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Abstract Connectivity in wireless sensor networks may be established using either
omnidirectional or directional antennae. The former radiate power uniformly in all
directions while the latter emit greater power in a specified direction thus achieving
increased transmission range and encountering reduced interference from unwanted
sources. Regardless of the type of antenna being used the transmission cost of each
antenna is proportional to the coverage area of the antenna. It is of interest to de-
sign efficient algorithms that minimize the overall transmission cost while at the
same time maintaining network connectivity. Consider a set S of n points in the
plane modeling sensors of an ad hoc network. Each sensor is equipped with a fixed
number of directional antennae modeled as a circular sector with a given spread
(or angle) and range (or radius). Construct a network with the sensors as the nodes
and with directed edges (u,v) connecting sensors u and v if v lies within u’s sector.
We survey recent algorithms and study trade-offs on the maximum angle, sum of
angles, maximum range and the number of antennae per sensor for the problem of
establishing strongly connected networks of sensors.
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1 Introduction

Connectivity in wireless sensor networks is established using either omnidirectional
or directional antennae. The former transmit signals in all directions while the latter
within a limited predefined angle. Directional antennae can be more efficient and
transmit further in a given direction for the same amount of energy than omnidi-
rectional ones. This is due to the fact that to a first approximation the energy trans-
mission cost of an antenna is proportional to its coverage area. To be more specific,
the coverage area of an omnidirectional antenna with range r is generally modeled
by a circle of radius r and consumes energy proportional to π · r2. By contrast, a
directional antennae with angular spread ϕ and range R is modelled as a circular
sector of angle ϕ and radius R and consumes energy proportional to ϕ ·R2/2. Thus
for a given energy cost E, an omnidirectional antenna can reach distance

√
E/π ,

while a directional antenna with angular spread ϕ can reach distance
√

2E/ϕ . We
think of the directional antennae as being on a “swivel” that can be oriented towards
a small target area whereas the omnidirectional antennae spread their signal in all
directions. Signals arriving at a sensor within the target area of multiple antennae
will interfere and degrade reception. Thus for reasons of both energy efficiency and
potentially reduced interference (as well as others, e.g., security), it is tempting to
replace omnidirectional with directional antennae.

Replacing omnidirectional with directional antennae

Given a set of sensors positioned in the plane with omnidirectional and/or direc-
tional antennae, a directed network is formed as follows: a directed edge is placed
from sensor u to sensor v if v lies within the coverage area of u (as modeled by cir-
cles or circular sectors). Note that if the radius of all omnidirectional antennae are
the same then u is in the range of v if and only if v is in the range of u, i.e., the edge
is bidirectional and is usually modeled be an undirected edge.

The main issue of concern when replacing omnidirectional with directional an-
tennae is that this may alter important characteristics such as the degree, diameter,
average path length, etc. of the resulting network. For example, the first network

Fig. 1 Four sensors using
omnidirectional antennae.
They form an underlying
complete network on four
nodes.

in Figure 2 is strongly connected with diameter two and more than one node can
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potentially transmit at the same time without interference while in the omnidirec-
tional case (Figure 1) the diameter is one but only one antennae can transmit at a
time without interference. In addition, and depending on the breadth and range of

Fig. 2 Four sensors using
directional antennae. For the
same set of points, the result-
ing directed graphs depend on
the antennae orientations.

the directional antennae the original topology depicted in Figure 1 can be obtained
only by using more than one directional antenna per sensor (see Figure 3).

Fig. 3 Four sensors using
directional antennae. Using
three directional antennae per
sensor in order to form an
underlying complete network
on four nodes.

Replacing omnidirectional with directional antennae enables the sensors to reach
farther using the same energy consumption. As an example consider the graphs
depicted in Figures 4 and 5. The line graph network in Figure 4 with undirected

Fig. 4 Line graph net-
work with undirected edges
{1,2},{2,3},{3,4} resulting
when four sensors 1,2,3,4
use omnidirectional antennae.

1 2 43

edges {1,2},{2,3},{3,4} is replaced by a network of directional antennae depicted
in Figure 5 and having (1,2),(1,3),(2,3),(2,4),(3,4),(4,3),(4,2),(3,2),(3,1) as
directed edges. By setting the angular spread of the directional antennae to be small
a significant savings in energy is possible.
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Fig. 5 Directed network re-
sulting from Figure 4 when
the four sensors replace om-
nidirectional with directional
antennae. Sensor number 3
is using two directional an-
tennae while the rest only
one. 1 2 43

1.1 Antenna orientation problem

The above considerations lead to numerous questions concerning trade-offs between
various factors such as connectivity, diameter, interference, etc., when using direc-
tional versus omnidirectional antennae in constructing sensor networks. Here we
study how to maintain network connectivity when antennae angles are being re-
duced while at the same time the transmission range of the sensors is being kept as
low as possible. More formally this raises the following optimization problem.

Consider a set S of n points in the plane that can be identified with sensors having a range
r > 0. For a given angle 0 ≤ ϕ ≤ 2π and integer k, each sensor is allowed to use at most k
directional antennae each of angle at most ϕ . Determine the minimum range r required so
that by appropriately rotating the antennae, a directed, strongly connected network on S is
formed.

Note that the range of a sensor must be at least the length of the longest edge of a
minimum spanning tree on the set S, since this is the smallest range required just to
attain connectivity.

1.2 Preliminaries and notation

Consider a set S of n points in the plane and an integer k≥ 1. We give the following
definitions.

Definition 1. rk(S,ϕ) is the minimum range of directed antennae of angular spread
at most ϕ so that if every sensor in S uses at most k such antennae (under an appro-
priate rotation) a strongly connected network on S results.

A special case is when ϕ = 0, for which we use the simpler notation rk(S) instead of
rk(S,0). Clearly, different directed graphs can be produced depending on the range
and direction of the directional antennae. This gives rise to the following definition.

Definition 2. Let Dk(S) be the set of all strongly connected graphs on S with out-
degree at most k.

For any graph G ∈ Dk(S), let rk(G) be the maximum length of an edge in G. It
is easy to see that rk(S) := minG∈Dk(S) rk(G). It is useful to relate rk(S) to another
quantity which arises from a Minimum Spanning Tree (MST) on S.
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Definition 3. Let MST (S) denote the set of all MSTs on S.

Definition 4. For T ∈MST (S) let r(T ) denote the length of longest edge of T , and
let rMST (S) = min{r(T ) : T ∈MST (S)}.

For a set S of size n, it is easily seen that rMST (S) can be computed in O(n2) time.
Further, for any angle ϕ ≥ 0, it is clear that rMST (S)≤ rk(S,ϕ) since every strongly
connected, directed graph on S has an underlying spanning tree.

1.3 Related work

When each sensor has one antenna and the angle ϕ = 0 then our problem is easily
seen to be equivalent to finding a hamiltonian cycle that minimizes the maximum
length of an edge. This is the well-known Bottleneck Traveling Salesman Problem.

Bottleneck Traveling Salesman problem

Let 1,2, . . . ,n be a set of n labeled vertices with associated edge weights w(i, j), for
all i, j. The Bottleneck Traveling Salesman Problem (BTSP) asks to find a Hamil-
tonian cycle in the complete (weighted) graph on the n points which minimizes the
maximum weight of an edge, i.e.,

min{ max
(i, j)∈H

w(i, j) : H is a hamiltonian cycle}.

Parker and Rardin [31] study the case where the weights satisfy the triangle in-
equality and they give a 2-approximation algorithm for this problem. (They also
show that no polynomial time (2− ε)-approximation algorithm is possible for met-
ric BTSP unless P = NP.) Clearly, their approximation result applies to our prob-
lem for the special case of one antennae and ϕ = 0. The proof uses a result in
[12] that the square of every two-connected graph is Hamiltonian. (The square
G(2) of a graph G = (V,E) has the same node set V and edge set E(2) defined by
{u,v} ∈ E(2) ⇔ ∃w ∈ V ({u,w} ∈ E & {w,v} ∈ E).) In fact the latter paper also
gives an algorithm for constructing such a Hamiltonian cycle. A generalization of
this problem to finding strongly connected subgraphs with minimum maximum edge
weight is studied by Punnen [32].

MST and out-degrees of nodes

It is easy to see that the degree structure of an MST on a point-set is constrained
by proximity. If a vertex has many neighbors then some of them have to be too
close together and can thus be connected directly. This can be used to show that for
a given point-set there is always a Euclidean minimum spanning tree of maximum
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degree six. In turn, this can be improved further to provide an MST with max degree
five [28]. Since for large enough r every set of sensors in the plane has a Euclidean
spanning tree of degree at most 5 and maximum range r, it is easy to see that given
such minimum r and k ≥ 5, rk(S) = r. A useful parameter is the maximum degree
of a spanning tree. This gives rise to the following definition.

Definition 5. For k ≥ 2, a maximum degree k spanning tree (abbreviated Dk−ST )
is a spanning tree all of whose vertices have degree at most k.

Related literature concerns trade-offs between maximum degree and minimum
weight of the spanning tree. For example, [2] gives a quasi-polynomial time ap-
proximation scheme for the minimum weight Euclidean D3− ST . Similarly, [21]
and [6] obtain approximations for minimum weight D3−ST and D4−ST . In addi-
tion, [13] shows that it is an NP-hard problem to decide for a given set S of n points
in the Euclidean plane and a given real parameter w, whether S admits a spanning
tree of maximum node degree four (i.e., D4−ST ) whose sum of edge lengths does
not exceed w. Related is also [22] which gives a simple algorithm to find a spanning
tree that simultaneously approximates a shortest-path tree and a minimum spanning
tree. In particular, given the two trees and a γ > 0, the algorithm returns a spanning
tree in which the distance between any node and the root is at most 1+ γ

√
2 times

the shortest-path distance, and the total weight of the tree is at most 1+
√

2/γ times
the weight of a minimum spanning tree.

Of interest here is the connection between strongly connected geometric span-
ners with given out-degree on a point-set and the maximum length edge of an MST.
Beyond the connection of BTSP mentioned above we know of no other related lit-
erature on this specific question.

Enhancing network performance using directional antennae

Directional antennae are known to enhance ad hoc network capacity and perfor-
mance and when replacing omnidirectional with directional antennae one can re-
duce the total energy consumption of the network. A theoretical model to this ef-
fect is presented in [16] showing that when n omnidirectional antennae are opti-
mally placed and assigned optimally chosen traffic patterns the transport capacity
is Θ(

√
W/n), where each antenna can transmit W bits per second over the com-

mon channel(s). When both transmission and reception is directional, [39] proves
an
√

2π/αβ capacity gain as well as corresponding throughput improvement fac-
tors, where α is the transmission angle and β is a parameter indicating that β/2π is
the average proportion of the number of receivers inside the transmission zone that
will get interfered with.

Additional experimental studies confirm the importance of using directional an-
tennae in ad hoc networking for enhancing channel capacity and improving multiac-
cess control. For example, research in [33] considers several enhancements, includ-
ing “aggressive” and “conservative” channel access models for directional antennae,
link power control and neighbor discovery and analyzes them via simulation. [38]
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and [37] consider how independent communications between directional antennae
can occur in parallel and calculate interference-based capacity bounds for a generic
antenna model as well as a real-world antenna model and analyze how these bounds
are affected by important antenna parameters like gain and angle. The authors of [3]
propose a distributed Receiver-Oriented Multiple Access (ROMA) channel access
scheduling protocol for ad hoc networks with directional antennae, each of which
can form multiple beams and commence several simultaneous communication ses-
sions. Finally, [24] considers energy consumption thresholds in conjunction to k-
connectivity in networks of sensors with omnidirectional and directional antennae,
while [23] studies how directional antennae affect overall coverage and connectivity.

A related problem that has been addressed in the literature is one that studies
connectivity requirements on undirected graphs that will guarantee highest edge
connectivity of its orientation, c.f. [29] and [14].

Other applications

It is interesting to note that beyond reducing the energy consumption, directional
antennae can enhance security. Unlike omnidirectional antennae that spread their
signal in all directions over an angle 2π , directional antennae can attain better secu-
rity because they direct their beam towards the target thus avoiding potential risks
along the transmission path. In particular, in a hostile environment a directional an-
tenna can decrease the radiation region within which nodes could receive the elec-
tromagnetic signals with high quality. For example, this has led [17] to the design
of several authentication protocols based on directional antennae. In [27] they em-
ploy the average probability of detection to estimate the overall security benefit level
of directional transmission over the omnidirectional one. In [18] they examine the
possibility of key agreement using variable directional antennae. In [30] the use of
directional antennae and beam steering techniques in order to improve performance
of 802.11 links is investigated in the context of communication between a moving
vehicle and roadside access points.

1.4 Outline of the presentation

The following is an outline of the main issues that will be addressed in this survey.
In Section 2 we discuss approximation algorithms to the main problem introduced
above. The constructions are mainly based on an appropriately defined MST of the
set of points. Subsection 2.1 focuses on the case of a single antenna per sensor
while Subsection 2.2 on k antennae per sensor, for a given 2 ≤ k ≤ 4. (Note that
the case k ≥ 5 is handled by using a degree five MST.) In Section 3 we discuss
NP-completeness results for the cases of one and two antennae. In Section 4 we
investigate a variant of the main problem whereby we want to minimize the sum of
the angles of the antennae given a bound on their radius. Unlike Section 2 where we
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have the flexibility to select and adapt an MST on the given point-set S, Section 5
considers the case whereby the underlying network is given in advance as a planar
spanner on the set S and we study number of antennae and stretch-factor trade-offs
between the original graph and the resulting planar spanner. In addition through-
out the chapter we propose several open problems and discuss related questions of
interest.

2 Orienting the Sensors of a Point-set

In this section we consider several algorithms for orienting antennae so that the
resulting spanner is strongly connected. Moreover we look at trade-offs between
antenna range and breadth.

2.1 Sensors with one antenna

The first paper to address the problem of converting a connected (undirected) graph
resulting from omnidirectional sensors to a strongly connected graph of directional
sensors having only one directional antenna each was [5].

Sensors on the line

The first scenario to be considered is for sensors on a line. Assume that each sen-
sor’s directional antenna has angle ϕ . Further assume that ϕ ≥ π . The problem of
minimizing the range in this case can be seen to be equivalent to the same prob-
lem for the omnidirectional case, simply by pointing the antennae so as to cover the
same nodes as those covered by the omnidirectional antenna as depicted in Figure 6.
Clearly a range equal to the maximum distance between any pair of adjacent sensors
is necessary and sufficient.

φ

x

φ φ φφ

Fig. 6 Antenna orientation for a set of sensors on a line when the angle ϕ ≥ π .

When the angle ϕ of the antennae is less than π then a slightly more complicated
orientation of the antennae is required so as to achieve strong connectivity with
minimum range.

Theorem 1 ([5]). Consider a set of n > 2 points xi, i = 1,2, . . . ,n, sorted according
to their location on the line. For any π > ϕ ≥ 0 and r > 0, there exists an orientation
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of sectors of angle ϕ and radius r at the points so that the transmission graph is
strongly connected if and only if the distance between points i and i+2 is at most r,
for any i = 1,2, . . . ,n−2.

Proof. Assume d(xi,xi+2) > r, for some i ≤ n− 2. Consider the antenna at xi+1.
There are two cases to consider. First, if the antenna at xi+1 is directed to the left
then the portion of the graph to its left cannot be connected to the portion of the
graph to the right; second, if the antenna at xi+1 is directed to the right then the
portion of the graph to its right cannot be connected to the portion of the graph to
the left. In either case the graph becomes disconnected.

Conversely, assume d(xi,xi+2) ≤ r, for all i ≤ n−2. Consider the following an-

x x x x xx
6321 4 5

.....

Fig. 7 Antenna orientation for a set of sensors on a line when the angle ϕ < π .

tenna orientation for an even number of sensors (see Figure 7). (The odd case is
handled similarly.)

1. antennas x1,x3,x5, . . . labeled with odd integers are oriented right, and
2. anntennas x2,x4,x6, . . . labeled with even integers are oriented left.

It is easy to see that the resulting orientation leads to a strongly connected graph.
This completes the proof of Theorem 1.

Sensors on the plane

The case of sensors on the plane is more challenging. As was noted above the case
of ϕ = 0 is equivalent to the Euclidean BTSP and thus the minimum range can be
approximated to within a factor of 2. In [5] the authors present a polynomial time
algorithm for the case when the sector angle of the antennae is at least 8π/5. For
smaller sector angles, they present algorithms that approximate the minimum radius.
We present the proof of this last result below.

Theorem 2 ([5]). Given an angle ϕ with π ≤ ϕ < 8π/5 and a set S of points in
the plane, there exists a polynomial time algorithm that computes an orientation of
sectors of angle ϕ and radius 2sin

(
π− ϕ

2

)
· r1(S,ϕ) so that the transmission graph

is strongly connected.

Proof. Consider a set S of nodes on the Euclidean plane and let T be a minimum
spanning tree of S. Let r = rMST (S) be the longest edge of T . We will use sectors
of angle ϕ and radius d(ϕ) = 2r sin

(
π− ϕ

2

)
and we will show how to orient them

so that the transmission graph induced is a strongly connected subgraph over S. The
theorem will then follow since r is a lower bound on r1(S,ϕ).
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We first construct a matching M consisting of (mutually non-adjacent) edges of
T with the following additional property: any non-leaf node of T is adjacent to an
edge of M. This can be done as follows. Initially, M is empty. We root T at an
arbitrary node s. We pick an edge between s and one of its children and insert it in
M. Then, we visit the remaining nodes of T in a BFS (Breadth First Search) manner.
When visiting a node u, if u is either a leaf-node or a non-leaf node such that the
edge between it and its parent is in M, we do nothing. Otherwise, we pick an edge
between u and one of its children and insert it to M.

We denote by Λ the leaves of T which are not adjacent to edges of M. We also
say that the endpoints of an edge in M form a couple. We use sectors of angle ϕ

and radius d(ϕ) at each point and orient them as follows. At each node u ∈ Λ , the
sector is oriented so that it induces the directed edge from u to its parent in T in the
corresponding transmission graph G. For each two points u and v forming a couple,
we orient the sector at u so that it contains all points p at distance d(ϕ) from u for
which the counter-clockwise angle ˆvup is in [0,ϕ]. See Figure 8.

Fig. 8 The orientation of
sectors at two nodes u,v
forming a couple, and a
neighbor w of u that is not
contained in the sector of
u. The dashed circles have
radius r and denote the range
in which the neighbors of u
and v lie.

w

v

u

We first show that the transmission graph G defined in this way has the following
property, denoted by (P), and stated in the Claim below.

Claim (P). For any two points u and v forming a couple, G contains the two opposite
directed edges between u and v, and, for each neighbor w of either u or v in T , it
contains a directed edge from either u or v to w.

Consider a point w corresponding to a neighbor of u in T (the argument for the
case where w is a neighbor of v is symmetric). Clearly, w is at distance |uw| ≤ r
from u. Also, note that since ϕ < 8π/5, we have that the radius of the sectors is
d(ϕ) = 2r sin

(
π− ϕ

2

)
≥ 2r sin π

5 > 2r sin π

6 = r. Hence, w is contained in the sector
of u if the counter-clockwise angle ˆvuw is at most ϕ; in this case, the graph G
contains a directed edge from u to w. Now, assume that the angle ˆvuw is x > ϕ (see
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Figure 8). By the law of cosines in the triangle defined by points u, v, and w, we
have that

|vw| =
√
|uw|2 + |uv|2−2|uw||uv|cosx

≤ r
√

2−2cosx

= 2r sin
x
2

≤ 2r sin
(

π− ϕ

2

)
= d(ϕ).

Since the counter-clockwise angle ˆvuw is at least π , the counter-clockwise angle
ˆuvw is at most π ≤ ϕ and, hence, w is contained in the sector of v; in this case,

the graph G contains a directed edge from v to w. In order to complete the proof of
property (P), observe that since |uv| ≤ r≤ d(ϕ) the point v is contained in the sector
of u (and vice-versa).

Now, in order to complete the proof of the theorem, we will show that for any
two neighbors u and v in T , there exist a directed path from u to v and a directed
path from v to u in G. Without loss of generality, assume that u is closer to the root
s of T than v. If the edge between u and v belongs in M (i.e., u and v form a couple),
property (P) guarantees that there exist two opposite directed edges between u and
v in the transmission graph G. Otherwise, let w1 be the node with which u forms a
couple. Since v is a neighbor of u in T , there is either a directed edge from u to v
in G or a directed edge from w1 to v in G. Then, there is also a directed edge from
u to w1 in G which means that there exists a directed path from u to v. If v is a leaf
(i.e., it belongs to Λ ), then its sector is oriented so that it induces a directed edge to
its parent u. Otherwise, let w2 be the node with which v forms a couple. Since u is
a neighbor of v in T , there is either a directed edge from v to u in G or a directed
edge from w2 to u in G. Then, there is also a directed edge from v to w2 in G which
means that there exists a directed path from v to u.

Further questions and open problems

In Section 3 we present a lower bound from [5] that shows this problem is NP-hard
for angles smaller than 2π/3. This leaves the complexity of the problem open for
angles between 2π/3 and 8π/5. Related problems that deserve investigation include
the complexity of gossiping and broadcasting as well as other related communica-
tion tasks in this geometric setting.
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2.2 Sensors with multiple antennae

We are interested in the problem of providing an algorithm for orienting the anten-
nae and ultimately for estimating the value of rk(S,ϕ). Without loss of generality
antennae ranges will be normalized to the length of the longest edge in any MST,
i.e., rMST (S) = 1. The main result concerns the case ϕ = 0 and was proven in [10]:

Theorem 3 ([10]). Consider a set S of n sensors in the plane and suppose each
sensor has k, 1 ≤ k ≤ 5, directional antennae. Then the antennae can be oriented
at each sensor so that the resulting spanning graph is strongly connected and the
range of each antenna is at most 2 · sin

(
π

k+1

)
times the optimal. Moreover, given

an MST on the set of points the spanner can be constructed with additional O(n)
overhead.

The proof in [10] considers five cases depending on the number of antennae that can
be used by each sensor. As noted in the introduction, the case k = 1 was derived in
[31]. The case k = 5 follows easily from the fact that there is an MST with maximum
vertex degree 5. This leaves the remaining three cases for k = 2,3,4. Due to space
limitations we will not give the complete proof here. Instead we will discuss only
the simplest case k = 4.

2.2.1 Preliminary definitions

Before proceeding with presentation of the main results we introduce some notation
which is specific to the following proofs. D(u;r) is the open disk with radius r. d(·, ·)
denotes the usual Euclidean distance between two points. In addition, we define the
concept of Antenna-Tree (A-Tree, for short) which isolates the particular properties
of an MST that we need in the course of the proof.

Definition 6. An A-Tree is a tree T embedded in the plane satisfying the following
three rules:

1. Its maximum degree is five.
2. The minimum angle among nodes with a common parent is at least π/3.
3. For any point u and any edge {u,v} of T , the open disk D(v;d(u,v)) does not

have a point w 6= v which is also a neighbor of u in T .

It is well known and easy to prove that for any set of points there is an MST on
the set of points which satisfies Definition 6. Recall that we consider normalized
ranges (i.e., we assume r(T ) = 1).

Definition 7. For each real r > 0, we define the geometric r-th power of a A-Tree T ,
denoted by T (r), as the graph obtained from T by adding all edges between vertices
of (Euclidean) distance at most r.

For simplicity, in the sequel we slightly abuse terminology and refer to the geometric
r-th power as the r-th power.
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Definition 8. Let G be a graph. An orientation −→G of G is a digraph obtained from
G by orienting every edge of G in at least one direction.

As usual, we denote with (u,v) a directed edge from u to v, whereas {u,v} denotes
an undirected edge between u and v. Let d+(

−→G ,u) be the out-degree of u in −→G and
∆+(
−→G ) the maximum out-degree of a vertex in −→G .

2.2.2 Maximum out-degree 4

In this section we prove that there always exists a subgraph of T (2sinπ/5) that can be
oriented in such a way that it is strongly connected and its maximum out-degree is
four. A precise statement of the theorem is as follows.

Theorem 4 ([10]). Let T be an A-Tree. Then there exists a spanning subgraph
G ⊆ T (2sinπ/5) such that −→G is strongly connected and ∆+(

−→G ) ≤ 4. Moreover,
d+(
−→G ,u) ≤ 1 for each leaf u of T and every edge of T incident to a leaf is con-

tained in G.

Proof. We first introduce a definition that we will use in the course of the proof.
We say that two consecutive neighbors of a vertex are close if the smaller angle
they form with their common vertex is at most 2π/5. Observe that if v and w are
close, then |v,w| ≤ 2sinπ/5. In all the figures in this section an angular sign with a
dot depicts close neighbors. The proof is by induction on the diameter of the tree.
Firstly, we do the base case. Let k be the diameter of T . If k ≤ 1, let G = T and the
result follows trivially. If k = 2, then T is an A-Tree which is a star with 2≤ d ≤ 5
leaves, respectively. Two cases can occur:

• d < 5. Let G = T and orient every edge in both directions. This results in a
strongly connected digraph which trivially satisfies the hypothesis of the theo-
rem.

• d = 5. Let u be the center of T . Since T is a star, two consecutive neighbors of u,
say, v and w are close. Let G = T ∪{{v,w}} and orient edges of G as depicted in
Figure 9 1. It is easy to check that G satisfies the hypothesis of the theorem.

Fig. 9 T is a tree with five
leaves and diameter k = 2.

uw

v

Next we continue with the inductive step. Let T ′ be the tree obtained from T
by removing all leaves. Since removal of leaves does not violate the property of

1 In all figures boldface arrows represent the newly added edges.
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being an A-Tree, T ′ is also an A-Tree and has diameter less than the diameter of T .
Thus, by inductive hypothesis there exists G′ ⊆ T ′(2sinπ/5) such that

−→
G′ is strongly

connected, ∆+(
−→
G′) ≤ 4. Moreover, d+(

−→G ,u) ≤ 1 for each leaf u of T ′ and every
edge of T ′ incident to a leaf is contained in G′.

Let u be a leaf of T ′, u0 be the neighbor of u in T ′ and u1, ..,uc be the c neighbors
of u in T \T ′ in clockwise order around u starting from u0. Two cases can occur:

• c ≤ 3. Let G = G′ ∪{{u,u1}, ..,{u,uc}} and orient these c edges in both direc-
tions.−→G satisfies the hypothesis since G⊆ T (2sinπ/5), ∆+(

−→G )≤ 4, d+(
−→G ,u)≤ 1

for each leaf u of T and every edge of T incident to a leaf is contained in G.
• c = 4. We consider two cases. In the first case suppose that two consecutive

neighbors of u in T \ T ′ are close. Consider uk and uk+1 are close; where 1 ≤
k < 4. Define G = G′ ∪{{u,u1},{u,u2},{u,u3},{u,u4},{uk,uk+1}} and orient
edges of G as depicted in Figure 10. In the second case, either u0 and u1 are close

Fig. 10 Depicting the induc-
tive step when u has four
neighbors in T ′ \T and uk and
uk+1 are close; where k = 2.
(The dotted curve is used to
separate the tree T ′ from T .)

uu0
u2

u3

T ′ T

u4

u1

or u0 and u4 are close. Without loss of generality, let assume that u0 and u1 are
close. Thus, let G = {G′ \{u,u0}}∪{{u,u1},{u,u2},{u,u3},{u,u4},{u0,u1}},
but now the orientation of G will depend on the orientation of {u,u0} in G′. Thus,
if (u0,u) is in

−→
G′, then orient edges of G as depicted in Figure 11. Otherwise if

(u,u0) is in
−→
G′, then orient edges of G as depicted in Figure 12.

Fig. 11 Depicting the induc-
tive step when u has four
neighbors in T ′ \T , u0 and u1
are close and (u0,u) is in the
orientation of G′ (The dashed
edge {u0,u} indicates that it
does not exist in G but exists
in G′ and the dotted curve is
used to separate the tree T ′

from T .)

uu0

u1

T ′ T

−→G satisfies the hypothesis since G ⊆ T (2sinπ/5), ∆+(
−→G ) ≤ 4, d+(

−→G ,u) ≤ 1 for
each leaf u of T and every edge of T incident to a leaf is contained in G.

This completes the proof of the theorem.



Maintaining Connectivity in Sensor Networks Using Directional Antennae 15

Fig. 12 Depicting the induc-
tive step when u has four
neighbors in T ′ \T , u0 and u1
are close and (u,u0) is in the
orientation of G′ (The dashed
edge {u0,u} indicates that it
does not exist in G but exists
in G′ and the dotted curve is
used to separate the tree T ′

from T .)

uu0

u1

T ′ T

The above implies immediately the case k = 4 of Theorem 3. The remaining
cases of k = 3 and k = 2 are similar but more complex. The interested reader can
find details in [10].

Further questions and open problems

There are several interesting open problems all related to the optimality of the range
2sin

(
π

k+1

)
which was derived in Theorem 3. This value is obviously optimal for

k = 5 but the cases 1 ≤ k ≤ 4 remain open. Additional questions concern studying
the problem in d-dimensional Euclidean space, d≥ 3, and more generally in normed
spaces. The case d = 3 would also be of particular interest to sensor networks.

3 Lower bounds

In this section we discuss the only known lower bounds for the problem.

3.1 One antenna per sensor

When the sector angle is smaller than 2π/3, the authors of [5] show that the problem
of determining the minimum radius in order to achieve strong connectivity is NP-
hard.

Theorem 5 ([5]). For any constant ε > 0, given ϕ such that 0≤ϕ < 2π/3−ε , r > 0,
and a set of points on the plane, determining whether there exists an orientation of
sectors of angle ϕ and radius r so that the transmission graph is strongly connected
is NP-complete.

A simple proof is by reduction from the well-known NP hard problem for finding
hamiltonian cycles in degree three planar graphs [15]. In particular, a weaker state-
ment for sector angles smaller than π/2 follows by the same reduction used in [19]
in order to prove that the hamiltonian circuit problem in grid graphs is NP-complete.
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Consider an instance of the problem consisting of points with integer coordinates on
the Euclidean plane (these can be thought of as the nodes of the grid proximity graph
between them). Then, if there exists an orientation of sector angles of radius 1 and
angle ϕ < π/2 at the nodes so that the corresponding transmission graph is strongly
connected, then this must also be a hamiltonian circuit of the proximity graph. The
construction of [19] can be thought of as reducing the hamiltonian circuit problem
on bipartite planar graphs of maximum degree 3 (which is proved in [19] to be NP-
complete) to an instance of the problem with a grid graph as a proximity graph such
that there exists a hamiltonian circuit in the grid graph if and only if the original
graph has a hamiltonian circuit. The proof of [5] uses a slightly more involved re-
duction with different gadgets in order to show that the problem is NP-complete for
sector angles smaller than 2π/3.

3.2 Two antennae per sensor

For two antennae the best known lower bound is from [10] and can be stated as
follows.

Theorem 6 ([10]). For k = 2 antennae, if the angular sum of the antennae is less
then α then it is NP-hard to approximate the optimal radius to within a factor of x,
where x and α are the solutions of equations x = 2sin(α) = 1+2cos(2α).

Observe that by using the identity cos(2α) = 1− 2sin2
α above and by solving

the resulting quadratic equation with unknown sinα we obtain numerical solutions
x≈ 1.30,α ≈ 0.45π .

As before, the proof is by reduction from the well-known NP-hard problem for
finding Hamiltonian cycles in degree three planar graphs [15]. In particular, the
construction in [10] takes a degree three planar graph G = (V,E) and replaces each
vertex v ∈ V by a vertex-graph (meta-vertex) Gv and each edge e ∈ E of G by an
edge-graph (meta-edge) Ge. Figure 13 shows how meta-edges are connected with
meta-vertices. Further details of the construction can be found in [10].

Further questions and open problems

It is interesting to note that in addition to the question of improving the lower bounds
in Theorems 5 and 6 no lower bound or NP-completeness result is known for the
cases of three or four antennae.
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Fig. 13 Connecting meta-edges with meta-vertices. The dashed ovals show the places where em-
bedding is constrained.

4 Sum of angles of antennae

A variant of the main problem is considered in a subsequent paper [4]. As be-
fore each sensor has fixed number of directional antennae and we are interested
in achieving strong connectivity while minimizing the sum (taken over all sensors)
of angles of the antennae under the assumption that the range is set at the length
of the longest edge in any MST (normalized to 1). The authors present trade-offs
between the antennae range and specified sums of antennae, given that we have k
directional antennae per sensor for 1≤ k ≤ 5. The following result is proven in [4].

Lemma 1 ([4]). Assume that a node u has degree d and the sensor at u is equipped
with k antennae, where 1≤ k ≤ d, of range at least the maximum edge length of an
edge from u to its neighbors. Then 2(d− k)π/d is always sufficient and sometimes
necessary bound on the sum of the angles of the antennae at u so that there is an
edge from u to all its neighbors in an MST.

Proof. The result is trivially true for k= d since we can satisfy the claim by directing
a separate antenna of angle 0 to each node adjacent to u. So we can assume that
k ≤ d− 1. To prove the necessity of the claim take a point at the center of a circle
and with d adjacent neighbors forming a regular d-gon on the perimeter of the circle
of radius equal to the maximum edge length of the given spanning tree on S. Thus
each angle formed between two consecutive neighbors on the circle is exactly 2π/d.
It is easy to see that for this configuration a sum of 2(d−k)π/d is always necessary.

To prove that sum 2(d− k)π/d is always sufficient we argue as follows. Con-
sider the point u which has d neighbors and consider the sum σ of the largest k
angles formed by k + 1 consecutive points of the regular polygon on the perime-
ter of the circle. We claim that σ ≥ 2kπ/d. Indeed, let the d consecutive angles be
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Fig. 14 Example of a
vertex of degree d = 5
and corresponding angles
α1,α2,α3,α4,α5 listed in a
clockwise order.

α1

α2

α3

α4α5

α0,α1, ...,αd−1. (see Figure 14). Consider the d sums αi +αi+1 + ...+αi+k−1, for
i = 0, ...,d−1, where addition on the indices is modulo d. Observe, that

2kπ =
d−1

∑
i=0

(αi +αi+1 + ...+αi+k−1)≤ dσ

It follows that the remaining angles sum to at most 2π − σ ≤ 2π − 2kπ/d =
2π(d− k)/d. Now consider the k+ 1 consecutive points, say p1, p2, ..., pk+1, such
that the sum σ of the k consecutive angles formed is at least 2kπ/d. Use k− 1
antennae each of size 0 radians to cover each of the points p2, ..., pk, respectively,
and an angle of size 2π(d−k)/d to cover the remaining n−k+1 points. This proves
the lemma.

The next simple result is an immediate consequence of Lemma 1 and indicates
how antennae spreads affect the range in order to accomplish strong connectivity.

Definition 9. Let ϕk be a given non-negative value in [0,2π) such that the sum of
angles of k antennae at each sensor location is bounded by ϕk. Further, let rk,ϕk
denote the minimum radius (or range) of directional antennae for a given k and ϕk
that achieves strong connectivity under some rotation of the antennae.

We can prove the following result.

Theorem 7 ([4]). For any 1≤ k ≤ 5, if ϕk ≥ 2(5−k)π
5 then rk,ϕk = 1.

Proof. We prove the theorem by showing that if ϕk ≥ 2(5−k)π/5 then the antennae
can be oriented in such a way that for every vertex u there is a directed edge from u
to all its neighbors.

Consider the case k = 2 of two antennae per sensor and take a vertex u of degree
d. We know from Lemma 1 that for k = 2 ≤ d antennae, 2(d− 2)π/d is always
sufficient and sometimes necessary on the sum of the angles of the antennae at u
so that there is a directional antenna from u pointing to all its neighbors. Observe
that 2(d−2)π/d ≤ 6π/5 is always true. Now take an MST with max degree 5. Do a
preorder traversal that comes back to the starting vertex (any starting vertex will do).
For any vertex u arrange the two antennae at u so that there is always a directed edge
from u to all its neighbors (if the degree of vertex is 2 you need only one antenna at
that vertex). It is now easy to show by following the “underlying” preorder traversal
on this tree that the resulting graph is strongly connected.
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Consider the case k = 3 of three antennae per sensor. First assume the sum of
the three angles is at least 4π/5. Consider an arbitrary vertex u of the MST. We
are interested in showing that for this angle there is always a link from u to all its
neighbors. If the degree of u is at most three the proof is easy. If the degree is four
then by Lemma 1, 2(4−3)π/4 = π/2 is sufficient. Finally, if the degree of u is five
then again by Lemma 1 then 2(5−3)π/5 = 4π/5 is sufficient. Thus, in all cases a
sum of 4π/5 is sufficient.

Consider the case k = 4 of four antennae per sensor. First, assume that the sum of
the four angles is at least 2π/5. Consider an arbitrary vertex, say u, of the MST. If it
has degree at most four then clearly four antennae each of angle 0 is sufficient. If it
has degree five then an angle between two adjacent neighbors of u, say u0,u1, must
be ≤ 2π/5 (see left picture in Figure 15). Therefore use the angle 2π/5 to cover

u u 1

u 0

u u 1

0u

Fig. 15 Orienting antennae around u.

both of these sensors and the remaining three antennae (each of spread 0) to reach
from u the remaining three neighbors.

Finally, for the case k = 5 of five antennae per sensor the result follows imme-
diately from the fact that the underlying MST has maximum degree 5. This proves
the theorem.

In fact, the result of Theorem 3 can be used to provide better trade-offs on the
maximum antennae range and sum of angles. We mention without proof that as
consequence of Lemma 1 and Theorem 3 we can construct Table 1 which shows
trade-offs on the number, max range, max angle and sum of angles of k antennae
being used per sensor for the problem of converting networks of omnidirectional
sensors into strongly connected networks of sensors.

Further questions and open problems

There are two versions of the antennae orientation problem that have been studied.
In the first, we are concerned with minimizing the max sensor angle. In the second,
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Table 1 Trade-offs on the
number, max range, max
angle and sum of angles of
k antennae being used by a
sensor.

Number Max Range Max Angle Sum of Angles
1 2 ϕ ≥ 0 0
1

√
3 ϕ ≥ π π

1
√

2 ϕ ≥ 4π/3 4π/3
1 2sin(π/5) ϕ ≥ 3π/2 3π/2
1 1 ϕ ≥ 8π/5 8π/5
2

√
3 ϕ ≥ 0 0

2
√

2 ϕ ≥ 2π/3 2π/3
2 2sin(π/5) ϕ ≥ 2π/3 π

2 1 ϕ ≥ 4π/5 6π/5
3

√
2 ϕ ≥ 0 0

3 2sin(π/5) ϕ ≥ π/2 π/2
3 1 ϕ ≥ 2π/5 4π/5
4

√
2 ϕ ≥ 0 0

4 1 ϕ ≥ 2π/5 2π/5
5 1 ϕ ≥ 0 0

discussed in this section, we looked at minimizing the sum of the angles. Aside from
the results outlined in Table 1, nothing better is known concerning the optimality of
the sum of the sensor angles for a given sensor range. Interesting open questions
for these problems arise when one has to “respect” a given underlying network of
sensors. One such problem is investigated in the next section.

5 Orienting Planar Spanners

All the constructions previously considered relied on orienting antennae of a set
S of sensors in the plane. Regardless of the construction, the underlying structure
connecting the sensors was always an MST on S. However, there are instances where
an MST on the point-set may not be available because of locality restrictions on the
sensors. This is, for example, the case when the spanner results from application
of a local planarizing algorithm on a Unit Disk Graph (e.g., see [7], [26]). Thus, in
this section we consider the case whereby the underlying network is a given planar
spanner on the set S. In particular we have the following problem.

Let G(V,E,F) be a planar geometric graph with V as set of vertices, E as set of edges and
F as set of faces. We would like to orient edges in E so that the resulting digraph is strongly
connected as well as study trade-offs between the number of directed edges and stretch
factor of the resulting graphs.

A trivial algorithm is to orient each edge in E in both directions. In this case,
the number of directed edges is 2|E| and the stretch factor is 1. Is it possible to
orient some edges in only one direction so that the resulting digraph is strongly
connected with bounded stretch factor? The answer is yes and an intuitive idea of
our approach is based on a c-coloring of faces in F , for some integer c. The idea of
using face coloring was used in [40] to construct directed cycles. Intuitively we give
directions to edges depending on the color of their incident faces.
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5.1 Basic construction

Theorem 8 ([25]). Let G(V,E,F) be a planar geometric graph having no cut edges.
Suppose G has a face c-coloring for some integer c. There exists a strongly con-
nected orientation G with at most(

2− 4c−6
c(c−1)

)
· |E| (1)

directed edges, so that its stretch factor is Φ(G)− 1, where Φ(G) is the largest
degree of a face of G.

Before giving the proof, we introduce some useful ideas and results that will be
required. Consider a planar geometric graph G(V,E,F) and a face c-coloring C of
G with colors {1,2, . . . ,c}.
Definition 10. Let G be the orientation resulting from giving two opposite direc-
tions to each edge in E.

Definition 11. For each directed edge (u,v), we define Luv as the face which is inci-
dent to {u,v} on the left of (u,v), and similarly Ruv as the face which is incident to
{u,v} on the right of (u,v).

Observe that for given embedding of G, Luv and Ruv are well defined. Since G has
no cut edges, Luv 6= Ruv . This will be always assumed in the proofs below without
specifically recalling it again. We classify directed edges according to the colors of
their incident faces.

Definition 12. Let E(i, j) be the set of directed edges (u,v) in G such that C(Luv) = i
and C(Ruv) = j.

It is easy to see that each directed edge is exactly in one such set. Hence, the follow-
ing lemma is evident and can be given without proof.

Lemma 2. For any face c-coloring of a planar geometric graph G,

c

∑
i=1

c

∑
j=1, j 6=i

|E(i, j)|= 2|E|.

Definition 13. For any of c(c− 1) ordered pairs of two different colors a and b of
the coloring C, we define the digraph D(G;a,b) as follows: The vertex set of the
digraph D is V and the edge set of D is⋃

i∈[1,c]]\{b}, j∈[1,c]\{a}
E(i, j).

Along with this definition, for i 6= b, j 6= a, and i 6= j, we say that E(i, j) is in
D(G;a,b). Next consider the following characteristic function
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χa,b(E(i, j)) =

{
1 if E(i, j) is in D(G;a,b),and
0 otherwise.

We claim that every set E(i, j) is in exactly c2−3c+3 different digraphs D(G;a,b)
for some a 6= b.

Lemma 3. For any face c-coloring of a planar geometric graph G,

c

∑
a=1

c

∑
b=1,b6=a

χa,b(E(i, j)) = c2−3c+3.

Proof. Let i, j ∈ [1,c], i 6= j be fixed. For any two distinct colors a and b of the
c-coloring of G, χa,b(E(i, j)) = 1 only if either i = a, or j = b, or i and j are different
from a and b. There are (c−1)+(c−2)+(c−2)(c−3) such colorings. The lemma
follows by simple counting.

The following lemma gives a key property of the digraph D(G;a,b).

Lemma 4. Given a face c-coloring of a planar geometric graph G with no cut edges,
and the corresponding digraph D(G;a,b). Every face of D(G;a,b), which has color
a, constitutes a counter clockwise directed cycle, and every face which has color b,
constitutes a clockwise directed cycle. All edges on such cycles are unidirectional.
Moreover, each edge of D(G;a,b) incident to faces having colors different from
either a or b is bidirectional.

Proof. Let G be a planar geometric graph with a face c-coloring C with colors a,b
and c−2 other colors. Consider D(G;a,b). The sets E(a,x) are in D(G;a,b) for each
color x 6= a. Let f be a face and let {u,v} be an edge of f so that Luv = f . Let f ′ be
the other face incident to {u,v}; hence Ruv = f ′. Since G has no cut edges, f 6= f ′,

Fig. 16 (u,v) is in D(G;a,b)
if C(Luv) = a and therefore
the edges in the face Luv form
a counter clockwise directed
cycle in D(: G,a,b).

C(Luv) = a

u

v

C(Ruv) 6= a

and since C( f ′) 6= a, the directed edge (u,v) ∈⋃x 6=a E(a,x) and hence the edge (u,v)
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is in D(G;a,b). Since {u,v} was an arbitrary edge of f , f will induce a counter
clockwise cycle in D(G;a,b) (see Figure 16). The fact that every face which has
color b induces a clockwise cycle in D(G;a,b) is similar. Finally consider an edge

Fig. 17 A bidirectional edge
is in D(G;a,b) if its incident
faces have color different that
a and b.

C(Luv) 6= a, b C(Ruv) 6= a, b

u

v

{u,v} such that C(Luv) 6= a,b and C(Ruv) 6= a,b (see Figure 17). Hence (u,v)∈E(c,d)
which is in D(G;a,b) and similarly (v,u) ∈ E(d,c) which is also in D(G;a,b). This
proves the lemma.

We are ready to prove Theorem 8.

Proof (Theorem 8). Let G be a planar geometric graph having no cut edges. Let C
be a face c-coloring of G with colors a,b, and other c−2 colors. Suppose colors a
and b are such that the corresponding digraph D(G;a,b) has the minimum number
of directed edges. Consider D the average number of directed edges in all digraphs
arising from C. Thus,

D =
1

c(c−1)

c

∑
a=1

c

∑
b=1,b6=a

‖D(G;a,b)||,where

||D(G;a,b)||=
c

∑
i=1

c

∑
j=1, j 6=i

χa,b(E(i, j))|E(i, j)|.

By Lemma 2 and Lemma 3,

D =
1

c(c−1)

c

∑
a=1

c

∑
b=1,b6=a

c

∑
i=1

c

∑
j=1, j 6=i

χa,b(E(i, j))|E(i, j)|

=
1

c(c−1)

c

∑
i=1

c

∑
j=1, j 6=i

(c2−3c+3)|E(i, j)|

=
2(c2−3c+3)

c(c−1)
|E|
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=

(
2− 4c−6

c(c−1)

)
· |E|.

Hence D(G;a,b) has at most the desired number of directed edges.
To prove the strong connectivity of D(G;a,b), consider any path, say u =

u0,u1, . . . ,un = v, in the graph G from u to v. We prove that there exists a directed
path from u to v in D(G;a,b). It is enough to prove that for all i there is always a di-
rected path from ui to ui+1 for any edge {ui,ui+1} of the above path. We distinguish
several cases.

• Case 1. C(Luiui+1) = a. Then (ui,ui+1) ∈ E(a,ω) where ω = C(Ruiui+1
). Since

E(a,ω) is in D(G;a,b), the edge (ui,ui+1) is in D(G;a,b). Moreover, the stretch
factor of {ui,ui+1} is one.

• Case 2. C(Luiui+1) = b. Hence, (ui,ui+1) is not in D(G;a,b). However, by Lemma
4, the face Luiui+1 = Rui+1ui constitutes a clockwise directed cycle, and therefore,
a directed path from ui to ui+1. It is easy to see that the stretch factor of {ui,ui+1}
is not more than the size of the face Luiui+1 minus one, which is at most Φ(G)−1.

• Case 3. C(Luiui+1) 6= a,b. Suppose C(Luiui+1) = c. Three cases can occur.

– C(Ruiui+1) = a. Hence, (ui,ui+1) is not in D(G;a,b). However, by Lemma 4,
there exists a counter clockwise directed cycle around face Ruiui+1 = Lui+1ui ,
and consequently a directed path from ui to ui+1. The stretch factor is at most
the size of face Ruiui+1 minus one, which is at most Φ(G)−1.

– C(Ruiui+1) = b. By Lemma 4, there exists a clockwise directed cycle around
face Ruiui+1 . This cycle contains (uiui+1), and in addition the stretch factor of
{ui,ui+1} is one.

– C(Ruiui+1) = d 6= a,b,c. By construction, D(G;a,b) has both edges (ui,ui+1)
and (ui+1,ui). Again, the stretch factor of {ui,ui+1} is one.

This proves the theorem.

As indicated in Theorem 8 the number of directed edges in the strongly oriented
graph depends on the number c of colors according to the formula

(
2− 4c−6

c(c−1)

)
· |E|.

Thus, for specific values of c we have the following table of values:

c 3 4 5 6 7
2− (4c−6)/c(c−1) 1 7/6 13/10 7/5 31/21

Regarding the complexity of the algorithm, this depends on the number c of
colors being used. For example, computing a four-coloring can be done in O(n2)
[35]. Finding the digraph with minimum number of directed edges among the twelve
possible digraphs can be done in linear time. Therefore, for c= 4 it can be computed
in O(n2). For c = 5 a five-coloring can be found in linear time O(n). For the case of
geometric planar subgraphs of unit disk graphs and location aware nodes there is a
local 7-coloring (see [9]). For more information on colorings the reader is advised
to look at [20].
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Further questions and open problems

Observe that it is required that the underlying geometric graph in Theorem 8 does
not have any cut edges. Although it is well-known how to construct planar graphs
with no cut edges starting from a set of points (e.g., Delaunay triangulation, etc)
there are no known constructions in the literature of “local” spanners from UDGs
which also guarantee planarity, network connectivity and no cut edges at the same
time. Constructions of spanners obtained by deleting edges from the original graph
can be found in Cheriyan et al. [8] and Dong et al. [11] but the algorithms are not
local and the spanners not planar. Similarly, existing constructions for augmenting
(i.e., adding edges) graphs into spanners with no cut edges (see Rappaport [34],
Abellanas et al. [1], Rutter et al. [36]) are not local algorithms and the resulting
spanners not planar.

6 Conclusion

We considered the problem of converting a planar (undirected) graph constructed
using omnidirectional antennae into a planar directed graph constructed using di-
rectional antennae. In our approach we considered trade-offs on the number of an-
tennae, antennae angle, sum of angles of antennae, stretch factor, lower and uppers
bounds on the feasibility of achieving connectivity. In addition to closing several ex-
isting gaps between upper and lower bounds for the algorithms we proposed there
remain several open problems concerning topology control whose solution can help
to illuminate the relation between networks of omnidirectional and directional an-
tennae. Also of interest is the question of minimizing the amount of energy required
to maintain connectivity given one or more directional antennae of a given angular
spread in replace of a single omnidirectional antennae.
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