
Maintaining Discrimination and Fairness in Class Incremental Learning

Bowen Zhao†,‡ Xi Xiao†,‡ Guojun Gan∗ Bin Zhang‡ Shutao Xia†,‡

†Tsinghua University ‡Peng Cheng Laboratory ∗University of Connecticut

zbw18@mails.tsinghua.edu.cn, {xiaox,xiast}@sz.tsinghua.edu.cn

bin.zhang@pcl.ac.cn, guojun.gan@uconn.edu

Abstract

Deep neural networks (DNNs) have been applied in class

incremental learning, which aims to solve common real-

world problems of learning new classes continually. One

drawback of standard DNNs is that they are prone to catas-

trophic forgetting. Knowledge distillation (KD) is a com-

monly used technique to alleviate this problem. In this pa-

per, we demonstrate it can indeed help the model to out-

put more discriminative results within old classes. How-

ever, it cannot alleviate the problem that the model tends

to classify objects into new classes, causing the positive ef-

fect of KD to be hidden and limited. We observed that an

important factor causing catastrophic forgetting is that the

weights in the last fully connected (FC) layer are highly

biased in class incremental learning. In this paper, we pro-

pose a simple and effective solution motivated by the afore-

mentioned observations to address catastrophic forgetting.

Firstly, we utilize KD to maintain the discrimination within

old classes. Then, to further maintain the fairness between

old classes and new classes, we propose Weight Aligning

(WA) that corrects the biased weights in the FC layer after

normal training process. Unlike previous work, WA does

not require any extra parameters or a validation set in ad-

vance, as it utilizes the information provided by the biased

weights themselves. The proposed method is evaluated on

ImageNet-1000, ImageNet-100, and CIFAR-100 under var-

ious settings. Experimental results show that the proposed

method can effectively alleviate catastrophic forgetting and

significantly outperform state-of-the-art methods.

1. Introduction

In the past few years, Deep Neural Networks (DNNs)

have shown remarkable performance in various applica-

tions, even surpassing human performance on some tasks

[10, 11, 16]. The standard DNNs are typically trained on a

prepared dataset, where the number of categories is fixed in

advance. However, in many real-world applications, it is of-

ten required to learn new classes gradually from streaming
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Figure 1: A vanilla method for class incremental learning.

data, which is called class incremental learning.

In order to achieve this goal, a common method is to

fine tune the old model on new data by setting the number

of output nodes to be that of current classes (including old

and new classes) as shown in Figure 1. However, this naive

method suffers from a serious problem known as catas-

trophic forgetting [7, 22]. As can be seen from Figure 1,

the old data’s output probabilities corresponding to the old

classes (which are highlighted in red boxes) are relatively

low. Thus, the new model trained by the vanilla method

generally predicts objects as new classes [26, 33, 39].

To alleviate catastrophic forgetting, many studies have

been done [28]. EWC [18], SI [35], and MAS [1] attempt

to solve this problem with a parameter control strategy.

Knowledge distillation (KD) [12] is another strategy, which

has also been widely used in this field [5, 20, 40]. Besides,

some other studies [23, 26, 29, 34] follow a rehearsal strat-

egy by using a small amount of real or generated old data

in the training process. In class incremental learning tasks,

the new model is trained without access to the old data, even

with the rehearsal strategy, the training set in an incremental

step is seriously imbalanced between old classes and new

classes. Thus, there are also some studies that deal with

catastrophic forgetting from this perspective [13, 33].

In this paper, we demonstrate that knowledge distilla-

tion, the commonly used technique in this field, can in-
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Figure 2: The effect of our solution. KD helps model
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deed help the model to output more discriminative results

within old classes. However, the prediction bias towards

new classes cannot be alleviated. The trained model still

treats old classes unfairly, causing the positive effect of KD

to be hidden and limited. Then we show that the weights

in the trained model’s FC layer are heavily biased, which

can cause the model to tend to classify samples into new

classes. Based on the above, we present a simple and effec-

tive solution to mitigate catastrophic forgetting. The effect

of our solution is presented in Figure 2. Firstly, we utilize

KD to maintain the discrimination within old classes. This

helps the model to output more discriminative results within

old classes. Then, to further maintain the fairness between

old and new classes, we propose Weight Aligning (WA) that

corrects the biased weights in the FC layer after the normal

training process. This helps the model to treat old classes

and new classes fairly, and output correct predictions.

In this paper, our main contributions are the following:

(i) We investigated the actual role of KD in class incremen-

tal learning by experiments; (ii) We presented a simple and

effective solution to address catastrophic forgetting in class

incremental learning that maintains both the discrimination

via KD and the fairness via WA; (iii) Inspired by a prior ob-

servation of a non-incremental model, the proposed method

WA attempts to align the norms of the weight vectors for

new classes to those for old classes. WA makes full use

of the information contained in the trained model and cor-

rect the biased weights in the FC layer, it does not need

to reserve a validation set in advance or require any addi-

tional parameters to be tuned, but can handle class incre-

mental learning tasks well; (iv) Extensive experiments were

conducted, the results show that our method achieves better

performance than previous methods.

2. Related Work

Recently, many methods have been proposed to alleviate

the well-known problem of catastrophic forgetting [7, 22]

suffered by ordinary DNNs . In this section, we briefly dis-

cuss these methods.

Parameter Control. The approaches of this strategy

such as EWC [18], SI [35], and MAS [1] manage to con-

strain the important weights of old model when facing new

data. These methods expect small changes in the important

parameters. They differ in how to estimate the important

parameters. EWC estimates the weight importance through

the Fisher information matrix; SI uses the path integral over

the optimization trajectory; MAS utilizes the gradients of

the network output [38]. However, the importance of pa-

rameters is difficult to measure accurately in a series of tasks

[13]. These methods tend to perform poorly in class incre-

mental learning [14, 30].

Knowledge Distillation. Knowledge distillation [12]

is a widely used method, which transfers key knowledge

from a teacher model to a student model. LwF [20] uti-

lizes knowledge distillation to learn multiple tasks. A mod-

ified cross-entropy loss is used to preserve the capabilities

of old model. Then, it was applied to multi-class classi-

fication, called LwF.MC [26]. M2KD [40] introduces a

multi-model and multi-level knowledge distillation strategy,

which utilizes all previous model snapshots instead of dis-

tilling knowledge only from the last model.

Rehearsal. The rehearsal strategy alleviates catastrophic

forgetting by using some old data to make up training data.

The simplest approach is to store few old data and re-

play them in a new incremental step. This straightforward

approach has been demonstrated to be effective in many

scenarios [14, 30]. Other methods construct a generative

model, e.g., GANs [8], to generate samples for rehearsal in-

stead of storing old data directly [6, 29, 34]. However, in

these methods, an additional generative model needs to be

trained simultaneously. Therefore, they rely heavily on the

quality of the generated model.

Class Imbalance. For class incremental learning, data

of old classes is generally not available when new classes

appear. Even with the rehearsal strategy, the class imbal-

ance problem is still very serious, which is an important

factor in catastrophic forgetting [13, 33]. Though class im-

balance is an old topic and has attracted a lot of attention

[4, 15, 17], multi-class imbalance learning is still an open

problem [36]. In order to address it in class incremental

learning, BiC [33] adds a bias correction layer to correct

the model’s outputs. This method needs to keep a valida-

tion set to train the additional bias correction layer. In [13],

cosine normalization, less-forget constraint, and inter-class

separation are incorporated to mitigate the impact of class

imbalance. This method combines three specific loss terms

and other skills (e.g., class balance fine tune) to improve

performance. IL2M [3] rectifies scores of old classes by

leveraging contents from a dual memory.

These strategies can be applied in combination. For ex-

ample, both the distillation strategy and the rehearsal strat-

egy are used in iCaRL [26], which also utilizes a nearest-

exemplars-mean (NEM) classifier. EEIL [5] also exploits

these two strategies and utilizes a balanced fine tuning to al-

leviate class imbalance. In this paper, the proposed method
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is also based on these perspectives. A detailed analysis

of distillation strategy is presented. More importantly, we

deal with class imbalance in a simple and effective manner.

Without any additional model parameters, hyperparameters

or a reserved validation set, our method achieves better per-

formance than previous methods.

3. Motivation

3.1. Baseline

In this subsection, we summarize a baseline method in

class incremental learning, which utilizes both the rehearsal

strategy and the distillation strategy.

Let us first formulate class incremental learning. As-

sume there are B batches of train data {D1, · · · , DB}, with

Db = {(xb
1, y

b
1), · · · , (x

b
nb
, ybnb

)} for the bth incremental

step, where xb
i and ybi represent the input data and the target

respectively, nb is the number of samples in the set Db. In

the bth step of class incremental learning, the goal is to learn

knowledge from new data Db, while retain the previous ex-

periences learned from old data {D1, · · · , Db−1}. For each

step, the trained model is evaluated on all seen classes.

For the bth incremental step, the baseline method ini-

tializes the model with the parameters learned in the pre-

vious step and adds new output nodes (weights in the FC

layer are initialized randomly). Then, it attempts to learn

new classes and meanwhile preserve the original capabili-

ties with the new data Db and a few rehearsal data Db
old. It is

assumed that the new data Db comes from Cb new classes,

and the rehearsal data Db
old comes from Cb

old old classes,

where Cb
old =

∑b−1
k=1 C

k. The baseline method combines

the cross-entropy loss LCE with the knowledge distillation

loss LKD. The combined loss containing two terms is given

as:

L(x, y) = (1− λ)LCE(x, y) + λLKD(x), (1)

where λ is a hyper-parameter governing the balance be-

tween the two losses. We set the hyper-parameter λ to
Cb

old

Cb+Cb
old

, according to the recommendation in [33]. The

cross-entropy loss is given by:

LCE(x, y) =

Cb+Cb
old∑

c=1

−δc=y log
(
pc(x)

)
, (2)

where δc=y is the indicator function and pc(x) is the out-

put probability for the cth class. And the distillation loss is

given by:

LKD(x) =

Cb
old∑

c=1

−q̂c(x) log
(
qc(x)

)
, (3)

where q̂c(x) = eôc(x)/T

∑Cb
old

j=1 e
ôj(x)/T

, qc(x) = eoc(x)/T

∑Cb
old

j=1 e
oj(x)/T

;

T is the temperature scalar; ôc(x) is an element of ô(x),

Table 1: Error analysis on two parts of the test set. e(o),
e(n) represent the number of old samples and new samples

that are wrongly predicted, respectively. Specifically, error

analysis for old samples is given in detail: e(o, n), e(o, o)
stand for the number of old samples that are misclassified

as new classes or other old classes, respectively.

e(n) e(o) e(o, n) e(o, o)

CE 314 5,360 4,027 1,333

CE + KD 383 5,326 4,314 1,012

ô(x) =
(
ô1(x), · · · , ôCb

old
(x)

)T
, which represents the

output logits of the old model obtained in the previous

incremental step; oc(x) is an element of o(x), o(x) =(
o1(x), · · · , oCb

old
(x), oCb

old+1(x), · · · , oCb
old+Cb(x)

)T
,

which stands for the output logits of the current model.

Note the sample (x, y) is from both the new data and

the rehearsal data. Then, parameters of both the feature

extraction layers and the FC layer are updated with the

combined loss defined in Eq.(1) during training.

3.2. Effect of Knowledge Distillation

The baseline method is widely used in class incremental

learning. However, there is a lack of explicit analysis of the

role of knowledge distillation. To do this, we carry out ex-

periments on the CIFAR-100 [19] with 5 incremental steps

(B = 5) and 20 classes per step (Cb = 20, b = 1, · · · , 5).

We perform class incremental learning with two meth-

ods: (a) using the cross-entropy loss; (b) using both the

cross-entropy loss and the distillation loss. After 5 incre-

mental steps, we evaluate the two models trained by method

(a) and (b). The test set is comprised of two parts, one con-

taining 80 old classes and another 20 new classes. Error

analysis on two parts of the test set is reported in Table 1.

There are 2,000 test samples in the new part, and 8,000 sam-

ples in the old part. As can be seen, both methods have very

poor performance in term of old classes, which shows that

they have lost the ability to recognize old data.

We further analyze the type of misclassification of old

data. As shown in Table 1, the combined loss reduces the

number of old samples that are misclassified to other old

classes: 1,012 (CE + KD) vs 1,333 (CE). This is consis-

tent with the original intention of knowledge distillation,

that is, to keep the knowledge of old model. However,

the prediction bias towards new classes is not alleviated:

there are more old samples that are misclassified to new

classes: 4,314 (CE + KD) vs 4,027 (CE). Why dose the

model trained with the distillation loss become more seri-

ous towards new classes? After revisiting the distillation

loss, we find the cost of misclassifying old samples to new

classes is smaller than that to other old classes. If old sam-

ples are misclassified to new classes, the distillation loss
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Figure 3: Overview of our solution for class incremental learning. In the first phase, we train the model with the cross-

entropy loss (LCE) and the distillation loss (LKD). In the second phase, we correct the biased weights in the trained model

via Weight Aligning (WA). o and ô represent the output logits of the current model and the old model respectively, y stands

for the true label, ocorrected represents the corrected output logits by using WA.

still can be low, as {qc(x), c = 1, · · · , Cb
old} are only cal-

culated between the outputs corresponding to old classes.

While, if they are misclassified to other old classes, the dis-

tillation loss will be high, as the output probability distri-

bution is definitely not coincide with the target distribution.

As a result, the model is more inclined to misclassify old

samples into new classes.

Based on the above analysis, we argue that the positive

effect of distillation loss is maintaining the discrimination

within old classes, so that it is successful in making fewer

misclassifications within old classes. However, the model

still has a prediction bias towards new classes. The positive

effect of knowledge distillation here is limited. Besides, if

there are more than two incremental steps, i.e., B > 2, the

‘ill’ model will become a teacher model in the next incre-

mental step, then the deviation will accumulate, so that the

positive effect will be further limited.

4. Methodology

Our method consists of two phases, as shown in Figure

3. The first phase is Maintaining Discrimination. In this

phase, we train a new model on the new data and the re-

hearsal data with the combined loss. We expect to trans-

fer knowledge from the old model to the new model and

maintain discrimination within old classes with the help of

knowledge distillation.

As knowledge distillation loss still cannot help the model

to treat old classes and new classes fairly as shown in sub-

section 3.2, we design the second phase, called Maintain-

ing Fairness. In this phase, we propose a method named

Weight Aligning (WA) to correct the model trained in the

first phase. The corrected model treats old classes and new

classes fairly, and can significantly improve the overall per-

formance.

4.1. Biased Weights in the FC Layer

As shown in subsection 3.2, the model trained via the

baseline method still tends to predict test samples as new

classes. To study this problem conveniently, we express the

FC layer of model in the bth incremental step in the follow-

ing form:

o(x) = W
Tφ(x), (4)

where the (Cb
old + Cb)-dimensional vector o(x) represents

output logits of the current model; φ(·) is a feature extrac-

tion function (can be a CNN-based model usually), which

outputs d-dimensional feature vectors; W ∈ R
d×(Cb

old+Cb)

stands for the weights, which can be expressed as W =
{wc, 1 ≤ c ≤ Cb

old + Cb}, where wc is a d-dimensional

weight vector for the cth class. Note, for the convenience of

analysis, we always set the bias term in the FC layer to zero

without special instructions, which will be discussed in the

ablation study.

We carry out experiments on CIFAR-100 with 5 incre-

mental steps and 20 classes per step. After each step, we

calculate the norms of the weight vectors {wc} and plot

them in Figure 4. As shown in Figure 4 (b), (c), (d) and

(e), the norms of the weight vectors for new classes are

much larger than those for old classes. This phenomenon

is mainly caused by class imbalance [9, 21]. Due to the

output logits for the cth class is calculated as

oc(x) = w
T
c φ(x), (5)

if the norms of weight vectors for new classes are larger,

the output logits for new classes may tend to be larger in

general. As a result, the trained model may tend to predict

an input image as belonging to a new class.

However, as shown in Figure 4 (a), in the first phase, the

norms of the weight vectors are roughly equal, as this phase

does not related to class incremental learning actually. We

treat this as a priori knowledge. The phenomenon in class

incremental learning does not match this prior knowledge,

which inspires us to correct the biased weights.
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Figure 4: Norms of the weight vectors {wc}. (a) Results of the 1st step (20 base classes), which does not correspond to class

incremental learning; (b), (c), (d) and (e) are the results of the 2nd, 3rd, 4th, 5th incremental step respectively, which show

the norms of the weight vectors of new classes are much larger than those of old classes. (Best viewed in color)

4.2. Weight Aligning

Based on the above, we present a simple and effective ap-

proach, called Weight Aligning (WA), to correct the biased

weights in the FC layer. In WA, the norms of the weight

vectors of new classes are aligned to those of old classes.

Firstly, we rewrite the weights in the FC layer in the fol-

lowing form

W = (Wold,Wnew),

where

Wold = (w1,w2, · · · ,wCb
old

) ∈ R
d×Cb

old ,

Wnew = (wCb
old+1, · · · ,wCb

old+Cb) ∈ R
d×Cb

.

Then, we denote, respectively, the norms of the weight vec-

tors of old classes and new classes as follows

Normold = (||w1||, · · · , ||wCb
old

||),

Normnew = (||wCb
old+1||, · · · , ||wCb

old+Cb ||).

Based on the above norms, we normalize the weights for

new classes by

Ŵnew = γ ·Wnew, (6)

where

γ =
Mean(Normold)

Mean(Normnew)
, (7)

Mean(·) returns the mean value of elements in the vector.

In this way, the average norm of the weight vectors for new

classes becomes the same as that for old classes. Note that

we only make the average norms become equal, in other

words, within new classes (or old classes), the relative mag-

nitude of the norms of the weight vectors does not change.

Such a design is mainly used to ensure the data within new

classes (or old classes) can be separated well.

The original output logits of the model trained in the first

phase of our method can be expressed as

o(x) =

(
oold(x)
onew(x)

)
=

(
W

T
old φ(x)

W
T
new φ(x)

)
(8)

After applying WA to the weights, the corrected output log-

its are given by:

ocorrected(x) =

(
W

T
old φ(x)

Ŵ
T
new φ(x)

)

=

(
W

T
old φ(x)

γ ·WT
new φ(x)

)
=

(
oold(x)

γ · onew(x)

) (9)

As shown in Eq.(9) and Eq.(7), the final effect of aligning

the weights is to rescale the output logits of new classes by

a coefficient. The latter experiments demonstrate that our

method can effectively alleviate the prediction bias.

4.3. Restriction to the Weights

In fact, the magnitude relationship between the norms

of weight vectors for new classes and those for old classes

may not always reflect the magnitude relationship between

the output logits for old classes and those for new classes.

Suppose that the feature extraction function provides the

feature vectors, whose elements are all non-negative. This

assumption is reasonable, because in usual model architec-

tures, the learned features are activated by the ‘ReLU’ func-

tion
(
ReLU(x) = max(0, x)

)
, which returns non-negative

values. As the weight vectors {wc} usually contain both

positive and negative elements, the negative elements with

large absolute values contribute to a large norm of weight

vectors. However, they are not in favor of large output log-

its. Thus, in order to make the norm of the weight vector

wc more consistent with its corresponding output logits, we

restrict the elements of the weight vector wc to be positive.

To achieve this, weight clipping [2] can be performed after

each optimization step in training. The impact of restricting

the weights in the FC layer to be positive will be analyzed

in the ablation study.

5. Experiments

5.1. Experimental Settings

We evaluate the methods on ImageNet ILSVRC 2012

[27] and CIFAR-100 [19], which are widely used in the
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Table 2: Class incremental learning performance (top-1 accuracy %) on CIFAR-100 with 5 incremental steps and 20 classes

per step. The gains on the basis of Variation1 are also reported in parentheses. ‘Full’ is obtained with all training data for all

classes. The average results over all the incremental steps except the first step are also reported here.

#classes 20 40 60 80 100 Average

Variation1 (CE) 83.5 70.7 58.2 49.2 43.3 55.3

Variation2 (CE + WA) 83.5 74.3 (+3.6) 64.0 (+5.8) 56.9 (+7.7) 50.8 (+7.5) 61.5 (+6.2)

Variation3 (CE + KD) 83.5 72.8 (+2.1) 60.1 (+1.9) 49.9 (+0.7) 42.9 (-0.4) 56.4 (+1.1)

Variation4 (CE + KD + WNL) 83.1 72.3 (+1.6) 61.6 (+3.4) 53.1 (+3.9) 46.0 (+2.7) 58.2 (+2.9)

Ours (CE + KD + WA) 83.5 75.5 (+4.8) 68.7 (+10.5) 63.1 (+13.9) 59.2 (+15.9) 66.6 (+11.3)

Full – 70.1 –

study of class incremental learning [5, 26, 33]. ImageNet

ILSVRC 2012 is a large-scale dataset with 1,000 classes

that includes about 1.2 million images for training and

50,000 images for validation. CIFAR-100 consists 32× 32
pixel color images with 100 classes. It contains 50,000 im-

ages for training with 500 images per class, and 10,000 im-

ages for evaluating with 100 images per class.

Our method are implemented with Pytorch [24]. The

code will be made publicly available. For ImageNet, we

adopt a 18-layer ResNet [10, 11]. We use SGD to train our

model and set the batch size to 256. The learning rate starts

from 0.1 and reduces to 1/10 of the previous learning rate

after 30, 60, 80 and 90 epochs (100 epochs in total). For

CIFAR-100, we use a 32-layer ResNet. We also train the

model with SGD and set the batch size to 32. The learn-

ing rate starts from 0.1 and reduces to 1/10 of the previous

learning rate after 100, 150 and 200 epochs (250 epochs in

total). We set the temperature scalar T to 2. For data aug-

mentation, random cropping, horizontal flip and normaliza-

tion are employed to augment training images.

5.2. Effect of Weight Aligning

To analyze the effect of weight aligning, we perform

experiments on CIFAR-100 with 5 incremental steps and

20 classes per step. We first compare our method with

three variations in the following: Variation1, training with

the cross-entropy loss; Variation2, training with the cross-

entropy loss, and correcting the model via WA; Variation3,

training with the combined loss; Ours, training with the

combined loss and correcting the model via WA.

Table 2 summarizes the results of these experiments.

Variation1 is the worst one, as it only uses the cross-entropy

loss. Variation3 adds the distillation loss on the basis of

Variation1 to mitigate catastrophic forgetting. However,

Variation3 is only a little better than Variation1. Variation2

uses WA to correct the model based on Variation1, and sig-

nificantly improves performance (the gain in term of the

overall performance at the end of class incremental learning

is 7.5%). From the results of ‘Ours’, WA also gets signifi-

cant improvements (more than 16% at the end of class incre-

mental learning over Variation3). These results demonstrate

that WA is quite effective for class incremental learning.

It is worth noting that the gain brought by the combina-

tion of KD and WA is greater than the sum of the gains

from each component used separately, e.g., for the aver-

age results, the gain of the combination (Ours) is 11.3%,

and the gains of WA (Variation2) and KD (Variation3) used

separately are 6.2% and 1.1% respectively. As shown in

subsection 3.2, the positive effect of KD is limited when

used alone. KD helps the model to output more discrim-

inative results within old classes, however, these outputs

are overwhelmed by the superior outputs of new classes.

For example, as shown in Figure 2, with the help of KD,

the output probability for ‘cat’ becomes higher than that

for ‘fish’, but still lower than that for new class ‘lion’ or

‘dog’. In such a scenario, the positive effect of KD is hid-

den. As our method maintains not only the discrimination

within old classes but also the fairness between old classes

and new classes, it strengthens the positive effect of KD.

On the other hand, the corrected outputs via WA are more

accurate with the help of KD. Therefore, our method cre-

ates the “one plus one greater than two” effect and achieves

significant improvements.

The confusion matrices of different methods are pre-

sented in Figure 5. From Figure 5 (a) and (c), we see that

KD leads to fewer misclassifications between old classes,

however, both Variation1 and Variation3 tend to predict

objects as new classes. With the help of WA, Variation2

and our method make the model treat new classes and old

classes fairly as shown in Figure 5 (b) and (d). And our

method achieves better performance with the help of KD.

These results intuitively show that the proposed method

can effectively maintain discrimination and fairness in the

model predictions.

The proposed method weight aligning is a post-

processing technique. It is interesting to see the effect of

adding a normalization layer on the weights (in the FC

layer) directly, like the operation in Modified Softmax Loss

[21] and NormFace [31], so that the weights of all classes

can have a unit norm. We implement this method as Varia-

13213



�� �� �� �� ���
����

����
�	��

��

��

��

��

���

��
��

�

�	
��

(a) Variation1 (CE)

�� �� �� �� ���
����

����
�	��

��

��

��

��

���

��
��

�

�	
��

(b) Variation2 (CE + WA)

�� �� �� �� ���
����

����
�	��

��

��

��

��

���

��
��

�

�	
��

(c) Variation3 (CE + KD)

�� �� �� �� ���
����

����
�	��

��

��

��

��

���

��
��

�

�	
��

(d) Ours (CE + KD + WA)

Figure 5: Confusion matrices of different approaches.

tion4: training with the combined loss and a weight normal-

ization layer (WNL). The results are also provided in Table

2. Compared with Variation1 and Variation2, this method

does not bring about a significant improvement. Actually,

the FC layer plays an important role in the visual repre-

sentation transfer [37]. If the weights in the FC layer are

strictly limited during the training process, in order to adapt

to new data, the bias in the feature extraction layers will

become more serious. However, the bias in the feature ex-

traction layers is harder to correct than that in the weights

of FC layer, as the parameters of feature extraction layers

are shared by all classes and the weights of FC layer are

not shared between classes. Therefore, it is better to take a

post-processing approach, such as WA. In addition, we have

tested the method that normalizing the weights of all classes

to have a unit norm after the usual training process. While

this approach is inferior to WA. As mentioned in subsection

4.2, within the new classes (or the old classes), the rela-

tive magnitude of the norms of the weight vectors does not

change in WA, such a design can maintain the differences

and ensure that the classes can be separated well.

5.3. Comparison to Other Methods

We compare our method with several competitive or rep-

resentative methods, including LwF.MC [20, 26], iCaRL

[26], EEIL [5], BiC [33], IL2M [3], RPS [25]. Experiments

are performed on ImageNet and CIFAR100.

Evaluation on ImageNet. We conduct two experiments

on this dataset. In the first one, 100 classes (ImageNet-

100) are selected randomly and split into 10 incremental

batches with 10 classes per batch; In the second one, we

split the 1000 classes (ImageNet-1000) into 10 incremental

batches with 100 classes per batch. For the sake of fair-

Table 3: Class incremental learning performance (top-5 ac-

curacy %) on ImageNet (1,000 classes and 100 classes) with

10 incremental steps. The performance at the last incremen-

tal step and the average results over all the incremental steps

except the first step are reported here. The results of the

compared methods are reported in the original papers.

#classes 1000 100

Last Average Last Average

LwF.MC [20, 26] 24.3 42.5 36.6 60.7

iCaRL [26] 44.0 60.8 63.8 81.8

EEIL [5] 52.3 69.4 80.2 89.2

BiC [33] 73.2 82.9 84.4 89.8

IL2M [3] – 78.3 – –

RPS [25] – – 74.0 86.6

Ours 81.1 85.7 84.1 90.2

Full 89.1 – 95.1 –

ness, we use the same set of classes in ImageNet-100 and

ImageNet-1000 as the previous work [33]. We store 2,000

images for old classes in ImageNet-100 experiments. And

in ImageNet-1000 experiments, we store 20,000 images for

old classes as the same as the previous work. We select re-

hearsal exemplars based on herding selection [32] which is

also the same as the previous work. More classes have been

seen, fewer images can be retained per class. As a result,

the problem of class imbalance becomes more serious.

The class incremental learning results (top-5 accuracy

%) on ImageNet-100 and Imagenet-1000 are shown in Ta-

ble 3. We report the performance at the last incremental

step and the average results over all the incremental steps

except the first step here (as the first step does not related

to class incremental learning actually). We also provide the

detailed results of all incremental steps and the top-1 results

in the supplementary material. As can be seen from these ta-

bles, the proposed method outperforms the compared meth-

ods by a large margin, especially on the large scale dataset

ImageNet-1000. The overall performance at the end of class

incremental learning is improved by more than 28% com-

pared to EEIL on ImageNet-1000. In contrast to the state-

of-the-art method BiC, the proposed method also achieves

better results (surpasses it by 7.9% at the end of class incre-

mental learning on ImageNet-1000). Though Eq.(9) is simi-

lar in form to the linear model in BiC, the proposed method

does not need to reserve a validation set which is used in

BiC to learn additional parameters. All of the rehearsal data

can be utilized to learn a better feature extractor, so that the

proposed method can outperform BiC.

Overall, these results indicate that the proposed method

is effective to handle catastrophic forgetting in class incre-

mental learning. Our approach not only achieves better per-
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Table 4: Class incremental learning performance (top-1 ac-

curacy %) on CIFAR100 with 2, 5, 10 and 20 incremental

steps. The average results over all the incremental steps ex-

cept the first step are reported.

#incremental steps 2 5 10 20

LwF.MC [20, 26] 52.6 47.1 39.7 29.7

iCaRL [26] 62.0 63.3 61.6 59.7

EEIL [5] 60.8 63.7 63.6 63.4

BiC [33] 64.9 65.1 63.5 62.1

Ours 65.1 66.6 64.5 62.6

Full 70.1

formance but also has a simpler structure.

Evaluation on CIFAR-100. CIFAR-100 has 100 classes,

which are divided into 2, 5, 10 and 20 incremental batches

respectively in our experiments. The same set of classes in

CIFAR-100 are used for all of the compared methods. In

CIFAR-100 experiments, we store 2,000 samples in total as

the same as previous work.

The average results over all the incremental steps ex-

cept the first step are shown in Table 4. Detailed results

of all incremental steps are reported in the supplementary

material. On CIFAR-100, these methods achieve simi-

lar results, which is mainly because this dataset is simple

[33]. Consistent with the results on ImageNet, the proposed

method achieves better results compared to state-of-the-art

approaches on CIFAR-100 under different settings.

5.4. Ablation Study

In this subsection, we analyze the impact of the compo-

nents of our method. More analysis can be found in the

supplementary material.

Impact of Restriction to the Weights. We studied the im-

pact of restricting the weights in the FC layer to be positive

on ImageNet-100 with 10 incremental steps. As shown in

Figure 6 (a), our method obtained better performance with

restriction to the weights. As discussed in subsection 4.3,

this is mainly due to the norms of the weight vectors be-

come more consistent with their corresponding output logits

when restricting the weights to be positive, so that the scale

factor γ obtained by Eq.(7) is more accurate to suppress the

output logits of new classes.

Impact of Norm Selection. We investigated the impact of

different norm used in the proposed method. We compare

two norms: 1-norm and 2-norm. Figure 6 (b) shows the

results. 1-norm and 2-norm achieve similar results, which

indicates our method is not sensitive to norm selection.

Impact of the Bias Term in the FC Layer. We studied the

impact of the bias term. With the bias term, the proposed

method still calculates the scale factor γ by Eq.(7) based

on the weight information and applies it to the output logits
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(a) impact of restriction to weights
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(c) impact of the bias term
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(d) impact of exemplar selection

Figure 6: Class incremental learning performance (top-5 ac-

curacy %) on ImageNet-100 for ablation study.

for new classes. In other words, the scalar factor γ obtained

from weight information is used in both the weight term and

the bias term in the FC layer. We compare our method with

or without using the bias term in the FC layer. Figure 6 (c)

shows the results. We see that the bias term in the FC layer

can only influence the performance slightly.

Impact of Exemplar Selection Strategies. We investi-

gated the impact of exemplar selection strategies. Random

selection and herding selection are considered. Figure 6 (d)

shows the results. We see that the exemplar selection strate-

gies can only influence the performance slightly.

6. Conclusions

The goal of class incremental learning is to obtain de-

sirable results on new data, at the same time, retain the

previous learned experiences. In this paper, we investi-

gated catastrophic forgetting in class incremental learning.

We demonstrated the actual role of knowledge distillation

in this problem and the heavily biased weights in the FC

layer. We proposed a simple and effective solution to ad-

dress catastrophic forgetting that maintains the discrimina-

tion via knowledge distillation and maintains the fairness

via a method called weight aligning. The experimental re-

sults on ImageNet-1000, ImageNet-100, and CIFAR-100

show that the proposed method achieves better performance

than the previous methods. This work may suggest that

there are many useful information hidden in the trained

model that is worth exploring.
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