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Abstract. With the advent of cloud computing there is an increased
interest in outsourcing an organization’s data to a remote provider in
order to reduce the costs associated with self-hosting. If that database
contains information about individuals (such as medical information), it
is increasingly important to also protect the privacy of the individuals
contained in the database. Existing work in this area has focused on pre-
venting the hosting provider from ascertaining individually identifiable
sensitive data from the database, through database encryption or manip-
ulating the data to provide privacy guarantees based on privacy models
such as k-anonymity. Little work has been done to ensure that informa-
tion contained in queries on the data, in conjunction with the data, does
not result in a privacy violation. In this work we present a hash based
method which provably allows the privacy constraint of an unencrypted
database to be extended to the queries performed on the database. In
addition, we identify a privacy limitation of such an approach, describe
how it could be exploited using a known-query attack, and propose a
counter-measure based on oblivious storage.

1 Introduction

With the advent of cloud computing, the desire to outsource databases continues
to grow. Database as a service is a quickly growing industry, attracting companies
looking to reduce costs by maintaining fewer servers and IT personnel. However,
as the usage of database outsourcing grows, so does the risk of privacy violations.
In some cases this outsourcing may even conflict with privacy laws that are
designed to safeguard the identities and the individuals the data is about. An
outsourced database has a new threat to consider: the hosting provider itself.
Existing work has explored a variety of privacy constraints such as k-anonymity [1,

2], I-diversity [3], and t-closeness [4]. These works aim to provide metrics for the
privacy protection of data stored in a database. Little work has been done to
safeguard privacy in the queries themselves, beyond the extreme model of Pri-
vate Information Retrieval [5] and related works that involved encrypting the



entire database. In our model, we assume that the data is intentionally stored
unencrypted so that the hosting provider can provide value added services such
as address correction and analysis of the (anonymized) data.

Previous work involving unencrypted, anonymized databases ignores the im-
pact of information contained in queries and essentially models queries as having
been drawn randomly from the global pool of all possible queries, meaning they
would not leak any sensitive information. Even the authors’ prior work on query-
ing anonymized data requires this assumption [6,7]. This is rarely a reasonable
assumption. The very existence of a query or set of queries can easily leak infor-
mation about individuals in a database.

Consider the scenario that John is found collapsed on the street. The reason
for his collapse is unknown. When he arrives at the ER, the doctors notice that
John’s arms contain punctures indicative of illegal drug use. In order to better
determine John’s situation, the doctor queries his medical records to determine
if he has any of the diseases that may come from shared needles. The queries
would look something like:

SELECT * FROM DB WHERE PATIENT = "John" AND (Disease = "HIV" OR
Disease = "hepatitis" OR Disease = "tuberculosis");

Given that those three diseases are considered high risk for illegal drug users
but not for the general population, someone with a knowledge of those queries
may be able to reasonably assume that John is an illegal drug user. (Why else
would a doctor issue this particular set of queries?) Private information about
John has been leaked, even if the database itself is stored in a privacy-preserving
fashion. The queries themselves leak the information.

We model query privacy leakage based on the probability of a link between
identifying information and sensitive information. For no leakage to occur, a
query should not convey any private information that is not already revealed
by the database itself. In the example above, queries for those three diseases
increases the probability that John is at a high risk for diseases transmitted
from blood. This knowledge, in turn, increases the probability that he has one
or more of the diseases. A leak can be described as follows:

Given:
t = An individual (or identifying information for that individual)
v = A sensitive value
D = A database
@ = A sequence of queries
Private information is leaked if:
Pr(t is linked to v|D) < Pr(t is linked to v|D, Q)

In this work we propose a technique to build an anatomized database de-
signed to safeguard the privacy of individuals whose data is being queried. We
base our models on the principle of k-anonymity. The technique functions by
separating individually identifiable users into buckets of size > k and ensuring
that queries to the database always involve at least an entire bucket. While our
database model, described in more detail in [6,7], allows INSERTs and UP-
DATEs, this paper only discusses SELECT queries. INSERTs and UPDATESs



l SSN [ Name Disease ‘

000-07-7083| Luis HIV
000-26-9073| Donna Diabetes
000-03-3060| Zachary | Hepatitis A
000-04-4396|Kenneth| Cancer
000-09-4349 | Michelle | Tuberculosis
000-22-6531| Thomas | Hepatitis B

Fig. 1: Sample Database

inherently pose different privact risks because an attacker can analyze the be-
fore and after states of the database. Managing these risks imposes limitations
on the statements and requires a certain amount of encryption [7]. The result
is that INSERTs and UPDATESs that do not violate privacy based on the host
comparing before and after states of the database inherently avoid the type of
privacy violation described in this work.

The contributions of this work are as follows:

1. We identify and define the problem of private data leakage from the query
in anonymized databases,

2. We provide a proof that can be used to demonstrate whether leakage can
occur for many group-based privacy protection schemes,

3. We propose a hash based technique to prevent private data leakage through
the query in a k-anonymized database,

4. We identify a type of privacy leak based on a known-query attack that would
allow an attacker to violate query privacy, and

5. We propose the usage of oblivious storage as a mechanism to protect against
known-query attacks.

1.1 Database Model

The basis for our database model is anatomization [8] with an encrypted join
key [6, 7]. For the sake of simplicity of presentation we assume that the groupings
provide only k-anonymity; however, similar privacy models may be also used
without adjustments to our model.

In the anatomy model, the identifying information and the sensitive infor-
mation are split into two separate tables, and a group number is used to link
groups of items from both tables together. An attacker who is able to analyze
the database cannot link a sensitive value to a particular identifying value, in-
stead each can only be linked to the group it is a part of. An encrypted sequence
number allows a client who knows the secret key to perform a query and then
filter the results to determine the exact answer. Fig. 1 shows a simple database
storing patient disease information. Now, suppose that we want to release this
database while still maintaining the privacy of the individuals in it. We decide
that we want to release the database to meet k-anonymity requirements with



| SSN | Name |GID|SEQ)| |HSEQ|GID| Disease |

000-07-7083| Luis 1 1 Hg, (1)] 1 HIV
000-26-9073| Donna | 1 2 Hi, (2)] 1 Diabetes
000-03-3060| Zachary | 2 3 Hy, (3)| 2 |Hepatitis A
000-04-4396|Kenneth| 2 4 Hy, (4)] 2 Cancer
000-09-4349| Michelle| 3 5 Hi, (5)| 3 |Tuberculosis
000-22-6531| Thomas | 3 6 Hy, (6)| 3 | Hepatitis B
(a) Identifier Table (IT) (b) Sensitive Table (ST)

Fig. 2: Anatomized Database

k = 2, and so we ensure that each group contains at least two individuals in it.
Fig. 2 shows the same database anatomized in this way. An attacker analyzing
the database can only link a particular piece of sensitive information to a specific
group, not to an individual within the group. The groups can be chosen using
any group-based privacy criteria (such as [-diversity) in much the same way.

When a query is performed (either on the identifying information or the
sensitive information) then all results from the corresponding group are returned.
The client then uses the secret key to match the sequence number from the
identifying information with the sequence number in the sensitive information
in order to determine which elements of the group were actually queried. The
details of query processing for such a database can be found in [6, 7).

We assume that one of the fields (in this case social security number) is used
as the unique identifier for indexing the tables. We call this field the lookup key.

We explicitly assume an unencrypted database. While one might think that
encryption should be used for data sent to a cloud provider, there are a number
of good reasons not to do this:

— Databases commonly experience issues related to the accuracy and complete-
ness of their data. Address information, phone numbers, zip codes, etc. may
be incomplete. A cloud provider with an unencrypted database can provide
“information fixing as service” to help fill in some of these gaps.

— Large, demographic queries that don’t involve mixing identifiers and sensitive
data (such as “How many customers do I have in Chicago?”) do not require
privacy protection, and can be performed on the unencrypted DB without
a performance penalty. This could not occur in an encrypted DB.

— Data stored on the cloud can be offered to a third party for performing data
analytics in order to extract useful information.

1.2 Threat Model

The owner of the database (the client) wishes to outsource their database to an
outsourcing provider (the server). Before sending data to the server, the client
anatomizes it. The client then queries the server requesting information about



specific users, identifying them by their lookup key, as in this query:
SELECT * from DB WHERE SSN="000-03-3060" AND
Disease ="Hepatitis A";
The client should not issue queries that use any other field as the identifier. We
assume the client has permission to access any record in the database.

Our attacker is the server and has full access to all data in the database as well
as all queries issued. Given a query, the goal of the attacker is to determine which
user a specific query is about. The server is honest-but-curious, meaning that it
does not interfere with the correct operation of the database. Our assumption is
that an active attacker (who alters queries, their results, or the database) would
eventually be detected and the client would stop using their services. Therefore,
it is in the best interest of the server to operate correctly while it attempts to
learn private information.

2 Data Privacy of the Query

As a straightforward solution to this problem we propose that instead of perform-
ing queries based on individually identifying information, queries are performed
on entire groups.

Returning again to the database from Fig. 2, instead of performing a query
such as:

SELECT * from DB where SSN="000-03-3060" and Disease = "Hepatitis
A"
The client would instead send the following:

SELECT * from DB where GID=2 and Disease = "Hepatitis A";
This assumes that the individual identified by 000-03-3060 is in group 2; ways
the client can efficiently learn this without violating privacy will be described
in Sections 3.2 and 4.2. The client will receive back database entries where
Disease = Hepatitis A for all users in group 2. The client then simply fil-
ters out entries for all users except the one it intended to query. This process
does not need to be done manually. A simple query processing tool that runs at
the client can make this process transparent. In order to perform this query the
client must already know which group the SSN is in. How the client can learn
this without causing a privacy violation will be discussed in Section 3.

We will now prove that performing group based queries can have the same
privacy guarantees as the underlying grouping methodology.

2.1 Definitions and Notations

Throughout the paper, a table T' has d identifier attributes, Ay,..., A4, and
a sensitive attribute As. (This could easily be extended to multiple sensitive
attributes, we use a single one for clarity.) We will use dot notation to refer to
some attribute of a tuple (e.g., for a tuple t € T, t.A; denotes t’s value for the
corresponding attribute where 1 <i < d or i = s).



Our work is based on the k-anonymity family of privacy definitions, which
group individuals such that each individual is indistinguishable from others in
the group with respect to the sensitive value that goes with each individual.

Definition 1 (Group/Equivalence class). A group (also known as equiva-
lence class) G is a subset of tuples in table T such that T = U;nzl G;, and for
any pair (Gj,,Gj,), where 1 < ji # jo <m, G;, NGj, = 0.

Definition 2 (k-anonymity). A set of groups is said to satisfy k-anonymity,
iff ¥ groups G,

G| > k
where |G| is the number of tuples in G;.

While much of this work (particularly in this section) applies to any k-
anonymity based model, our examples are based on the anatomy definition used
in [6], which is a variation of that given in [§].

Definition 3 (Anatomy). Given a table T partitioned into m groups using k-
anonymity without generalization, anatomy produces an identifier table (IT) and
a sensitive table (ST) as follows. IT has schema

(A1,...,Aq,GID, SEQ)

where A; € Qr for 1 < i <d=|Qr|, Qr is the set of identifying attributes in
T, GID is the group id and SEQ is the unique sequence number for a tuple. For
each Gj € T and each tuple t € G, IT has a tuple of the form:

(t.Aq,...,t.Aq, 7, 5€q)

The ST has schema
(HSEQ,GID, Ay)

where Ag is the sensitive attribute in T, GID is the group id and HSEQ contains
the output of a keyed cryptographic hash function denoted by Hy(seq) where seq
is the corresponding unique sequence number in IT for a tuple. For each G; € T
and each tuple t € G, ST contains a sensitive value v in a tuple of the form:

(Hg(seq), 5, v)

The key issue with the Anatomy model is that actual data values are pre-
served; the anonymization occurs by generalizing the link between identifying
and sensitive values to the group level. Thus we expect user queries to be based
on specific (rather than group level) values. This could communicate user knowl-
edge about relationships between individuals and sensitive data to the server;
a query that could convey such knowledge is deemed sensitive. Our goal is to
preserve the privacy guarantees enforced on the underlying data even after a se-
quence of queries from a user with knowledge about the data that would violate
privacy if revealed to the server.



Definition 4 (Query Privacy). Any sequence of queries, Q =< q1,...,q; >,
preserves privacy of individuals if for every tuple t € IT and for every v € ST
where v.GID = t.GID

Pr(t — v|T*) = Pr(t — v|T",Q)

where T* is an {IT, ST} anatomized table pair as in Definition 3 and t — v
means that v is the sensitive value corresponding to t.

This definition states that a sequence of queries does not change the server’s
knowledge of the mapping between any individual and a sensitive value. While we
do not formally prove it here, we claim that this is sufficient (although perhaps
not necessary) to maintain the privacy guarantees of the k-anonymity family
of measures. (While there are some special cases where this is not true, e.g,,
data meeting k-anonymity with all sensitive values in the group being the same
(Pr = 1) could meet definition 4 by maintaining the same probability while
disclosing information that reduces the group size, we feel such cases reflect
failure of the privacy metric to adequately protect sensitive information rather
than a failure of query privacy.)

2.2 Query Privacy Preservation

Query streams that contain only information about the identifying attributes, or
only about the sensitive attribute, clearly do not change the probability of the
mapping and thus satisfy Definition 4. The problem is with queries that affect
both:

Definition 5 (Sensitive Query). A sensitive query, denoted by q, is a selec-
tion query in the form
SELECT * FROM <IT,ST>3 WHERE P;r and Pgr;

where Prr is a predicate uniquely identifying one or more individuals in IT
and Pst restricts the range of sensitive values from ST.

To avoid revealing information, we require that at least one side of the sen-
sitive query (either the identifying or sensitive information) not distinguish be-
tween any items in the group:

Definition 6 (k-anonymized Query). Given a sensitive query, q, as in Def-
inition 5, a k-anonymized sensitive query, denoted by q*, is a selection query in
either the form

SELECT * FROM (IT,ST) WHERE P%; and Pgr;

or the form

SELECT * FROM (IT,ST) WHERE Prr and Pj;;

3 This is not a join operation, it is the selection query described in [6] which is seman-
tically equal to
SELECT * FROM IT*, ST WHERE Pir and Psr and involves client-server interaction



where Pir is a predicate identifying a group in IT, Py is a predicate identifying
a group in ST, (i.e., each t' € Gy.qip satisfies Py or each v' € Gy, gip satisfies
Pgr)

We now show that a stream of k-anonymized queries satisfies Definition 4. We
show that if each single query satisfies Definition 4, any pair of queries that the
groups queried are disjoint or the same, and if the sequence of queries groups

either entirely in IT or entirely in ST, then the sequence of queries satisfies
Definition 4.

Lemma 1. Given a sequence of queries Q =< q1, ..., qn, > where Vi, q; satisfies
Definition 4 and either
VZ,] .PZ;T = Pj;T or PZ;T ﬂ Pj;T = (Z)
VZ,] Pi;;r = PJ;T or Pz;T ﬂ Pj;T = @,
Q satisfies Definition 4.

or

Proof (By Induction). Base case: With only one query, by the preconditions of
the lemma the query satisfies Definition 4.

Inductive case: Assume Q' =< q1,...,q,_1 > satisfies Definition 4. Then V
individuals I, Pr(t — v|T*) = Pr(t — v|T*,Q’). Divide @ into two sets Q4 and
Qm, where Qg consists of queries that have an empty intersection with ¢, (P;ir
N P.ir = 0), and Q,, consists of queries that exactly match ¢, (P;1p = PnIr)-
Definition 4 must hold for both Q4 and @,,.

First, Q4 and @Q., each satisfy Definition 4, since we could have a query
sequence consisting only of disjoint or only of matching queries (which by the
inductive hypothesis we assume would satisfy the lemma.) Now we show that
adding g, still satisfies Definition 4.

For Q,: For every individual ¢t €P,];, then neither @Q,, or g, gives any
information about ¢, and Pr(t — v|T*) = Pr(t — v|T*,Qm + ¢n). For every
t € P11, the information obtained from Q,, and g, is exactly the same for all ¢,
and Pr(t — v|T*,Qm + qn) = Pr(t = v|T*,Qm) = Pr(t = v|T*,q,) = Pr(t —
v|T™).

For Qq: For an individual ¢ €P, I, no information is obtained from @4, and
Pr(t — v|T*,Q4 + qn) = Pr(t — v|T*,qn) = Pr(t — v|T*). Likewise, for ¢t ¢
P.ir, Pr(t = v|T*,Qq + qn) = Pr(t — v|T*,Qq) = Pr(t — v|T*).

Extending this argument to Q4 and @Q,, allows us to combine them, giving
Pr(t = v|T*,Qq + Qm) = Pr(t — v|T*,Qq) = Pr(t — v|T*,Qun) = Pr(t —
v|T™).

The same argument holds if the group-level information is about the sensitive
rather than identifying information (Pg;).

Theorem 1. Transforming a sequence of sensitive queries, Q = q1,. .., qn, into
a sequence of k-anonymized queries, Q* = q7,...,q), protects the privacy of
individuals based on k-anonymity and Definition 4.

Proof. Let ¢ be a k-anonymized query, (Pj;) be the group-level identifying in-
formation for ¢, and v =Pgr be the sensitive value in the query. Let S be the
multiset of sensitive values for the group Pi; in 7.



First, if ¢ € P};, then the query discloses no information about ¢, and Pr(t —
o|T*, q) = Pr(t — v|T™).

If v ¢ S, then Pr(t — v|T*,q) = 0= Pr(t — v|T*).

Finally, assume v € S. We assume that the server/adversary has no reason
to assume a particular ¢ € PI; is being queried, and that any mapping is equally
likely. Therefore Pr(t — v|q) = 1/|P};|, the same as Pr(t — v|T*) (note that
we are interpreting v as the particular instance of a value in a multiset; if there
are multiple occurrences of v € S, then we need to multiply both sides by the
number of instances.)

Thus Definition 4 holds for q. By Lemma 1, the Theorem holds.

(Note that this theorem does not hold if the adversary has knowledge of
the probability that ¢ — v beyond that contained in the query stream and the
dataset. Such background information raises problems with the underlying static
data under many anonymization models, and is not considered here.)

3 A Basic Solution

At a high-level, simply querying entire groups is a straightforward and simple
solution. There is a complication with it, however, that must be addressed: It is
not clear how the client can determine which group a given user is in. The client
may know the lookup key for the user, but there is not a straightforward way
to translate that into a group. In addition, the client cannot request the group
number for a given lookup key from the server, as this would leak which user the
client is going to later request. It is also not reasonable for the client to store (or
request) the entire mapping of lookup keys to groups, as part of the purpose of
outsourcing a database is that you no longer need to maintain a local database.

3.1 Group Membership Constraint

There is an important constraint that must be discussed with respect to group
membership in this model: Once a group is formed, the membership of that group
cannot be changed without potentially leaking private information to a server
that is performing a statistical analysis of which groups are queried. For example,
assume that group 5 is being frequently accessed, and as such is somewhat of a
hotspot. If a member of that group is removed, and the frequent queries stop,
then the server can ascertain that the removed entity was the target of most
of those queries. The same argument can be used in reverse to describe why a
member can never be added to a group. (For further discussion of these issues
in the context of INSERTs and UPDATES, see [7].)

3.2 Solution Overview

We propose adding a separate translation table at the server that can be queried
to determine the bucket for a specific lookup key. It is crucial, however, that



| SSN | Name |GID|SEQ)| |HSEQ|GID| Disease |

000-07-7083| Luis 1 1 Hi, (1)] 1 HIV
000-26-9073| Donna | 1 2 Hi, (2)] 1 Diabetes
000-03-3060| Zachary | 2 3 Hy, (3)| 2 |Hepatitis A
000-04-4396|Kenneth| 2 4 Hy, (4)] 2 Cancer
000-09-4349| Michelle| 3 5 Hi, (5)| 3 |Tuberculosis
000-22-6531| Thomas | 3 6 Hy, (6)| 3 | Hepatitis B
(a) Identifier Table (IT) (b) Sensitive Table (ST)

| Hash |GID]

Hg, (000-07-7083)| 1

Hg, (000-26-9073)| 1

Hi, (000-03-3060)] 2

Hg, (000-04-4396)| 2

Hg, (000-09-4349)| 3

Hi, (000-22-6531)] 3

(¢) Lookup Table (LT)

Fig. 3: Sample Anatomized Database With a Lookup Table

this operation does not reveal which lookup key is being queried. In order to
accomplish this, the lookup table will store a keyed hash of the lookup key as
well as the bucket that lookup key is in. The value of the key for the keyed hash
is not known to the server, but is known to all clients that access the data.
The database needs to be initialized before sending it to the cloud provider:

1. Distribute entries into groups as is done in anatomization. The groupings
should provide the group privacy protection (k-anonymity, l-diversity, etc.)
that is desired. For the purpose of presentation, we assume that the group-
ings chosen are identical to the anatomization groupings, but they are not
required to be.

. Choose a random cryptographic key K7y, .

3. Create a new table that maps H, (Lookup Key) to the corresponding group

for that entry. (With H() being a keyed, cryptographic hash function.) See
Fig. 3 for an example.

[\]

3.3 Operations
The following basic database operations can be supported as follows:

— Select: The client queries based on the hash of the lookup key instead of on
the lookup key itself:
SELECT * from DB where idhash=H, (“000-03-3060”) and glucose > 250;
The server then uses the value of idhash to determine the correct bucket
from the lookup table and return all relevant results from that group.



— Insert: In terms of the data itself, inserts must be batched in groups and
inserted with care to ensure the group based privacy guarantees are main-
tained. In short, tuples to be inserted are not inserted immediately, but are
instead temporarily stored in an encrypted cache. Once enough new tuples
in are the cache that they can be safely grouped together and added to the
database without violating the privacy constraints, then they are inserted
into both the anatomized database and the lookup table as an entire batch.

— Delete: As we have already described, removing an item from a bucket can
potentially leak information. As such, data is not deleted from the tables;
instead the (encrypted) join key is modified to show deletion.

— Update: Updates involving information other than the lookup key can simply
be processed as is. However, it is important to note that during an update
the server knows the identity of the user or users being updated. (As long as
the server does not know the old or new value of the sensitive data, privacy
is not violated.) Updating the lookup key requires generating a new K,
and completely refreshing the lookup table, which requires downloading and
then re-uploading it. Due to the overhead of this approach, it is recommended
these types of updates be batched or simply not permitted.

Further information on insert/delete/update can be found in Nergiz et al. [7].
While that paper does not discuss private queries or the hashing approach pre-
sented here, an extension of the solutions presented for regenerating the hash
table are straightforward.

4 Known-Query Attack

Under this model, the identity of the user being queried is protected by the
keyed hash. However, some information is still indirectly leaked. If the same
user is constantly queried, then the same entry in the bucket lookup table will
be referenced. The server won’t know which lookup key is being accessed, but
it will know that the same lookup key is being referenced repeatedly. Under
the standard privacy definitions used thus far, this is not considered a privacy
leak. However, with a small amount of outside information, an attacker could
completely compromise all past and present queries for a given user.

Assume that our attacker, in addition to monitoring the database at the cloud
provider, also has the ability to learn the original form of one query. We call this
a known-query attack. For example, if we are storing medical information the
attacker might observe someone visiting the hospital and correlate the timing of
their visit with a database query made. From this information, the attacker could
know which user a specific Hg, (SSN) is associated with. This means that any
future (or past, if they were logged) queries about this user can be individually
identified by the attacker.

4.1 Oblivious Lookups

In order to prevent this information leakage, it must be ensured that different
queries to the lookup table for the same individual are indistinguishable from



lookups to other individuals in the same group. (We are only concerned with
making it indistinguishable at the group level because the result of the query
will ultimately reveal the group anyway.)

The classic approach to hiding the pattern of access to data is the oblivious
RAM simulation [9-11]. Under oblivious RAM, a client performs a series of
accesses to a RAM that is monitored by an attacker, but the client does not reveal
which data she was interested in. A related concept is oblivious storage [12, 13],
which is an adaptation of oblivious RAM techniques to make use of the primitives
provided by cloud database providers.

As an inefficient solution to this problem, one could apply the simplest obliv-
ious transfer technique and simply download the entire lookup table and query it
locally. In this scenario, the server doesn’t know which entry a client queried be-
cause the entire lookup table is downloaded every time. The problem, of course,
is that every lookup to the table requires downloading it in its entirety. This
would make the efficiency for a single lookup O(N), where N is the number of
individuals in the lookup table. This is unacceptable.

This overhead can be greatly reduced by making use of oblivious storage
techniques. In [13], a method of oblivious storage is provided for the Amazon
S3 [14] API. Their work is applicable to a variety of database models. Below we
describe a method drawn from their work that satisfies our requirements.

4.2 Oblivious Storage Solution

As a solution to the known-query attack described above, we propose making
use of the simple, square-root, miss-intolerant oblivious storage solution found
in Goodrich et. al. [13]. In order to make use of this solution we must make the
following assumptions:

1. There are N individuals to be stored in the lookup table.

2. The lookup table will contain N + v/N items.

3. The client performing the lookup has 2v/N local storage space.

4. The client and server can exchange v/N items in one lookup. (For example,
by the client issuing a range query.)

5. The client will only lookup an item that exists in the database. (The database
lookups are miss-intolerant.)

While the details of the construction can be found in the original work, a brief
summary is provided here. First, the lookup keys themselves (here the SSNs) are
hashed using a key and a random nonce chosen by the client. Next, the values
associated with the lookup keys (in this case the GIDs) are encrypted with
a probabilistic encryption scheme which also includes a random nonce chosen
by the client. (Such as E(r||GID).) Note this usage of encryption does not
violate our original goal of storing unencrypted data, as only the lookup table is
encrypted while the original, anatomized data is not. The client also maintains
a local cache of size v/N that stores items it has recently accessed. Initially, this
cache is empty.

To perform a general lookup for a specific identifier .S, the client:



Items in Lookup|Server Storage Client Storage Amortized Ac-
Table cesses per Lookup
10,000 items 10,014 items 27 items 13 accesses
100,000 items 100,017 items 34 items 13 accesses
1,000,000 items 1,000,020 items 40 items 13 accesses

Table 1: Real Values for Oblivious Storage Applied to the Lookup Table

1. Looks for S in its local cache. If it fails to find it there, it queries for S in
the encrypted lookup table by searching for the keyed-hash value of it. The
server returns the entry.

2. Requests that the server delete S from the lookup table.

Adds S to the local cache.

4. Once VN items have been retrieved from the server, then the cache will be
full. The client then obliviously shuffles all items in the cache and the lookup
table, and also re-encrypts every item with a new random nonce. In this way
the entire table can be shuffled without the server being able to tell which
items are which.

@

As can be seen from this description, most lookups will require O(1) database
accesses. However, after the local cache is full then the client must reshuffle the
entire lookup table, which requires O(N/v/N) databases accesses. If we amortize
these accesses, then it turns out that the amortized lookup time is O(1).

There are some details missing from this description regarding what to do
when a lookup is found in the cache, exactly how to perform the oblivious lookup
using the client’s limited memory, and a proof of the performance just described.
This information can be found in the original paper.

In order to give an idea of what this performance would look like in practice,
in Table 1 we present some real numbers based on this technique.

5 Related Work

The problem of query privacy has been most deeply studied with research on Pri-
vate Information Retrieval (PIR) [5]. The goal with PIR is perfect confidentiality
- no information is revealed about the query or what it returns. This results in
high computational complexity (order of the size of the database for a single
server, although there are some better results assuming non-colluding servers [5]
or with quadratic preprocessing [15]). Our setting has somewhat different pri-
vacy constraints — it is not the privacy of the query that concerns us, but the
privacy of the subjects in the data. Information disclosure from the query is only
an issue if it leaks information violating the privacy of the data subjects. This
allows us to avoid the impractical computational constraints imposed by PIR.
Closer to our model is Paulet et al. [16], where oblivious transfer is used to
provide a limited form of k-anonymity for a query as well as to prevent the client
from accessing records it should not. Oblivious transfer is used to guarantee the



client only accesses 1 record out of k. Their technique, however, relies on the
client requesting the record of interest as well as k£ — 1 other random records.
This provides k-anonymity for a single query, but a statistical attack performed
by the server over multiple queries will be able to infer information.

Another related area is encrypted database. The seminal work in this area
by Haciglimiis et al. [17] follows an approach in that queries contain only a
hashed value at the granularity of an entire block. Theorem 1 shows that this is
sufficient to maintain the privacy constraints guaranteed by the underlying data
model (in the case of [17], connecting any information at the block level only.)
It is an interesting question how this model relates to the anonymization-based
models we target — what capabilities and background knowledge (e.g., identity
of a querier) would an adversary need to go from obtaining an encrypted block
to being able to discern something about the values in that block? However,
such a comparison is beyond the scope of this paper. Popa et al. [18] allow
querying a fully encrypted database. Their work is focused on protecting the
confidentiality of the data in the database, but the queries may be susceptible to
a weaker version of the known-query attack described in Section 4. Future work
in encrypted database, however, could focus on protecting the query as well and
may be able to achieve many of the same goals as this work.

While we make use of research in the area of oblivious RAM and oblivious
storage to hide which entry in our lookup table is being accessed, one could
ask why oblivious RAM (o-ram) is not applied for all queries to begin with.
While these techniques seem like an obvious solution to original problem in this
work, there are a few reasons it is infeasible. First, o-ram requires the data
being protected to be encrypted. As discussed in Section 1, in our scenario we
assume an unencrypted database so that a cloud provider can provide a variety
of services or allow unrestricted queries on non-sensitive data. (There do exist
some o-ram schemes that do not rely on cryptography [9]; however, the efficiency
is significantly worse than their cryptographic counterparts.) Another issue with
applying o-ram to this scenario is the performance of such systems is still very
low. Even the most efficient form of the algorithm currently known [11] has an
O((log N)?) amortized cost of with a O((log N)?) worst-case cost.

Farnan et al. [19] addresses the issue of sensitive queries in a decentralized
database by providing a way to specify privacy constraints as part of the SQL
query. Their work is primarily concerned with ensuring that the various, decen-
tralized databases involved in servicing a query not be aware of what information
is being queried from each other. This differs from our centralized model, but
still illustrates the importance of focusing on privacy leakage related to queries.

Most anonymization work sidesteps the issue of query privacy entirely. The
use case of anonymization is traditionally privacy-preserving data publishing;
the client will obtain a copy of the anonymized data, and thus queries will not
be revealed to the server. In practice, Public Use Microdata Sets [20, 21] are often
accessed through a query interface, but the server is presumed to be controlled
by the agency holding the original data, so queries that enable the server to infer
private information are only disclosing data already known to the server. With



the rise in data outsourcing, it will be interesting to study if techniques such
as the one presented in this paper will be necessary for other anonymization
use cases where the agency holding the original data outsources the hosting and
query processing to an external entity.

6 Conclusion

We have shown that given an anatomized database that meets a privacy con-
straint, the same constraint can still hold in the face of queries as long as those
queries are performed at the group level. The complication in applying this result
is to ensure that the client can determine the group a specific user is in without
querying the server to ask. To solve this problem, we include a keyed hash based
lookup table which can be used to determine which group an individual is lo-
cated in. To provide even further privacy protection in the face of a known-query
attack, oblivious storage is used to further protect the lookup table.

Future work should explore using a more robust oblivious storage technique
that better supports multiple clients, applying these techniques to a more general
data protection model such as fragmentation[22], investigating supporting any
column as a potential lookup key, and expanding support to include both update
and delete operations.
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