective observations in the sample and 
1/2M(M + 1) terms in the covariance matrix), 
N, is the number of parameters of the unre-
stricted model, and NR is the number of param- 
eters in the restricted (separable) model. 

Because the available evidence concerning this 
size-correction deals with linear restrictions 
(symmetry and homogeneity), it is necessary to 
verify that such a correction is appropriate for 
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the nonlinear restrictions of interest here. To this 
end, we carry out a small Monte Carlo simu- 
lation as follows. For each of the three separable 
structures, we take the estimated restricted (sep- 
arable) model as the true data-generating pro- 
cess. We generate 500 artificial samples of the 
left-hand-side vectors by adding randomly gen- 
erated multinormal errors (using the estimated 
covariance matrix) to the fitted values of the de- 
pendent variables. For each of these 500 sam-
ples, we estimated both the unrestricted and the 
restricted model, then computed the LR statistic 
and the corrected LR, statistic. 

Given that the hypothesis being tested is true 
by construction, the number of rejections from 
this exercise should equal (in percent terms) the 
significance level of the test. Table 1 reports the 
percentage of rejections of the (true) null hy- 
pothesis of separability, using both the nominal 
LR statistics and the corrected LR, statistics. It 
is clear that LR leads to overrejection of the hy- 
pothesis of separability. The correction sug-
gested by Italianer seems to work well, leading 
to rejection rates very close to the significance 
levels. Hence, we can rely on this correction to 
test our three separable structures. Table 2 re- 
ports the likelihood ratio tests of the three hy- 
potheses of interest. Using the corrected LR, test, 
none of the three separable models can be re- 
jected. 

To show what the alternative separability as- 
sumptions imply for elasticities, table 3 reports 
the estimated Allen-Uzawa elasticities of sub- 
stitution for the unrestricted model and for the 
three separable models.I9 This table illustrates 

Table 1. Size Correction for Likelihood Ra- 
tio Tests of Separability 

Percent rejection of true 
null hvpothesis 

significance level of test 
10% 5% 1% 

Using LR 
Model (31) 19.6 12.6 5.0 
Model (33) 25.8 16.4 6.4 
Model (35) 26.8 15.6 5.6 

Using LR, 
Model (31) 10.2 5.4 1.4 
Model (33) 9.6 5.0 1.6 
Mode1 (35) 8.4 5.4 1 4  

Note: Simulation results based on 500 replications. 

l 9  For space reasons, we cannot repon more estimat~on results. 
It is worth noting that all estimated models satisfied concavity of 
the Slutsky matrlx. 
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Table 2. Likelihood Ratio Tests of Separa- mind, however, that the use of Allen-Uzawa 
bilitv elasticities of substitution to characterize sub- 

stitutability is highly questionable because, as 
Separable structure shown by Blackorby and Russell (1989), such 

of equation: elasticities have no natural interpretation or
(31) (33) (35) 

meaning when more than two goods are in-
LR 9.31 19.15 19.76 volved. 
LRo 7.03 14.77 15.35 Alternatively, the implications of the separa- 
number of restrictions 5 11 13 bility assumptions can be illustrated by thexO? 0s 11.07 19.68 22.36 Marshallian elasticities of table 4. Some of the 

cross-elasticities are clearly affected by the as- 
sumption of separability, especially the elastic- 

the restrictions that separability puts on some of ities of food items relative to the price of non- 
the off-diagonal elements, as discussed earlier. food. In a way, both the magnitude and sign of 
The diagonal elements of these matrices of elas- such elasticities are more appealing for the sep- 
ticities seem relatively unaffected. For the last arable models than for the unrestricted model. 
two separable models, maintaining separability Own-price elasticities seem rather robust, and 
causes all off-diagonal elasticities to be positive, for all separable structures they are fairly similar 
reinforcing the predominant relation displayed to those of the unrestricted model. Income elas- 
by the unrestricted model. One should keep in ticities are affected a bit more by separability, 

Table 3. Allen-Uzawa Elasticities of Substitution 

Unrestricted model 
4 1 -0.09 0.19 0.32 0.41 0.72 0.10 -0.06 
4: -9.59 1.56 2.11 0.02 -0.28 3.81 
43 - 12.58 0.37 3.10 -3.16 -1.89 
44 -6.50 - 1.08 3.72 1.43 
4s -27.74 8.27 9.31 
46 -33.71 12.35 
47 -53.77 

Separable model (3 1) 
41 -0.06 0.30 0.12 0.12 0.55 0.17 0.30 
43 -11.12 1.85 2.04 0.38 - 1.47 2.93 
41 - 12.45 2.08 3.76 -2.83 -2.90 
44 -4.07 0.16 3.84 - 1.19 
45 -27.16 8.54 8.22 
46 -34.96 11.82 
47 -52.25 

Separable mode1 (33) 
4 I -0.08 0.32 
q? - 10.23 
43 
4. 
45 
46 
47 

Separable mode1 (35) 
4 I -0.09 0.31 
42 - 10.58 
4. 
44 
45 
46 
0, 


Note: see text for symbols' definition 
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Table 4. Marshallian Elasticities at the Mean 

Unrestricted model 
41 -1.03 -0.04 -0.02 
42 -0.18 -0.41 0.03 
q3 0.22 0.06 -0.35 
q4 0.36 0.09 0.01 
9s 0.12 -0.02 0.07 
q6 -0.13 -0.02 -0.10 
47 -0.48 0.13 -0.07 

Separable model (3 1) 
91  -0.99 -0.04 -0.03 -0.08 -0.02 
42 -0.05 -0.47 0.04 0.13 0.00 
43 -0.02 0.07 -0.35 0.14 0.11 
q4 -0.02 0.08 0.05 -0.31 0.00 
9s -0.08 -0.01 0.09 -0.04 -0.86 
q6 -0.03 -0.07 -0.08 0.27 0.26 
q7 -0.04 0.11 -0.09 -0.11 0.24 
-------------------------------------------------------------------------------------------..... 

Separable model (33) 
91  -0.99 -0.03 -0.03 -0.07 -0.02 
42 -0.06 -0.44 0.06 0.06 -0.01 
q3 -0.02 0.11 -0.36 0.10 0.03 
q4 -0.05 0.04 0.03 -0.39 0.02 
45 -0.10 -0.03 0.01 0.02 -0.84 
q6 -0.06 -0.02 0.01 0.01 0.23 
q7 -0.03 -0.01 0.00 0.01 0.26 

Separable model (35) 
9 I -0.99 -0.04 -0.03 -0.06 -0.02 -0.02 -0.01 1.16 
42 -0.03 -0.45 0.06 0.07 0.01 0.00 0.00 0.35 
q3 -0.02 0.09 -0.33 0.08 0.00 0.00 0.00 0.17 
q4 -0.03 0.04 0.02 -0.40 0.01 0.00 0.00 0.36 
45 -0.06 0.00 -0.01 0.00 -0.84 0.14 0.10 0.66 
q6 -0.03 0.00 -0.01 0.00 0.23 -0.72 0.15 0.38 
q7 -0.02 0.00 0.00 0.00 0.26 0.23 -0.69 0.22 

Note: see text for symbols' definition 

although they are fairly similar across the three 
separable structures. 

Conclusion 

Separability concepts are important in applied 
demand analysis. Arguably, more efforts should 
be made to test separability conditions in em- 
pirical models and to maintain explicit separable 
structures in large demand systems. We have re- 
viewed the necessary and sufficient conditions 
for direct weak separability and homothetic di- 
rect weak separability in both symmetric and 
asymmetric separable structures, casting these 
conditions in a unified framework suitable for 
empirical application. Necessary and sufficient 
parametric restrictions were derived explicitly 
for three common demand systems: ALIDS, 
Translog, and Rotterdam. Using the latter model, 

testing and maintaining separability was illus- 
trated with an empirical application emphasiz- 
ing U. S. food and meat demand. 

Results of the empirical application provide 
some support for common separability assump- 
tions concerning food and meat products, and 
would seem to justify the widespread practice 
of modeling food items and meat products in 
terms of conditional demand systems. However, 
if one is concerned with the simultaneity prob- 
lems discussed by LaFrance, or one wants un- 
conditional elasticities possibly better suited for 
policy analysis, it may be desirable to maintain 
separability restrictions within a complete de- 
mand model. For such purpose, the approach 
illustrated in this article provides a consistent use 
of separability restrictions in empirical demand 
systems. The Wald test for separability should 
be avoided because it is not invariant. The like- 
lihood ratio gives a more desirable procedure for 
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testing separability, and our results indicate that 
it is not difficult to correct for the likelihood ra- 
tio's tendency to overreject in large demand sys- 
tems. 

[Received May 1992;final revision received 
May 1993.] 
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