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Abstract 

This paper addresses the problem of cache consistency in a 
client-server database environment. We assume the server 
provides shared database access for multiple client worksta- 
tions and that client workstations may cache a portion of 
the database. Our primary goal is to investigate techniques 
to maintain the consistency of the client cache and to im- 
prove server throughput. We propose a new cache consis- 
tency algorithm for client caches. The algorithm is a simple 
extension to twophase locking and consists of three addi- 
tional lock modes that must be supported by the server lock 
manager. For comparison, we devised a second cache consis- 
tency algorithm based on notify locks. A simulation model 
was developed to analyze the performance of the server un- 
der the two cache consistency algorithms and under non- 
caching two-phase locking. The results show that both con- 
sistency algorithms can significantly improve server perfor- 
mance over basic two-chase lo&ins. The notifv locks al- 
gorithm? at times, ou<performs the’ cache locks *algorithm. 
But, it IS very sensitive to data contention and server load. 
Cache locks is always better than two-phase locking and is 
much more stable than notify locks under all conditions. 

1 Introduction 

This work was motivated by recent research in database 
servers and active databases. The use of database 
servers is emerging as a common paradigm to provide 
shared data access over computer networks. Typically, 
the application program runs as a client process and 
communicates with the database server through mes- 
sages. This increases the cost of each data request. One 
solution is to reduce the number of requests by caching 
a portion of the database on the client. When a client 
cache is used, there must be a protocol between the 
client and server to ensure that the client cache remains 
consistent with the shared database. In this sense, the 
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client cache may be viewed as active data since updates 
should trigger a cache-refresh operation. 

Active databases allow applications to be informed 
of changes to some portion of a shared database by 
other transactions. In practice, this has meant that 
all updates to the database must be monitored by the 
database management system to determine if the up- 
dates affect the active data [4, 121. When the active 
data is updated, the database system must inform the 
affected clients that a change has occurred. Thus, all 
transactions incur additional overhead to support a ser- 
vice that they may never use (i.e. detection and no- 
tification of updates). The challenge is to make this 
overhead as low as possible since this translates directly 
into lower response time and higher throughput. This is 
especially important when the database is on a central 
server, and therefore, a potential bottleneck. 

In our view, the “active database problem” may be 
treated as a special case of concurrency control syn- 
chronization. A transaction with active data may be 
considered to have a lock on the active data. Other 
transactions may update the active data which, in ef- 
fect, breaks the lock. The problem, then, is how to 
inform the lock holder of the update. 

Our approach to maintaining cache consistency is to 
integrate the cache consistency algorithm with the lock 
manager of the database management system. There 
are several advantages in doing this. First, the impact 
on the database management system is minimized in 
that no new modules need be written or incorporated. 
Second, the path length for request processing is not 
significantly increased since the lock manager is already 
called for most requests. Third, it is transparent to 
non-caching transactions and requires few changes to 
caching transactions. 

We present two algorithms. The first is an extension 
t,o twophase locking and consists of adding new lock 
modes (cache locks) to the lock manager. The second 
algorithm is based on notify locks. 

Through simulations, we compare the relative per- 
formance of the two cache consistency algorithms and 
contrast it with non-caching two-phase locking. Our 
simulation model was derived from the model developed 
in [l]. We extended that model to a distributed envi- 
ronment with one server and multiple clients and with 
caching on the clients. 

This work differs from previous research in cooperat- 
ing transactions [5] and active databases with real time 
requirements [12, 131. Our primary goal is to support 
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client caching and improve server performance. Thus, 
we are willing to sacrifice some capabilities of active 
databases such as immediate notification of updates. 

The notion of materialized views (or snapshots) is 
loosely-related to our work in that a snapshot may be 
considered a form of cached data. The emphasis of this 
work has been on efficient mechanisms for refreshing the 
snapshot after an update to the base data. A refresh al- 
gorithm for views over a single base table was described 
in [9]. To detect view updates, it requires base tables 
to be augmented with a timestamp and link field for 
each tuple. An algorithm for arbitrary select-project- 
join views was described in [Z]. Each update transac- 
tion, as a side-effect, builds additional sets of tuples to 
add or remove from each affected view. 

A system that supports read-only caching for work- 
stations accessing a centralized database is described in 
[6]. However it requires some changes to the database 
management system to timestamp base data. Also, it 
does not support ad-hoc queries or ad-hoc updates. 

The next section describes our cache consistency al- 
gorithm based on cache locks. Section 3 contains a de- 
scription of notify locks as we have adapted them to 
maintain the consistency of cached data. The two algo- 
rithms are compared in Section 4. Section 5 describes 
the queueing model we have used for our performance 
studies. Our simulation experiments and their results 
are described in Section 6. Section 7 contains a sum- 
mary of the results of our study. Finally, we note that 
this work is being done as part of the Papyrus project 
1111. This is a larger effort to construct cooperative, 
high-performance data servers. 

2 Cache Locks 

Consider a client process in which a portion of a 
database has been cached to reduce access time to a 
shared database server. We assume that the database 
server uses two-phase locking as its concurrency cont,r ~1 
algorithm. We also assume that client transactions have 
a read-phase and a commit phase and updates are not 
sent to the server until the commit phase. 

We observe that a cached object is merely a snapshot 
of an object on the server. A cached object may be in 
dne of four states relative to the current version on the 
server. It may be in the process of being copied from 
the server into the client cache, identical to the current 
version on the server, out-of-date due to an update by 
an uncommitted transaction, or out-of-date due to an 
update by a committed transaction. 

The idea behind the cache locks algorithm is to use 
lock modes in the lock manager to correspond to the 
states of a cached object. Every object in a client cache 
must have a lock on the server. The first state (being 
copied) can be modeled with a conventional share lock. 
For the remaining three states, we add three new lock 
modes to the lock manager. A client can easily detect if 
a cached object is out-of-date by checking the mode of 
its corresponding lock on the server. If the cached data 
is no longer current, transactions using that data may 

not commit. 

In conventional two-phase locking, the locks of a 
transaction are discarded when the transaction termi- 
nates. However., a client database cache should survive 
across transactlons in order to benefit multiple trans- 
actions (so they avoid the cache-load overhead). To 
support this, we must permit cache locks to survive 
across transactions so that updates to cached data can 
be tracked even when they occur outside the boundaries 
of client transactions. For this purpose, we introduce a 
new type of transaction, the envelope transaction. The 
envelope transaction is a long-term, read-only transac- 
tion that is created on behalf of the client’s cache man- 
ager and that has slightly different semantics from nor- 
mal transactions as described, below. It begins when 
the cache is created, and is responsible for loading ob- 
jects from the server into the cache and for maintaining 
cache consistency. Note that to simplify the discussion, 
we assume there is no more than one active transaction 
using a client cache at any time. There is no difficulty 
in supporting simultaneous caching transactions on a 
client but it requires concurrency control on the client 
cache which is beyond the scope of this paper. 

In order to load an object from the server into its local 
cache, a client’s envelope transaction sets a conventional 
S lock (Share lock) on the object for the duration of the 
load phase. This ensures that a consistent snapshot of 
the object is loaded into the cache. Once the object 
has been loaded, the envelope transaction requests the 
server to demote the S lock to a Clock (Cache lock). A 
cache lock indicates that the lock holder is caching the 
locked object. However, unlike share locks, C locks do 
not block other transactions. A request from another 
transaction for an X lock (Exclusive lock) will break a 
C lock and, as a side-effect, change the C lock to a P 
lock (Pending update lock). If the updating transaction 
aborts, the P lock is converted back to a C lock. If the 
updating transaction commits, the P lock is converted 
to an 0 lock (Out-of-date lock). The lock compatibility 
matrix appears in Figure 1. 

Tj(lock) s XCPO 
T,(Tequest) 

S J No d 4 4 
X No No J 4 J 

Figure 1: Lock Conflict Matrix 

Envelope transactions typically hold only C, P ad 0 
locks. Their S locks are only held for a short duration. 
Thus, the presence of envelope transactions does not 
reduce the throughput of the system since their locks 
do not block S and X locks. 

User transactions that run on a caching client interact 
with the envelope transaction in the following way. For 
a non-cached object, user transactions request S or X 
locks from the server, as before. For a cached object, 
the user transaction must still acquire an S or X lock 
from the server. However, rather than acquiring a new 
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lock, the user transaction merely inherits the lock from 
the envelope transaction and later upgrades the lock to 
an S or X lock. 

We assume that the client will not attempt to cache 
objects that are database hotspots.’ In order to reduce 
message traffic, we use an optimistic algorithm that de- 
lays acquiring locks for cached objects until the transac- 
tion tries to commit. Under this scheme, caching clients 
keep track of their transactions’ read/write set. To ac- 
cess a cached object, the user transaction merely copies 
the object from the cache. When the user transaction 
is ready to commit, a commit request is sent to the 
server alon 
locks must % 

with the read/write set. At this point, 
e acquired for objects that were accessed 

from the cache. For each such object, the user trans- 
action first inherits the lock mode of its corresponding 
envelope transaction. Then the server attempts to up- 
grade the lock to an S or X lock. 

The lock upgrade matrix appears in Figure 2. P locks 
were introduced to take advantage of the repeatability 
of reads from the cache. User transactions with P locks 
in their read set may commit without violating serializ- 
ability. On the other hand, transactions with P locks in 
their write set must block until the P lock is converted 
to a C or 0 lock. Attempts to upgrade 0 locks cause 
the user transaction to abort. 

T, (lock) sxc P 0 
Z(upgrade) 

S S X S P No 
X X X X Block No 

Figure 2: Lock Upgrade Matrix 

Once the user transaction terminates, all S and X 
locks that it held on cached data are dropped but 
the corresponding Clocks remain held by the envelope 
transaction. The lock inheritance introduced here is dif- 
ferent from that of nested transactions [lo]. A caching 
client may be viewed as having a parent transaction that 
runs forever. Child transactions inherit the locks of the 
parent but they are allowed to commit even though the 
parent will never commit. Envelope transactions im- 
pose little overhead on a lock manager. They require 
the bookkeeping of the C, P, and 0 locks, but do not 
necessitate any automatic message sending on the part 
of the server. 

Optimization For high conflict rates, the algorithm 
will have a high number of restarts if conflicts on cached 
objects are not detected until the commit point. We can 
reduce the number of restarts if the cache manager can 
discover its broken C locks before they are accessed. 
One solution is to send a notification message whenever 
a lock is broken. This is basically the notify algorithm 

1 Our algorithm will work for cached hotspots but with reduced 
performance. Cached hotspots are best handled by acquiring an 

explicit lock as soon as they are accessed. 

described in Section 3. Another solution is to add a new 
lock manager call that returns a list of all 0 locks held 
by a transaction. So, we assume that every request by 
a caching transaction includes an additional request to 
check for 0 locks for the corresponding envelope trans- 
action. The envelope transaction may mark out-of-date 
objects in its cache or refresh the cache by immediately 
re-reading the objects. The choice depends on whether 
one is optimizing response time or throughput. In our 
studies, we are optimizing for throughput so we chose 
to mark the objects in the cache and reload them upon 
demand. 

Another potential optimization is to piggyback lock 
requests for previously accessed cached objects when- 
ever a client calls the server. However, our purpose 
was to compare different algorithms rather than devise 
one completely optimal algorithm. This optimization 
would have made both the cache locks and notify locks 
algorithms very similar to two-phase locking. Thus, we 
leave it for future study. 

We now summarize the cache locks algorithm for both 
the client and server. 

Client Cache Locks Algorithm 

Whenever a user transaction requests an out-of- 
date item from the cache, send a refresh request to 
the server for that item. 

Whenever a user transaction tries to commit, send 
a commit request to the server. Accompany the 
message with the identifiers of objects in the trans- 
action’s read/write set and with the new values of 
objects it updated. 

Whenever the server accompanies a response with 
a list of identifiers for cached objects with 0 locks, 
mark these objects as out-of-date, and, if one of 
these objects is in the read/write set of an active 
transaction, abort the transaction. 

Server Cache Locks Algorithm 

l Whenever a commit request is received from a 
caching client, do the following: 

For each object in the transaction’s read set, 
inherit the corresponding lock of the envelope 
transaction and upgrade it to an S lock. The 
upgrade from a Clock is immediately granted, 
the upgrade from a P lock is postponed un- 
til step 3, and the upgrade from an 0 lock 
is denied causing the requesting transaction 
to abort. If the transaction is aborted, go to 
step 4. 

For each object in the transaction’s write set, 
inherit the corresponding lock of the envelope 
transaction and upgrade it to an X lock. The 
upgrade from a Clock is immediately granted, 
the upgrade from a P lock is blocked until the 
P lock turns into a C or 0 lock, and the up- 
grade from an 0 lock is denied causing the 
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requesting transaction to abort. If the trans- 
action is aborted, go to step 4. If an X lock 
is acquired, convert C locks of other transac- 
tions to P locks and post the update to the 
server’s database. 

3. Recheck the status of read objects with P 
locks. The transaction can commit only if 
none of its P locks has been converted to an 
0 lock. 

4. Release the locks held by the transaction. Re- 
leasing X locks has the side effect of turning 
other transactions’ P locks into C or 0 locks 
depending on whether the transaction aborts 
or commits. 

5. Send a response to the client indicating 
whether the transaction has committed or 
aborted. Accompany the response with the 
identifiers of objects whose C locks have 
turned into 0 locks. 

l Whenever a request to refresh an item is received 
from a client, drop the 0 lock held by the client’s 
envelope transaction, if any, acquire a C lock on 
the object on behalf of the envelope transaction, 
an S lock on behalf of the user transaction, and 
send a copy of the object to the client. Note that 
it is not necessary to immediately acquire the S 
lock for the user transaction; it may wait until the 
commit phase. It is acquired at this point as a small 
optimization since the user transaction needs the S 
lock eventually. Accompany the response with the 
identifiers of objects whose Clocks have turned into 
0 locks. 

3 Notify Locks 

The concept of notify lo& was used in Observer [7] 
to allow a group of clients to share uncommitted re- 
sults. Holders of notify locks could specify whether 
they wanted to be informed of reads or writes of an 
object. The server would send them a notification mes- 
sage whenever such an action was applied to the ob- 
ject. Although notify locks were designed to support 
cooperating transactions, the concept behind them can 
be used to keep client caches.up-todate. We adapted 
notify locks to fit a client cache model. Applying the 
same reasoning we used in designing the cache locks al- 
gorithm, we designed an algorithm based on notify locks 
that generates as few messages as possible. 

Notifications of updates can be sent to clients at var- 
ious times. For this study, we have chosen to send them 
when the updates are actually committed. This repre- 
sents the minimum number of messages sent while still 
providing timely information to prevent transactions 
destined for an abort from performing useless work. 
Furthermore, by only taking into account committed 
updates, the client can take advantage of the repeata- 
bility of reads from its cache. 

When the client receives a notification from the 
server, it checks the list of updated objects against the 

read/write sets of its active transactions. Any transac- 
tion with an updated object in its read/write set must 
abort. When the server receives a request for commit 
from a client, it assumes that the client has enforced 
consistency correctly. Because notification messages are 
sent asynchronously, there is a window of vulnerability 
caused by the delay in message transfers. For example, 
suppose a client decides that a transaction can com- 
mit and sends a commit request to the server. Until 
the server receives that commit request, it may still be 
sending notification messages to the client that could 
abort the transaction. To protect against this expo- 
sure, a handshake is required between the client and 
server to ensure that the client has seen the most recent 
notification message. We chose to implement this hand- 
shake by assigning a sequence number to every message 
sent from the server to a client. The client, in turn, ac- 
companies requests to the server with the most recent 
message sequence number that it has seen. If a commit 
request contains a sequence number that is too low, the 
server rejects the request, and asks the client to verify 
if the transaction should be committed and then resend 
the request. 

As with the cache locks algorithm, clients send their 
updates to the server with their commit requests. If a 
commit request is accepted, the server applies the up- 
dates to the database. The server then sends notifica- 
tions to all the clients whose caches have been invali- 
dated by the committing transaction. One can observe 
that when the server is ready to send the notifications, 
most of the updated data is in the main memory of 
the server since the updates were just posted to the 
database. Thus, to reduce overall I/OS and message 
passing, we assume the server sends to each affected 
client, the new values of the updated objects. In this 
way, clients’ caches are automatically refreshed with 
each notification message, and explicit refresh requests 
are never required by the clients. 

One can notice another period of exposure to multi- 
ple concurrent updates. It takes place after a trans- 
action has been accepted for commit by the server, 
while the deferred updates are being applied to the cen- 
tral database. Other transactions can invalidate the 
read/write set of the committing transaction during this 
period. For this reason, another check of message se- 
quence numbers is required after all deferred updates 
have been posted. 

We now summarize the notify locks algorithm for 
cached data. 

Client Notify Locks Algorithm 

Whenever a user transaction tries to commit, send 
a commit request to the server. Accompany the 
message with the new values of objects it updated 
and with the last message sequence number re- 
ceived from the server. 

Whenever a notify message is received from the 
server, refresh the cache with the new values sent 
by the server, remember the message sequence 
number sent by the server, and if any of the up 
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dated objects is in the read/write set of an active 
transaction, abort the transaction. 

l Whenever a message is received from the server to 
verify if a commit request with a low sequence num- 
ber should still commit, check if the transaction 
was aborted as the result of a notify message. Re- 
spond with a message to the server to abort the 
transaction or proceed with the commit. 

Server Notify Locks Algorithm 

l Whenever a commit request is received from a 
caching client, do the following: 

1. Verify that the received sequence number is 
equal to the last sequence number sent to the 
client. If not, ask the client to verify if the 
transaction should still commit. If the trans- 
action must abort, go to step 4. 

2. For each object in the write set of the transac- 
tion, acquire an X lock, and post the deferred 
update to the central database. The X lock 
is a standard two-phase locking X lock and is 
subject to the usual blocking and deadlocks. If 
the transaction is forced to abort, go to step 4. 

3. Again, compare the received sequence num- 
ber with the last sequence number sent to the 
client. If the client’s number has fallen behind 
the server’s number, ask the client to verify 
if the transaction should still commit. (Note 
that the server will not release the X locks 
held by the transaction while the verification 
takes place. This will allow the transaction to 
commit rapidly once it returns to the server.) 

4. Release the locks held by the transaction 
and send a response to the client indicat- 
ing whether the transaction has committed or 
aborted. 

5. If the transaction has committed, go over its 
write set, and for each client with one or more 
cached objects in the write set, send a message 
notifying it of updates to its cache. Accom- 
pany the message with the new object values 
and with a newly generated message sequence 
number. 

4 Comparison and Discussion 

The cache locks algorithm and the notify locks algo 
rithm implement different concurrency control policies 
for their cache hits and cache misses. Whenever they 
access data that is not in their cache or that is out-of- 
date in the cache, both algorithms implement two-phase 
locking. For cache hits, both algorithms are optimistic 
[8] in that locks are never required for up-to-date cached 
objects. However, unlike a pure optimistic algorithm, a 
cache locks or notify locks transaction may abort dur- 
ing its read phase before it reaches its commit point. 

This will occur when the client is informed that an ob- 
ject already read or updated 
tion has been permanently mo 6 

locally) by the transac- 
ified. In this sense, both 

algorithms may be termed semi-optimistic. Thus, in ef- 
fect our scheme supports twophase locking and semi- 
optimistic transactions, simultaneously. 

Boral and Gold [3] h ave shown a framework un- 
der which different synchronization techniques can be 
combined into one concurrency control algorithm. In 
particular, they prove the correctness of an algorithm 
that combines two-phase locking with optimistic con- 
currency control. Using their framework, it is straight- 
forward to prove the correctness of the combined two- 
phase locking / cache locks algorithm and the twophase 
locking / notify locks algorithm. 

Although the cache locks algorithm is semi-optimistic 
for cache hits, under periods of high data contention or 
for database hotspots, it behaves more like a two-phase 
locking algorithm. Under these conditions, the cache 
will be usually out-of-date. This causes the effective 
cache size to shrink by reducing the number of cache 
hits so that the cache-locks algorithm becomes more like 
two-phase locking. Unlike the cache locks algorithm, 
the cache for the notify locks algorithm is always up- 
to-date. Thus, it makes more effective use of its cache 
than the cache locks algorithm. 

It may seem unfair to compare the two algorithms 
since they use their cache so differently. But, there are 
many possible variations on these algorithms and we 
could not explore the entire space. Rather, we tried to 
incorporate what we thought would be reasonable op- 
timizations in a real implementation. The comparison 
between the resulting two algorithms is interesting be- 
cause both algorithms provide client cache consistency 
but make different trade-offs with respect to communi- 
cation and server load. 

There are some potential problems with integrating 
cache consistency with concurrency control. First, the 
server is required to maintain many more locks for 
caching clients than for non-caching clients. In prin- 
ciple, this is not a problem. However, a lock manager 
may be implemented with fixed limits on the number 
or duration of locks that may be held. The number of 
locks may be reduced by using higher granularity locks. 

A second problem is that, in some systems, locks are 
transparent to higher levels of software (e.g. if locks are 
implicitly obtained as a side-effect of a storage man- 
ager request). Both the cache locks and notify locks 
algorithms require logical (object) locks. Thus, a trans- 
lation may be necessary from lock manager identifiers 
to client cache manager identifiers. 

5 Simulation Model 

Our goal in the performance analysis was to compare 
the effect of the two cache consistency algorithms on 
the performance of the database server. For a baseline 
comparison, we also studied the server performance un- 
der non-caching two-phase locking. For the analysis, 
we developed a closed queueing simulation model. Our 
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model is heavily based on the model in [l] but it was 
extended for a client-server environment and for client 
caching. It consists of a single database server and a 
fixed number of clients. Each client has one active ter- 
minal so the number of clients, num-clients, also rep- 
resents the number of terminals. The logical queueing 
model is illustrated in Figure 3. To simplify the figure, 
only one client is illustrated. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Terminal 

. Client . . . . . . . . 

. I 

Figure 3: Logical Queueing Model 

We assumed infinite resources for each client and fi- 
nite resources for the server. Some clients are desig- 
nated as caching clients and others are designated as 
non-caching. The number of caching clients, ccl, is a 
simulation parameter. 

Transactions originate on the clients. As mentioned 
earlier, transactions have a read phase and a commit 
phase and writes are deferred until the commit phase. 
The write set is a subset of the read set (i.e. an object 
must be read before being written). The external think- 
ing delay on a client after committing a transaction is 
assumed to have an exponential distribution with mean 
ext-think-time. 

The number of objects accessed by a transaction was 
drawn from a uniform distribution between maxsize 
and minsize and with mean Iran-size. The probabil- 
ity that an object in the read set was updated was 
a constant, write-prob. The number of objects in the 

database, db-size, was chosen to be relatively small in 
order to model contention. 

For caching clients, the cache size, cache-size., was a 
constant. The content of each client’s cache is fixed 
at the start of the simulation by choosing objects uni- 
formly from the database. Cache-hit-prob is the proba- 
bility that an item in the read set of a transaction will 
be directed towards the client’s cache. Note that for the 
cache locks algorithm, this does not guarantee a cache 
hit since the cached object may be out-of-date neces- 
sitating a server call to refresh the cache. As in [l], 
objects in the write set of a transaction were uniformly 
chosen from the entire database. 

The client read phase proceeds as follows. For every 
object in the read set, the client concurrency control 
manager is called. The client concurrency controller 
implements two-phase locking for non-caching clients 
and the client cache locks algorithm or the client notify 
locks algorithm for caching clients. For cache misses 
(and for non-caching clients , the client concurrency 

2 controller reads the object rom the server. For the 
commit phase, the client concurrency control manager 
sends the read 

I 
write sets and a commit request to the 

server. To mo el interactive transactions, there was an 
internal thinking delay between the read and commit 
phases that was exponentially distributed with mean 
int-think-time. 

For a read request, the outcome of a client con- 
currency control request will be that the request was 
granted or that the transaction was aborted and must 
be restarted. If the request is granted, the client 
access time for the object was simulated with a de- 
lay of obj-clienicpu. No I/O time is ever incurred 
on the client (message processing is discussed later). 
If restarted, the transaction is rerun with the same 
read/write set. The outcome of a commit request is 
either commit or restart. 

On the server side, the multiprogramming level, mpl, 
is used to limit the number of active transactions. A 
transaction joins the “ready queue” on its first request 
to the server and waits until it is allowed to become 
active. Subsequent requests by that transaction bypass 
the “ready queue.” A transaction is considered active 
until it commits, i.e. a restarted transaction does not 
wait again in the ready queue. 

Requests made by the cache locks algorithm include 
the envelope transaction identifier and the user trans- 
action identifier. The user transaction identifier is used 
to determine if the transaction is active on the server. 
The server concurrency control manager implements 
twophase locking for non-caching transactions and the 
server cache consistency algorithm or the server notify 
locks algorithm for caching transactions. 

For read requests, the outcome of the server concur- 
rency controller will be either to grant access, to block 
(waiting for a lock) or to abort and restart the trans- 
action. On the server, objects are read in obj-io time 
followed by obj-server-cpu time. 

Deferred updates are performed as part of a commit 
request. The server concurrency controller is called for 
each object in the write set. The outcome will either be 
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to grant the update request, to block or to restart the 
transaction. If all updates succeed, the transaction is 
committed. 

Objects are written in obj-server-cpu time followed by 
obj-io time. Although not shown in Figure 3, the notify 
locks algorithm has the side effect of sending, on a suc- 
cessful commit, messages to all the clients whose caches 
have been invalidated by the committing transaction. 

Resource contention on the server takes place over 
the CPUs and disks. As in [l], the resource usage times 
are constants rather than stochastic values. The num- 
ber of CPU and I/O servers, num-cpus and num-disks, 
were fixed. CPU requests are serviced first-come, first- 
served by any available CPU. I/O requests are randomly 
assigned to one of the disks where they are also serviced 
in a first-come, first-served manner. 

Sending and receiving messages imposes an overhead 
of msg-cpu on the CPU. Message requests are given 
higher priority than other CPU requests. In our exper- 
iments, we have not explicitly accounted for network 
delays. Instead we have bundled them in the msg-cpu 
time. We have assumed that contention on the network 
interface is small relative to the CPU contention. 

Table 1 summarizes the fixed simulation parameters. 
Table 2 displays the values of the experimental simula- 
tion parameters. 

Parameter 
db-site 

tran-size 

maz-size 

min-size 

write-prob 

num-clients 

ext-think-time 

obj-io 

obj-client-cpu 

obj-server-cpu 

msg-cpu 

num-cpus 

num-disks 

Meaning 

number of database objects 

mean number of objects 

accessed per trans. 

largest trans. size 

smallest trans. size 

Pr (write X 1 read X) 

number of clients 

mean time between trans. 

I/O time per object 

client CPU time per object 

server CPU time per object 

CPU time to send or 

receive a message 

number of CPUs on server 

number of disks on server 

Table 1: Fixed Simulation Parameters 

Value 

1000 

8 

12 

4 

0.25 

200 

1s 

35 ms 

10 ms 

5 ms 

5 ms 

1 

2 

We emphasize several aspects of the simulation 
model. First, as in [l], the multiprogramming level ef- 
fectively controls the conflict rate (albeit, indirectly). 
Second, even though in a real system, the request and 
response message sizes might differ by an order of mag- 
nitude, we chose to make the message transmission time 
constant. This is a reasonable approximation because 
the communication time is typically dominated by a 
high fixed overhead. A third point is that we do not 
model an LRU cache but, instead, 6x the contents of 
each client’s cache. Since we are assuming a uniform 
reference pattern, it made no sense to implement an 
LRU scheme. In effect, the cache hit probability mod- 

Parameter 

ccl 

cache-size client cache size 

vl multiprogramming level 

cache-hit-prob 

int-think-time 

Meaning 

number caching clients 

Pr (object is cached) 

mean internal think 

time per trans. 

Value 

0, 10, 25, 50, 

100, 190, 200 

15, 30, 45, 60 

10, 25, 50, 
100, 200 

0.1, 0.5, 1.0 

0, 1, 5, 10 s 

Table 2: Experimental Simulation Parameters 

els locality of reference. 

To validate our implementation of the model, we ran a 
number of two-phase locking experiments with the mes- 
sage time set to 0 and other parameter settings equiva- 
lent to those in [l . Our results matched the twophase 
locking results in 1 11. 

6 Experiments 

We ran a number of simulations to study the behavior 
of the two cache consistency algorithms under different 
conditions and to compare their performance with non- 
caching two-phase locking. With the client caching level 
(ccl) fixed at 200, we ran simulations for all combina- 
tions of the other parameters. We then ran simulations 
that varied ccl for subsets of the other parameters. In 
order to stress the algorithms and investigate their dif- 
ferences under periods of high load, we used extreme 
values for some of the simulation parameters. Our goal 
was to compare the algorithms, not to model an actual 
system. 

In this section, we describe three sets of experiments 
that summarize what we feel are the most interesting 
results. The first set of experiments studied the effect of 
cache size and cache hit probability on performance. In 
the second set of experiments, we studied the behavior 
of interactive transactions. Finally, the last set of ex- 
periments investigates the effect of varying the number 
of caching clients on overall server throughput. All sim- 
ulations were run on an HP 9000/370 (MC6803@based 
machine) running HP-UX (HP’s version of Unix) and 
using the CSIM simulation package [14]. 

6.1 Variable Cache Size and Cache Hit 
Probability 

In the first set of experiments, we examined the effect 
of resource contention on server throughput (measured 
in transactions per second) for each algorithm. The 
number of caching clients was fixed at 200 and the cache 
size and cache hit probability were varied. The internal 
think time was set to 0 which causes the heaviest CPU 
and I/O load. Figures 4 through 9 show the effects 
of cache size and cache hit probability on throughput 
for cache sizes of 15 and 60. The two algorithms are 
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compared to non-caching two-phase locking to evaluate 
the relative benefit of caching on server throughput. 

With the cache size fixed at 15 objects, we observe 
that the performance of both consistency control algo 
rithms improves as the cache hit probability increases. 
At low cache hit probability, the cache locks algorithm 
is practically identical to twophase locking. A cache 
locks transaction must request most objects in its read 
set from the server. As the cache hit probability in- 
creases, the cache locks algorithm is able to take more 
advantage of its cache which reduces the server load and 
increases throughput. 

The notify locks algorithms does remarkably well for 
low multi-programming levels. Its cache is always up- 
to-date, and at low multi-programming levels, it is in- 
validated infrequently. Under these circumstances, it 
utilizes its cache very efficiently. For higher levels of 
multi-programming, the cache is invalidated more fre- 
quently thus causing some of the notify lock transac- 
tions to abort. At high multi-programming levels, the 
deterioration in performance is more rapid for notify 
locks than for cache locks because the notify locks al- 
gorithm loses its advantage of always having the cache 
up-to-date. 

Surprisingly, as the cache size increases from 15 ob- 
jects to 60 objects, the overall benefit of both algorithms 
is reduced considerably. With a larger cache size, the 
probability that a random update will invalidate some 
cached object increases. Since the cache hit probabil- 
ities are not a function of the cache size, larger cache 
sizes dilute the benefits of caching by becoming more 
vulnerable to updates. The notify locks algorithm does 
very poorly under these circumstances. At low cache hit 
probabilities, it pays a high penalty in notify messages 
and gains very little benefit from the cache (Figure 5, 
Figure 7). 

There is a major difference in behavior between the 
notify locks algorithm on one hand and the cache locks 
and twophase locking algorithms on the other hand. As 
in [l] and for the simulation parameters we have cho 
sen, twophase locking and cache locks are I/O bound. 
With notify locks, the cache is always up-&date. Con- 
sequently, I/O requests are submitted to the server only 
for cache misses and for deferred u dates. This reduces 
disk utilization and causes the noti P y locks algorithm to 
be, in general, CPU bound. Any experimental setting 
that increases the number of notification messages to 
clients aggravates this ,problem and causes the perfor- 
mance of the notify locks algorithm to deteriorate. 

Figures 10, 12 and 14 show CPU utilization, disk uti- 
lization, and average number of retries per committed 
transaction for all three algorithms with the cache hit 
probability fixed at 1.0 and the cache size fixed at 15 
objects. These figures correspond to the throughput 
shown in Figure 8. Figures 11,13 and 15 show the same 
data but for a cache size of 60 objects. They correspond 
to the throughput shown in Figure 9. 

One can see that as the cache size increases, the severe 
decline in throughput for the notify locks algorithm is 
not due to a larger number of retries but instead to 
the saturation of the CPU. In fact, both the number 
of retries and disk utilization actually decrease as cache 

size increases. This is because of the increased message 
processing necessary for larger cache sizes. For a cache 
size of 60 objects, the server must send, on average, 4 
times as many notify messages per update as for a cache 
size of 15 objects. Thus, throughput for the notify locks 
algorithm is dominated by the message delay for large 
cache sizes so fewer transactions are actually submitted. 

We note that the CPU and disk utilization for the 
cache locks algorithm is very similar to the utilizations 
for twephase locking. However, the cache locks algo- 
rithm achieves higher throughput. This is because the 
cache locks algorithm is able to offload I/O processing 
from the server which reduces the transaction response 
time. We also note that as the cache size increases, the 
average number of retries also decreases for the cache 
locks algorithm. This is because the number of cache 
hits actually decreases as cache size grows. Thus, the 
cache locks algorithm takes less advantage of the cache 
and tends to perform more like two-phase locking for 
large cache sizes. 

In comparing the overall performance of cache locks 
and notify locks, one finds that notify locks can pro- 
vide significant increases in throughput under some cir- 
cumstances but has disastrous effects under others. In 
particular, it is very sensitive to the server load. The 
cache locks algorithm, on the other hand, does well un- 
der some circumstances and is more stable. It never 
does worse than two-phase locking. 

6.2 Interactive Transactions 

In the second set of experiments, we wanted to compare 
the algorithms on the basis of pure data contention. 
Thus, we reduced the resource bottleneck by increasing 
the internal think time. As in the first experiments, 
the number of cachin clients was fixed at 200 and the 
cache size and cache f it probability were varied. Note 
that longer think times result in longer response times 
and reduced throughput. 

For these experiments, the throughputs had inter- 
esting characteristics. Figures 16 and 17 display the 
throughputs for a cache size of 15 objects, cache hit 
probabilities of 0.5 and 1.0 and an internal think time of 
5 seconds. Again, the results of non-caching two-phase 
locking are included for comparison. 

We notice that throughput first increases and then 
drops off rapidly. As the multi-programming level in- 
creases, transactions do not have to wait as long in the 
ready queue. This improves their response time. But, 
as the multi-programming level increases further, the 
number of retries increases dramatically causing the re- 
sponse time to deteriorate2. The increase in response 
time is due only to contention on database objects and 
not to contention on the CPU and disks. This pattern 
was repeated for other internal think times although the 
magnitude of the throughput varied. 

Comparing Figures 16 and 17, *we notice two effects of 
increasing the cache hit probabihty. First, there is only 
a modest increase in throughput as cache hit probabil- 
ity is increased. The high think time somewhat masks 

2Although not shown, the plot of the number of retries was 

similar to that shown in Figure 14 
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the benefit of the higher number of cache hits. This 
can be seen by comparison with Figures 6 and 8 which 
show a huge increase in throughput. Second, the cross- 
over point at which cache locks aIgorithm performs bet- 
ter than the notify locks algorithm occurs earlier as the 
cache hit probability is increased. This is a consequence 
of the larger number of restarts suffered by the notify 
locks algorithm. When the cache hit probability is in- 
creased, the notify locks algorithm has more cache hits 
than the cache locks algorithm. This makes it more op- 
timistic than cache locks and causes it more restarts. 
The number of restarts for the cache locks algorithm 
also increases with higher cache hit probability but not 
as fast. 

6.3 Co-Existence of Caching and Non- 

Caching Transactions 

In the final set of experiments, we were interested in 
the effect of caching transactions on non-caching trans- 
actions and on overall throughput. We ran a set of 
experiments in which we fixed the multiprogramming 

level but varied the number of caching clients. 

At a multiprogramming level of 200, increasing the 
number of caching clients had little effect on overa 

throughput because the cache was so frequently in- 
valid. This can actually be verified in Fi 
9 where the variation between non-cat’ ing two-phase fJ 

urei 4 through 

locking and the two caching algorithms is very modest 
for high levels of multiprogramming. We aIso observe 
from this set of figures that some of the best throughput 
numbers were obtained with an multiprogramming level 
of 25. Thus, we decided to fix the multiprogramming 
level at 25 and vary the number of caching clients. 

Figure 18 shows the overall server throughput when 
caching clients use the cache locks algorithm or the no- 
tify locks algorithm at a multiprogramming level of 25, 
a cache hit probability of 0.5 and a cache size of 15. 
The figure also displays the server throughput when all 
clients use non-caching, twc+phase locking. Figure 19 
shows the same data but for a cache size of 60. 

The results of Figure 18 are intuitive. They show 
that increasing the number of caching clients improves 
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overall throughput. They also show notify locks to sub- 
stantially improve throughput as the number of caching 
clients increases. This is consistent with the results of 
Figure 8 in which the notify locks algorithm gets good 
usage out of its cache when the cache size is small and 
the level of multiprogramming is low. 

The results of the second figure display more clearly 
the instability of the notify locks algorithm. As was 
seen in Figures 5,7, 9 where the performance of the no 
tify locks algorithm deteriorated as the CPU utilization 
went up, Figure 19 shows this phenomenon more clearly. 
The throughput first improves as the number of notify 
locks caching clients increases. But when the number of 
caching clients exceeds 50, the CPU saturation due to 
notify messages starts showing up and results in a severe 
deterioration in throughput by the time the number of 
caching clients reaches 190. 

7 Conclusion 

We have presented in this paper two techniques for com- 
bining a cache consistency algorithm with a concurrency 
control algorithm. The first algorithm is based on a new 
kind of lock, cache loch. The second algorithm is an 
adaptation of notify locks. Both algorithms add very 
little complexity to existing lock managers that imple- 
ment two-phase locking and both algorithms may co 
exist with non-caching transactions that use two-phase 
locking. 

The coupling of cache consistency and concurrency 
control simplifies the resulting system in two ways. 
First, in a database system cache consistency and con- 
currency control must be coordinated since caches are 
invalidated on transaction boundaries, i.e. updates are 
made public when write locks are released. This co- 
ordination is easier when the modules are combined. 
Second, the client code is simplified because there are 
fewer cases to deal with, e.g. cache invalidation can 
be treated as denial of a lock request or a concurrency 
control abort. 

Our performance data show the relative merits of 
both algorithms and their effect on non-caching trans- 
actions. They show that the notify locks algorithm 
has better performance than cache locks under some 
circumstances. However, the notify locks algorithm is 
very sensitive to CPU utilization and multiprogram- 
ming level. And since database management systems 
tend to be CPU bound, use of this scheme may be risky. 
Furthermore, the cache locks algorithm exhibits good 
performance when it can take advantage of its cache. 
It is stable under all conditions and never does worse 
than non-caching two-phase locking. Finally, the per- 
formance results show that by carefully choosing the 
appropriate caching algorithm for the prevailing con- 
ditions, caching can significantly improve the overall 
throughput of the server. 
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