
Computational Intelligence, Volume 17, Number 2, 2001

MAINTAINING CASE-BASED REASONERS:
DIMENSIONS AND DIRECTIONS
David C. Wilson and David B. Leake
Computer Science Department, Indiana University

Experience with the growing number of large-scale and long-term case-based reasoning (CBR)
applications has led to increasing recognition of the importance of maintaining existing CBR systems.
Recent research has focused on case-base maintenance (CBM), addressing such issues as maintaining
consistency, preserving competence, and controlling case-base growth. A set of dimensions for case-base
maintenance, proposed by Leake and Wilson, provides a framework for understanding and expanding
CBM research. However, it also has been recognized that other knowledge containers can be equally
important maintenance targets. Multiple researchers have addressed pieces of this more general mainte-
nance problem, considering such issues as how to refine similarity criteria and adaptation knowledge. As
with case-base maintenance, a framework of dimensions for characterizing more general maintenance
activity, within and across knowledge containers, is desirable to unify and understand the state of the
art, as well as to suggest new avenues of exploration by identifying points along the dimensions that have
not yet been studied. This article presents such a framework by (1) refining and updating the earlier
framework of dimensions for case-base maintenance, (2) applying the refined dimensions to the entire
range of knowledge containers, and (3) extending the theory to include coordinated cross-container
maintenance. The result is a framework for understanding the general problem of case-based reasoner
maintenance (CBRM). Taking the new framework as a starting point, the article explores key issues for
future CBRM research.

Key words: case-based reasoning; case-base maintenance; case-based reasoner maintenance;
knowledge containers; metamaintenance.

1. INTRODUCTION

The growing use of large-scale and long-term case-based reasoning (CBR) applica-
tions has brought with it increased awareness of the importance of maintaining CBR
systems. Large-scale CBR systems have become more prevalent, with case library sizes
ranging from thousands (e.g., Cheetham 1997, Kitano and Shimazu 1996) to millions of
cases (Deangdej et al. 1996). The use of large case bases raises concerns about the util-
ity problem for case retrieval (Francis and Ram 1993; Smyth and Cunningham 1996), in
which the growing cost of case retrieval outweighs the efficiency benefits from additional
cases and has prompted research on controlling case-base growth through compaction
policies (Smyth and Keane 1995; Smyth and McKenna 1999a; Zhu and Yang 1999).
Even for smaller case bases, the difficulties of distributed case collection (Borron et
al. 1996) and use (Doyle and Cunningham 1999; Watson and Gardingen 1999) and the
vagaries of real-world data raise concerns about the consistency and accuracy of case
knowledge, motivating efforts to maintain the case base to improve its quality (Racine
and Yang 1997). These concerns have led to active research in the area of case-base
maintenance (CBM).

Many maintenance issues, however, extend beyond the case base (Leake and Wilson
1998; Heister and Wilke 1998). CBR systems depend on the knowledge contained in
multiple knowledge containers (Richter 1998), such as similarity knowledge and adap-
tation knowledge, in addition to the case base. A number of projects have illuminated
maintenance issues for knowledge containers outside the case base for particular sys-
tems and tasks, but there is currently no common framework to guide a more general
study of maintenance in CBR.

Address correspondence to David Wilson at Department of Computer Science, University College Dublin,
Belfield, Dublin 4, Ireland.

c© 2001 Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.



Maintaining Case-Based Reasoners 197

Leake and Wilson (1998) provide a framework for characterizing case base mainte-
nance systems. This framework is aimed at understanding the state of the art in CBM,
illuminating current practice and facilitating the comparison of particular approaches.
In a similar line to characterizations that have proven useful for studying case adapta-
tion (Hanney et al. 1995; Voß 1996), this framework has helped to identify problems
and opportunities for study, suggesting points of exploration in the space of possible
CBM systems. However, this work has broader applicability. The goals addressed by
the CBM framework are common across all the CBR knowledge containers, and the
dimensions defined for CBM are flexible enough that they can be extended and applied
to characterize generalized maintenance across all knowledge containers in CBR.

This article extends and generalizes the CBM framework, presenting an overall
perspective on maintaining CBR systems. It takes CBM as a starting point, adapting and
generalizing the analysis of CBM to extend to other knowledge containers. Sections 2
and 4 refine our earlier framework of dimensions for CBM and use the framework to
provide an updated description of current approaches in CBM. Section 5 generalizes the
framework to apply across knowledge containers to characterize possible approaches to
maintenance of all CBR system knowledge containers, in what we refer to as case-based
reasoner maintenance (CBRM). CBRM processes can include not only the revision of
knowledge in individual knowledge containers but also the coordinated updating of
multiple knowledge containers, the strategic transfer of knowledge between knowledge
containers, and metamaintenance—maintenance of maintenance knowledge—in order
to achieve indirect revisions of knowledge containers such as lazy case-base updating.
Section 8 explores the ramifications of the previous analysis and develops a vision for
future CBRM research. Altogether, the article provides a framework for understanding
the state of the art in CBRM.

2. DEFINING CASE-BASE MAINTENANCE

As a basis for our discussion of CBRM, we first describe and refine our framework
for characterizing case-base maintenance. We define case-base maintenance (CBM) as
the process of refining a CBR system’s case base to improve the system’s performance:

Case-base maintenance implements policies for revising the organization or contents (represen-
tation, domain content, accounting information, or implementation) of the case-base in order
to facilitate future reasoning for a particular set of performance objectives [Leake and Wilson
1998].

Note that this definition considers the information defining an indexing scheme to be
an intrinsic organizational component of the case base itself. Thus CBM may involve
revising indexing information, links between cases, or other organizational structures
and their implementations.

Maintaining case-base contents may affect a single case or multiple cases. It may
revise the case representations used (e.g., changing the predicates used to describe
domain features), may revise either domain information in the case base (e.g., correcting
an erroneous feature in a case or adding or deleting an entire case) or “accounting”
information (e.g., changing information about how frequently a case has been accessed),
or may revise how case representations are implemented (e.g., changing from lists to
feature-vectors). Thus maintenance of case-base contents may revise the case base at
the implementation level, representation level, or the knowledge level (see Dietterich
1986).



198 Computational Intelligence

3. CBM PERFORMANCE OBJECTIVES AND CONSTRAINTS

The performance objectives for a CBR system provide criteria for evaluating the
internal behavior and task performance of a particular system for a given initial case
base and sequence of problems solved. The choice of CBM strategies is driven by the
maintainer’s performance goals for the system and by constraints on the system’s design
and the task environment. In general, there will be multiple performance measures for
a CBR system, and there is no guarantee that all of them can be maximized simul-
taneously. Smyth and McKenna (1999) define three types of top-level goals for CBR
systems:

1. Problem-solving efficiency goals (e.g., average problem-solving time)
2. Competence goals (the range of target problems solved)
3. Solution quality goals (e.g., the error level in solutions)

These goals may give rise to quantitative maintenance goals (e.g., achieving particu-
lar problem-solving time or limits on case-base size) or qualitative ones (e.g., to extend
system competence). Smyth (1998) provides compelling arguments for the importance
of shaping maintenance policies according to a complete set of performance objectives.
Of course, performance objectives may change over time to reflect varying external cir-
cumstances, which may necessitate changing (maintaining) maintenance policies as well.

The application of maintenance policies to achieve these goals is also shaped by
constraints from the external environment (Leake and Wilson 2000):

1. Case-base size limits (if any)
2. Acceptable long-term/short-term performance tradeoffs
3. The expected distribution of future problems
4. The availability of secondary sources of cases

For example, Smyth and Keane’s (1995) competence-preserving deletion strategies
reflect all these constraints. Their deletion process keeps the case base within acceptable
size limits (constraint 1), their competence-guided choices are intended to minimize the
loss of future coverage (constraint 2), their methods’ deletion choices assume a uniform
distribution of problems (constraint 3), and no other sources of cases are available for
recovering deleted information (constraint 4), making preservation of competence a key
concern. Other instantiations of these constraints would give rise to different strategies.
For example, if short-term performance is crucial, long-term performance is less impor-
tant, and current problems are concentrated in a small part of the case base, it may be
acceptable to sacrifice current competence and build it back through future learning.
Thus a case-based reasoner needs policies for achieving its maintenance goals in light
of its constraints. The following section develops a characterization of the properties of
CBM policies.

4. A FRAMEWORK FOR DESCRIBING CBM POLICIES

The goal of a categorization scheme for CBM is threefold. First, by identifying
classes of similar maintenance approaches, such a categorization scheme can shed light
on the state of current practice in the field, increasing understanding of current CBM
approaches. Second, mapping out the space of candidate approaches helps identify parts
of the space that have not been addressed in previous work; these gaps, in turn, suggest



Maintaining Case-Based Reasoners 199

research opportunities. Third, a categorization scheme for maintenance approaches is a
first step toward cataloging the most appropriate approaches for particular performance
goals.

Our framework categorizes CBM approaches in terms of case-base maintenance
policies that determine when and how a CBR system performs CBM. Maintenance
policies are described in terms of how they gather data relevant to maintenance, how
they decide when to trigger maintenance, whether they react to problems or proac-
tively forestall them, the types of maintenance operations available, and how selected
maintenance operations are executed.

In the framework, data collection gathers, synthesizes, and distills the data about
the case base and about system processing; this is the information that will be used to
determine whether maintenance operations should be performed. Triggering takes this
information as input, makes the decision whether maintenance is needed, and selects
maintenance actions from a range of possible operation types. Execution describes when
and how the selected revisions are actually applied to the case base.

Descriptions generated using the framework characterize basic combinations of pol-
icy attributes. A single CBR system may include multiple maintenance policies, each one
implementing a different part of the system’s overall maintenance agenda (e.g., Minor
and Hanft 2000). The following dimensions would be used to describe each policy sep-
arately. Coordination of maintenance policies is described in Section 6.

4.1. Data Collection

Data collection gathers information about individual cases, about the case base in
part or as a whole, and/or about the overall processing behavior of the CBR system.
Data collection about individual cases might record the number of times a case has
been used successfully or the number of times it has failed. Data collection about the
case base as a whole could involve, for example, monitoring the size of the case base.
Data collection about processing might involve noting clusters in input problems, input
problems that the system is unable to solve successfully, or input problems for which
processing costs are too high.

Type of Data: None, Synchronic, or Diachronic. There are three approaches to col-
lecting and analyzing data to decide when CBM is needed. The simplest is to do no
collection at all. A policy with no data collection makes maintenance decisions inde-
pendently of the present or past state of the case base. As such, this type of policy is
referred to as nonintrospective. For example, a CBR system that updates its case base
by unconditionally adding a case each time it adapts a prior case would need no data
collection. This is the approach of most CBR systems. Similarly, a system may drive
maintenance according to external information sources. This is valuable for proactive
maintenance, for example, to add cases to a help-desk case base in anticipation of future
queries.

More sophisticated reasoning is enabled by considering a snapshot of the current
case base in part or as a whole. Examination of this information can determine, for
example, whether a case is worth adding to a case base because it increases the com-
petence of the CBR system or whether a solution can be discarded without affecting
competence (Smyth and Keane 1995). As another example, Reinartz et al. (2000) pro-
pose a set of measures that can be computed to assess the overall quality of a case base
in order to trigger maintenance. Policies that consider snapshot information are called
synchronic.



200 Computational Intelligence

The most informative approach is to collect data over time, over a sequence of
snapshots, in order to identify trends in how case-base contents and usage are changing.
Policies that consider changes in the case base over time are called diachronic. For exam-
ple, a policy that gathered information about trends in retrieval times to identify the
onset of utility problems would be diachronic. Because synchronic and diachronic col-
lection examine the internal state of the case base, both are referred to as introspective.

Timing: Periodic, Conditional, or Ad Hoc. A maintenance policy must specify when
data collection is performed. In our framework, there are three possibilities. Periodic
timing happens at a set frequency with respect to the CBR cycle. For example, data
collection might be performed after each problem-solving cycle. Periodic timing that
happens every cycle is termed continuous. Conditional data collection is performed in
response to a well-defined but nonperiodic condition. For example, analysis might be
triggered whenever the number of cases in the case library reaches a particular thresh-
old (Smyth and Keane 1995). Ad hoc timing happens under ill-defined conditions deter-
mined externally to the CBR system.1 Examples of ad hoc timing are user-initiated tests
on the case base to determine whether maintenance is needed or a domain expert’s
decision to add new cases regardless of the case base contents.

Integration: On-line or Off-line. Data collection may operate on-line, during the
course of an active reasoning episode, or off-line, during a pause in reasoning, such as
waiting for user input or when idle between reasoning episodes. The choice between
on-line and off-line processing may affect the resources that can be devoted to the
analysis process, making it important for determining whether a policy is appropriate
for time-constrained processing.

4.2. Triggering

The results of data analysis serve as input for determining whether CBM is nec-
essary. Both the timing and integration dimensions discussed previously apply to this
step as well. Maintenance triggering evaluates whether to perform maintenance, selects
maintenance actions to use, and may set parameters to guide their future execution
(e.g., determining when they will be performed). Triggering can be done periodically,
conditionally, or on an ad hoc basis and on-line or off-line.

Conditional triggering can be subdivided into three classes depending on the con-
ditions that determine whether maintenance is triggered: space-based (e.g., filling a lim-
ited amount of case storage), time-based (e.g., retrieval time exceeding a threshold), or
result-based (e.g., the system failing to solve a given problem or the wrong case being
retrieved).

4.3. Proactive versus Reactive Maintenance

CBM is often seen as a process of detecting problems and responding to repair
them (e.g., for case inconsistencies or exceeding case-base size limits). In this case,
maintenance is triggered by conditions typically indicative of system failures. However,
maintenance also may be proactive, taking steps despite successful performance, to
avoid predicted future problems or to improve future performance. For example, a

1This category name in no way implies that the choice is ill-considered; simply that it is not under control of
the policy.



Maintaining Case-Based Reasoners 201

software company with a case-based help-desk system might do maintenance in advance
of the launch of a new product in order to seed the case base with cases expected to be
useful after the product has been released.

4.4. Operation Types

Different maintenance policies revise different types of information (the target type)
at different levels (the revision level).

Target Type. For CBM, revision operations can focus on three types of targets:
indexing structures, domain contents, and accounting information.

Revision Level. Revision operations can make revisions with ramifications at three
levels: affecting only the implementation level (e.g., changing an indexing structure from
a list to a D-tree when the case base exceeds a certain size or changing case representa-
tions from lists to vectors), affecting the representation level (e.g., reconciling inconsistent
feature names or case formats in cases that come from different sources), or affecting
the knowledge level as well (e.g., correcting an erroneous feature value, generalizing case
values, or adding or deleting cases).

Finer-grained characterizations of operator types are of course possible [e.g.,
Heister and Wilke (1998) describe a set of atomic maintenance operations]. However,
as with the rest of the categorization scheme, we have used higher-level categories to
facilitate cross-system comparisons of major characteristics.

Scope of Maintenance: Broad or Narrow. A given operation may be applied locally,
to few items in the case base, or more globally. Operations that affect a single case or
a small subset of the case base have narrow scope, and operations that affect a large
subset or the entirety of the case base have broad scope. This dimension is especially
useful when characterizing resource-bounded processing.

4.5. Execution

Execution is characterized by the timing of maintenance operations and their inte-
gration with other system processing. Execution timing is described using the timing
dimension previously described for data collection (periodic, conditional, or ad hoc);
timing also may be “none” for systems with no execution. For example, a maintenance
policy simply may inform a maintainer that maintenance is needed without making
changes (none), changes may be made on a regular basis (periodic), changes may be
held for batch updating when enough cases are accumulated (conditional), or changes
may be held for when an expert is available (ad hoc). Likewise, execution integration
is described as on-line or off-line depending on whether maintenance operations are
performed during or between reasoning episodes.

4.6. Categorizing Policies for CBM

To illustrate the use of the framework and to understand the range of CBM meth-
ods, we apply the framework to a sampling of CBM approaches, beginning with a few
simple examples. In describing particular maintenance policies, we emphasize two parts
of the CBM framework that we consider particularly useful for describing current CBM
systems: the type of data collected and how maintenance policies are executed. Table 1
summarizes the described approaches along these dimensions.



202 Computational Intelligence

Table 1. Sample CBM Approaches Placed Along Major Dimensions

Data Collection

Type of Data

Activation Integration Scope of
Timing Time Changes None Synchronic Diachronic

Periodic On-line Broad
Narrow CBR1 Muñoz-Avila

Off-line Broad
Narrow

Conditional On-line Broad Fox & Leake
Narrow Leake & Smyth & Keane2; Leake &

Wilson2 Surma & Tyburcy; Wilson1
Hammond; Ihrig &
Kambhampati

Off-line Broad Smyth & Keane1;
Portinale et al.

Narrow
Ad hoc On-line Broad

Narrow Minor & Haft1
Off-line Broad CBR2 Aha & Breslow; IBLn;

Watson; Racine &
Yang1� 2� 3; Netten;
Smyth & McKenna1� 2;
Zhu & Yang; Göker
& Roth-Berghofer;
Yang & Wu

Narrow CBR2 Watson
No Execution Shimazu & Takishima

Non-
introspective Introspective

Policies Targeting Domain Content. Policies targeting domain content may be divided
into policies aimed at adding and deleting cases and policies aimed at revising internal
case content. We first consider addition and deletion policies and then policies to refine
the cases themselves.

Standard case learning and manual maintenance. The standard learning of CBR
problem-solving systems (always adding each new case to the case base) is designated
in Table 1 as CBR1. No data analysis is performed—the new case is recorded without
considering the existing contents of the case base—so it is nonintrospective. Because
learning happens during each reasoning cycle, this policy is continuous (periodic) and
on-line. Because only a single case is added, the scope of change is narrow.

Another common CBR method (CBR2) involves a non-learning system maintained
by a domain expert who sometimes adds a variable number of new cases. For this
method, we presume no system analysis of the existing case base, so the maintenance



Maintaining Case-Based Reasoners 203

policy is nonintrospective. Because the timing of the updates depends on the expert’s
external decision, the timing is ad hoc. Because the cases are added manually outside
of normal processing, the integration is off-line. Because the number of cases can be
small or large, the scope varies from narrow to broad.

Additional policies aimed at case retention. Smyth and Keane (1995) describe a
competence-preserving approach to case deletion, which specifies a case utility hierar-
chy in terms of coverage and reachability. When the number of cases in the case base
exceeds the “swamping limit,” their “footprint-utility deletion” strategy selects candi-
dates for deletion based on the utility hierarchy. Because the hierarchy is defined with
respect to the current state of the case base, the policy is synchronic. Because mainte-
nance is triggered in response to the current size of the case base, timing is conditional.
Smyth and Keane describe this mechanism as being applied either to small numbers of
cases during processing, using a heuristic method of utility evaluation (Smyth & Keane2,
on-line and narrow) or to large numbers of cases with full analysis outside the reasoning
cycle (Smyth & Keane1, off-line and broad).

Surma and Tyburcy (1998) describe policies for replacing older cases as new cases
are learned in order to bound case-base size to maintain bounded retrieval time. The
policies act on the current state of the case base (synchronic) during the storage phase
(on-line) when the size limit is reached (conditional) to make a narrow change.

Smyth and McKenna (1999) present a policy for case-base editing/compaction
(Smyth & McKenna1) that uses an explicit case competence model based on notions of
coverage and reachability. Their “relative coverage” metric provides a precise measure
of competence contributions for individual cases. This allows the case set to be ordered
by likely competence contribution. To build the case base, the ordered set is presented
to a condensed nearest-neighbor algorithm that successively retains only those cases
which are not solved by a case that has already been retained. This method examines
the current state of the case base (synchronic). It is presented as a way to edit the entire
case base during construction (ad hoc, off-line, broad), although they also have devel-
oped efficient methods for keeping the reachability and coverage measures current as
the system is used (Smyth and McKenna 2000).

Muñoz-Avila (1999) presents a case retention policy based on retrieval benefits to
case-based planning. After a problem-solving episode, adaptation effort is analyzed to
determine whether the guidance of retrieved cases was “beneficial” (the new case need
not be stored) or “detrimental” (the new case is added). This policy is synchronic,
periodic, on-line (prestorage), and narrow.

Portinale, Torasso, and Tavano (1999) present a strategy for managing case memory
by removing “useless” cases (that have not been retrieved before an expiration limit) and
“false positive” cases (that have been retrieved and have had more adaptation failures
than successes). Memory management is conditionally triggered after a variable-length
time window that is tailored to the growth of case memory and reasoning failure rate.
This policy uses synchronic information, conditional timing, and off-line integration to
make broad changes.

Zhu and Yang (1999) describe a case-addition algorithm for case-base compaction
that uses a problem-neighborhood model of case coverage. Cases are successively added
based on added benefit/usefulness to the neighborhood of the case set retained so far.
The analysis is synchronic, with ad hoc timing, off-line integration, and broad scope.

Policies aimed at internal case content. A number of proposed CBM policies are
aimed at internal case content. Shimazu and Takashima (1996) describe a version of the
CARET system that identifies discontinuities in a case base. This system uses synchronic



204 Computational Intelligence

data collection; it retrieves a set of “maybe similar cases” (MSCs), chooses a single
best “base case” (BC), and classifies as “discontinuous” any remaining MSCs whose
suggestions differ from the BC by more than a given threshold, identifying them as
potential candidates for maintenance. However, the system does not execute revisions,
so the policy has no execution.

Racine and Yang (1997) describe policies for identifying redundant cases (Racine &
Yang1) and inconsistent cases (Racine & Yang2). Both policies rely on an analysis of
the current state of the case base, so they are synchronic. Both are applied to the case
base as a whole when desired by a case-base maintainer, so they are broad, ad hoc, and
off-line.

Minor and Hanft (2000) describe a framework to support interactive revision of
case content over case “life cycles” (Minor & Hanft1). Support for revising case content
is based on the current state of the case base and is interactive (ad hoc and on-line),
with narrow changes being made to individual cases.

Leake and Wilson (1998) describe a maintenance policy that updates case contents
with a revision policy installed in response to trends in performance anomalies (Leake
& Wilson2), enabling a lazy update of the case base. The installed policy always checks
(no analysis) whether a retrieved case (on-line between retrieval and application) has
been updated to reflect a previously detected trend (conditional timing) and updates
just that case (narrow scope) in situ before passing it on for further reasoning.

Additional approaches address both the presence of cases in the case base and
their internal content. Watson (1997) presents a set of guidelines for human case-base
maintainers that involve performing periodic tests on the entire case base. This policy
can be described as having synchronic analysis, ad-hoc timing, off-line execution, and
narrow or broad scope.

Netten (1999) presents a framework for verification of case-base integrity in case-
based diagnosis systems. This includes checks for redundancy, inconsistency, and
incompleteness in case definitions, as well as verification of coverage, reachability, and
accuracy. The framework is presented as a means to validate a diagnosis case base
before being applied in critical environments. It makes use of the current state of the
case base and is ad hoc, off-line, and broad in scope.

Göker and Roth-Berghofer (1999) describe the “maintenance cycle” of the
HOMER case-based help-desk support system, which includes a policy for verifying
whether new cases entered by help-desk operators should be added to the central case
repository. Redundancy and inconsistency are checked by a case-base administrator.
Potential cases are checked against the current case base (synchronic), at a time deter-
mined by the maintainer (ad hoc), separate from ongoing processing (off-line), and only
for cases under consideration (narrow).

Policies Targeting Indices. A number of classification systems using IBL and related
techniques (IBLn) include policies for eliminating noisy and redundant instances from a
set of training examples (cases). These systems generalize a case base either explicitly, by
merging cases with similar coverage (e.g., Domingos 1995), or implicitly, by choosing a
smaller, representative subset of cases (e.g., Aha, Kibler, and Albert 1991). Such policies
typically consider a static set of cases (synchronic), are user-initiated (ad hoc), perform
execution off-line, and are applied to the entire training set (broad). Because case
features (other than the category) are only used as indices, we view their generalizations
as revising indexing information. When IBL systems remove noisy instances or remove
a class entirely, their target is domain content.



Maintaining Case-Based Reasoners 205

Many methods have been proposed for selecting case indices. Some are included in
the standard case-addition process (CBR1), as in the model-based approach of Bhatta
and Goel (1995). Others, however, adjust current indices in response to performance
deficiencies. Hammond (1989) describes a failure-driven method for explanation-based
selection of new indexing features. Likewise, Ihrig and Kambhampati (1997) describe a
policy that explains plan replay failures in order to add features to check during future
retrievals. These policies are conditional, on-line, and make narrow changes.

Fox and Leake (1995) describe a policy that triggers index revision for plan cases in
response to plan failures. This policy considers snapshot information about execution
(synchronic), is executed conditionally, is performed on-line, and revises indices in the
entire case base (broad scope).

Aha and Breslow (1997) describe an index revision method for conversational CBR
that considers an entire case base to optimize interactive question paths in response to
an external request. This policy has synchronic data collection, ad hoc activation timing,
off-line integration, and broad scope.

Racine and Yang (1997) describe a policy for deriving and updating indices of
unstructured cases (Racine & Yang3) using methods derived from information retrieval.
Like their other policies, this policy is synchronic, broad, and off-line and has ad hoc
execution.

Smyth and McKenna (1999) present a method for index refinement (Smyth &
McKenna2) based on competence groups defined with reference to measures of cover-
age and reachability. From each competence group, a set of footprint cases that cover
the remainder of the group is used to focus retrievals. The indexing organization uses
synchronic information, ad hoc and off-line, to make broad changes.

Yang and Wu (2000) describe a method in which a large original case base is par-
titioned into a distributed set of case-base clusters using density-based clustering meth-
ods. Retrievals are made from the distributed case organization by finding the best case
cluster and then the best case within that cluster. The clustering method uses a broad
snapshot of the original case base, and the smaller case bases are described as being
built by an expert based on the clustering result, ad hoc and off-line.

Policies targeting maintenance policies. Leake and Wilson (1998) describe a
diachronic maintenance policy (Leake & Wilson1) that detects potentially important
trends in performance anomalies on-line, based on the conditional strength of the trend,
and responds by installing a new maintenance policy tailored in response to the trend
detected. It performs a narrow change—adding a new maintenance policy. This type of
policy is described in more detail in Section 7.

5. A GENERAL FRAMEWORK FOR
CASE-BASED REASONER MAINTENANCE

The CBM framework developed in previous sections is flexible enough to provide
a general set of dimensions for describing maintenance systems beyond CBM alone. In
developing the overall maintenance framework, we first define the more general case-
based reasoner maintenance: Case-based reasoner maintenance (CBRM) implements
policies for revising one or more knowledge containers in order to facilitate future
reasoning for a particular set of performance objectives.

The same CBR performance goals described in Section 3 guide this more general
process, but under more general constraints:



206 Computational Intelligence

1. Knowledge container and component processing constraints (e.g., case-base size
limits, adaptation-effort thresholds)

2. Acceptable long-term/short-term performance tradeoffs
3. The availability of secondary sources of knowledge
4. The expected distribution of future problems

Regardless of the knowledge container(s) involved, maintenance policies are deter-
mined by methods for data collection, triggering, operation types, and execution. In this
section we extend the framework developed for CBM to generalized CBRM. As with
CBM, the goals of this extended framework are to illuminate current practice by identi-
fying classes of maintenance methods, to identify research opportunities where parts of
the space of possibilities have not been addressed in previous work, and to help identify
which maintenance approaches are most appropriate for particular performance goals.
We do not claim that we provide a final taxonomy or a complete summary of CBRM
but that the framework provides a useful way to describe central aspects of current
practice in CBRM and identifies opportunities for future maintenance research.

5.1. Extending the CBM Framework to CBRM

Adapting the CBM framework to other knowledge containers maintains the over-
arching structure but requires adjustments of some specific features. The finer-grained
distinctions in operation types and triggering will change according to the knowledge
container being maintained, but both dimensions still apply. For example, operations
for similarity maintenance may have different targets (e.g., weighting schemes), but
the notion of revision level (implementation, representation, or knowledge level) still
applies. One set of possible similarity operations is presented in Heister and Wilke
(1998).

Conditional triggering also will have different general conditions. Triggering may
be based on conditions when using a particular knowledge container (e.g., the average
efficiency or quality of adaptation or retrieval) or on the results of overall reasoning.
Thus the space-based CBM type of triggering may not apply for adaptation, but consid-
erations for adaptation efficiency thresholds would. We discuss issues the selection of
which knowledge container to maintain in order to meet performance goals in Section 6.

While the notion of broad versus narrow scope still applies, the implications are
relative to the particular knowledge container. In the large, revising the entire case
base may take far longer than revising the entire similarity weighting scheme, but both
might be considered to have broad scope within their knowledge container.

5.2. Categorizing Policies for Other Knowledge Containers

Having extended the framework for CBRM, we present some examples of how
the generalized framework may be applied to knowledge containers other than the
case base. Here we discuss policies that affect the other three well-known knowledge
containers identified in Richter (1998): similarity, adaptation, and vocabulary. We pro-
pose, however, that the same general framework could be applied to other knowledge
containers—maintenance knowledge itself, for example.

Similarity Maintenance. There is a large body of work dealing with methods for
learning feature weighting schemes in k-nearest neighbor classifier lazy-learning algo-
rithms. Such policies typically consider a static set of training cases/instances (syn-
chronic) in learning that are user-initiated (ad hoc), perform execution off-line (training



Maintaining Case-Based Reasoners 207

happens off-line from system use), and are applied to the entire training set (broad).
For a discussion and comparison of these types of methods, see Wettschereck et al.
(1997).

Muñoz-Avila and Huellen (1996) describe a policy that analyzes adaptation effort
after each problem-solving episode in order to adjust feature weights according to their
relative relevance. This policy is synchronic, periodic, and on-line and makes narrow
changes.

Zhang and Yang (1999) propose a method for continually updating a feature-
weighting scheme based on interactive user responses to the system’s behavior. This
is synchronic, conditional (on receiving user feedback), on-line, and broad.

Adaptation Maintenance. Leake, Kinley, and Wilson (1996) present an internal
CBR approach to domain-level case adaptation in the DIAL system for disaster response
planning. If adaptation is required to apply a response plan, DIAL first checks for appli-
cable adaptation cases. When no adaptation cases apply, new adaptation cases can be
learned by recording traces of rule-based or interactive manual adaptation. This type of
adaptation learning is synchronic, based on the system’s current adaptation knowledge
(i.e., if there are problems, the rule-based or manual adaptation mechanism is invoked).
The timing is conditional (if the adaptation is unable to be made automatically). The
activation is on-line, during case-based planning for disaster response. The scope is
narrow (it applies to one adaptation case).

Hanney and Keane (1996) describe a mechanism for learning adaptation rules by
induction from differences in case knowledge. If two cases differ in only a small number
of attributes, then the differences in those attributes can form the basis of adaptation
rules from one context to another. If there are consistent adaptation types found among
potential subsets of cases, then the type of difference can be learned as adaptation rule.
This policy is synchronic, ad hoc, off-line, and broad.

Vocabulary Maintenance. Leake and Wilson (1999) describe DRAMA, an interac-
tive CBR system for aerospace design that uses a proactive policy to help maintain the
system vocabulary. The cases in the system are conceptual aircraft designs, for which the
designers have a great deal of freedom in externalizing their design conceptualizations,
freely defining new features to describe design cases. The proactive vocabulary policy
examines the current design context and offers suggestions on appropriate concepts and
relations that have been used previously. In this way the vocabulary is built in parallel
with the case library. This policy is based on the current state of vocabulary knowledge
and is synchronic. The timing is ad hoc, since the interactive nature of the system is
under user control. The integration is on-line, and the scope is narrow.

Minor and Hanft (2000) describe an interactive framework that supports the main-
tenance of term dictionaries in parallel with the revision of case content. Terms are
linked in with the current vocabulary (synchronic), at the user’s request during process-
ing (ad hoc and on-line), with narrow changes being made to the vocabulary.

6. COORDINATING MAINTENANCE ACROSS
KNOWLEDGE CONTAINERS

The multiple knowledge containers of CBR overlap; knowledge available in one can
replace missing knowledge in another (Richter 1998). As a result, just as builders of
CBR systems can select the most convenient form in which to provide knowledge to an



208 Computational Intelligence

initial CBR system, maintainers of CBR systems can choose where to focus their mainte-
nance efforts, applying effort where it is most convenient or effective. For example, the
same overall effects on system accuracy might be achieved by case-base reorganization—
which we consider part of CBM—or by adjustment of the similarity measure—which
affects the similarity knowledge container. This raises two new issues for CBRM that
do not arise at the individual knowledge container level: selection of the knowledge
container to maintain and managing interactions between maintenance operations in
different knowledge containers.

6.1. Selecting the Container to Maintain

When performance goals dictate the need for maintenance, a CBRM system must
determine which knowledge container(s) to revise. In some situations, only one knowl-
edge container will be an appropriate target, whereas in others multiple candidate revi-
sions could be made. For example, failure to solve a problem could be addressed by
adding a new case, adjusting similarity criteria (if the problem could have been solved
starting from an existing case but that case was not retrieved), or adding adaptation
knowledge. How to perform the credit assignment to identify which knowledge con-
tainer to adjust has received some initial attention [e.g., Leake (1996) for identifying
indexing problems versus missing cases] but is largely an open issue. When changes to
multiple containers could be effective, utility-based choices may be needed to decide
which container(s) to revise.

6.2. Managing Interactions between Knowledge Containers

Just as maintenance operations in one knowledge container may reduce the need
for maintenance in others, maintenance in one container may necessitate maintenance
in others as well. This may arise in either of two ways. First, some maintenance opera-
tions, such as revisions to the case representation vocabulary, intrinsically affect multiple
knowledge containers. In order for the system to function, knowledge containers such as
similarity and adaptation knowledge must be revised to handle the new representations.
Thus vocabulary revisions to any container must be coupled with associated operations
to adjust the other containers. Second, maintenance operations in one knowledge con-
tainer may require adjustments to other containers in order to maintain performance
or exploit revisions. For example, Leake et al. (1997) show that realizing the benefits
of augmented adaptation knowledge may depend on associated revisions of similar-
ity criteria in order to focus retrieval on appropriate cases for the revised adaptation
knowledge. Heister and Wilke (1998) also provide a listing of the knowledge containers
affected by the operations defined in their architecture.

Thus a general view of CBRM depends on three things: characterizing individual
maintenance policies for specific knowledge containers, making strategic decisions about
which strategies to apply, and characterizing how those policies are coordinated and
integrated across knowledge containers to produce effective systemwide maintenance
procedures.

7. METAMAINTENANCE

The analysis of maintenance policies makes clear that maintenance knowledge itself
should be considered a knowledge container for CBR. Thus, like the other knowledge



Maintaining Case-Based Reasoners 209

containers, it may require maintenance. Consequently, CBRM must include the capa-
bility for metamaintenance: maintenance of the maintenance strategies themselves. We
can view the process of metamaintenance as a way to maintain the CBR system’s knowl-
edge containers indirectly. Instead of modifying the knowledge containers, this process
puts in place or modifies the policies that will be used to modify them.

We illustrate metamaintenance with an example from our work on using metamain-
tenance to perform “lazy” updating of the case base in CBM (Leake and Wilson 1998).
In standard CBR, when the system adapts a case to a new problem, the resulting case
is stored, and the old case is left unchanged—it is assumed that the old solution still
applies. However, sometimes part of the adaptation is performed because the old case
no longer correctly solves the problem it solved previously (e.g., in a real estate price
estimating system, because construction of a nearby shopping center affected real estate
prices). In this case, an additional CBM policy can be put into place to revise each old
case as it is being used. The result is to update old cases in a “lazy” manner as they are
applied to new situations. This method is useful when environmental changes require
general changes in the case base but global updating is not cost-effective, e.g., because
updates are expensive and only a small portion of the case base is actually used.

Thus broad-scoped case-base updates can be done either directly by CBM making
the change to all cases simultaneously, when it next performs maintenance, or by a
narrow-scoped change to maintenance knowledge, adding a new maintenance rule to
update each case that is retrieved, before it is applied to the new situation. This lazy
approach may be preferable in resource-constrained circumstances.

8. DIRECTIONS FOR CBRM

Many CBRM issues remain to be investigated. Because, to our knowledge, the role
of usage trends (diachronic type analysis) in guiding maintenance has not yet been
explored in other research, we consider it an especially promising area. The very simple
trend-based maintenance described in Leake and Wilson (1998) has application to a
particularly well-behaved type of change in the case base that appears in other contexts
as well (e.g., updating old prices based on inflation for real-estate appraisal) but would
fail to apply to more subtle trends that would require more sophisticated methods.

Another form of trend information that might be exploited, for example, is patterns
in the types of problems that are being solved. Examination of these patterns may
identify “hot spots” in the problem space and determine subsets of the case base to
be consulted first, whereas (if storage were limited) less useful cases could be archived
(Leake and Wilson 1999b). Racine and Yang (1997) observe that recent cases may be
likely to be useful; trend analysis could provide other types of suggestions for which
cases should be most accessible.

Coordinating maintenance across knowledge containers is also an important area for
future research. Despite considerable research on maintenance policies for individual
knowledge containers, there has been comparatively little investigation of how to select
containers to maintain and how policies that affect more than one knowledge container
interact with one another. Deciding which knowledge container to maintain and how
to do so in order to address performance goals will be important in managing more
complex maintenance agendas. One interesting area is knowledge container transfer,
moving knowledge from one container to another to locate knowledge where it can be
used most easily and effectively. Shiu et al. (2000) describe a method for transfer from
the case base to adaptation knowledge.



210 Computational Intelligence

Reactive maintenance has received a great deal of attention, but the reactive
approach presumes that there has been some type of system failure or critical condition
to which the policies are reacting. This implies that reasoning in reactive situations will
not meet performance goals or will not meet them as well. Proactive maintenance, in
which policies anticipate maintenance needs before failures occur and proactively make
changes, can help provide a more uniform way to continue meeting performance goals.

To exploit advances in CBRM, the advances must be accompanied by increased
understanding of how to apply them. A long-term goal of our work on characteriz-
ing maintenance policies is to combine the characterizations with descriptions of the
tasks, domains, and performance objectives for which particular policies are likely to be
appropriate to help guide policy selection decisions when developing CBR systems.

9. CONCLUSION

This article presents a general framework for characterizing knowledge container
maintenance policies in case-based reasoners. It presents basic dimensions for CBRM
policies in terms of three subprocesses—data collection, triggering, and execution—
and characterizes key design choices in terms of those dimensions. Factors considered
include the type of information collected, timing, and integration of data collection;
the timing and integration of maintenance triggering; whether the approach is reactive
or proactive; the types of maintenance operations used; and the timing, integration,
and scope of maintenance execution. The article demonstrates the use of this frame-
work to describe multiple maintenance approaches. Further examination of the general
maintenance task is clearly needed both to refine our understanding and to guide the
development of CBRM practice. We hope that the framework presented in this article
will spark further investigation both of maintenance practice and of issues and oppor-
tunities for new CBRM approaches.

ACKNOWLEDGMENTS

This research was supported in part by NASA under Award No. NCC 2-1035.

REFERENCES

Aha, D. W., and L. Breslow. 1997. Refining conversational case libraries. In Proceedings of the
Second International Conference on Case-Based Reasoning. Springer-Verlag, Berlin, pp. 267–278.

Aha, D., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. Machine Learning,
6:37–66.

Bhatta, S., and Ashok Goel. 1995. Model-based indexing and index learning in analogical design. In
Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society. Lawrence
Erlbaum, Mahwah, NJ, pp. 527–532.

Borron, J., D. Morales, and P. Klahr. 1996. Developing and deploying knowledge on a global
scale. In Proceedings of the Thirteenth National Conference on Artificial Intelligence, Vol. 2.
AAAI Press, Menlo Park, CA, pp. 1443–1454.

Cheetham, W., and J. Graf. 1997. Case-based reasoning in color matching. In Proceedings of the
Second International Conference on Case-Based Reasoning. Springer-Verlag, Berlin, pp. 1–12.

Deangdej, J., D. Lukose, E. Tsui, P. Beinat, and L. Prophet. 1996. Dynamically creating indices
for two million cases: A real world problem. In Advances in Case-Based Reasoning. Edited by
I. Smith and B. Faltings. Springer-Verlag, Berlin, pp. 105–119.



Maintaining Case-Based Reasoners 211

Dietterich, T. 1986. Learning at the knowledge level. Machine Learning, 1:287–316.
Domingos, P. 1995. Rule induction and instance-based learning. In Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco, CA,
pp. 1226–1232.

Doyle, Michelle, and Pádraig Cunningham. 1999. On balancing client-server load in intelligent
web-based applications involving dialog. Technical Report TCD-CS-1999-25, Trinity College,
Dublin.

Fox, S., and D. Leake. 1995. Modeling case-based planning for repairing reasoning failures. In Pro-
ceedings of the 1995 AAAI Spring Symposium on Representing Mental States and Mechanisms.
AAAI Press, Menlo Park, CA, pp. 31–38.

Francis, A., and A. Ram. 1993. Computational models of the utility problem and their application
to a utility analysis of case-based reasoning. In Proceedings of the Workshop on Knowledge
Compilation and Speed-Up Learning.

Göker, Mehmet, and Thomas Roth-Berghofer. 1999. Development and utilization of a case-based
help-desk support system in a corporate environment. In Proceedings of the Third International
Conference on Case-Based Reasoning. Edited by K. D. Althoff, R. Bergmann, and L. K. Branting.
Springer-Verlag, Berlin, pp. 132–146.

Hammond, K. 1989. Case-Based Planning: Viewing Planning as a Memory Task. Academic Press,
San Diego.

Hanney, K., and M. Keane. 1996. Learning adaptation rules from a case-base. In Proceedings of the
Third European Workshop on Case-Based Reasoning. Springer-Verlag, Berlin, pp. 179–192.

Hanney, K., M. Keane, B. Smyth, and P. Cunningham. 1995. What kind of adaptation do CBR
systems need? a review of current practice. In Proceedings of the Fall Symposium on Adaptation
of Knowledge for Reuse. AAAI Press, Menlo Park, CA.

Heister, F., and W. Wilke. 1998. An architecture for maintaining case-based reasoning systems. In
Proceedings of the Fourth European Workshop on Case-Based Reasoning. Edited by P. Cunning-
ham, B. Smyth, and M. Keane. Springer-Verlag, Berlin.

Ihrig, L., and S. Kambhampati. 1997. Storing and indexing plan derivations through explanation-based
analysis of retrieval failures. Journal of Artificial Intelligence Research, 7:161–198.

Kitano, H., and H. Shimazu. 1996. The experience sharing architecture: A case study in corporate-
wide case-based software quality control. In Case-Based Reasoning: Experiences, Lessons, and
Future Directions. Edited by D. Leake. AAAI Press, Menlo Park, CA, pp. 235–268.

Leake, D. 1996. Experience, introspection, and expertise: Learning to refine the case-based reasoning
process. Journal of Experimental and Theoretical Artificial Intelligence.

Leake, D., and D. Wilson. 1998. Case-base maintenance: Dimensions and directions. In Proceedings
of the Fourth European Workshop on Case-Based Reasoning. Edited by P. Cunningham, B. Smyth,
and M. Keane. Springer-Verlag, Berlin, pp. 196–207.

Leake, D., and D. Wilson. 1999a. Combining CBR with interactive knowledge acquisition, manipula-
tion and reuse. In Proceedings of the Third International Conference on Case-Based Reasoning.
Springer-Verlag, Berlin, pp. 203–217.

Leake, D., and D. Wilson. 1999b. When experience is wrong: Examining CBR for changing tasks and
environments. In Proceedings of the Third International Conference on Case-Based Reasoning.
Springer-Verlag, Berlin, pp. 218–232.

Leake, D., and D. Wilson. 2000. Remembering why to remember: Performance-guided case-base
maintenance. In Proceedings of the Fifth European Workshop on Case-Based Reasoning. Edited
by E. Blanzieri and L. Portinale. Springer-Verlag, Berlin,

Leake, D., A. Kinley, and D. Wilson. 1996. Acquiring case adaptation knowledge: A hybrid approach.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence. AAAI Press,
Menlo Park, CA, pp. 684–689.

Leake, D., A. Kinley, and D. Wilson. 1997. Learning to integrate multiple knowledge sources for
case-based reasoning. In Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence. Morgan Kaufmann, San Mateo, CA, pp. 246–251.

Minor, Mirjam, and Alexandre Hanft. 2000. Corporate knowledge editing with a life cycle model.
In Proceedings of the Eighth German Workshop on Case-Based Reasoning.



212 Computational Intelligence

Muñoz-Avila, H. 1999. A case retention policy based on detrimental retrieval. In Proceedings of
ICCBR-99.

Muñoz-Avila, H., and J. Huellen. 1996. Feature weighting by explaining case-based planning
episodes. In Proceedings of the Third European Workshop on Case-Based Reasoning. Springer-
Verlag, Berlin, pp. 280–294.

Netten, B. D. 1999. Verification of case-base integrity in BRIDGE. In Proceedings of the Seventh
German Workshop on Case-Based Reasoning. pp. 120–130.

Portinale, L., P. Torasso, and P. Tavano. 1999. Speed-up, quality, and competence in multi-
modal reasoning. In Proceedings of the Third International Conference on Case-Based Reasoning.
Springer-Verlag, Berlin, pp. 303–317.

Racine, K., and Q. Yang. 1997. Maintaining unstructured case bases. In Proceedings of the Second
International Conference on Case-Based Reasoning. Springer-Verlag, Berlin, pp. 553–564.

Reinartz, T., I. Iglezakis, and T. Roth-Berghofer. 2000. On quality measures for case base main-
tenance. In Proceedings of the Fifth European Workshop on Case-Based Reasoning. Edited by
E. Blanzieri and L. Portinale. Springer-Verlag, Berlin,

Richter, M. 1998. Introduction. In CBR Technology: From Foundations to Applications. Edited
by M. Lenz, B. Bartsch-Spörl, H.-D. Burkhard, and S. Wess. Springer-Verlag, Berlin, Chap. 1,
pp. 1–15.

Shimazu, H., and Y. Takashima. 1996. Detecting discontinuities in case-bases. In Proceedings of the
Thirteenth National Conference on Artifical Intelligence, Vol. 1. AAAI Press, Menlo Park, CA,
pp. 690–695.

Shiu, S., C. Sun, X. Wang, and D. Yeung. 2000. Maintaining case-based reasoning systems using
fuzzy decision trees. In Proceedings of the Fifth European Workshop on Case-Based Reasoning.
Edited by E. Blanzieri and L. Portinale. Springer-Verlag, Berlin,

Smyth, B. 1998. Case-base maintenance. In Proceedings of the Eleventh International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Castellon,
Spain.

Smyth, B., and P. Cunningham. 1996. The utility problem analysed: A case-based reasoning perspec-
tive. In Proceedings of the Third European Workshop on Case-Based Reasoning. Springer-Verlag,
Berlin, pp. 392–399.

Smyth, B., and M. Keane. 1995. Remembering to forget: A competence-preserving case deletion
policy for case-based reasoning systems. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco, pp. 377–382.

Smyth, B., and E. McKenna. 1999a. Building compact competent case-bases. In Proceedings of the
Third International Conference on Case-Based Reasoning. Springer-Verlag, Berlin.

Smyth, B., and E. McKenna. 1999b. Footprint-based retrieval. In Proceedings of the Third Interna-
tional Conference on Case-Based Reasoning. Springer-Verlag, Berlin.

Smyth, B., and E. McKenna. 2000. An efficient and effective procedure for updating a compe-
tence model for case-based reasoners. In Proceedings of the Eleventh European Conference
on Machine Learning. Springer-Verlag, Berlin.

Surma, Jerzy, and Janusz Tyburcy. 1998. A study on competence-preserving case replacing strate-
gies in case-based reasoning. In Proceedings of the Fourth European Workshop on Case-Based
Reasoning. Edited by P. Cunningham, B. Smyth, and M. Keane. Springer-Verlag, Berlin,
pp. 233–238.

Voß, Angi 1996. Principles of case reusing systems. In Advances in Case-Based Reasoning. Edited by
I. Smith and B. Faltings. Springer-Verlag, Berlin, pp. 428–444.

Watson, I. 1997. Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan
Kaufmann, San Mateo, CA.

Watson, Ian, and Dan Gardingen. 1999. A distributed case-based reasoning application for engi-
neering sales support. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, Vol. 1. Morgan Kaufmann, San Mateo, CA, pp. 600–605.

Wettschereck, D., D. Aha, and T. Mohri. 1997. A review and empirical evaluation of feature-
weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review,
11(1–5):273–314.



Maintaining Case-Based Reasoners 213

Yang, Qiang, and Jing Wu. 2000. Keep it simple: A case base maintenance policy based on clustering
and information theory. In Proceedings of the Canadian AI Conference.

Zhang, Zhong, and Qiang Yang. 1999. Dynamic refinement of feature weights using quantitative
introspective learning. In Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, San Mateo, CA.

Zhu, Jun, and Qiang Yang. 1999. Remembering to add: Competence-preserving case-addition poli-
cies for case base maintenance. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence. Morgan Kaufmann, San Mateo, CA.


