
Maintaining Consistency of Client-Cached Data

Kevin Wilkinson and Marie-Anne Neivnat

Hewlett-Packard Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304

Abstract

This paper addresses the problem of cache consistency in a
client-server database environment. We assume the server
provides shared database access for multiple client worksta-
tions and that client workstations may cache a portion of
the database. Our primary goal is to investigate techniques
to maintain the consistency of the client cache and to im-
prove server throughput. We propose a new cache consis-
tency algorithm for client caches. The algorithm is a simple
extension to twophase locking and consists of three addi-
tional lock modes that must be supported by the server lock
manager. For comparison, we devised a second cache consis-
tency algorithm based on notify locks. A simulation model
was developed to analyze the performance of the server un-
der the two cache consistency algorithms and under non-
caching two-phase locking. The results show that both con-
sistency algorithms can significantly improve server perfor-
mance over basic two-chase lo&ins. The notifv locks al-
gorithm? at times, ou<performs the’ cache locks *algorithm.
But, it IS very sensitive to data contention and server load.
Cache locks is always better than two-phase locking and is
much more stable than notify locks under all conditions.

1 Introduction

This work was motivated by recent research in database
servers and active databases. The use of database
servers is emerging as a common paradigm to provide
shared data access over computer networks. Typically,
the application program runs as a client process and
communicates with the database server through mes-
sages. This increases the cost of each data request. One
solution is to reduce the number of requests by caching
a portion of the database on the client. When a client
cache is used, there must be a protocol between the
client and server to ensure that the client cache remains
consistent with the shared database. In this sense, the

Permission to copy without fee all or part of thib material is

granted provided that the copies arc not made or dihtrihuted l’ot

direct commercial ad\antagc. the VLDB copright notice and

the title of the publication and its date appear. and notice i’r fi\cn

that copying is by permission of the Very Lqe Data Ba~c

Endowment. To copy otherwise. or to republish. rcquircs ;I fee

and/or special permission from the Endo\smcnt.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

client cache may be viewed as active data since updates
should trigger a cache-refresh operation.

Active databases allow applications to be informed
of changes to some portion of a shared database by
other transactions. In practice, this has meant that
all updates to the database must be monitored by the
database management system to determine if the up-
dates affect the active data [4, 121. When the active
data is updated, the database system must inform the
affected clients that a change has occurred. Thus, all
transactions incur additional overhead to support a ser-
vice that they may never use (i.e. detection and no-
tification of updates). The challenge is to make this
overhead as low as possible since this translates directly
into lower response time and higher throughput. This is
especially important when the database is on a central
server, and therefore, a potential bottleneck.

In our view, the “active database problem” may be
treated as a special case of concurrency control syn-
chronization. A transaction with active data may be
considered to have a lock on the active data. Other
transactions may update the active data which, in ef-
fect, breaks the lock. The problem, then, is how to
inform the lock holder of the update.

Our approach to maintaining cache consistency is to
integrate the cache consistency algorithm with the lock
manager of the database management system. There
are several advantages in doing this. First, the impact
on the database management system is minimized in
that no new modules need be written or incorporated.
Second, the path length for request processing is not
significantly increased since the lock manager is already
called for most requests. Third, it is transparent to
non-caching transactions and requires few changes to
caching transactions.

We present two algorithms. The first is an extension
t,o twophase locking and consists of adding new lock
modes (cache locks) to the lock manager. The second
algorithm is based on notify locks.

Through simulations, we compare the relative per-
formance of the two cache consistency algorithms and
contrast it with non-caching two-phase locking. Our
simulation model was derived from the model developed
in [l]. We extended that model to a distributed envi-
ronment with one server and multiple clients and with
caching on the clients.

This work differs from previous research in cooperat-
ing transactions [5] and active databases with real time
requirements [12, 131. Our primary goal is to support

122

client caching and improve server performance. Thus,
we are willing to sacrifice some capabilities of active
databases such as immediate notification of updates.

The notion of materialized views (or snapshots) is
loosely-related to our work in that a snapshot may be
considered a form of cached data. The emphasis of this
work has been on efficient mechanisms for refreshing the
snapshot after an update to the base data. A refresh al-
gorithm for views over a single base table was described
in [9]. To detect view updates, it requires base tables
to be augmented with a timestamp and link field for
each tuple. An algorithm for arbitrary select-project-
join views was described in [Z]. Each update transac-
tion, as a side-effect, builds additional sets of tuples to
add or remove from each affected view.

A system that supports read-only caching for work-
stations accessing a centralized database is described in
[6]. However it requires some changes to the database
management system to timestamp base data. Also, it
does not support ad-hoc queries or ad-hoc updates.

The next section describes our cache consistency al-
gorithm based on cache locks. Section 3 contains a de-
scription of notify locks as we have adapted them to
maintain the consistency of cached data. The two algo-
rithms are compared in Section 4. Section 5 describes
the queueing model we have used for our performance
studies. Our simulation experiments and their results
are described in Section 6. Section 7 contains a sum-
mary of the results of our study. Finally, we note that
this work is being done as part of the Papyrus project
1111. This is a larger effort to construct cooperative,
high-performance data servers.

2 Cache Locks

Consider a client process in which a portion of a
database has been cached to reduce access time to a
shared database server. We assume that the database
server uses two-phase locking as its concurrency cont,r ~1
algorithm. We also assume that client transactions have
a read-phase and a commit phase and updates are not
sent to the server until the commit phase.

We observe that a cached object is merely a snapshot
of an object on the server. A cached object may be in
dne of four states relative to the current version on the
server. It may be in the process of being copied from
the server into the client cache, identical to the current
version on the server, out-of-date due to an update by
an uncommitted transaction, or out-of-date due to an
update by a committed transaction.

The idea behind the cache locks algorithm is to use
lock modes in the lock manager to correspond to the
states of a cached object. Every object in a client cache
must have a lock on the server. The first state (being
copied) can be modeled with a conventional share lock.
For the remaining three states, we add three new lock
modes to the lock manager. A client can easily detect if
a cached object is out-of-date by checking the mode of
its corresponding lock on the server. If the cached data
is no longer current, transactions using that data may

not commit.

In conventional two-phase locking, the locks of a
transaction are discarded when the transaction termi-
nates. However., a client database cache should survive
across transactlons in order to benefit multiple trans-
actions (so they avoid the cache-load overhead). To
support this, we must permit cache locks to survive
across transactions so that updates to cached data can
be tracked even when they occur outside the boundaries
of client transactions. For this purpose, we introduce a
new type of transaction, the envelope transaction. The
envelope transaction is a long-term, read-only transac-
tion that is created on behalf of the client’s cache man-
ager and that has slightly different semantics from nor-
mal transactions as described, below. It begins when
the cache is created, and is responsible for loading ob-
jects from the server into the cache and for maintaining
cache consistency. Note that to simplify the discussion,
we assume there is no more than one active transaction
using a client cache at any time. There is no difficulty
in supporting simultaneous caching transactions on a
client but it requires concurrency control on the client
cache which is beyond the scope of this paper.

In order to load an object from the server into its local
cache, a client’s envelope transaction sets a conventional
S lock (Share lock) on the object for the duration of the
load phase. This ensures that a consistent snapshot of
the object is loaded into the cache. Once the object
has been loaded, the envelope transaction requests the
server to demote the S lock to a Clock (Cache lock). A
cache lock indicates that the lock holder is caching the
locked object. However, unlike share locks, C locks do
not block other transactions. A request from another
transaction for an X lock (Exclusive lock) will break a
C lock and, as a side-effect, change the C lock to a P
lock (Pending update lock). If the updating transaction
aborts, the P lock is converted back to a C lock. If the
updating transaction commits, the P lock is converted
to an 0 lock (Out-of-date lock). The lock compatibility
matrix appears in Figure 1.

Tj(lock) s XCPO
T,(Tequest)

S J No d 4 4
X No No J 4 J

Figure 1: Lock Conflict Matrix

Envelope transactions typically hold only C, P ad 0
locks. Their S locks are only held for a short duration.
Thus, the presence of envelope transactions does not
reduce the throughput of the system since their locks
do not block S and X locks.

User transactions that run on a caching client interact
with the envelope transaction in the following way. For
a non-cached object, user transactions request S or X
locks from the server, as before. For a cached object,
the user transaction must still acquire an S or X lock
from the server. However, rather than acquiring a new

123

lock, the user transaction merely inherits the lock from
the envelope transaction and later upgrades the lock to
an S or X lock.

We assume that the client will not attempt to cache
objects that are database hotspots.’ In order to reduce
message traffic, we use an optimistic algorithm that de-
lays acquiring locks for cached objects until the transac-
tion tries to commit. Under this scheme, caching clients
keep track of their transactions’ read/write set. To ac-
cess a cached object, the user transaction merely copies
the object from the cache. When the user transaction
is ready to commit, a commit request is sent to the
server alon
locks must %

with the read/write set. At this point,
e acquired for objects that were accessed

from the cache. For each such object, the user trans-
action first inherits the lock mode of its corresponding
envelope transaction. Then the server attempts to up-
grade the lock to an S or X lock.

The lock upgrade matrix appears in Figure 2. P locks
were introduced to take advantage of the repeatability
of reads from the cache. User transactions with P locks
in their read set may commit without violating serializ-
ability. On the other hand, transactions with P locks in
their write set must block until the P lock is converted
to a C or 0 lock. Attempts to upgrade 0 locks cause
the user transaction to abort.

T, (lock) sxc P 0
Z(upgrade)

S S X S P No
X X X X Block No

Figure 2: Lock Upgrade Matrix

Once the user transaction terminates, all S and X
locks that it held on cached data are dropped but
the corresponding Clocks remain held by the envelope
transaction. The lock inheritance introduced here is dif-
ferent from that of nested transactions [lo]. A caching
client may be viewed as having a parent transaction that
runs forever. Child transactions inherit the locks of the
parent but they are allowed to commit even though the
parent will never commit. Envelope transactions im-
pose little overhead on a lock manager. They require
the bookkeeping of the C, P, and 0 locks, but do not
necessitate any automatic message sending on the part
of the server.

Optimization For high conflict rates, the algorithm
will have a high number of restarts if conflicts on cached
objects are not detected until the commit point. We can
reduce the number of restarts if the cache manager can
discover its broken C locks before they are accessed.
One solution is to send a notification message whenever
a lock is broken. This is basically the notify algorithm

1 Our algorithm will work for cached hotspots but with reduced
performance. Cached hotspots are best handled by acquiring an

explicit lock as soon as they are accessed.

described in Section 3. Another solution is to add a new
lock manager call that returns a list of all 0 locks held
by a transaction. So, we assume that every request by
a caching transaction includes an additional request to
check for 0 locks for the corresponding envelope trans-
action. The envelope transaction may mark out-of-date
objects in its cache or refresh the cache by immediately
re-reading the objects. The choice depends on whether
one is optimizing response time or throughput. In our
studies, we are optimizing for throughput so we chose
to mark the objects in the cache and reload them upon
demand.

Another potential optimization is to piggyback lock
requests for previously accessed cached objects when-
ever a client calls the server. However, our purpose
was to compare different algorithms rather than devise
one completely optimal algorithm. This optimization
would have made both the cache locks and notify locks
algorithms very similar to two-phase locking. Thus, we
leave it for future study.

We now summarize the cache locks algorithm for both
the client and server.

Client Cache Locks Algorithm

Whenever a user transaction requests an out-of-
date item from the cache, send a refresh request to
the server for that item.

Whenever a user transaction tries to commit, send
a commit request to the server. Accompany the
message with the identifiers of objects in the trans-
action’s read/write set and with the new values of
objects it updated.

Whenever the server accompanies a response with
a list of identifiers for cached objects with 0 locks,
mark these objects as out-of-date, and, if one of
these objects is in the read/write set of an active
transaction, abort the transaction.

Server Cache Locks Algorithm

l Whenever a commit request is received from a
caching client, do the following:

For each object in the transaction’s read set,
inherit the corresponding lock of the envelope
transaction and upgrade it to an S lock. The
upgrade from a Clock is immediately granted,
the upgrade from a P lock is postponed un-
til step 3, and the upgrade from an 0 lock
is denied causing the requesting transaction
to abort. If the transaction is aborted, go to
step 4.

For each object in the transaction’s write set,
inherit the corresponding lock of the envelope
transaction and upgrade it to an X lock. The
upgrade from a Clock is immediately granted,
the upgrade from a P lock is blocked until the
P lock turns into a C or 0 lock, and the up-
grade from an 0 lock is denied causing the

124

requesting transaction to abort. If the trans-
action is aborted, go to step 4. If an X lock
is acquired, convert C locks of other transac-
tions to P locks and post the update to the
server’s database.

3. Recheck the status of read objects with P
locks. The transaction can commit only if
none of its P locks has been converted to an
0 lock.

4. Release the locks held by the transaction. Re-
leasing X locks has the side effect of turning
other transactions’ P locks into C or 0 locks
depending on whether the transaction aborts
or commits.

5. Send a response to the client indicating
whether the transaction has committed or
aborted. Accompany the response with the
identifiers of objects whose C locks have
turned into 0 locks.

l Whenever a request to refresh an item is received
from a client, drop the 0 lock held by the client’s
envelope transaction, if any, acquire a C lock on
the object on behalf of the envelope transaction,
an S lock on behalf of the user transaction, and
send a copy of the object to the client. Note that
it is not necessary to immediately acquire the S
lock for the user transaction; it may wait until the
commit phase. It is acquired at this point as a small
optimization since the user transaction needs the S
lock eventually. Accompany the response with the
identifiers of objects whose Clocks have turned into
0 locks.

3 Notify Locks

The concept of notify lo& was used in Observer [7]
to allow a group of clients to share uncommitted re-
sults. Holders of notify locks could specify whether
they wanted to be informed of reads or writes of an
object. The server would send them a notification mes-
sage whenever such an action was applied to the ob-
ject. Although notify locks were designed to support
cooperating transactions, the concept behind them can
be used to keep client caches.up-todate. We adapted
notify locks to fit a client cache model. Applying the
same reasoning we used in designing the cache locks al-
gorithm, we designed an algorithm based on notify locks
that generates as few messages as possible.

Notifications of updates can be sent to clients at var-
ious times. For this study, we have chosen to send them
when the updates are actually committed. This repre-
sents the minimum number of messages sent while still
providing timely information to prevent transactions
destined for an abort from performing useless work.
Furthermore, by only taking into account committed
updates, the client can take advantage of the repeata-
bility of reads from its cache.

When the client receives a notification from the
server, it checks the list of updated objects against the

read/write sets of its active transactions. Any transac-
tion with an updated object in its read/write set must
abort. When the server receives a request for commit
from a client, it assumes that the client has enforced
consistency correctly. Because notification messages are
sent asynchronously, there is a window of vulnerability
caused by the delay in message transfers. For example,
suppose a client decides that a transaction can com-
mit and sends a commit request to the server. Until
the server receives that commit request, it may still be
sending notification messages to the client that could
abort the transaction. To protect against this expo-
sure, a handshake is required between the client and
server to ensure that the client has seen the most recent
notification message. We chose to implement this hand-
shake by assigning a sequence number to every message
sent from the server to a client. The client, in turn, ac-
companies requests to the server with the most recent
message sequence number that it has seen. If a commit
request contains a sequence number that is too low, the
server rejects the request, and asks the client to verify
if the transaction should be committed and then resend
the request.

As with the cache locks algorithm, clients send their
updates to the server with their commit requests. If a
commit request is accepted, the server applies the up-
dates to the database. The server then sends notifica-
tions to all the clients whose caches have been invali-
dated by the committing transaction. One can observe
that when the server is ready to send the notifications,
most of the updated data is in the main memory of
the server since the updates were just posted to the
database. Thus, to reduce overall I/OS and message
passing, we assume the server sends to each affected
client, the new values of the updated objects. In this
way, clients’ caches are automatically refreshed with
each notification message, and explicit refresh requests
are never required by the clients.

One can notice another period of exposure to multi-
ple concurrent updates. It takes place after a trans-
action has been accepted for commit by the server,
while the deferred updates are being applied to the cen-
tral database. Other transactions can invalidate the
read/write set of the committing transaction during this
period. For this reason, another check of message se-
quence numbers is required after all deferred updates
have been posted.

We now summarize the notify locks algorithm for
cached data.

Client Notify Locks Algorithm

Whenever a user transaction tries to commit, send
a commit request to the server. Accompany the
message with the new values of objects it updated
and with the last message sequence number re-
ceived from the server.

Whenever a notify message is received from the
server, refresh the cache with the new values sent
by the server, remember the message sequence
number sent by the server, and if any of the up

125

dated objects is in the read/write set of an active
transaction, abort the transaction.

l Whenever a message is received from the server to
verify if a commit request with a low sequence num-
ber should still commit, check if the transaction
was aborted as the result of a notify message. Re-
spond with a message to the server to abort the
transaction or proceed with the commit.

Server Notify Locks Algorithm

l Whenever a commit request is received from a
caching client, do the following:

1. Verify that the received sequence number is
equal to the last sequence number sent to the
client. If not, ask the client to verify if the
transaction should still commit. If the trans-
action must abort, go to step 4.

2. For each object in the write set of the transac-
tion, acquire an X lock, and post the deferred
update to the central database. The X lock
is a standard two-phase locking X lock and is
subject to the usual blocking and deadlocks. If
the transaction is forced to abort, go to step 4.

3. Again, compare the received sequence num-
ber with the last sequence number sent to the
client. If the client’s number has fallen behind
the server’s number, ask the client to verify
if the transaction should still commit. (Note
that the server will not release the X locks
held by the transaction while the verification
takes place. This will allow the transaction to
commit rapidly once it returns to the server.)

4. Release the locks held by the transaction
and send a response to the client indicat-
ing whether the transaction has committed or
aborted.

5. If the transaction has committed, go over its
write set, and for each client with one or more
cached objects in the write set, send a message
notifying it of updates to its cache. Accom-
pany the message with the new object values
and with a newly generated message sequence
number.

4 Comparison and Discussion

The cache locks algorithm and the notify locks algo
rithm implement different concurrency control policies
for their cache hits and cache misses. Whenever they
access data that is not in their cache or that is out-of-
date in the cache, both algorithms implement two-phase
locking. For cache hits, both algorithms are optimistic
[8] in that locks are never required for up-to-date cached
objects. However, unlike a pure optimistic algorithm, a
cache locks or notify locks transaction may abort dur-
ing its read phase before it reaches its commit point.

This will occur when the client is informed that an ob-
ject already read or updated
tion has been permanently mo 6

locally) by the transac-
ified. In this sense, both

algorithms may be termed semi-optimistic. Thus, in ef-
fect our scheme supports twophase locking and semi-
optimistic transactions, simultaneously.

Boral and Gold [3] h ave shown a framework un-
der which different synchronization techniques can be
combined into one concurrency control algorithm. In
particular, they prove the correctness of an algorithm
that combines two-phase locking with optimistic con-
currency control. Using their framework, it is straight-
forward to prove the correctness of the combined two-
phase locking / cache locks algorithm and the twophase
locking / notify locks algorithm.

Although the cache locks algorithm is semi-optimistic
for cache hits, under periods of high data contention or
for database hotspots, it behaves more like a two-phase
locking algorithm. Under these conditions, the cache
will be usually out-of-date. This causes the effective
cache size to shrink by reducing the number of cache
hits so that the cache-locks algorithm becomes more like
two-phase locking. Unlike the cache locks algorithm,
the cache for the notify locks algorithm is always up-
to-date. Thus, it makes more effective use of its cache
than the cache locks algorithm.

It may seem unfair to compare the two algorithms
since they use their cache so differently. But, there are
many possible variations on these algorithms and we
could not explore the entire space. Rather, we tried to
incorporate what we thought would be reasonable op-
timizations in a real implementation. The comparison
between the resulting two algorithms is interesting be-
cause both algorithms provide client cache consistency
but make different trade-offs with respect to communi-
cation and server load.

There are some potential problems with integrating
cache consistency with concurrency control. First, the
server is required to maintain many more locks for
caching clients than for non-caching clients. In prin-
ciple, this is not a problem. However, a lock manager
may be implemented with fixed limits on the number
or duration of locks that may be held. The number of
locks may be reduced by using higher granularity locks.

A second problem is that, in some systems, locks are
transparent to higher levels of software (e.g. if locks are
implicitly obtained as a side-effect of a storage man-
ager request). Both the cache locks and notify locks
algorithms require logical (object) locks. Thus, a trans-
lation may be necessary from lock manager identifiers
to client cache manager identifiers.

5 Simulation Model

Our goal in the performance analysis was to compare
the effect of the two cache consistency algorithms on
the performance of the database server. For a baseline
comparison, we also studied the server performance un-
der non-caching two-phase locking. For the analysis,
we developed a closed queueing simulation model. Our

126

model is heavily based on the model in [l] but it was
extended for a client-server environment and for client
caching. It consists of a single database server and a
fixed number of clients. Each client has one active ter-
minal so the number of clients, num-clients, also rep-
resents the number of terminals. The logical queueing
model is illustrated in Figure 3. To simplify the figure,
only one client is illustrated.

.

Terminal

. Client

. I

Figure 3: Logical Queueing Model

We assumed infinite resources for each client and fi-
nite resources for the server. Some clients are desig-
nated as caching clients and others are designated as
non-caching. The number of caching clients, ccl, is a
simulation parameter.

Transactions originate on the clients. As mentioned
earlier, transactions have a read phase and a commit
phase and writes are deferred until the commit phase.
The write set is a subset of the read set (i.e. an object
must be read before being written). The external think-
ing delay on a client after committing a transaction is
assumed to have an exponential distribution with mean
ext-think-time.

The number of objects accessed by a transaction was
drawn from a uniform distribution between maxsize
and minsize and with mean Iran-size. The probabil-
ity that an object in the read set was updated was
a constant, write-prob. The number of objects in the

database, db-size, was chosen to be relatively small in
order to model contention.

For caching clients, the cache size, cache-size., was a
constant. The content of each client’s cache is fixed
at the start of the simulation by choosing objects uni-
formly from the database. Cache-hit-prob is the proba-
bility that an item in the read set of a transaction will
be directed towards the client’s cache. Note that for the
cache locks algorithm, this does not guarantee a cache
hit since the cached object may be out-of-date neces-
sitating a server call to refresh the cache. As in [l],
objects in the write set of a transaction were uniformly
chosen from the entire database.

The client read phase proceeds as follows. For every
object in the read set, the client concurrency control
manager is called. The client concurrency controller
implements two-phase locking for non-caching clients
and the client cache locks algorithm or the client notify
locks algorithm for caching clients. For cache misses
(and for non-caching clients , the client concurrency

2 controller reads the object rom the server. For the
commit phase, the client concurrency control manager
sends the read

I
write sets and a commit request to the

server. To mo el interactive transactions, there was an
internal thinking delay between the read and commit
phases that was exponentially distributed with mean
int-think-time.

For a read request, the outcome of a client con-
currency control request will be that the request was
granted or that the transaction was aborted and must
be restarted. If the request is granted, the client
access time for the object was simulated with a de-
lay of obj-clienicpu. No I/O time is ever incurred
on the client (message processing is discussed later).
If restarted, the transaction is rerun with the same
read/write set. The outcome of a commit request is
either commit or restart.

On the server side, the multiprogramming level, mpl,
is used to limit the number of active transactions. A
transaction joins the “ready queue” on its first request
to the server and waits until it is allowed to become
active. Subsequent requests by that transaction bypass
the “ready queue.” A transaction is considered active
until it commits, i.e. a restarted transaction does not
wait again in the ready queue.

Requests made by the cache locks algorithm include
the envelope transaction identifier and the user trans-
action identifier. The user transaction identifier is used
to determine if the transaction is active on the server.
The server concurrency control manager implements
twophase locking for non-caching transactions and the
server cache consistency algorithm or the server notify
locks algorithm for caching transactions.

For read requests, the outcome of the server concur-
rency controller will be either to grant access, to block
(waiting for a lock) or to abort and restart the trans-
action. On the server, objects are read in obj-io time
followed by obj-server-cpu time.

Deferred updates are performed as part of a commit
request. The server concurrency controller is called for
each object in the write set. The outcome will either be

127

to grant the update request, to block or to restart the
transaction. If all updates succeed, the transaction is
committed.

Objects are written in obj-server-cpu time followed by
obj-io time. Although not shown in Figure 3, the notify
locks algorithm has the side effect of sending, on a suc-
cessful commit, messages to all the clients whose caches
have been invalidated by the committing transaction.

Resource contention on the server takes place over
the CPUs and disks. As in [l], the resource usage times
are constants rather than stochastic values. The num-
ber of CPU and I/O servers, num-cpus and num-disks,
were fixed. CPU requests are serviced first-come, first-
served by any available CPU. I/O requests are randomly
assigned to one of the disks where they are also serviced
in a first-come, first-served manner.

Sending and receiving messages imposes an overhead
of msg-cpu on the CPU. Message requests are given
higher priority than other CPU requests. In our exper-
iments, we have not explicitly accounted for network
delays. Instead we have bundled them in the msg-cpu
time. We have assumed that contention on the network
interface is small relative to the CPU contention.

Table 1 summarizes the fixed simulation parameters.
Table 2 displays the values of the experimental simula-
tion parameters.

Parameter
db-site

tran-size

maz-size

min-size

write-prob

num-clients

ext-think-time

obj-io

obj-client-cpu

obj-server-cpu

msg-cpu

num-cpus

num-disks

Meaning

number of database objects

mean number of objects

accessed per trans.

largest trans. size

smallest trans. size

Pr (write X 1 read X)

number of clients

mean time between trans.

I/O time per object

client CPU time per object

server CPU time per object

CPU time to send or

receive a message

number of CPUs on server

number of disks on server

Table 1: Fixed Simulation Parameters

Value

1000

8

12

4

0.25

200

1s

35 ms

10 ms

5 ms

5 ms

1

2

We emphasize several aspects of the simulation
model. First, as in [l], the multiprogramming level ef-
fectively controls the conflict rate (albeit, indirectly).
Second, even though in a real system, the request and
response message sizes might differ by an order of mag-
nitude, we chose to make the message transmission time
constant. This is a reasonable approximation because
the communication time is typically dominated by a
high fixed overhead. A third point is that we do not
model an LRU cache but, instead, 6x the contents of
each client’s cache. Since we are assuming a uniform
reference pattern, it made no sense to implement an
LRU scheme. In effect, the cache hit probability mod-

Parameter

ccl

cache-size client cache size

vl multiprogramming level

cache-hit-prob

int-think-time

Meaning

number caching clients

Pr (object is cached)

mean internal think

time per trans.

Value

0, 10, 25, 50,

100, 190, 200

15, 30, 45, 60

10, 25, 50,
100, 200

0.1, 0.5, 1.0

0, 1, 5, 10 s

Table 2: Experimental Simulation Parameters

els locality of reference.

To validate our implementation of the model, we ran a
number of two-phase locking experiments with the mes-
sage time set to 0 and other parameter settings equiva-
lent to those in [l . Our results matched the twophase
locking results in 1 11.

6 Experiments

We ran a number of simulations to study the behavior
of the two cache consistency algorithms under different
conditions and to compare their performance with non-
caching two-phase locking. With the client caching level
(ccl) fixed at 200, we ran simulations for all combina-
tions of the other parameters. We then ran simulations
that varied ccl for subsets of the other parameters. In
order to stress the algorithms and investigate their dif-
ferences under periods of high load, we used extreme
values for some of the simulation parameters. Our goal
was to compare the algorithms, not to model an actual
system.

In this section, we describe three sets of experiments
that summarize what we feel are the most interesting
results. The first set of experiments studied the effect of
cache size and cache hit probability on performance. In
the second set of experiments, we studied the behavior
of interactive transactions. Finally, the last set of ex-
periments investigates the effect of varying the number
of caching clients on overall server throughput. All sim-
ulations were run on an HP 9000/370 (MC6803@based
machine) running HP-UX (HP’s version of Unix) and
using the CSIM simulation package [14].

6.1 Variable Cache Size and Cache Hit
Probability

In the first set of experiments, we examined the effect
of resource contention on server throughput (measured
in transactions per second) for each algorithm. The
number of caching clients was fixed at 200 and the cache
size and cache hit probability were varied. The internal
think time was set to 0 which causes the heaviest CPU
and I/O load. Figures 4 through 9 show the effects
of cache size and cache hit probability on throughput
for cache sizes of 15 and 60. The two algorithms are

128

solid - two-phase locking dotted - cache locking dashed - notify locking

10

I

10

9 9

a 8

7 7

6 6

16 25 50 100 200

MPL

017
10 25 50 100 200

MPL

Fig 4: Thruput for Cache Size 15, Hit Prob 0.1, Int Thiik 0 Fig 5: Thruput for Cache Size 60, Hit Prob 0.1, Int Think 0

10

9

8

2-

l-

0 I I I I
10 25 50 100 200

MPL

Fig 6: Thruput for Cache Sii 15, Hit Prob 0.5, Int Think 0

10 -
9- -\

‘\
8- *. . .

-s
7- -. *...
6-

TPUT 5--

4-

3-

2-

l-

0 I I I 1
10 25 50 100 200

MPL

Fig 8: Thruput for Cache Site 15, Hit Prob 1.0, Int Think 0

10

9

8

7

6

10 25 50 100

MPL

200

Fig 7: Thruput for Cache Size 60, Hit Prob 0.5, Int Thiik 0

10 -

9-

8-

7-

3-

2-

l-

0 I I I 1

10 25 50 100 200

MPL

Fig 9: Thruput for Cache Size 60, Bit Prob 1.0, Int Think 0

129

compared to non-caching two-phase locking to evaluate
the relative benefit of caching on server throughput.

With the cache size fixed at 15 objects, we observe
that the performance of both consistency control algo
rithms improves as the cache hit probability increases.
At low cache hit probability, the cache locks algorithm
is practically identical to twophase locking. A cache
locks transaction must request most objects in its read
set from the server. As the cache hit probability in-
creases, the cache locks algorithm is able to take more
advantage of its cache which reduces the server load and
increases throughput.

The notify locks algorithms does remarkably well for
low multi-programming levels. Its cache is always up-
to-date, and at low multi-programming levels, it is in-
validated infrequently. Under these circumstances, it
utilizes its cache very efficiently. For higher levels of
multi-programming, the cache is invalidated more fre-
quently thus causing some of the notify lock transac-
tions to abort. At high multi-programming levels, the
deterioration in performance is more rapid for notify
locks than for cache locks because the notify locks al-
gorithm loses its advantage of always having the cache
up-to-date.

Surprisingly, as the cache size increases from 15 ob-
jects to 60 objects, the overall benefit of both algorithms
is reduced considerably. With a larger cache size, the
probability that a random update will invalidate some
cached object increases. Since the cache hit probabil-
ities are not a function of the cache size, larger cache
sizes dilute the benefits of caching by becoming more
vulnerable to updates. The notify locks algorithm does
very poorly under these circumstances. At low cache hit
probabilities, it pays a high penalty in notify messages
and gains very little benefit from the cache (Figure 5,
Figure 7).

There is a major difference in behavior between the
notify locks algorithm on one hand and the cache locks
and twophase locking algorithms on the other hand. As
in [l] and for the simulation parameters we have cho
sen, twophase locking and cache locks are I/O bound.
With notify locks, the cache is always up-&date. Con-
sequently, I/O requests are submitted to the server only
for cache misses and for deferred u dates. This reduces
disk utilization and causes the noti P y locks algorithm to
be, in general, CPU bound. Any experimental setting
that increases the number of notification messages to
clients aggravates this ,problem and causes the perfor-
mance of the notify locks algorithm to deteriorate.

Figures 10, 12 and 14 show CPU utilization, disk uti-
lization, and average number of retries per committed
transaction for all three algorithms with the cache hit
probability fixed at 1.0 and the cache size fixed at 15
objects. These figures correspond to the throughput
shown in Figure 8. Figures 11,13 and 15 show the same
data but for a cache size of 60 objects. They correspond
to the throughput shown in Figure 9.

One can see that as the cache size increases, the severe
decline in throughput for the notify locks algorithm is
not due to a larger number of retries but instead to
the saturation of the CPU. In fact, both the number
of retries and disk utilization actually decrease as cache

size increases. This is because of the increased message
processing necessary for larger cache sizes. For a cache
size of 60 objects, the server must send, on average, 4
times as many notify messages per update as for a cache
size of 15 objects. Thus, throughput for the notify locks
algorithm is dominated by the message delay for large
cache sizes so fewer transactions are actually submitted.

We note that the CPU and disk utilization for the
cache locks algorithm is very similar to the utilizations
for twephase locking. However, the cache locks algo-
rithm achieves higher throughput. This is because the
cache locks algorithm is able to offload I/O processing
from the server which reduces the transaction response
time. We also note that as the cache size increases, the
average number of retries also decreases for the cache
locks algorithm. This is because the number of cache
hits actually decreases as cache size grows. Thus, the
cache locks algorithm takes less advantage of the cache
and tends to perform more like two-phase locking for
large cache sizes.

In comparing the overall performance of cache locks
and notify locks, one finds that notify locks can pro-
vide significant increases in throughput under some cir-
cumstances but has disastrous effects under others. In
particular, it is very sensitive to the server load. The
cache locks algorithm, on the other hand, does well un-
der some circumstances and is more stable. It never
does worse than two-phase locking.

6.2 Interactive Transactions

In the second set of experiments, we wanted to compare
the algorithms on the basis of pure data contention.
Thus, we reduced the resource bottleneck by increasing
the internal think time. As in the first experiments,
the number of cachin clients was fixed at 200 and the
cache size and cache f it probability were varied. Note
that longer think times result in longer response times
and reduced throughput.

For these experiments, the throughputs had inter-
esting characteristics. Figures 16 and 17 display the
throughputs for a cache size of 15 objects, cache hit
probabilities of 0.5 and 1.0 and an internal think time of
5 seconds. Again, the results of non-caching two-phase
locking are included for comparison.

We notice that throughput first increases and then
drops off rapidly. As the multi-programming level in-
creases, transactions do not have to wait as long in the
ready queue. This improves their response time. But,
as the multi-programming level increases further, the
number of retries increases dramatically causing the re-
sponse time to deteriorate2. The increase in response
time is due only to contention on database objects and
not to contention on the CPU and disks. This pattern
was repeated for other internal think times although the
magnitude of the throughput varied.

Comparing Figures 16 and 17, *we notice two effects of
increasing the cache hit probabihty. First, there is only
a modest increase in throughput as cache hit probabil-
ity is increased. The high think time somewhat masks

2Although not shown, the plot of the number of retries was

similar to that shown in Figure 14

130

solid - two-phase locking dotted - cache locking dashed - notify locking

0.6

CPU-UTIL 0.5

0.4

0.3

0.2

0.1

0-
10 25 50 100 200

MPL

I----- - ------ ----------_____-

0.9 -

0.8 -7'
.

0.7 -

0.6 -

CPU-UTIL 0;5 -

0.4 -

0.3 -

0.2 -

0.1 -

0 I I I I

1025 50 100 200

MPL

Fig 10: CPU Util for Cache Sii 15, Hit Prob 1.0, lnt Think 0 Fig 11: CPU Util for Cache Sii 60, Bit Prob 1.0, lnt Tbiak 0

;; r/xxx “).“-”

0.7 -

0.6 -

IO-UTIL 0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0 I I I 1
1025 50 100 200

MPL

Fig 12: l/O Util for Cache Sii 15, Hit Prob 1.0, Int Think 0 Fii 13: l/O Util for Caebe Sii 60, Hit Prob 1.0, Int Thiik 0

5-

4-

-- 0
3- .-

e-
RETRY .-

2-

5

4

1,
3- --

RETRY
2-

10 25 50 100 200

MPL

l-

.//&y

-c-
-.-y:.: ‘7

0 -“i I I I
10 25 50 100 200

MPL

Fig 14; Retries for- Cache Size 15, Hit Prob 1 .O, lnt Think 0 Fig 15: Retries for Cache Size 60, Hit Prob 1.0, lnt Think 0

l- .

0.9 -)

0.8 -
0.7 _--- --

0.6 __--
&---

,*----

IO-UTIL 0.5 1

*

-/---

0.4 -

~~~ll I , 
1025 50 100 200 

MPL 

131 



the benefit of the higher number of cache hits. This 
can be seen by comparison with Figures 6 and 8 which 
show a huge increase in throughput. Second, the cross- 
over point at which cache locks aIgorithm performs bet- 
ter than the notify locks algorithm occurs earlier as the 
cache hit probability is increased. This is a consequence 
of the larger number of restarts suffered by the notify 
locks algorithm. When the cache hit probability is in- 
creased, the notify locks algorithm has more cache hits 
than the cache locks algorithm. This makes it more op- 
timistic than cache locks and causes it more restarts. 
The number of restarts for the cache locks algorithm 
also increases with higher cache hit probability but not 
as fast. 

6.3 Co-Existence of Caching and Non- 

Caching Transactions 

In the final set of experiments, we were interested in 
the effect of caching transactions on non-caching trans- 
actions and on overall throughput. We ran a set of 
experiments in which we fixed the multiprogramming 

level but varied the number of caching clients. 

At a multiprogramming level of 200, increasing the 
number of caching clients had little effect on overa 

throughput because the cache was so frequently in- 
valid. This can actually be verified in Fi 
9 where the variation between non-cat’ ing two-phase fJ 

urei 4 through 

locking and the two caching algorithms is very modest 
for high levels of multiprogramming. We aIso observe 
from this set of figures that some of the best throughput 
numbers were obtained with an multiprogramming level 
of 25. Thus, we decided to fix the multiprogramming 
level at 25 and vary the number of caching clients. 

Figure 18 shows the overall server throughput when 
caching clients use the cache locks algorithm or the no- 
tify locks algorithm at a multiprogramming level of 25, 
a cache hit probability of 0.5 and a cache size of 15. 
The figure also displays the server throughput when all 
clients use non-caching, twc+phase locking. Figure 19 
shows the same data but for a cache size of 60. 

The results of Figure 18 are intuitive. They show 
that increasing the number of caching clients improves 

solid - two-phase locking dotted - cache locking dashed - notify locking 

4- 4-l 

3.5 - 

3- #----. 

l- l- 

0.5 - 0.6 - 

0 1 I I I 
0' 

, I I I 

10 25 50 100 200 10 25 50 100 200 

MPL MPL 

Fig 16 Thruput for Cacbc Sii 15, Hit Prob 0.5, Int Think 5 Fig 17: Thruput for Cache Size 15, Hit Prob 1.0, Int Think 5 

7- 7-r 

6.5 - -- --- 6.5 - 
-- 

-- -- 

6- -- -- 6- 
-- -- 

TPUT 5.5- __/--= .*.**- ****............ a*-. _ .*.*..............: 
TPUT 5.5- . . . . . . /---c -___ 

_ * .,..........3.-,..............""""..... 

5- 5- --__ 
-- 

-- 
-- 

4.5 - 4.5 - --__ 

4 
I I I I 

4 
I I I “’ I 

10 25 50 100 190 10 25 50 100 190 

CCL CCL 

Fig 1s: Tbuput for Cache %-e 15, Hit Prob 0.5, Int Think 0, MPL 25 I% 1% Tbruput for Cache Sii 60, Hit Prob 0.5, Int Tbhk 0, MPL 25 

. 
132 



overall throughput. They also show notify locks to sub- 
stantially improve throughput as the number of caching 
clients increases. This is consistent with the results of 
Figure 8 in which the notify locks algorithm gets good 
usage out of its cache when the cache size is small and 
the level of multiprogramming is low. 

The results of the second figure display more clearly 
the instability of the notify locks algorithm. As was 
seen in Figures 5,7, 9 where the performance of the no 
tify locks algorithm deteriorated as the CPU utilization 
went up, Figure 19 shows this phenomenon more clearly. 
The throughput first improves as the number of notify 
locks caching clients increases. But when the number of 
caching clients exceeds 50, the CPU saturation due to 
notify messages starts showing up and results in a severe 
deterioration in throughput by the time the number of 
caching clients reaches 190. 

7 Conclusion 

We have presented in this paper two techniques for com- 
bining a cache consistency algorithm with a concurrency 
control algorithm. The first algorithm is based on a new 
kind of lock, cache loch. The second algorithm is an 
adaptation of notify locks. Both algorithms add very 
little complexity to existing lock managers that imple- 
ment two-phase locking and both algorithms may co 
exist with non-caching transactions that use two-phase 
locking. 

The coupling of cache consistency and concurrency 
control simplifies the resulting system in two ways. 
First, in a database system cache consistency and con- 
currency control must be coordinated since caches are 
invalidated on transaction boundaries, i.e. updates are 
made public when write locks are released. This co- 
ordination is easier when the modules are combined. 
Second, the client code is simplified because there are 
fewer cases to deal with, e.g. cache invalidation can 
be treated as denial of a lock request or a concurrency 
control abort. 

Our performance data show the relative merits of 
both algorithms and their effect on non-caching trans- 
actions. They show that the notify locks algorithm 
has better performance than cache locks under some 
circumstances. However, the notify locks algorithm is 
very sensitive to CPU utilization and multiprogram- 
ming level. And since database management systems 
tend to be CPU bound, use of this scheme may be risky. 
Furthermore, the cache locks algorithm exhibits good 
performance when it can take advantage of its cache. 
It is stable under all conditions and never does worse 
than non-caching two-phase locking. Finally, the per- 
formance results show that by carefully choosing the 
appropriate caching algorithm for the prevailing con- 
ditions, caching can significantly improve the overall 
throughput of the server. 

Acknowledgements 

The authors would like to thank Curtis Kolovson and 
Peter Schauble for their helpful comments on an earlier 
draft of this paper. 

References 

PI 

PI 

PI 

PI 

[51 

[61 

PI 

PI 

PI 

R. Agrawal, M. 3. Carey, and M. Livny, “Models 
for Studyin 

f 
Concurrency Control Performance Alter- 

natives and mphcations”, Proceedings of the 1985 SIG- 
MOD Conference, Austin, TX, May 1985. 

J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Ef- 
ficiently Updating Materialized Views”, Proceedings of 
the 1986 SIGMOD Conference, Washington, D.C., June 
1986. 

H. Boral, and I. Gold, “Towards a Self-Adapting Cen- 
tralized Concurrency Control Algorithm”, Proceedings 
of the 1984 SIGMOD Conference, Boston, MA, May 
1984. 

0. P. Buneman, and E. K. Clemons, “Efficiently Mon- 
itoring Relational Databases”, ACM Tmnsactions on 
Database Systems, Vol. 4, No. 3, September 1979. 

M. F. Fernandez, and S. B. Zdonik, “Transaction 
Groups: A Model for Controlling Cooperative Transac- 
tions”, Proceedings of the Third International Workshop 
on Persistent Object Systems: Their Design, Implemen- 
tation and Use, Newcastle, Australia, January 1989. 

H. M. Gladney, “Data Replicas in Distributed Informa- 
tion Services”, ACM Tmnsactions on Database Systems, 
Vol. 14, No. 1, March 1989. 

M. F. Hornick, and S. B. Zdonik, “A Shared, Segmented 
Memory System for an Object-Oriented Database”, 
ACM Tmnsactions on Ofice Information Systems, Vol. 
5, No. 1, January 1987. 

H. Kung, and J. Robinson, “On Optimistic Methods for 
Concurrency Control”, ACM Transactions on Database 
Systems, Vol. 6, No. 2, June 1981. 

B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. 
Wilms, “A Snapshot Differential Refresh Algorithm”, 
Proceedings of the 1986 SIGMOD Conference, Washing- 
ton, D.C., June 1986. 

[lo] J. E. B. Moss, Nested Transactions: An Approach 
to Reliable Distributed Computing, Ph.D. thesis, Ma.+ 
sachusetts Institute of Technology, April 1981. 

[II] M. A. Neimat, T. Connors, W. Hasan, K. Wilkinson, 
“The Papyrus Integrated Data Server”, submitted to 
The Fourth International Workshop on Persistent Ob- 
ject Systems: Their Design, Implementation and Use, 
Marthas Vineyard, MA, September, 1990. 

[la] T. Risch, “Monitoring Database Objects”, Proceedings 
of the Fifteenth International Conference on Very Large 
Data Bases, Amsterdam, The Netherlands, 1989. 

[13] A. Rosenthal, S. Chakravarthy, B. Blaustein, J. Blake- 
lev. “Situation Monitoring for Active Databases”, Pro- 

“I 

ceedings of the Fifteenth-International Conference on 
Very Large Data Bases, Amsterdam, The Netherlands, 
1989. 

[14] H. Schwetman, CSIM Reference Manual MCC Techni- 
cal Report, ACA-ST-252-87, November, 1987. 

133 



134 


