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Abstract

Background The predictive power of climate models

is limited by an incomplete understanding of the

controls on fine root decomposition and thus below-

ground carbon cycling. To more accurately model

rates of decay, fine root heterogeneity needs to be

addressed in fine root decomposition studies.

Branching order integrates both structural and chem-

ical properties that are important in indicating litter

quality and decay rate.

Scope We discuss current views on the controls and

patterns of fine root decomposition in combination

with recent findings related to the effects of

branching order and mycorrhizal decomposition.

We examine the counterintuitive finding that nitro-

gen rich, lower order roots decompose more slowly

than woody, higher order roots in temperate and sub-

tropical forests.

Conclusions We posit that slower decomposition of

first and second compared to higher order roots

might be caused by the poor carbon quality associ-

ated with higher concentrations of phenols in lower

order roots or by inhibition of saprophytes by the

mycorrhizal fungi that often preferentially inhabit

these roots. Alternatively, apparent recalcitrance of

lower order roots could be an experimental artifact

caused by severing pre-mortem mycelial connections

during sample processing, or exclusion of animals

that graze fungal structures by the small mesh sizes

characteristic of litterbags. To better predict the res-

idence time of the carbon contained in the entire fine

root pool, existing methods should be applied to

individual root orders when practical. New methods

for characterizing decomposition of undisturbed

roots that have senesced naturally are greatly needed.
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SRL Specific root length

STXM Synchrotron-based spectromicroscopy

TNC Total nonstructural carbohydrates

Introduction

Our lack of understanding of the controls of carbon

residence time in soil was recently identified as the

greatest impediment to modeling future climate

changes (Friend et al. 2014). Fine root systems, the

most distal roots traditionally defined as having di-

ameters <2.0 mm, are a quantitatively important

component of the global C cycle. Plants invest 22–

67% of annual net primary productivity in fine roots

which in turn transfer significant amounts of organic

C into the soil. The soil C derived from root inputs

could be as high as 50–80% of soil C in temperate

and boreal forests (Clemmensen et al. 2013; Lynch

et al. 2013). Because they are the structures which

coordinate the flow of photoassimilate into soil with

the absorption of mineral nutrients into plants, fine

roots also serve as a mechanistically important link

between C and other biogeochemical cycles, such as

N. The N contained in the fine root pool comprises

one-seventh of all N held in terrestrial vegetation

(Jackson et al. 1997) and the decomposition of fine

roots contributes a substantial fraction of the nitrogen

required both for the metabolism of the soil food web

as well as plant productivity (Silver and Miya 2001;

Fan and Jiang 2010). Therefore, the movement of

carbon and nutrients from fine roots into the sur-

rounding soil environment following senescence is

crucial for understanding soil ecology and for model-

ing terrestrial biogeochemical cycling.

A large proportion of CO2 returned to the atmo-

sphere from the soil surface is attributable to root litter

decomposition, a process long thought to be controlled

by litter quality. Litter quality generally refers to the

physical and chemical traits of detritus that govern the

ease with which decomposers mineralize nutrients

from decaying materials (Corbeels 2001). In turn, both

litter quality and soil biota are influenced by abiotic

environmental conditions including air and soil tem-

perature, soil structure, nutrient availability and pH,

and soil moisture (Wardle et al. 2004). Studies on

decomposition have largely focused on aboveground

litter (leaves and woody debris), despite the significant

contribution of belowground litter (dead roots, root

exudates, fungal and bacterial necromass) to SOM.

Fine roots are thought to contribute as much as 40%

of the litter produced annually (Vogt et al. 1990; Lukac

2012). However, reviews of the literature suggest that

fewer than 5% of litter decomposition studies have

focused on belowground decomposition, likely due to

the difficulty associated with collecting fine root and

fungal litter (Zhang et al. 2008; Aulen et al. 2012;

Birouste et al. 2012).

Methodological challenges are confounded by uncer-

tainty in Bwhat defines a fine root,^ as root branching

systems are extensive, architecturally complex and difficult

to sample (Pregitzer 2002; Kong and Ma 2014; Beidler

et al. 2015). Most commonly, fine roots have been defined

as those roots that are less than twomillimeters in diameter

(McCormack et al. 2015). However, a few fine root studies

have broadened this group to include roots ranging from

<0.5 to <5.0 mm in diameter (Majdi et al. 2001; Makita

et al. 2009). This variability reflects the arbitrary nature of

fine root designations or, less often, differences in diameter

among plant species (Fitter 1996). Recent studies have

shown that fine roots occupying different positions within

a branching system (root orders), vary predictably in struc-

ture, function and thus rates of turnover and decomposition

for several different long-lived perennial species (Pregitzer

2002; Wang et al. 2006; Guo et al. 2004, 2008a, 2008b;

Valenzuela-Estrada et al. 2008; Fan andGuo 2010; Goebel

et al. 2011; Xiong et al. 2013). For the purpose of this

review, the most distal roots in a branching network are

defined as first order roots. The extent towhich order based

classifications can be applied to annual and perennial plant

species is unclear and more work needs to be done to

demonstrate the generalizability of order-based patterns

across plant taxa (Zobel 2016).

Despite detectable differences in lifespan, morpholo-

gy and chemistry within the fine root guild, to our

knowledge only five studies have measured rate of

decomposition by branching order and only woody

species have been represented (Fan and Guo 2010;

Goebel et al. 2011; Xiong et al. 2013; Sun et al. 2016;

Sun et al. forthcoming). Of the studies that incorporated

order, all found evidence to support the claim that lower

order roots decompose at a slower rate than higher order

roots in several different temperate and sub-tropical tree

species. Sun et al. (2013) found that the finest roots

(roots <0.5 mm in diameter) decomposed at a slower

rate than roots with diameters ranging from 0.5–2 mm,

using both a litterbag and intact core technique. These
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results support the findings of McClaugherty et al.

(1984) and Langley and Hungate (2003) in which nu-

trient rich thinner roots decomposed more slowly. These

results seem counterintuitive, as lower order roots have

a higher surface area to volume ratio, contain less lignin

and are more nutrient rich, characteristics assumed to

favor fast decomposition (Goebel et al. 2011; Wang

et al. 2015).

The fate of organic matter in the rhizosphere depends

on process rates of microorganisms, as bacteria and

fungi are the primary decomposers of soil organic car-

bon (Hopkins and Gregorich 2005). Reduced decompo-

sition of first order roots could therefore be the result of

experimental artifacts associated with litterbags, a meth-

od that disrupts interactions between roots, soil fauna

and rhizosphere microbes. The extent to which disrup-

tion of root connections with the rhizosphere influences

rates of decomposition should vary by root order as the

most distal first and second order roots are commonly

colonized by mycorrhizal fungi. The extent of root

colonization also differs with mycorrhizal association

type. Ectomycorrhizal (ECM) fungi encase root tips

forming an external mantle; in contrast, fungal struc-

tures are distributed more evenly within the first three

branching orders of arbuscular mycorrhizal (AM) roots

(Langley and Hungate 2003; Xia et al. 2010).

Mycelial networks, which consist of interconnected

strands of cells or hyphae, could play a role in decom-

position through resource transfer between living and

decaying tissues. There is a growing body of evidence

showing that some species of ECM fungi produce ex-

tracellular enzymes to degrade organic residues, obscur-

ing the distinction between saprotroph and symbiont

(Talbot et al. 2008; Lindahl and Tunlid 2015). The

acquisition of nutrients from organic substrates via ex-

tracellular digestion, i.e. saprotrophic (SAP) nutrition,

may be an effective means of reclaiming the N

contained in mycorrhizal roots and mycelium (Read

and Perez-Moreno 2003; Kuyper 2017). While AM

fungi are capable of releasing phosphatases from extra-

radical hyphae and have been shown to hydrolyse or-

ganic P when grown in culture (Koide and Kabir 2000;

Bucher 2007; Sato et al. 2015), the degree to which they

produce extracellular enzymes to degrade SOM is

thought to be minimal (Hodge 2017; Kuyper 2017).

For these reasons, it seems clear that altering the rhizo-

sphere environment and disturbing fungal symbionts is

likely to influence the decomposition process but per-

haps to a different extent in ECM compared to AM tree

species, and in first compared to higher order roots

(Dornbush et al. 2002; Fisk et al. 2011; Li et al. 2015).

It is important to differentiate between the degrees to

which exogenous, compared to endogenous, tissue qual-

ity controls contribute to the decomposition process. In

this review, we discuss the influence of root litter qual-

ity, environmental factors, and plant growth form on

fine root decomposition by building off previous pat-

terns identified by Silver and Miya’s 2001 meta-analy-

sis. We then explore the effect of root order and mycor-

rhizal fungi on fine root decomposition of woody plants.

This review seeks to explain why decomposition is

decoupled from traditional measures of litter quality in

first order roots and draws attention to the role mycor-

rhizal fungi may be playing in the decomposition of

fungal-root litter in forest ecosystems. It seems clear

that determining whether the slower decomposition of

first order roots is an experimental artifact, is attributable

to their unique chemical properties, or is a product of

mycorrhizal mediated decomposition will require new

approaches to study individual root decomposition in

situ. The synthesis concludes with a discussion of new

techniques and methodological considerations that will

lead to a refinement of decomposition theory.

Factors that influence fine root decomposition

Litter quality

Silver and Miya (2001) performed a meta-analysis

(encompassing 30 locations and 40 species) of factors

that regulate rates of root decomposition. The analysis

showed that initial tissue chemistry explained the

greatest proportion of variance in decomposition rate

(85%), while environmental variables, most notably

temperature, precipitation and actual evapotranspiration

(AET) played a secondary role. Since Silver and Miya’s

analysis, fine root decomposition studies have largely

focused on the effects of litter quality on rate of decay

and generally support the notion that litter quality regu-

lates microbial activity and thus decomposition (Chen

et al. 2001; Lemma et al. 2007). In general, decay rates

of fine roots are positively correlated with initial con-

centrations of Ca, Mg, Mn, N and P and negatively

correlated with C:N, lignin:N, cellulose, and phenolic

compounds including tannins, and lignin (Berg et al.

1998; John et al. 2002; Jalota et al. 2006; Wang et al.

2010; Tong et al. 2012; García-Palacios et al. 2016;
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Guerrero-Ramírez et al. 2016; Roumet et al. 2016).

However, exceptions have been reported in which initial

root C:N, lignin: N and N content did not correlate with

rate of decay (Poret et al. 2007; Hobbie 2008; Sun et al.

2013; Zhang and Wang 2015). It may be that C:N,

lignin:N and N concentrations are not always the best

predictors of root decomposition, given their depen-

dence on the stage of decomposition, soil fertility and

season of the year (Machinet et al. 2011; Talbot and

Treseder 2012; Rinkes et al. 2016). Furthermore, it is

likely that the specific nature of the molecules in which

these elements reside, is also of critical importance.

The chemical features that determine the ease with

whichmicroorganisms decompose fine root litter change

throughout the course of decomposition. Short term

studies (6 months-2 years) report a two to three stage

pattern of decomposition consisting of an initial stage of

little or no decomposition (up to 30–90 days) followed

by rapid mass loss (60–300 days) and then decomposi-

tion slows and level offs (300–600 days; John et al.

2002; Yang et al. 2004). Early stages of decomposition

are thought to be driven by the concentrations of N and

water soluble carbohydrates in plant residues (Domisch

et al. 2000; Berg 2000). It has been demonstrated that

rates of decomposition depend on both initial litter qual-

ity and the availability of soil N at early stages of decay

(Mary et al. 1996). If microbial growth is not limited by

nitrogen, the decomposition of root litter may be insen-

sitive to initial N content and thus initial [N] may not

always be useful in predicting fine root decomposition

(Recous et al. 1995; Sall et al. 2007). Moreover, roots are

colonized by soil microbes prior to decay which can

temporarily increase N content and reduce root C:N

ratio; microbe-derived N decomposes differently than

plant-derived N and may explain why C:N ratios do

not always predict rates of fine root decomposition

(Abiven et al. 2005; Machinet et al. 2009).

Later stages of decomposition are thought to be more

heavily influenced by interactions between N content

and chemical form and components of root cell walls

including lignin, cellulose, and suberin (John et al. 2002;

Yang et al. 2004; Tripathi et al. 2006; Lemma et al.

2007). Increases in soil N availability can suppress de-

composition of phenolic compounds contained within

cell walls (Berg 2000; Wang et al. 2004). Additionally,

the acid unhydrolyzable carbon fraction (AUF) which

includes aliphatic compounds and lignin can confer re-

sistance to decay by physically protecting N-containing

inner root tissues from microbial attack (Abiven et al.

2005; Fuji and Takeda 2010). Recent studies also high-

light the importance of tannins; in high concentrations,

tannins have the potential to inhibit enzymatic activity of

microbes (Hättenschwiler and Vitousek 2000;

Adamczyk et al. 2017). Condensed tannins, for example,

were shown to have a strong negative effect on fine root

decomposition in a nutrient rich temperate forest (Dong

et al. 2016). The microbial compounds produced during

decomposition are now thought to be the main contrib-

utors to stable SOM formation, rather than recalcitrant

plant materials like lignin (Cotrufo et al. 2013). The rate

and efficiency at which microorganisms decompose

roots of varying quality and synthesize SOM is depen-

dent on soil structure, moisture and temperature dynam-

ics, in addition to microbial community composition

(Schmidt et al. 2011; Frey et al. 2013; Kallenbach et al.

2016). It is the interaction between microbial products of

decomposition, soil-clay mineralogy and climate which

ultimately determine stabilization of root derived carbon

in soils (Cotrufo et al. 2013; Lehmann and Kleber 2015).

Environmental factors

At the global scale, decay rate is positively related to

precipitation and temperature, and negatively related to

latitude and actual evapotranspiration (AET; Gholz et al.

2000; Laiho et al. 2004; Zhang et al. 2008). Temperature

controls are thought to be more influential in temperate

and boreal forests, while precipitation may be more

important in tropical regions (Powers et al. 2009). Root

decomposition rate increases from the poles to the tro-

pics (Parton et al. 2007; Zhang and Wang 2015). Solly

et al. (2014) found that at the regional scale edaphic

factors including soil C:N ratio, temperature, and mois-

ture explained more variation in rates of fine root de-

composition than lignin:N ratios across forest ecosys-

tems. Prieto et al. (2016) assessed fine root decomposi-

tion at the community level under standard conditions

and found that roots from agroforestry communities

decomposed faster than roots from natural forest com-

munities. On average, fine roots from agroforestry com-

munities had higher N and lower C and lignin concen-

trations compared to less disturbed forest sites; across

communities, deeper roots decayed more slowly due to

higher lignin to N ratios (Prieto et al. 2016). These

findings suggest that the environmental changes associ-

ated with agricultural intensification may alter root litter

quality and enhance decomposability, especially at shal-

low soil depths (Prieto et al. 2016).
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Changes in soil temperature and moisture can alter C

allocation to roots, which in turn influences root litter

quality. Water stress can lead to changes in root cell wall

constituents, as plants increase concentrations of suberin

(a biopolymer composed of aliphatic and aromatic com-

pounds) and lignin, to mediate water loss from cells

(Brunner et al. 2015). Increased amounts of suberin in

root cell walls enhances the hydrophobic protection of

tissues, slowing decomposition (Dignac and Rumpel

2013). García-Palacios et al. 2016 found decreased rates

of C mineralization of fine root litter taken from an 11-

year rainfall exclusion experiment. Decreased decom-

position was attributed to changes in the soil microbial

community and reduced ability of microbes to break

down recalcitrant C substrates such as phenolic com-

pounds (García-Palacios et al. 2016). The increased

protection or root OM brought on by environmental

change and the corresponding effects on microbial me-

tabolism demands further study (Dignac and Rumpel

2013).

Root traits and plant life form

To predict how decomposition will respond to environ-

mental changes, recent literature has emphasized the

use of trait-based approaches and the need for measure-

ments that directly connect fine root traits to forest C

and nutrient cycling (Iversen et al. 2017; McCormack

et al. 2017). Fine root chemical and morphological

traits vary across ecosystems and plant taxa, which in

turn influences rates of decay as litter quality is a

product of both the chemistry and structure of

decomposing tissues (Dornbush et al. 2002; Birouste

et al. 2012; Prieto et al. 2016). Among plant growth

forms, fine roots of trees have larger diameters, higher

N concentrations and lower specific root lengths (root

length per unit dry mass; SRL) due to greater tissue

densities (Freschet et al. 2017; Valverde-Barrantes et al.

2017). Whereas graminoids had the lowest N content

and tissue densities when compared to forbs, shrubs

and trees (Valverde-Barrantes et al. 2017). For the

different plant growth forms, rate of fine root decay

increases in the following order: conifers < broadleaf

trees < shrubs < graminoids (Mao et al. 2011; Tong

et al. 2012; Zhang and Wang 2015).

In a global analysis of fine root traits, Iversen et al.

(2017) found that evergreen and deciduous broadleaf

trees from temperate ecosystems had lower average C:N

values when compared to needleleaf woody plants from

the same ecosystem. It has been demonstrated that fine

roots of deciduous tree species decompose more quickly

than those of coniferous species (Mao et al. 2011; Tong

et al. 2012). Furthermore, fine roots of gymnosperms

tend to have larger diameters, denser tissues and de-

creased branching intensity compared to angiosperms;

these differences likely contribute to the differential

decomposability in these two plant groups (Liese et al.

2017). The traits associated with different ecological

strategies of plants may also influence the rate at which

their tissues decompose. There is some evidence that

invasive species produce more labile litter than native

species. However, Jo et al. (2016) found no difference in

decomposition rates of fine roots between 23 native and

25 nonnative woody species in Eastern US deciduous

forests. The same study found that woody N-fixers had

significantly lower root decomposition rates than non-

N-fixers, likely due to higher concentrations of acid-

insoluble residues (Jo et al. 2016). Given the differences

in morphology and tissue chemistry among plant taxa, it

is important to account for this variability and standard-

ize the way we characterize fine roots.

Role of branching order in fine root decomposition

Branching position reflects differences in root age and

tissue development, as newer more distal roots branch

from older, more basal roots. Fitter (1982) introduced a

morphometric approach to describe these architectural

features based on topological models which rely on

Strahler’s stream ordering system (Fig. S1; Strahler

1957; Pregitzer et al. 2002; Valenzuela-Estrada et al.

2008). The most distal roots in a branching system are

first order roots; the node from which two first order

roots branch marks the location of a second order root,

and so on (Strahler 1957; Guo et al. 2004). Lower order

and higher order roots are thought to carry out different

functions within the branching system (Guo et al.

2008a, 2008b). Lower order roots (1–2) function main-

ly in nutrient and water absorption, while higher order

roots (3–5) are involved in transport, storage and pro-

duction of lateral roots (Eissenstat et al. 2000). It has

been suggested that short-lived, absorptive roots can

collectively be thought of as a separate module (i.e.,

branching systems containing orders 1–3) comparable

to a leaf, while longer-lived transportive roots are anal-

ogous to twigs (Kong and Ma 2014; McCormack et al.

2015). The extent to which roots can be classified by
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function differs among plant taxa and the criteria

offered by McCormack et al. (2015) may not be appro-

priate for annual plants (Zobel 2016). Additionally, the

division between roots involved in absorption and roots

involved in transport can differ among and within spe-

cies depending on environmental conditions

(McCormack et al. 2016).

It is generally thought that root and stele diameter

increase, whereas specific root length (the ratio of length

to mass), cortex thickness, and mycorrhizal colonization

all decrease with increasing branching order in fine roots

of woody plants (Fig. 1; Guo et al. 2004; Hishi 2007;

Long et al. 2013; Jia et al. 2013). Lower order roots are

involved in water and nutrient uptake and have higher

rates of respiration due to increased metabolic activity

(Valenzuela-Estrada et al. 2008; Xia et al. 2010; Rewald

et al. 2011; Jia et al. 2013). As a result, lower order roots

contain higher concentrations of N and lower concentra-

tions of total non-structural carbohydrates (TNC; Fan

and Guo 2010). In general, root C increases with

branching order, consistent with storage and structural

support functions. Accordingly, C:N, lignin and cellu-

lose also increase with branching order (Fig. 1; Guo et al.

2004; Pregitzer et al. 2002; Hishi 2007; Jia et al. 2013).

Fine root lifespan has been shown to increase with

branching order, because higher order roots containmore

secondary tissues and increased concentrations of suber-

in, protecting roots from pathogens and desiccation (Guo

et al. 2008a; Hishi 2007; Xia et al. 2010; Adams et al.

2013). These differences in structure, function, and rhi-

zosphere associates of different orders of living fine roots

should translate into predictable patterns of fine root

decomposition following senescence, but so far the abil-

ity to make such predictions has eluded the scientific

community (Freschet et al. 2012; Roumet et al. 2016).

Tissue characteristics frequently used to predict leaf

decomposition rates including C:N, lignin:N, and [N],

have proven surprisingly inadequate for predicting the

decomposition of the finest roots. Moreover, the large

surface area and small diameters of lower order roots are

also characteristics that one would normally associate

with rapid decomposition (Goebel et al. 2011; Xiong

et al. 2013; Sun et al. forthcoming). Recent data suggest

just the opposite, however, as the trend of slower decay

of first order roots has now been demonstrated for sev-

eral different tree species (Fan and Guo 2010; Goebel

et al. 2011; Xiong et al. 2013; Sun et al. 2016; Sun et al.

forthcoming). To reconcile discordance between theoret-

ical predications and a growing body of empirical data,

Fan and Guo (2010) proposed three hypotheses: (1) the

Fig. 1 Differences among the first three branching orders with

respect to root anatomy, metabolism & turnover, tissue chemistry

and thus decomposition. The arrangement of arrows shows gen-

eralized patterns for traits related to branching position. N refers to

Nitrogen and C:N refers to the carbon to nitrogen ratio. Cross

sections of decaying Pinus taeda roots demonstrate anatomical

differences, which when combined with differences in initial

chemistry, influence rates of decay. The traits commonly associat-

ed with increased decomposability of tissues (greater concentra-

tions of N, decreased diameter, decreased C:N) do not seem to

predict decomposition of the finest roots given that decay rate

tends to increase with branching order. Adapted fromMcCormack

et al. (2015) Fig. 4
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mycorrhizal hypothesis (Langley andHungate 2003); (2)

the C quality hypothesis (Guo et al. 2004); and (3) the N

inhibition hypothesis (McClaugherty et al. 1984; Berg

and McClaugherty 2008; Hobbie 2008). A fourth, more

holistic explanation, termed the myco-quality hypothe-

sis, joins the explanations for these counterintuitive re-

sults into one hypothesis as all three are likely intercon-

nected through common links to nutrient dynamics. The

following sections explore these explanations for the

slower decomposition of lower order roots in detail and

the potential for mycorrhizal-mediated decomposition of

root tips.We add a fifth possible explanation that is based

on the experimental artifacts inherent to how we go

about conducting decomposition experiments. Regard-

less of the explanatory power these five mechanisms

hold for explaining observed patterns of woody root

decomposition, the predictability of fine root decompo-

sition with respect to root order for herbaceous species

may differ altogether.

Explanations for slow decomposition of lower order

roots

The mycorrhizal hypothesis

The combination of plant and fungal tissue results in a

unique biochemistry that may explain differences in

decay rate between low and high order roots. Both

AM and ECM roots have been shown to decompose

more slowly than non-mycorrhizal and higher order

roots (Langley and Hungate 2003; Fan and Guo 2010).

The mycorrhizal hypothesis attributes slower rates of

decomposition of first and second compared to higher

order roots to the recalcitrant nature of fungal tissues,

which encase ectomycorrhizal roots and form inside the

roots of arbuscular mycorrhizal symbionts. In the past,

the recalcitrant nature of fungal tissue was attributed to

chitin, a long chain structural carbohydrate composed of

N-acetylglucosamine subunits (Bowman and Free

2006). This notion has been challenged in recent years,

however. For example, Fernandez and Koide (2012)

measured chitin concentrations in decaying ECM fungal

tissues and demonstrated that chitin was no more resis-

tant to decay than other fungal compounds. In fact,

concentrations of chitin were associated with faster rates

of decomposition (Fernandez and Koide 2012). These

findings have been supported by Drigo et al. (2012),

Zeglin et al. (2013) and Russell (2014), who report rapid

declines in chitin concentrations within decomposing

fungal tissues (Fernandez et al. 2016).

If the nature of fungal tissue makes lower order roots

more resistant to decay, then ECM roots should decom-

pose more slowly than AM roots (Fan and Guo 2010).

ECM roots are sheathed in dense covering of layered

hyphae and tend to contain a larger proportion of fungal

tissue (20–40%) compared to AM roots (3–17%;

Hepper 1977; Langley and Hungate 2003). Despite

differences in intensity of colonization (number of root

tips or percentage root length colonized by fungi), AM

and ECM roots decomposed at similar rates in several

different tree species, an observation that seems to refute

the mycorrhizal hypothesis (Fan and Guo 2010;

Soudzilovskaia et al. 2015; Sun et al. forthcoming).

It is possible that components of fungal cell walls

other than chitin might contribute to the resistance of

mycorrhizal roots to decay. For instance, AM fungi

produce the hydrophobic glycoprotein, glomalin which

may aid in waterproofing hyphae as they transport nu-

trients (Rilling et al. 2002; Fernandez et al. 2016). Like

glomalin, ECM fungi produce hydrophobic proteins or

hydrophobins that coat the outside of cell walls, making

hyphae un-wettable (Fernandez et al. 2016). The hydro-

phobic nature of these fungal proteins also likely retards

enzymatic decomposition. Additionally, the hydropho-

bic pigment, melanin which is located within fungal cell

walls is thought to be important in regulating decompo-

sition of ectomycorrhizal tissues (Fernandez and Koide

2014; Fernandez et al. 2016). ECM species differ with

respect to the structure of their hyphal sheaths, the

majority of which are hydrophobic; mantles can be

made up of either loosely associated or tightly woven

hyphae that form an outer cover comparable to a leaf’s

epidermis (Agerer 2006). The protective nature of the

fungal mantle produced by ECM species, which varies

with root branching order, may play an important role in

deterring microbial decay.

The C quality hypothesis

The C quality hypothesis attributes slower decomposi-

tion of lower order roots to a higher acid insoluble or

unhydrolyzable fraction (AUF) and decreased concen-

trations of TNC. The acid insoluble or unhydrolyzable

fraction in lower order roots includes aliphatics (i.e.

suberin), defensive compounds (i.e. alkaloids,

phenylpropanoids and tannins) and lignin (Fan and

Guo 2010; Xiong et al. 2013). Xiong et al. (2013)
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reported a negative correlation between decay rate and

initial AUF in lower order roots for both subtropical and

temperate tree species; no relationship was found be-

tween AUF and rate of decomposition in higher order

roots. The slow decomposition of structural C contained

in lower order roots may depend on complex cell wall

chemistry, specifically linkages between polysaccharides

and phenolic compounds (Moorhead et al. 2014). Plant

litter is largely comprised of cell wall constituents in

various states of decay and the composition of sugars

in root cell walls can delineate the changeover from short

to longer term decomposition (Bertrand et al. 2006;

Moorhead and Sinsabaugh 2006; Moorhead et al.

2014). Additional work needs to be done to identify

changes in carbohydrate composition and other aspects

of cell wall chemistry as lower order roots decompose.

When present in esterified form, phenols can cross

link with polysaccharides within cell walls and limit

decomposition (Bertrand et al. 2006). Increased phenolic

concentrations in the finest roots may be particularly

important for conferring recalcitrance of first and second

order roots. Phenolic quantity and quality recently have

been found to differ significantly among root orders

(Rasmann and Agrawal 2008; Adams and Eissenstat

2015; Wang et al. 2015; Zadworny et al. 2016). Sun

et al. (forthcoming) investigated the drivers of decompo-

sition for first order roots among 35 temperate tree spe-

cies over the course of 6 years. Initial lignin and N

concentrations did not explain the variability in decay

rate. Decay rates were, however, significantly increased

with increasing initial concentrations of TNC and signif-

icantly decreased with increasing initial concentrations of

bound phenolics and condensed tannins. Overall, TNC

and phenols seemed to have the greatest effect on decom-

position of first order roots, despite occurring in dispro-

portionately low amounts compared to other carbon com-

pounds (Sun et al. forthcoming; Wang et al. 2015).

Lower order roots are nutrient dense, non-lignified

tissues that would be expected to face higher herbivore

and pathogen pressure than larger, less nutritious, and

more heavily lignified structural roots (Sun et al. 2011).

Based on this differential selection pressure exerted by

herbivores, it is likely that the negative relationship be-

tween decomposition and AUF may be a by-product of

the increased need for plants to defend the most metabol-

ically active and nutrient-dense absorptive roots against

other organisms present in the rhizosphere (Preston and

Schmidt 2006; Xiong et al. 2013; Sun et al. forthcoming).

In addition to tannins, other free or soluble phenols (i.e.

phenolic acids, phenylpropanoids, quinones, and flavo-

noids) protect fine roots by decreasing palatability and

increasing the rigidity of cell walls when bound to non-

soluble phenols (cell wall bound hydroxycinnamic acids,

condensed tannins and lignin; Rispail et al. 2005; Wang

et al. 2015). Larger diameter or denser roots (i.e., those

with lower SRL) may contain more recalcitrant, mycor-

rhizal associated compounds (e.g. low concentration of

soluble carbohydrates, a high AUF fraction) (Langley

and Hungate 2003; Sun et al. 2013; Roumet et al. 2016).

Despite variability in tissue chemistry among spe-

cies, AUFs and phenolic concentrations of first order

roots seem to be good predictors of decomposition, this

has still not been established for other root orders.

Adams and Eissenstat (2015) measured concentrations

of soluble phenols in relation to branching order for nine

temperate tree species. They found that soluble phenolic

content increased significantly with order, independent

of species and mycorrhizal type (Adams and Eissenstat

2015). Alternatively, Wang et al. (2015) compared the

first five root branching orders of the ericaceous shrub,

Ardisia quinquegona and found that concentrations of

phenolic compounds were higher and more seasonally

variable in lower compared to higher order roots. De-

creasing concentrations of both free and bound phenols

with increasing branching order were reported (Wang

et al. 2015). The discrepancy between these studies may

have to do with extraction methods and/or site differ-

ences with respect to herbivore pressure. Clearly, more

work is needed to resolve this issue.

The N inhibition hypothesis

Previous studies have shown that enhanced N condi-

tions combined with a high AUF can slow decomposi-

tion in later stages of decay (Moorhead and Sinsabaugh

2006; Hobbie 2005, 2008). As stated previously, lower

order roots contain greater concentrations of both N and

acid insoluble compounds (Guo et al. 2004; Fan and

Guo 2010; Sun et al. 2013). The N inhibition hypoth-

esis accredits slower decomposition of lower order

roots to condensation reactions between N and acid

insoluble compounds, resulting in complexes that re-

strict microbial access to C (McClaugherty et al. 1984;

Berg and McClaugherty 2008; Hobbie 2005, 2008; Fan

and Guo 2010). As plant materials decay, microbial

enzymes depolymerize organic substrates, potentially

forming reactive amino and phenol groups that can also

condense into nitrogen-rich complexes (Haider et al.
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1965; Kelley and Stevenson 1996; Davidson et al.

2003; Berg and McClaugherty 2008). It should be

noted that much of the justification for the N inhibition

hypothesis has come from studies which tested the

effects of increased concentrations of soil inorganic N

on decomposition of lignin-rich litter (Berg 2000;

Hobbie 2005). Whether root N and products of micro-

bial degradation combine to form persistent N-phenol

complexes warrants further study.

The extent to which root nitrogen concentration in-

fluences decomposition of lower order roots depends on

soil N availability. Nitrogen addition may not impact

lower order root decomposition if microbes are not

initially limited by N. Furthermore, nitrogen fertilization

has been demonstrated to suppress fungal growth and

decrease phenol oxidase activity, in turn slowing de-

composition (Burns et al. 2013; Rinkes et al. 2016).

Plant litter containing increased concentrations of phe-

nols may decompose more slowly in soils where N is

readily available (Berg 2000; Wang et al. 2004; Rinkes

et al. 2016). In a recent fertilization study, Sun et al.

(2015) found that N fertilization inhibited decomposi-

tion of the first four branching orders of four temperate

tree species over the course of four years. At the begin-

ning of the study, the added N caused higher order roots

to decompose more quickly, while lower order roots

remained largely unaffected. In the latter stages of de-

composition, N fertilization suppressed decomposition

in both higher and lower order roots. Thomas et al.

(2012) found that continual N deposition had little to

no effect on the chemistry of lignin-derived phenols

originating from root litter in sugar maple dominated

hardwood forests. Nitrogen enrichment of soils may not

enhance the recalcitrance of phenol complexes them-

selves, but instead influence decomposition through

reductions in microbial biomass and decreased oxida-

tive enzymatic activity (Rinkes et al. 2016).

The myco-quality hypothesis

The myco-quality hypothesis attempts to account for the

slow turnover of the most distal order roots by combin-

ing aspects of the previous three hypotheses with current

views on mycorrhizal interactions with saprotrophs, the

dominant decomposers of plant litter in forests (Talbot

et al. 2008). Initial colonization by mycorrhizal fungi

could physically or chemically hinder subsequent colo-

nization of lower order roots by saprotrophs, slowing

decomposition through afterlife effects (Langley et al.

2006). Langley and Hungate (2003) predicted the trend

of reduced decomposition in N-rich mycorrhizal roots,

due in part to the production of fungal defensive com-

pounds. ECM fungi protect roots from bacterial and

fungal pathogens through the production of anti-

microbial compounds, which can remain inside or close

to root tissues upon senescence. Mycorrhizal coloniza-

tion also reduces concentrations of non-structural car-

bohydrates in fine roots (Langley and Hungate 2003).

The accumulation of secondary metabolites and reduc-

tion in soluble sugars brought on by mycorrhizal colo-

nization influences root litter quality post-mortem and

could deter colonization by free living saprotrophs. In

addition to chemical antagonism, mycorrhizal fungi

may regulate rates of decay by restricting saprotrophic

(SAP) activity via competition for heterogeneously dis-

tributed soil nutrients (Gadgil and Gadgil 1975).

Competition for N is one of the mechanisms that

may explain suppressed SAP decomposition in the

presence of ECM fungi, i.e. the ‘Gadgil Effect.’

(Gadgil and Gadgil 1971, 1975; Koide and Wu 2003;

Fernandez et al. 2015). The magnitude of the Gadgil

effect is thought to be greatest in organic soil layers

which are sensitive to changes in soil moisture and

where competition for N is likely high (Bending

2003; Koide and Wu 2003). In boreal forests which

are known to be N limited, ECM and SAP fungi are

spatially separated. SAP fungi tend to colonize more

recently shed litter at the forest floor surface and my-

corrhizal fungi are more abundant in the underlying

layers which contain older, more decomposed litter

(Lindahl et al. 2007; Clemmensen et al. 2013;

Bödeker et al. 2016). Whether this vertical separation

is the result of competitive exclusion of saprotrophic

fungi by ECM or niche differentiation needs to be

addressed (Fernandez and Kennedy 2015).

Bödeker et al. 2016 tried to address this question by

investigating the vertical positions of saprotrophic and

ECM fungi in the soil profile and the potential for

different fungal guilds to colonize substrates of varying

quality. The results from their study support the idea that

SAP and ECM fungi have overlapping fundamental

niches, in that both were able to colonize the same

substrates and their vertical separation in the soil is

likely reinforced by competition for N (Bödeker et al.

2016). ECM fungi may have an advantage in decompo-

sition at lower soil depths through early access to nutri-

ents contained in senescing mycorrhizal roots and en-

zyme production subsidized by plant sugars (Cairney
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and Burke 1994; Langley and Hungate 2003; Lindahl

and Tunlid 2015). Thus, ECM fungi may be primed to

recycle N from root tissues they colonized and modified

pre-mortem, but may be less efficient decomposers than

saprotrophs, explaining slower rates of decomposition

(Lindahl et al. 2002; Langley and Hungate 2003).

Maintaining connectivity

Mycelium can reserve a cache of nutrients for later

redistribution by preventing resources from being

intercepted by competing plants or immobilized in soil

aggregates (Watkinson et al. 2005; Simard et al. 2012).

Hyphal connections between living and decaying roots

and bidirectional translocation in mycelial networks hint

at the possibility for mycorrhizal participation in the

decomposition of N rich lower order roots (Went and

Stark 1968; Langley and Hungate 2003). It has been

suggested that ECM fungi have saprotrophic capabili-

ties, transforming SOM to acquire organic forms of

nutrients (i.e. the nutrient mining by priming

hypothesis as discussed by Kuyper 2017; Lindahl and

Tunlid 2015). Whether ECM fungi act as Btrue^

saprotrophs and obtain carbon from SOM for the pur-

pose of building biomass is a point of contention in the

literature, complicated by the fact that ECM fungal

species vary widely in their ability to decompose organ-

ic substrates (Hodge 2017; Kuyper 2017; Pellitier and

Zak 2017). It is a mistake to generalize saprotrophic

function across ECM species; however, we should be

careful not to discount the possible nutritional capabil-

ities of ECM fungi with respect to root and fungal litter.

Laboratory cultures have demonstrated the potential

for mycorrhizal fungi to decompose their own senescent

tissues and ECM fungi have direct access to both

decomposing roots and the sugars contained in living

roots via their extensive hyphal networks (Kerley and

Read 1998). During times of reduced photosynthetic

supply from hosts, ECM fungi may induce decomposi-

tion of dying roots to allow the fungi to escape and find

new hosts (Baldrian 2009). The presence of AM fungi

has been shown to both enhance (Carillo et al. 2016; Gui

et al. 2017) and suppress litter decomposition

(Verbruggen et al. 2016; Hodge 2017). AM fungi are

thought to play a more indirect role in decomposition

via hyphal exudation, transport of inorganic nutrients

away from decomposing substrates and corresponding

changes in substrate quality (Hodge 2017). Future studies

are needed to address the role mycorrhizae play in de-

composition of SOM in a field setting. Whether/when

ECM fungi are acting as obligate symbionts or facultative

saprotrophs remains unclear (Baldrian 2009; Vaario et al.

2012; Kuyper 2017). Recently, it has been suggested that

situational context is important in determining the extent

to which substrates decompose (Schmidt et al. 2011). For

first order roots to maintain situational context, they must

decompose in the presence of intact rhizosphere soil,

colonized by pre-mortem fungi (Li et al. 2015).

Fisk et al. (2011) disrupted the rhizosphere of roots

decaying under root windows inset into the soil in an

Eastern hardwood forest and found that the dominant

fungal taxa changed due to the disturbance;

rhizosphere species were replaced by bulk soil fungal

species. Dornbush et al. (2002) decomposed recently

senesced fine roots of silver maple using both litterbags

and an intact core technique where roots are left to

decompose within an intact soil core to limit rhizo-

sphere disturbance. Mass loss was 23% lower in litter-

bags and N release was 29% lower compared to intact

cores (Dornbush et al. 2002). This difference in decay

and nutrient dynamics was attributed to litterbag-

induced alterations to decomposer dynamics. Li et al.

(2015) found that fine root decomposition was twice as

fast for roots decaying inside of intact soil cores com-

pared to roots decaying in litterbags in a pine forest.

The authors also detected changes in fungal communi-

ties colonizing decaying roots when the rhizosphere

soil was left intact; ECM fungal taxa including:

Boletales, Thelephorales and Cantharellales were de-

tected more frequently in cores than litterbags. Corre-

spondingly, greater release of N and P from roots was

strongly correlated with increased abundance of

Thelephorales and Cantharellales, hinting at the possi-

bility that ECM fungi are mining nutrients from

decaying fine roots (Lindahl and Tunlid 2015;

Kuyper 2017). These studies suggest that slower de-

composition of lower order roots may be an experi-

mental artifact and draws attention to the change in

microbial community composition that can occur when

preparing roots for litterbags (Li et al. 2015).

Order based studies are conducted using litterbags

with restrictive mesh sizes to prevent movement of

dissected root litter out of the bag and can alter moisture

content inside of the bag; mesh sizes used included

50 μm (Goebel et al. 2011), 100 μm (Xiong et al.

2013), 120 μm (Sun et al. 2013, 2016), and 500 μm

(Fan and Guo 2010). It is important to be cautious when
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comparing results of such studies with previous root

decomposition studies that use litterbags with larger

mesh sizes. Such small mesh sizes exclude macro and

meso-fauna that would normally condition plant litter in

ways that lead to faster microbial decomposition

(González and Seastedt 2001; Sun et al. 2015; Frouz

et al. 2015). Collembolans are known to feed on fungal

hyphae which leads to fragmentation of roots tips,

which in turn can disrupt the hydrophobic nature of

hyphal coverings and increase decomposer access

(Ekblad et al. 2013). Minirhizotron studies generally

report that the finest roots with shorter longevity disap-

pear from images (i.e., decompose) more quickly than

larger diameter, higher order roots (Guo et al. 2008a;

Fan and Guo 2010). Results from minirhizotrons seem

to contradict the idea that the finest, most distal root tips

persist in the soil longer than higher order roots

(Pritchard et al. 2008; McCormack et al. 2012). The

herbivores excluded in litterbag studies may explain this

discrepancy, as roots tips in minirhizotron images may

be eaten or damaged by soil animals (Lussenhop 1992;

Steinaker and Wilson 2008).

Methodological considerations for future studies

While litterbag studies are the most common technique

for quantifying decomposition, alternate methods such

as the intact core approach and the use of root windows

may provide research platforms from which to derive

more reliable estimates of decomposition (Silver and

Miya 2001; Sun et al. 2013; Li et al. 2015). These

approaches limit rhizosphere disturbance and allow for

functional comparisons among roots within the fine root

branching system in situ (Dornbush et al. 2002; Fisk

et al. 2011). Both the intact core and root window

approaches maintain connectivity among belowground

branching systems and do not require preliminary pro-

cessing of root material (Dornbush et al. 2002). Root

windows are temporary installations that house

branching networks which can be tracked through time

and later dissected by order. As a tradeoff, methods that

conserve rhizosphere connections make it difficult to

estimate initial mass and thus measure decay rates for

individual samples. Mass loss can be estimated by

tracking changes in population means through time;

however, the number of cores or branching networks

that would have to be destructively harvested to account

for variability in root mass between locations and

species would need to be determined ahead of time

(Dornbush et al. 2002). While this a difficult and more

time intensive approach than litterbags, it more accu-

rately represents the decomposition process.

Most studies of decomposition of aboveground

plant structures are conducted with tissues that have

naturally senesced, such as fallen leaves (Berg and

McClaugherty 2008). This is a potentially important

point because plants living in N limited soils can

resorb as much as 70% of leaf nitrogen during the

senescence process (Nambiar and Fife 1991; Gordon

and Jackson 2000; Langley and Hungate 2003; Han

et al. 2013). While selecting senesced leaves to use

for litter decomposition studies is straightforward,

collecting fine roots that have senesced naturally is

difficult or impossible. Furthermore, the season of

collection can influence N content of lower order

roots. Zadworny et al. (2015) found that N content

of lower order roots increased during spring and

summer and then declined at the end of the growing

season coinciding with an increase in N concentra-

tion of the higher order transport roots in Quercus

robur.

The extent to which resorption, or internal recycling

of N, is happening in fine root systems could have

important implications for fine root litter quality. Al-

though recovery of nutrients from senescing roots is

not well documented, several recent studies suggest that

it may be significant. For example, Kunkle et al. (2009)

estimated that as much as 28% of fine root N is resorbed

from dying roots. Similarly, Freschet et al. (2010) ob-

served a similar rate of N resorption (27%) in fine roots

of a large number of sub-arctic vascular plants. Clearly,

such large differences in tissue quality in dead compared

to living fine roots could significantly alter the results of

fine root decomposition studies. Decomposition studies

should consider the potential importance of tissue qual-

ity differences between living and dead fine roots and

should try to account for the importance of intact link-

ages of ECM structures in dead or living fine roots and

the mycelia stretching into bulk soil.

Future studies on fine root decomposition must begin

to combine a fine-scale understanding of the molecular

transformations undergone by various N and C contain-

ing compounds with knowledge of the role played by

specific microbes as roots of different orders lose mass

and change in quality during decomposition. Although

this may seem complicated enough, it is becoming

obvious that spatial and abiotic (soil minerology,
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temperature, pH, and moisture content) context likely

mediate such chemical transformations and cannot be

ignored. Fortunately, new technologies have emerged

and are beginning to be applied to rhizosphere processes

that might make such an understanding possible in the

not-to-distant future. For instance, advances in high

throughput sequencing, combined with pipelines for

managing the large volumes of data produced, now

make it feasible to characterize the microbial communi-

ty composition associated with different root orders

through the course of decomposition using a

metagenomics approach (Oburger and Schmidt 2016).

Metatranscriptomics, metaproteomics, and metabolo-

mics are rapidly developing techniques that make it

possible to screen for changes in gene expression, char-

acterize protein profiles, and understand activity of key

metabolic pathways at the scale of the whole rhizo-

sphere community associated with roots of different

developmental orders (Oburger and Schmidt 2016; van

Dam and Bouwmeester 2016).

Imaging combined with stable isotopic labeling ap-

proaches can be combined with the -omics techniques to

track the fate of C and N atoms through the plant-

rhizosphere-soil continuum (Fig. 2). For instance, 13C

labels either assimilated by leaves during photosynthesis,

or 13C and 15 N injected into stems, can be tracked

through pools of C and N containing compounds in roots

during the time-course of decomposition using ultra high

resolution mass spectroscopy (HR-MS) and then identi-

fied after being incorporated into nucleic acids of decom-

posers using stable isotope probing (SIP) techniques.

Related techniques that can be used to track the move-

ment of isotopic tracers from fine root pools into mi-

crobes and eventually into various SOM fractions include

nanoSIMS (nano secondary ion mass spectrometry), and

synchrotron-based spectromicroscopy (STXM;

Keiluweit et al. 2012). Details on the potential of these

techniques for unraveling the mysteries of fine root de-

composition have been discussed in a number of recent

publications (Ohno et al. 2010; Behrens et al. 2012;

Keiluweit et al. 2012; van Dam and Bouwmeester

2016; Oburger and Schmidt 2016).

Final thoughts

The quantity and quality of carbon containing

compounds in lower order roots could make a large

Fig. 2 In situ approaches to studying fine root decomposition that

can be utilized in future studies. Field-based isotopic labeling

(15 N and 13C) approaches can be combined with the -omics

techniques (metatranscriptomics, metaproteomics, and metabolo-

mics) and mass spectroscopy (Mass Spec) to track the products of

decomposition through the rhizosphere-soil continuum and link

decomposer community structure to function. Maintaining root-

rhizosphere connections allows us to accurately assess fine root

contributions to soil organic matter (SOM) formation.

Furthermore, these techniques will allow for the identification of

the community of decomposers which colonize roots of different

branching orders (O1- Order 1, O2- Order 2 & O3- Order 3). The

ability to assess whichmembers of the decomposer community are

actively utilizing the C or N contained in decaying root and fungal

substrates will shed light on the role mycorrhizal fungi play in

decomposition (i.e. whether ECM fungi act as facultative

saprotrophs) and why lower order roots decompose more slowly

than their higher order counterparts
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contribution to stable SOM formation if the majority of

N in lower order roots is bound up in recalcitrant forms.

The extent to which phenolic compounds contribute to

delayed decomposition of fine roots and impact

mycorrhizal symbionts requires further study. It may be

that ECM fungi are capable of decomposing secondary

metabolites to retrieve the N contained therein. This idea

gained recent support by Terrer et al. (2016) who found

that plant species colonized by ECM fungi were able to

sustain increased growth under elevated concentrations

of carbon dioxide despite low soil N availability a phe-

nomenon that has also been reported by others (Drake

et al. 2011). One possible mechanism for this sustained

growth response is that ECM fungi, supplied with addi-

tional C from host plants, are able to mine recalcitrant

compounds for N thereby increasing plant N uptake

(Phillips et al. 2012; Terrer et al. 2016). To gain a more

complete picture of the organisms and conditions driving

the decomposition of the most distal root orders, there

are a number of questions that require answers (Table 1).

Although unraveling the complexities of decomposition

of roots of different developmental orders promises to be

methodologically challenging, the application of new

techniques to this problem leaves us hopeful that a more

holistic understanding of the controls of these processes

will be achievable in the coming decade.
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