
 Open access Book Chapter DOI:10.1007/11830924_46

Maintaining external memory efficient hash tables — Source link

Philipp Woelfel

Institutions: University of Toronto

Published on: 28 Aug 2006 - International Workshop and International Workshop on Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques

Topics: Double hashing, Hash function, Dynamic perfect hashing, Hash table and Linear hashing

Related papers:

 Indexing internal memory with minimal perfect hash functions

 A Dynamic Load-Balanced Hashing Scheme for Networking Applications

 Design of a near-minimal dynamic perfect hash function on embedded device

 Minimal perfect hashing: A competitive method for indexing internal memory

 On the Insertion Time of Cuckoo Hashing

Share this paper:

View more about this paper here: https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-
4yhek5ey4e

https://typeset.io/
https://www.doi.org/10.1007/11830924_46
https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-4yhek5ey4e
https://typeset.io/authors/philipp-woelfel-2n55qk6m4o
https://typeset.io/institutions/university-of-toronto-3dwwuuvf
https://typeset.io/conferences/international-workshop-and-international-workshop-on-1maptp3i
https://typeset.io/topics/double-hashing-syqz3559
https://typeset.io/topics/hash-function-1rfatsyq
https://typeset.io/topics/dynamic-perfect-hashing-1134wy98
https://typeset.io/topics/hash-table-1aexay2t
https://typeset.io/topics/linear-hashing-dl5mu6do
https://typeset.io/papers/indexing-internal-memory-with-minimal-perfect-hash-functions-4p618p6tek
https://typeset.io/papers/a-dynamic-load-balanced-hashing-scheme-for-networking-m67w2e3b3r
https://typeset.io/papers/design-of-a-near-minimal-dynamic-perfect-hash-function-on-2eath1m707
https://typeset.io/papers/minimal-perfect-hashing-a-competitive-method-for-indexing-2g0ja6l3s5
https://typeset.io/papers/on-the-insertion-time-of-cuckoo-hashing-5b2j9ed2vb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-4yhek5ey4e
https://twitter.com/intent/tweet?text=Maintaining%20external%20memory%20efficient%20hash%20tables&url=https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-4yhek5ey4e
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-4yhek5ey4e
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-4yhek5ey4e
https://typeset.io/papers/maintaining-external-memory-efficient-hash-tables-4yhek5ey4e

Maintaining External Memory
Efficient Hash Tables

(Extended Abstract)⋆

Philipp Woelfel

Univ. of Toronto, Dept. of Computer Science, Toronto, ON M5S3G4.
philipp.woelfel@utoronto.ca

Abstract. In typical applications of hashing algorithms the amount of
data to be stored is often too large to fit into internal memory. In this case
it is desirable to find the data with as few as possible non-consecutive or
at least non-oblivious probes into external memory. Extending a static
scheme of Pagh [11] we obtain new randomized algorithms for maintain-
ing hash tables, where a hash function can be evaluated in constant time
and by probing only one external memory cell or O(1) consecutive ex-
ternal memory cells. We describe a dynamic version of Pagh’s hashing
scheme achieving 100% table utilization but requiring (2 + ǫ) · n log n

space for the hash function encoding as well as (3 + ǫ) · n log n space for
the auxiliary data structure. Update operations are possible in expected
constant amortized time. Then we show how to reduce the space for the
hash function encoding and the auxiliary data structure to O(n log log n).
We achieve 100% utilization in the static version (and thus a minimal
perfect hash function) and 1 − ǫ utilization in the dynamic case.

1 Introduction

In this paper, we devise randomized algorithms for efficiently maintaining hash
tables under circumstances typical for applications dealing with massive data.
Consider a set S of n keys from a finite universe U and assume that each key
x ∈ S has some data Dx associated with it. A static dictionary for S supports
a query operation which returns the data Dx for a given key x. A dynamic
dictionary also support update operations which allow to insert new data into
the dictionary or to remove data from it. For many applications it is especially
important to be able to retrieve the data Dx as quickly as possible (examples
are databases used by web-servers, where a huge amount of queries have to be
answered in short time). A typical solution is to maintain a hash function h
mapping each key x ∈ S to an entry of a hash table T . Such a hash function h
is called perfect for S if it is injective on S. If h has range [n] := {0, . . . , n − 1},
n = |S|, then h is called minimal perfect. If h is perfect on S, the data associated
with each key in S can be stored in T [h(x)]. We call such an implementation of
a dictionary a hash table implementation based on perfect hashing. An algorithm

⋆ The research was supported by DFG grant Wo 1232/1-1.

dynamically maintaining a perfect hash function is called stable if h(x) remains
fixed for the duration that x is in S.

The following assumptions are typical for many dictionary and hashing ap-
plications: Firstly, efficiency is much more a concern for lookups than for update
operations. For example, in database backends of webservers a huge number of
queries have to be answered momentarily while updates of the database only
rarely occur or sometimes even can be delayed to times of low load.

Secondly, the data set is so massive that even the description of the hash
function does not fit into the internal memory. For example, the encoding of a
minimal perfect hash function requires at least Ω(n)+log log |U |−O(log n) bits,
assuming that |U | ≥ n2+ǫ [8]. In this case, just in order to evaluate the hash
function we have to access external memory. But then usually the number of
non-consecutive accesses to external memory dominate the evaluation time of
our hash function.

Finally, the data Dx associated with a key x requires much more space than
its key x. Therefore it is especially important that a hash table implementation
achieves a high utilization, since we have to reserve a fixed amount of space for
each table entry (if we want to avoid another level of indirection). Assuming that
the hash table is implemented by an extendible array T [0], T [1], . . . , its utilization
is given as |S|/(max {h(S)}+ 1). In particular, even a small constant utilization
seems infeasible, and a utilization as close to 100% as possible should be achieved.
A minimal perfect hash function for the set S achieves 100% utilization.

Although general dictionary implementations (not necessarily based on per-
fect hashing) can be used to maintain minimal perfect hash functions by associ-
ating each key x ∈ S with a unique value from [n], such solutions require another
level of indirection.

Previous and Related Work. Throughout this paper we assume that |U | =
nO(1). It is well-known how to reduce the size of the universe by choosing a
random hash function ζ : U → [nO(1)] such that ζ is injective on S with high
probability. Moreover, we assume that the size of the internal memory is bounded
by nǫ, ǫ < 1.

Fredman, Komlós, and Szemerédi [9] were the first to devise an algorithm
which constructs a perfect hash function (with O(n log n) bits) in expected linear
time such that the hash function can be evaluated in constant time. The utiliza-
tion is less than 0.2 in the case that only consecutive probes into external mem-
ory are allowed for hash function evaluation. Dietzfelbinger, Karlin, Mehlhorn,
Meyer auf der Heide, Rohnert, and Tarjan [5] have devised a dynamic version
of that scheme with essentially the same parameters, but which also supports
updates in expected amortized constant time. Later improvements have either
focused on reducing the space requirements or on obtaining a constant update
time even with high probability. All schemes which do in fact achieve a constant
update time with high probability are mostly of complexity theoretical interest
(as opposed to practical). Demaine, Meyer auf der Heide, Pagh, and Patrǎscu [1]
show an upper space bound of essentially O(n log log(u/n)+n log n−n log t) for
maintaining a perfect hash function with range [n+t] and O(n log log(u/n)+n·r)

for a dynamic dictionary where the data associated with each key comprises r
bits. Update operations are supported with high probability in constant time
and the algorithm is stable. For the static case, Hagerup and Tholey [10] hold
the space record: They show how to construct a minimal perfect hash function
in expected O(n + log log |U |) time such that its encoding requires only almost
optimal (1 + o(1))(n · log e + log log |U |) space. Multiple non-oblivious probes
into external memory are required for lookups in these space efficient dynamic
or static schemes.

Dictionary algorithms such as Cuckoo-Hashing [12] and its extensions [7, 6]
also allow the retrieval of data with few non-consecutive probes into external
memory. Especially space and external memory efficient is the Cuckoo-Hashing
variant of Dietzfelbinger and Weidling [6], where two hash functions h1 and h2

and two hash tables T1 and T2 are used. A table position consists of d consecutive
memory cells, and the data Dx is stored in one of the 2 · d memory cells from
T1[h1(x)] and T2[h2(x)]. For d ≥ 90 · ln(1/ǫ) a utilization of 1− ǫ can be achieved
and clearly the data can be retrieved with only two non-consecutive probes into
external memory. Due to the large constant for d, it may be disadvantageous
if the data associated with the keys is very large (now the time for finding Dx

depends on the size of the data). Moreover, such dictionary solutions do not
provide perfect hash functions without an additional level of indirection.

Pagh [11] showed how to construct a minimal perfect hash function in ex-
pected linear time which can be very efficiently evaluated with very simple arith-
metics (essentially one or two multiplications) and by probing only one word from
external memory. The hash function itself can be encoded in (2 + ǫ) · n · log n
bits. Dietzfelbinger and Hagerup [3] improved Pagh’s scheme so that the result-
ing hash function can be encoded with (1 + ǫ) ·n · log n bits. Both schemes yield
a static dictionary with 100% utilization.

In this paper we devise a dynamic variant of Pagh’s scheme. Maintaining
100% utilization and using exactly the same hash functions, we show how to
perform updates in expected amortized constant time. I.e., the hash functions
can be evaluated very efficiently in constant time and with only one probe into
external memory. In addition to the (2+ǫ) ·n · log n bits for encoding of the hash
function we also need an auxiliary data structure comprising (3 + ǫ) · n · log n
bit. However, this auxiliary data structure is only needed for update operations
and not for lookups. For many applications updates occur infrequently, e.g., at
night time, so that the auxiliary data structure may be swapped out (or it can
be removed and later be rebuild from scratch in expected linear time if needed).
We believe that this scheme is quite practical if the main focus is on lookup
performance, although the algorithm for updates is not very simple.

In Section 3 we investigate how much the space for the hash function de-
scription can be reduced under the constraint that evaluation requires only con-
secutive probes into external memory. We show that it is possible to reduce the
encoding size of the hash functions and the space for the auxiliary data structure
to O(n log log n) bits. In the dynamic case we obtain a utilization of 1 − ǫ, for
arbitrary small ǫ > 0. In the static case we still achieve 100% utilization, hence

we even have a minimal perfect hash function. For both implicit versions the
corresponding hash functions can be evaluated in constant time and by probing
O(1) consecutive words from external memory. (Here O(1) is a very small con-
stant, e.g. 4). The hash functions itself are a little bit more complicated – their
evaluation times are dominated by the arithmetics involved for evaluating two
polynomials of small constant degree.

Our dynamic hashing algorithms are not stable. For updates we have to
assume that the key x can be retrieved from the hash table entry T [h(x)]. But
the hash function description itself is independent from the table contents.

2 The Displacement Scheme

As explained before, we assume throughout the paper that U = [nO(1)]. More-
over, we assume a word-RAM model where every key in U fits into a memory
word (i.e., we have a word-size of Ω(log n)).

Let Ha be a family of hash functions h : U → [a]. Ha is c-universal
if for any x, x′ ∈ U , x 6= x′ and for randomly chosen h ∈ Ha, it holds
Prob

(

h(x) = h(x′)
)

≤ c/a. If Ha is c-universal for some arbitrary constant c,
then we call it approximately universal. Ha is uniform if h(x) is uniformly dis-
tributed over [a] for all x ∈ U .

Examples of efficient 1- and 2-universal and uniform hash families can be
found in [2, 4, 13]. For our purposes it suffices to know that most hash functions
from c-universal hash families can be evaluated in constant time with a few
arithmetic operations (usually dominated by one multiplication and a division)
and that they can be encoded in O(log |U |) or even O(log n + log log |U |) bits.

Pagh [11] showed how to construct minimal perfect hash functions hg,f,d

defined in the following. Let a and b be positive integers and suppose that
S is a set of n keys from the universe U . Let f : U → [a], g : U → [b]
and d = (d0, . . . , db−1) ∈ [a]b. Then hg,f,d : U → [a] is defined by x 7→
(

f(x) + dg(x)(x)
)

mod a.
One can visualize the hash function hf,g,d by a (b× a)-matrix M , where the

ith row, i ∈ [b], is associated with the displacement value di. In order to evaluate
h for an element x ∈ U , one first maps x into the matrix element in row g(x) and
column f(x). Then the row is rotated cyclically dg(x) steps to the right, where
dg(x) is the displacement associated with this row. We call two row displacements
di, dj , i 6= j, compatible (with respect to g, f and S), if for all x ∈ g−1(i) ∩ S
and x′ ∈ g−1(j)∩S it holds f(x)+ di 6= f(x′)+ dj . Clearly, hf,g,d is injective on
S if and only if all row displacements are pairwise compatible. According to the
informal description above, S ∩ g−1(i) is the set of elements which are mapped
into the ith row of the matrix M . We call

∣

∣S ∩ g−1(i)
∣

∣ the weight of row i. In
order to construct the minimal perfect hash functions, Pagh used the following
notion.

Definition 1. Let S ⊆ U and f : U → [a], g : U → [b], and wi =
∣

∣g−1(i) ∩ S
∣

∣

for i ∈ [b]. The pair (f, g) is δ-nice for S if the function x 7→ (f(x), g(x)) is
injective on S, and

∑

i,wi>1 w2
i ≤ δ · a.

Note that what we call δ-nice was originally denoted as r-good, where r = δ ·a/n;
we chose a different notion because it is more convenient for our purposes. Pagh
has shown that a pair (f, g) being δ-nice for a set S, δ < 1, suffices to find
a displacement vector d such that hf,g,d is injective on S. On the other hand,
δ-nice hash functions can be found easily using universal hash families.

Lemma 1 (Pagh [11]). Let Ha be cf -universal and Hb be cg-universal. If
2 · cg · n2/(a · b) ≤ δ ≤ 4/cf , then for any n-element set S ⊆ U , the proba-
bility that a randomly chosen pair (f, g) ∈ Ha ×Hb is δ-nice for S is more than
(

1 − δ · cf/4
)

·
(

1 − 2 · cg · n2/(a · δ · b)
)

.

For instance, let a = n and b = (2 + ǫb)n, ǫb > 0. If Ha is 4-universal and Hb

is 1-universal, then there exists a δ < 1 such that (f, g) is δ-nice with positive
constant probability. We refer the reader to [11] for more details on suitable
hash families, or on constructions where f(x) and g(x) can be determined with
essentially one multiplication if b is chosen only slightly larger.

Consider again the matrix M as described above. If (f, g) is δ-nice for S,
all elements in S are mapped to disjoint matrix elements (for any displacement
vector d). Pagh’s algorithm finds in expected linear time a vector d such that
all displacements are compatible. The row displacements are chosen randomly
one after the other in an order with decreasing row weights. This order and the
δ-niceness guarantee that a compatible displacement can be found for the next
row to be processed. Clearly, such an ordering of the rows cannot be used for a
dynamic algorithm. Our idea is the following: If an insertion yields incompatible
displacements, then we randomly choose one such displacement anew. This new
displacement may now be incompatible with other displacements, but after a
constant number of tries, the total number of elements in rows with weight
larger than one and with incompatible displacements decreases by a constant
factor. Rows with weight are taken care of in the end – for them new compatible
displacements can be found easily by keeping track of empty table cells.

Consider a hash table T [0], . . . , T [N − 1] for a set S ⊆ U of at most N
elements. We first consider a fixed value of N and later show how to adapt if
|S| exceeds N . We store a perfect hash function h := hf,g,d : U → [N] and an
auxiliary data structure. Every element x ∈ S is stored in T [h(x)]. If |S| = N ,
then h is minimal perfect. Since f and g can be stored in O(log n) bits, one
probe into external memory (to retrieve dg(x)) suffices for computing h(x).

The functions f and g as well as the displacements can be chosen from the
same sets Ha and Hb as in the static case. Fix some δ < 1 such that (f, g) is
δ-nice with constant probability. Throughout the description of the algorithm
let wi =

∣

∣S ∩ g−1(i)
∣

∣, if S and g are clear from the context.
For insertions and deletions we need an auxiliary data structure consisting of

b linked lists L0, . . . , Lb−1. The list Li contains all table positions h(x) for which
there is an element x ∈ S ∩ g−1(i) (i.e., the columns j in the matrix to which
all elements of the row i are mapped to). We don’t need to store row weights wi

since we can compute them by searching through the lists Li, but we store the
sum W =

∑

i∈[b] wi
2. Finally, we use a data structure for storing all empty table

cells, i.e., the indices j such that T [j] = ∞. We use a function free pos which
returns in expected constant time the index of an arbitrary empty table cell (if
there is one). The implementation of such a data structure comprising ǫ ·n · log n
space is easy – a description can be found in the full version of the paper.

Update Operations. In order to delete an element it suffices to set T [h(x)]
to ∞ and to remove x from the list Li, where i = g(x). This requires O(wi)
time. Since g is chosen from an approximately universal hash family Hb, the
expectation of wg(x) is O

(

n/b
)

= O(1).
Assume that hf,g,d is injective on S and that we want to insert a new element

x 6∈ S. Let S′ = S∪{x}. Using the list Li, it is easy to update the sum of squared
row weights to W ′ = W − w2

i + (wi + 1)2 if wi > 0 and W ′ = W if wi = 0.
Using this list we can also check whether (f, g) is still δ-nice for S′. All this can
be done in O(wi + 1) time. If (f, g) is not δ-nice for S′, we have to perform a
global rehash, i.e., we have to remove all keys and insert them again with a new
randomly chosen pair (f, g).

Now assume that (f, g) is δ-nice for S′. If T [j] is empty for j = hg,f,d(x), we
simply store x in T [j] and insert j into the lists Li. If T [j] is already occupied,
then we have to determine new displacement values for some rows. For that we
maintain a set Q of possibly bad rows such that all rows in [b]−Q are compatible.
With each row i ∈ Q we also store the set Vi := S′ ∩ g−1(i) of all keys which
are hashed to that row. Consequently we remove every element x ∈ Vi from the
hash table at the time we insert it in Vi. Initially, Q contains only row i and we
collect the set Vi with the help of the list Li. Let w(Q) =

∑

i∈Q,wi>1 wi.
We repeat the following procedure until w(Q) = 0. First we pick an arbitrary

row i in Q where wi > 1 and choose a new displacement d′i. We now define a
condition in which we accept this new displacement.

Definition 2. Fix a set S ⊆ U and a hash function hf,g,d and let d′i be a new
displacement of row i ∈ Q. The set J(d′i, i) contains the indices of all rows
j ∈ [b]−Q such that row i and row j are not compatible. The displacement d′i is
acceptable if

∑

j∈J(d′

i
),wj>1 wj < wi · (1 + δ)/2.

Clearly, we can determine the set J(d′i, i) in time O(wi). By seeking (at least
partly) through the lists Lj with j ∈ J(d′i, i) we can also check in time O(wi)
whether d′i is acceptable. Proposition 1 below states that with constant prob-
ability a randomly chosen displacement is acceptable. Hence, in expected time
O(wi) we can find an acceptable new displacement d′i.

Then we change Q to Q′ = J(d′i, i)∪Q−{i}, create the sets Vj , j ∈ J(d′i, i),
and accordingly remove the elements in Vj from the hash table. Finally we store
all elements x ∈ Vi at their designted places T [hf,g,d′(x)] (since row i is now
compatible with all rows not in Q′, these table positions are not occupied).

Repeating this procedure eventually leads to a set Q∗ with w(Q∗) = 0 (see the
time analysis below). Hence, Q∗ consists only of possibly bad rows with weight
1. For these rows it is easy to find new compatible displacement values using the
function free pos. After that, the resulting hash function hf,g,d∗ is injective on
S′ and all elements in S′ are stored in their designated table positions.

Time Analysis. We first consider the case that the hash function pair (f, g) is
still δ-nice for S′ and that no global rehash is necessary. The following proposition
shows that we can quickly find an acceptable displacement for each row. The
(straight forward) proof has to be omitted due to space restrictions.

Proposition 1. Let (f, g) ∈ Ha×Hb be δ-nice, δ < 1, for some n-element set S.
With positive constant probability a randomly chosen displacement is acceptable.

Hence, the total expected time for finding an acceptable displacement for a row
i ∈ Q is O(wi). Then in expected time O(wi) we can decrease the value w(Q) to a
value of w(Q′) ≤ w(Q)−wi+wi·(1+δ)/2 = w(Q)−Ω(wi) (using δ < 1). It follows
from the linearity of expectation that in order to obtain a set Q∗ with w(Q∗) = 0
expected time O

(

w(Q)
)

suffices. Now recall that we started with Q = {i}, where
i = g(x) and where x was the element we inserted. Hence, the total expected
time until the resulting set Q∗ contains only rows with weight 1 is O(wi). Since
we can collect only O(t) rows with weight 1 in time t, the total number of rows in
Q∗ is also O(t). By the assumption that the operation free pos can be executed
in expected constant time, we can redisplace these rows in expected time O(t).
To conclude, the total expected time for inserting an element x is O(wg(x)). As

argued in the section about deletions, E
(

wg(x)

)

= O(1).
We have shown so far that we obtain an expected constant insertion time as

long as (f, g) remains δ-nice for the resulting set. By Lemma 1, a simple calcu-
lation shows that a randomly chosen set pair (f, g) is with constant probability
δ-nice even for the ⌊αN⌋ sets obtained from some set S of size N during a se-
quence of ⌊αN⌋ update operations, for some sufficiently small α > 0. Therefore,
during ⌊α · N⌋ update operations we expect only a constant number of global
rehashes and thus the expectation of the amortized update time is constant.

A Dynamic Hash Table with 100% Utilization. So far we can insert and
delete elements from a hash table of size N , as long as |S| ≤ N . We now sketch
an algorithm which maintains a dynamic hash table T where all n elements in
S are stored in the table positions T [0], . . . , T [n − 1] at all times. A complete
description will be given in the full version of the paper.

The problem is mainly with deletions. If an arbitrary element is deleted, a
“hole” is left behind in the middle of the hash table, say at position i. But in
order to store all remaining n−1 elements in the table positions T [0], . . . , T [n−2],
we have to move the element x from T [n − 1] to some other position. Since it
is not clear how to bound the weight of the row g(x) of that element, we don’t
know how to obtain an expected constant deletion time. The idea is now to
ensure that the last γ · n entries of the table, γ > 0, are filled with elements
from rows with weight one. Then we can easily choose a new displacement for
the corresponding rows, so that the element in T [n−1] moves into the hole T [i].

We now interpret the displacements of the hash function hf,g,d differently:
Let i = g(x). Then hf,g,d(x) = (f(x) + di) mod a if di < a, and hf,g,d(x) = di if
di ≥ a. This way, the range of hf,g,d is not limited to [a].

Consider a situation right before a rehash. Let S be the n-element set cur-
rently stored and let Sk, k = 0, 1, 2, . . . be the set obtained after the next k

operations (i.e., S0 = S). We let a = (1 − γ)n for some sufficiently small γ > 0,
and b, Ha, and Hb as before. Now we have to perform a global rehash also if the
size of the set S drops below a.

In order to insert a new element x in a set S of size n ≥ a, we redisplace
rows exactly as before, but using only displacement values di < a for rows with
weight wi > 1. As before we end up with a set Q∗ with w(Q∗) = 0, i.e., wi = 1
for all rows i ∈ Q∗. Now for one of the remaining rows in Q∗ we choose the
displacement value di such that the unique element x∗ in that row obtains a
hash value of n and we store x∗ in T [n]. All other displacement values for rows
with weight 1 can be determined using free pos as before.

The insertion procedure guarantees that displacement values di ≥ a are only
used for rows with weight wi = 1. Hence, as long as n = |S| > a, the element x∗

stored in T [n − 1] belongs to a row i∗ with weight wi∗ = 1. Hence, in order to
delete an element x from S, |S| > a, we simply change di∗ to a value such that
x∗ moves into the table cell T [hf,g,d(x)], formerly occupied by x.

Theorem 1. For any ǫ > 0 a dynamic hash table with 100% utilization can be
maintained with constant amortized update time and (2 + ǫ)n log n space for the
hash function encoding and (3 + ǫ)n log n space for the auxiliary data structure.
The hash function can be evaluated in constant time and with only one probe
into external memory.

Corrupted Hash Table Cells. For the following sections we need to consider
a variant of the above scheme, which may also be of independent interest. Con-
sider a hash table T [0], . . . , T [n + k − 1] with k corrupted cells. If a cell T [i]
is corrupted, then none of the keys in S may be stored there, but we assume
that we can check in constant time whether a cell T [i] is corrupted or not. Let
I ⊆ {0, . . . , n + k − 1}, |I| = k, be the set of indices of corrupted table cells. For
k = o(

√
n), we can modify our data structure in such a way that an n-element

set S is stored in the hash table T without using any corrupted cells. If a new
element is inserted we use the same algorithm as above, except that when we
choose a new displacement d′i for a row i we have to ensure that none of the keys
from that row are hashed to a corrupted cell. Thus, for every n-element set S
we can maintain a hash function h := hf,g,d which is injective on S and where
h(S) = {0, . . . , n + k − 1}− I, and with the same time- and space-complexity as
in Theorem 1.

3 Implicit Hash Functions

We now show how to reduce the space of our hash functions significantly. Recall
that we assume a word-size of Ω(log n). Similar as in [10] we use one additional

hash function ĥ in order to split the n-element set S into small groups.
For the following we need two functions µ(n) = (log n)/K and λ(n) =

n/(log n)K for some large enough constant K. Let ĥ : U → [â], â ∈ N, and

let S ⊆ U be an n-element set. We call a group Gi := S ∩ ĥ−1(i), i ∈ [â], c-small

if |Gi| ≤ log n/(c · log log n). If Gi is not c-small, then it is c-large. The hash

function ĥ is c-good for S, if all groups have a size of at most µ(n) and if the
total number of c-large groups is at most λ(n)

Let b̂ = ⌊nγ⌋ and â = ⌈Z · n · log log n/ log n⌉. We use the polynomial hash
families Hk

s described in [10]. For a prime p > |U | and a ∈ [p]k+1 the hash

function ra : U → [s] is given as x 7→
(

∑k
i=0 ai · xi mod p

)

mod s. The hash

family Hk
s consists of all hash functions ra, a ∈ [p]k+1.

Lemma 2. For any n-element set S, any integer c > 1, any b̂ = nγ , γ > 0,
and any â = ⌈Z · n · log log n/ log n⌉, Z > c, there exist ka, kb such that for a

randomly chosen pair (f, g) ∈ Hka

â ×Hkb

b̂
and a randomly chosen vector d̂ ∈ [â][b̂]

the following is true:

1. With probability 1− o(1) a random hash function ĥ = ĥf̂ ,ĝ,d̂ is c-good for S.
2. For every element x ∈ S, the probability that x is in a c-large group is

2−Ω(log n/ log log n).

The idea of that proof, which we have to omit due to space restrictions, is very
similar to a proof in [10], Lemma 3. The main difference is here that our expected
group sizes are smaller by a log log n factor and we therefore can only achieve
that most groups instead of all groups deviate little from their expectation.

The Implicit Data Structure. We now sketch the dynamic scheme which
achieves 1 − ǫ utilization, ǫ > 0, but requires only O(n · log log n) space for the
hash function encoding and the auxiliary data structure. We choose Z > c > 1,
Z ′ = (1 + α)Z for some arbitrary small α > 0, and â = ⌈Z ′ · n · log log n/ log n⌉.
As just described we use a hash function ĥ : U → [â] in order to split the set S
into groups. Consider a subsequence of operations between two global rehashes,
i.e., during the time the hash function ĥ remains c-good. The hash table T is
split up in hash tables T0, . . . , Tâ−1 as well as one hash table T ′. The tables Ti,
i ∈ [â], are of size t = ⌊log n/(c · log log n)⌋, and T ′ is of size a′ = O(n/ log n)
(the constant factor can be chosen arbitrarily). In the following we call a group

Gi clean, if it has been c-small since ĥ was chosen the last time. At the moment a
group Gi becomes c-large it is dirty and remains so until the next global rehash,
even if it becomes c-small again before that. The idea is that all elements from
a clean group Gi, i ∈ [â], are stored in the corresponding hash table Ti. For all
bad groups the one larger hash table T ′ will suffice.

If after an insertion the function ĥ is not c-good anymore, it has to be cho-
sen anew (which triggers a global rehash). However, it can be shown that with

constant probability ĥ remains c-good during any sequence of ⌊αn⌋ update op-
erations. Therefore we just discuss the update operations under the assumption
that no global rehashes occur.

For each element x ∈ S its group i is determined by i = ĥ(x). With each
group Gi we keep track of the number of its elements and store a bit indicating
whether it is bad or not. If the group is clean, then it is also c-small and we can

use the dynamic scheme as described in the previous section. It is easy to see that
if we choose c as a large enough constant, then we can store all displacements
and the auxiliary data structure in one word of size Ω(log n). Thus, all the
information for one group Gi can be stored in O(1) words.

If the group Gi is bad, then we use instead one hash function hi from an
approximately universal and uniform hash family Ha′ , where a′ = ⌈n/ log n⌉. An
element x ∈ Gi is now stored in the table position in T ′[hi(x)]. As O(log n) bits
suffice for storing hi, we can store the hash function information for each group
in a constant number of words. We also maintain a list L′

i containing pointers
to the table positions in T ′ for all elements in group Gi. This is the auxiliary
data structure for a bad group Gi. Since all lists for bad groups contain only
O(n/ log n) elements altogether, linear space suffices for all of them.

It is not hard to see that the total space for storing all hash functions and
the auxiliary data structures is O(n · log log n) and that in order to evaluate the
hash function it suffices to read a constant number of consecutive memory cells
from a data structure with more than nǫ space.

Insertions and Deletions. Between two global rehashes we know that in each
clean group Gi there are at most t elements, and thus we can insert and delete
just as described in Section 2. We now discuss updates for elements hashed into
bad groups by ĥ.

Let S′ be the set of elements in bad groups and assume that a newly inserted
element x is mapped by ĥ to a bad group Gi. Since ĥ is c-good we know that
n′ := |S′| ≤ λ(n) = n/(log n)K . The designated table entry for x is T ′[hi(x)].
Since hi is chosen from an approximately universal and uniform hash family
Ha′ , the probability that this table position is already occupied by an element
in S′ is at most n′/a′ = O

(

(log n)1−K
)

. If that table position is already occupied
we randomly choose hi from the universal hash family Ha′ anew. We use the
list L′

i to collect all elements from Gi and rehash them again using the new
hash function. The probability that one of the O(log n) elements in group Gi

is mapped by hi to one of the already occupied table cells in T ′ or that two of
the elements in the group collide is at most n′/a′ + |Gi|2/a′ = O

(

(log n)1−K
)

.
Such a rehash requires |Gi| = O(log n) time if it is successfull, and thus x can
be inserted in expected O(log n) time, given that a rehash is necessary. On the
other hand, as we have seen, with probability 1 − O

(

(log n)1−K
)

the element x
can be inserted without any rehash. Thus, for large enough K, x can be inserted
in constant expected time given that it is hashed by ĥ to a bad group.

We still have to discuss the transition from clean to dirty groups, though: If
we insert a new element x into a clean group Gi, then this group may become
dirty. In this case we have to move all elements from Ti to T ′ using a newly
sampled hash function hi (i.e., we rehash group Gi in expected O(log n) time).
By the bound from part two of Lemma 2 on the probability that element x is in
a bad group, the total expected time for inserting x is still constant in this case.

In order to delete an element x from a bad group we may simply set T ′[h′(x)]
to ∞. Hence, we can delete elements in bad groups in worst-case constant time.

Theorem 2. For any ǫ, ǫ′ > 0 a dynamic hash table with 1 − ǫ utilization can
be maintained with constant amortized update time and O(n log log n) space for
the hash function encoding and the auxiliary data structure. The hash function
can be evaluated in constant time and by probing O(1) consecutive words from
external memory (if the internal memory has size nǫ′).

Minimal Perfect Hashing with Implicit Hash Functions. We finally
sketch an algorithm which constructs a minimal perfect hash function h in ex-
pected linear time such that the encoding of h requires only O(n log log n) space
and that h can be evaluated with only a few consecutive probes into external
memory. The idea is again to use a hash function ĥ to split the set S into â
groups, but now we can use the fact that the group sizes do not change.

Let S ⊆ U be a fixed n-element set. We will store all elements from S in a
table T = T [0], . . . , T [n−1]. As in the previous section we choose an integer c, a
value Z > c, and let â = ⌈Z · n · log log n⌉. By Lemma 2 it is obvious how to find

in O(n) expected time a c-good hash function ĥ. Let Gi = S ∩ ĥ−1(i), i ∈ [â].
We first process all c-large groups, one after the other. When we process a

c-large group i, we create a hash function hi : U → [n] mapping all elements
in Gi to non-occupied table positions. The hash function hi is a mapping x 7→
⌊log n⌋ · h∗

i (x), where h∗
i : U → [⌊n/ log n⌋] is chosen from an approximately

universal and uniform hash family H⌊n/ log n⌋. We randomly sample such a h∗
i

and then try to store each element x ∈ Gi in the table position T [hi(x)]. If that
table cell is already occupied, we have to sample hi anew. By arguments similar
to those used in the dynamic case, the expected number of tries for each hash
function hi is only constant. Therefore, we can find in O(n) expected time all
hash functions hi for c-large groups such that they map the elements from these
groups to disjoint table positions.

Once we have found all hash functions hi for the c-large groups, some of
the table positions in T are occupied, which causes some interference with the
c-small groups. That is where the notion of corrupted table cells (see Section 2)
comes in handy. From now on we assume that every table cell T [i] is corrupted,
if one of the elements from a c-large group is stored there. Since we obtained
each hash value hi(x) for an element x in a c-large group by multiplying a hash
value h∗

i (x) with ⌊log n⌋, we know that any ⌊log n⌋-sized interval of table cells,
T [i], . . . , T [i + ⌊log n⌋], contains at most one corrupted cell.

We now process all c-small groups in increasing order. As in the dynamic
case we find a hash function hi = hfi,gi,di

for each c-small group, mapping
the elements of that group to a subtable Ti. We keep track of an offset oi for
each group i, indicating at which position in T the subtable Ti starts. Let ai

be the number of table cells we need for the ith group (this may be one more
than the number of elements stored there, in the case that one table cell is
corrupted). Then we can construct a hash function hi = oi + hfi,gi,di

with the
obvious random choices for fi, gi and di, which maps Gi injectively to the table
positions T [oi], . . . , T [oi +ai−1] and spares out the corrupted table cell (if there
is any). As we have seen in Section 2, hi can be constructed even dynamically in
expected constant time for each insertion and for o(

√
ai) corrupted table cells.

Thus, we can compute all hash functions hi, 1 ≤ i ≤ â, in expected time O(n).
The resulting mapping h : S → [n], x 7→ hĥ(x)(x), is a bijection. Each hash

function hi can be stored with O(log n) bits and thus the total space for storing
h is O(â · log n) = O(n · log log n).

Theorem 3. For any n-element set S ⊆ U a bijection h : S → [n] with encoding
size O(n · log log n) can be constructed in expected time O(n). The hash function
can be evaluated in constant time and by probing O(1) consecutive words from
external memory (if the internal memory has size nǫ, ǫ > 0).

Acknowledgment

The author is grateful to Martin Dietzfelbinger and Rasmus Pagh for enlight-
ening discussions on the subject of the paper. The anonymous referees provided
very helpful comments.

References

1. E. D. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pǎtrascu. De dictionariis
dynamicis pauco spatio utentibus (lat. on dynamic dictionaries using little space).
In Proc. of the 7th LATIN, volume 3887 of LNCS, pp. 349–361. 2006.

2. M. Dietzfelbinger. Universal hashing and k-wise independent random variables via
integer arithmetic without primes. In Proc. of 13th STACS, volume 1046 of LNCS,
pp. 569–580. 1996.

3. M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space.
In Proc. of 9th ESA, number 2161 in LNCS, pp. 109–120. 2001.

4. M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable ran-
domized algorithm for the closest-pair problem. J. of Alg., 25:19–51, 1997.

5. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J.

on Comp., 23:738–761, 1994.
6. M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with

tightly packed constant size bins. In Proc. of 32nd ICALP, volume 3580 of LNCS,
pp. 166–178. 2005.

7. D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. Space efficient hash tables
with worst case constant access time. Theory of Comp. Syst., 38:229–248, 2005.

8. M. L. Fredman and J. Komlós. On the size of separating systems and families of
perfect hash functions. SIAM Journal on Algebraic and Discrete Methods, 5:61–68,
1984.

9. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. of the ACM, 31:538–544, 1984.

10. T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Proc. of 18th STACS, volume 2010 of LNCS, pp. 317–326. 2001.

11. R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions.
In Proc. of 6th WADS, volume 1663 of LNCS, pp. 49–54. Berlin, 1999.

12. R. Pagh and F. F. Rodler. Cuckoo hashing. J. of Alg., 51:122–144, 2004.
13. P. Woelfel. Efficient strongly universal and optimally universal hashing. In Proc.

of 24th MFCS, volume 1672 of LNCS, pp. 262–272. 1999.

