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. Abstract 

The problem of representing temporal knowledge arises ill many areas of 
computer science. In applications in which such knowledge is imprecise or 
relative, current representations based on date lines or time instants are 
inadequate. An interval-based temporal logic is introduced, together WiUl a 
computationally effective reasoning algorithm based on constraint 

- propagation. This system is notable in offering a delicate balance between 
expressive power and the efficiency of its deductive engine. 

A notion of reference intervals is introduced which captures the temporal 
hierarchy implicit in many domains, and which can be used to precisely 
control the amount of deduction performed automatically by the system. 
Examples .are provided for a data base containing historical data, a d<lta base . 
used for modeling processes and process interaction, and a data base for an 
interactive system where the present moment is continually being updated. 
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I. Introduction 

The problem of representing temporal knowledge and temporal reasoning arises 
in a wide range of disciplines, including computer science, philosophy, psychology, 
and linguistics. In computer science, it is a core problem of information systems, 
program verification, artificial intelligence, and other areas involving process 
modeling. For a recent survey of work in temporal representation, see the special 
sections in the April 1982 issues of the SIGART and SIGMOD Newslellers. 

Infonnation systems, for example, must deal with the problem of outdated data. 
One approach to this is simply to delete outdated data; however, this eliminates the 
possibility of accessing any information except that which involves facts that are 
presently true. In order to consider queries such as, "Which employees worked for us 
last year and made over $15,000," we need to represent temporal information. In 
some applications, such as keeping medical records, the time course of events 
becomes a critical part of the data. 

In artificial intelligence, models of problem solving require sophisticated world 
models that can capture change. In planning the activities of a robol, for instance, 
one must model the effects of the robot's actions on the world to ensure· that a pJan 
will be effective. In natural language processing, researchers are concerned with 
extracting and capturing temporal and tense information in sentences. This 
knowledge is necessary to be able to answer queries about the sentences later. 
Further progress in these areas requires more powerful representations of temporal 
knowledge than have been previously available. 

This paper addresses the problem from the perspective of artificial intelligence. It 
describes a temporal representation which takes the notion of a temporal interval as 
primitive. It  then describes a method of representing the relationships between 
temporal intervals in a hierarchical manner using constraint propagation techniques. 
By using reference intervals, the amount of computation involved when adding a fact 
can be controlled in a predictable manner. This representation is designed explicitly 
to deal with the problem that much of our temporal-knowledge is relative, and hence 
can't be described by a. date (or even a "fuzzy" dale). 

We shall start with a survey of current techniques for modeling time, and point 
out various problems that need to be addressed. After a discussion of the relative 
merits of interval-based systems versus point-based systems in Section HI. a simple 
interval-based deduction technique based on constraint propagation is introduced in 
Section IV. This scheme is then augmented in Section V with reference intervals~ and 
examples in three different domains are presented. In the final sections of the paper, 
extensions to the basic system are proposed in some detail. These would extend the 
representation to include reasoning about the duration of intervals. reasoning ubout 
dates when they are available, and reasoning about the future given knowledge of 
what is true at the present. . 

T~e system as described in Section V has been implemented and is being used in 
a van~ty of research projects which are briefly described in Section VI. Of the 
extensIOns, the duration reasoner is fully implemented and incorporated into the 
system, whereas the date reasoner has been designed but not implemented. 
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II. Background 

Before we consider some previous approaches to temporal representation, let us 
summarize some important characteristics that are relevant to our work: 

The representation should allow significant imprecision. Much 
temporal knowledge is strictly relative (e.g., A  is before B) and has 
little relation to absolute dates. 

The representation should allow uncertainty of information. 
Often, the exact relationship between two times is not known, but 
some constraints on how they could be related are known. 

The representation should allow one to vary the grain of 
reasoning. For example, when modeling knowledge of history~ one 
.may only need to consider time in terms of day~, or even years. 
When modeling knowledge of computer design, one may need to 
consider times on the order of nanoseconds or less. 

The model should support persistence. It should facilitate default 
reasoning of the type, "If I parked my car in lot A this morning. it 
should still be there now," even though proof is not possible (the 
car may have been towed or stolen). 

This does not exhaust all the issues, and others will come up as they become 
relevant. It provides us with a starting criteria, however, for examining previous 
approaches. Previous work can be divided roughly into four categories: slate space 
approaches. date line systems, before/after chaining, and formal models. 

State space approaches (e.g., [Fikes and Nilsson, 1971; Sacerdoti, 1977]) provide 
a crude sense of time that is useful in simple problem-solving tasks. A state is a 
description of the world (i.e., a data base of facts) at an instantaneous point in time. 
Actions are modeled in such systems as functions mapping between states. For. 
example, if an action occurs that causes fact P to become true, and causes fact Q to 
be no longer true, its effect is simulated by simply adding fact P to the current slale 
and deleting fact Q. If the previous states are retained, we have a representalion of 
time as a series of data bases describing the world in successive states. In general. 
however, it is too expensive to maintain all the previous states, so most systems only 
maintain the present state. While- this technique is useful in some applications, it 
does not address many of the issues which concern us. Note that such systems do 
provide a notion of persistence. however. Once.a fact is asserted, it remains true unli1 
it is explicitly deleted. 

In date-based systems (e.g., [Kahn and Gorry. 1977; Bruce, 1972; Hendrix, ]973; 
Bubenko. 1980]). each fact is indexed by a date. A date is a representation of a lime 
such that the temporal ordering between two dates can be computed by fairly simple 
operations. For example, we could use the integers as dates, and then temporal 
ordering could be computed using a simple numeric comparison. Of course. more 
complicated schemes based on calendar dates and times are typically more useful. 
Because of the nice computational properties, this is the approach of choice if one 
can assign dates for every event. Unfortunately, in the applications we are 



considering, this is not a valid assumption. Many events simply cannol be assigned a 
precise date. There are methods of generalizing this scheme to include ranges of 
dates in which the event must occur, but even this scheme cannot capture some 
relative temporal information. For instance, the fact that two events A and B did not 
happen at the same time cannot be represented using fuzzy dates for A and B. Eilher 
we must decide that A was before a, or B was before A, or we must assign dale 
ranges that allow A and B to overlap. This problem becomes even more severe if we 
are dealing with time intervals rather than time points. We then need fuzzy dale 
ranges for both ends of the interval plus a range for the minimum and maximum 
duration of the interval. 

The next scheme is to represent temporal information using before/after chains. 
This approach allows us to capture relative temporal information quile direcLly. This 
technique has been used successfully in many systems (e.g., [Kahn and Gorry, 1977; 
Bruce, 1972]). As the amount of temporal information grows, however, it suffers 
from either difficult search problems (searching long chains) or space problems (if all 
possible relationships are precomputed). This problem can be alleviated somewhat 
by using a notion of reference intervals [Kahn and Gorry, 1977]. which will be 
discussed in detail later. Note that a fact such as "events A and B are disjoint" cannot 
be captured in such systems unless disjunctions can be represented. The approach 
discussed in this paper can be viewed as an extension of this type of approach that 
overcomes many of its difficulties. 

Finally, there is a wide range of work in formal models of time. The work in 
philosophy is summarized excellently ina textbook by Rescher and Urquhart [1971]. 
Notable formal models in artificial intelligence include the situation calculus 
[McCarthy and Hayes, 1969], which motivates much of Lhe state space based work in 
problem solving, and the more recent work by McDermott [1982]. In the situation 
calculus, knowledge is represented as a series of situations, each being a description 
of the world at an instantaneous point of time. Actions and events are functions from 

. one situation to another. This theory is viable only in domains where only one event 
can occur at a time. Also, there is no concept of an event taking time, the 
transformation between the situations cannot be reasoned about or decomposed. The 
situation calculus has the reverse notion of persistence:' afact that is true atone 
instance needs to be explicitly reproven to be true at sLlcceeding instants. 

Most of the work in philosophy, and both the situation calculus and the work by 
McDermott, are essentially point-based theories. Time intervals can be constructed 
out of points, but points are the foundation of the reasoning system. This approach 
will be argued against in the upcoming section. _ . 

One other formal approach currently under development that is compatible with 
an interval-based temporal representation is found in the Naive Physics work of 
Hayes [1978; 1979], He proposes a notion of a history, which is a contiguous block of 
space-time upon which reasoning can be organized. By viewing each temporal 
interval as one dimension of a history. this work can be seen as describing a 
reasoning mechanism for the temporal component of Naive Physics. 
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III. Time Points vs. Time Intervals 

In English. we can refer to times as points or as intervals. Thus we can say Ule 
sentences: 

"We found the letter at twelve noon." .  
"We found the letter yesterday,"  

In the fust, "at twelve noon" apears to refer to a precise point in Lime at which the 
finding event occurred (or was occurring). In the second, "yesterday" refers to an 
interval in which the finding event occurred. 

Of course. these two examples both refer to a dale system where we are capable 
of some temporal precision. In general, though, the references to temporal relations 
in English axe both implicit and vague. In particular, the majority of temporal . 
references axe implicitly introduced by tense and by the description of how events 
are related to other events. Thus we have 

"We found the letter while John was away."  
"We found the letter after we made the decision."  

These sentences introduce temporal relations between the times (intervals) at which 
the events occurred. In the first sentence, the temporal connective "while" indicates 
that the time when the find event occurred is during the time when John was away. 
The tense indicates that John being away occurred in the past (Le.• before now). 

Although some events appear to be instantaneous (e.g.• one might argue that the 
event "finding the letter" is instantaneous), it also appears that such events could be 
decomposed if we examine them more closely. For example, the "finding the letter" 
might be composed of "looking at spot X where the leller was" and "realizing t.hat it 
was the letter you were looking at." Similarly, we might further decompose the 
"realizing that it was the letter" into a series of inferences that the agent made. There 
seems to be a strong intuition that, given an event. we can always "turn up the 
magnification" and look at its structure. This has certainly been the experience so far 
in physics. Since the only times we consider will be times of events. it appears that 
we can always decompose times into subparts. Thus the formal notion of a time 
point, which would not be decomposable. is not useful. An informal notion of time 
points as very small intervals. however, can be useful and will be discussed later. 

There are examples which provide counterintuitive results if we aHow zero-width 
time points. For instance, consider the situation where a light is turned 011. To 
describe the world changing we need to have an interval of time during which the 
light was off, followed by an interval during which it was on. The queslion arises as 
to whether these intervals are open or closed. If they are open, then lhere exists 'a 
time (point) between the two where the light is neither on nor off. Such a situation 
would provide serious semantic difficulties in a temporal logic. On the other hand, jf 
intervals are closed, then there is a time point at which Lhe light is boLh on and off. 
This presents even more semantic difficulties than the foriner case, One solution to 
this would be  to adopt a convention that intervals are closed in their lower el1d and 
open on their upper end. The intervals could then meet as required, but each interval 
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would have only one endpoint. The artificiality of this solution merely emphasizes 
that a model of time based on points on the real line does not correspond to our • 

I 

intuitive notion of time. As a consequence. we shall develop a representation which 
takes temporal intervals as primitive. 

If we allowed time points, intervals could be represenled by modeling their 
endJ.X>ints (e.g.• [Bruce 1972]) as follows: Assuming a model consisting of a fully 
ordered set of points of time. an interval is an ordered pair of J.X>ints with the first 
J.X>int less than the second. We then can define the relations in Figure 1 between 
intervals, assuming for any interval t,  the lesser endpoint is denoted by t- and the 
greater by t+ . 

<Figure 1> 

We could implement intervals with this approach, even given ilie above 
argument about time points, as long as we assume for an intervalt that t­ < t+:. and 
each assertion made is in a form corresponding to one of the interval relations. There 
are reasons why this is still inconvenient, however. In particular, the representalion is 
too uniform and does not facilitate structuring the knowledge in a way which is 
convenient for typical temporal reasoning tasks. To see this. consider the importance 
of the during relation. Temporal knowledge is often of the form 

"event E'  occurred during event E." 

A key fact used in testing whether some condition P holds during an interval t is thal 
if t is during an interval T, and P holds dwing T, then P holds during 1. Thus during 
relationships can be used to define a hierarchy of intervals in which propositions can 
be "inherited." 

Furthermore, such a during hierarchy allows reasoning processes to be localized 
so that irrelevant facts are never considered. For instance, if one is concerned with 
what is true "today," one need consider only those intervals iliat are during "today," 
or above "today" in the during hierarchy. If a fact is  indexed by an interval wholly 
contained by an interval representing "yesterday," then it cannot affect what is true 
DOW. It is  not clear how to take advantage of these properties using the point-based 
representation above. 

IV. Maintaining Temporal Relations 

IV.t. The Basic Algorithm 

The inference technique described in this section is an atlempllo characterize the 
inferences about time that appear to be made automatically or effortlessly during a 
dialogue, story comprehension, or simple problem solving. Thus it should provide tiS 

with enough temporal reasoning to participate in these tasks. It does nol, however. 
need to be able to account for arbitrarily complex chains of reasoning that could be 
done, say, when solving a puzzle involving time. . 
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We saw above five relations that can hold between intervals. Furlher subdividing 
the during relation, however, provides a better computational model.1 Considering 
the inverses of these relations, there are a total of thirteen ways in which an ordered 
pair of intervals can be related. These are shown in Figure 2. 

<Figure 2) 

Sometimes it is convenient to collapse the three during relations (d, s, t) into one 
relationship called dur, and the three containment relations (di, si, fi) into one 
relationship called con. After a quick inspection, it is easy to see that these thirteen 
relationships can be used to express any relationship that can hold between two 
intervals. 

The relationships between intervals are maintained in a. network where the nodes 
represent individual in tervals. Each arc is labelled to indicate the possible 
relationship between the two intervals represented by its nodes. In cases where there 
is uncertainty about the relationship, al1 possible cases are entered on the arc. Note 
that since the thirteen possible relationships are mutually exclusive, there is no 
ambiguity in this notation. Figure 3 contains some examples of the notation. 
Throughout, let Ni be the node representing interval i.  Notice that the third set of 

conditions describes disjoint intervals. 

<Figure 3) 

Throughout this paper, both the above notations will be used for the sake of 
readability. In general, if the arc asserts more than one possible relationship, the 
network form will be used, and in the case where only one relationship is possible, 
the relation form will be used. . 

For the present, we shall assume that the network always maintains complete 
information about how its intervals could be related. When a new interval relation is 
entered, all consequences are computed. This is done by computing the transitive 
closure of the temporal relations as follows: the new fact adds a constraint about how 
its two intervals could be related, which may in turn introduce new constraints 
between other intervals through the transitivity rules governing. the temporal 
relationships. For instance, if the fact that i is during J is added, and j  is before k, then 
it is inferred that i must be before k. This new fact is then added to the network in an 
identical fashion, possibly introducing further constraints ~n the relationship between 
other intervals. The transitivity relations are summarized in Figure 4. 

<Figure 4) 

lThis fact was pointed out to me by Marc Vilain and was first utilized in his system 
[Vilain, 1982], 
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The precise algorithm is as follows: assume for any temporal relation. names r1 
and r2 that T(rl,r2) is the entry in the tra'nsitivity table in Figure 4. Let RI and R2 
be arc labels, assume the usual set operations (n for intersection, U  for union, C  for 
proper subset), and let e be the empty set. Then constraints(Rl, R2) is the transitivity 
function for lists of relation names (i.e., arc labels), and is defined by: 

Constraints(RJ, R2)  
C +­ e;  
For each r1 in R1  

For each r2 in R2  
C  +­ C  U T(r1, r2);  

Return C;  

. Assume we have a queue data structure named ToDo with the appropriate queue 
operations defined. For any two intervals ij, let N(ij) be the relations on the arc 
between i and j  in the network, and let R(ij) be the new relation between i and j  to 
be' added to the network. Then we have the following algorithm for updating the 
temporal network: 

To  Add R(Z:j)  
Add <Z:j) to queue ToDo;  
While ToDo is not empty do  
begin  

Get next <ij> from queue ToDo;  
~(4J) +­ R(Z:j);  
For each node k such that Comparable(k,j) do  
begin  

R(/q)  +­ N(k,j) n  Constraints(N(k,t). R(i,j» 
If R(k,t) C  N(k, t) 

tllen add <k,t} to ToDo; . 
end 
For each node k such that Comparable(Z:k) do 
begin . 

R(Z:k) +­ N(i,k) n  Constraints(R(4j), N(j,k» 
If R(Z:k) C N(k,t) 

tben add <i, k> to TaD0; 
end 

. end'
• 

We  have used the predicate Comparable(ij) above which 'will be defined in Section 
V.  For the present, we can assume it always returns true for any pair of nodes. 

IV.2. An Example 

Consider a simple example of this algorithm in operation. Assume we are given
the facts: 

S overlaps or meets L  
S is  before, meets, is met by. or after R.  



These facts might be derived from a story such as the following: 

"John was not in the room when I touched the switch to turn on the 
light" 

where we let S be the time of touching the switch; L  be the time the light was on; 
and R be the time that John was in the room. The network storing this information is 

R +­­«  m mi »-~ S --(0 m)- L. 

When the second fact is added, the algorithm computes a constraint between Land 
R (via S) by calling the function Constraints with its two arguments, Rl and R2. set 
to {oi mil and {<m mi >}, respectively. Note that we obtained the inverse of the arc 
from S to L simply by taking the inverse of each label. Constraints uses the 
transitivity table for each possible pair of labels and returns the union of all the 
answers. Since . 

T(oi. <) =  « 0  m di fi)  
T(oi. 111) =  (0 di fi)  
T(oi. mil =  (»  
T(oi, » =  (»  
T(mi, <) =  « 0 m di fi)  
T(mi. m) =  (s si =)  
T(mi.· mil = (»  
T(mi. » = (»  

we compute « >0 m di s si fi  =) as the constraint between Land R and thus obtain 
the network 

R ~« m  mi »-- S --(0 m)­ L  
~I  
­­­(< > o· oi m di s si fi  = )­­-

Let us consider what happens now when we add the. fact 

L  overlaps, starts, or is during R. 

This fact might arise from a continuation of the above story such as 

"But John was in the room later while the light went out" 

Taking the intersection of this constraint with the previous]y known constraint 
between Land R to eliminate any impossible relationships gives 

L --(0 s)- R. 

To add this constraint, we need to propagate its effects through the network. A new 
constraint between Sand R can be calculated using the path: 

S --(0 m)­ L --(0 s)­ R.· 
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".  From the transitivity tables, we find: 

T(o.o} == «  0  m)  
T(o,s} == (o)  
T(m,o} ==  «) 
T(m,s} ==  (m)  

Thus the inferred constraint between Sand R is  

S --« 0  m)-+ R.  

Intersecting this with our previous constraint between Sand R yields 

S ­­«  m)-+ R. 

With respect to the example story, this is equivalent to inferring that John enLered 
the room (Le., R started) either after I touched the switch or at the same time that I 
finished touching the switch. Thus the new network is: 

R +­«  m)­­ S --(0 m}':"  L  
~ I  
---------------(0 s}­­­­­­­­­­­­­­-

Of course, if there were other nodes in  the network,  there would  be other constraints 
derived from  this  new  information. Thus,  if we added a new  interval D, say with  the 
constraint  D  ­­(d)­+  S,  we. would  infer  the  following"  new  relationships  as  well: 

D  ­­«)­+  R 

D  ­­«  0  m  d  s)­+  L. 

IV.3.  Analysis 

A nice property of this algorithm  is  that  it only conlinues to  operate as  long  as  it 
is producing  new  further constrained  relationships between  intervals. Since  there  are 
at  most  thirteen  possible  relationships  that  could  hold  between  two  intervals.  there 
are  at  most  thirteen  steps  that  could  modify  this  relationship.  Thus  for  a  fixed 
number  of nodes  N,  the  upper  limit  on  the  number  of modifications  that  can  be 
made,  irrespective  of how  many  constraints  are  added  to  the  network,  is  13  x  the 
number  of  binary  relations  between  N  nodes,  which  is: 

13  x  (N­l}(N­2)  
2  

Thus,  in  practice,  if we  add  approximately  the  same  number  of constraints  as  we 
have nodes,  the average amount of work  for  each  addition  is essentially  linear (Le..  N 
additions  take  O(N2)  time;  ~:)fle addition  on  average  takes  O(N}  time). 

The  major  problem  with  this  algorithm  is  the  space  requirement.  IL  requires 
O(N2)  space  for  N  temporal  intervals.  Methods  for  controlling  the  propagation, 
saving  time  and  space,  will  be  discussed  in  the  next  section. 



It should be noted that this algorithm, while it does n'ot generate illconsist7ncies, 
does not detect all inconsistencies in its input. In fact, it only guaran Lees  consIstency 
between three node subnetworks. There are networks that can be added which 
appear consistent by viewing any three nodes, but for which there is no consistent 
overall labeling. The network shown in Figure 5 is consistent if we consider any three 
nodes; however, there is no overall labeling of the netwo~k.2 To see this, if we assign 
the relationship between A  and C, which could be for fi  according to this network, 
to either f  alone, or fi  alone, we would arrive at an inconsistency. In other words, 
there is no consistent labeling with A ­­(£)­+  C, or with A --(fi)-+ C, even though the 
algorithm accepts A --(f fi)-+ C. . 

<Figure 5) 

To ensure total consistency, one would have to consider constraints between 
three arcs, between four arcs, etc. While this can be done using tecllDiques outlined 
in Freuder [1982], the computational complexity of the algoriUlm is exponential. In 
practice~ we have not encountered problems from this deficiency in our applications 
of the model. We can verify the consistency of any s\lbnetwork~ if desired, by a 
simple backtracking search through the alternative arc labelings until we arrive at a 
labeling for the whole subnetwork in which every arc has only one label. 

V. Controlling Propagation: Reference Intervals 

In order to reduce the space requirements of the representation without greatly 
affecting the inferential power of the mechanism, we introduce rrJerence intervals. 
Formally. a reference interval is simply another interval in the system, but it is 
endowed with a special property that affects the computation. Reference intervals are 
used to group together clusters of iptervals for which the temporal constraints 
between each pair of intervals in the cluster is fully computed. Such a duster is 
related to the rest of the intervals in the system only indirecUy via the reference 
interval. . 

V.I. Using Reference Intervals 

Every interval may designate one or more reference inlervals (Le.• node clusters 
to which it belongs). These will be listed in parentheses after the interval name. Thus 
the node names . . . 

Il(Rl)  
12(Rl.R2)  

describe an interval named II that has a reference interval RI, and an interval named 
12 that has two reference intervals R1 and R2. Since 12 has two reference intervals. it 
will be fully connected to two clusters. An illustration of the connectedness of such a 
network is fonned in Figure 6. 

2Tbis network is due to Henry Kautz, personal communication. 

http:12(Rl.R2
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<Figure 6> 
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The algorithm to add relations using reference intervals is  identical to the 
previous addition algorithm except that the comparability condition is no longer 
universally true. For any node N,  let ReJs(N) return the set of reference intervals for 
N.  For any two nodes K and J. Comparable(I(J) is true if 

1) . Refs(K) n Refs(J) is  not null, i.e., they share a reference interval; 
or 

"-. 
2) K e Refs(J); or 
3) J e Refs(K). 

Since reference intervals are simply intervals themselves, they may in turn have 
their own reference intervals, possibly defining a hierarchy of clusters. In most of the 
useful applications that we have seen, these hierarchies are typically lree~1ike as 
depicted in Figure 7. 

<Figure 7> 

If two intervals are not explicitly related in the network, a relationship can be 
retrieved by finding a path between them through the reference intervals by 
searching up the reference hierarchy until a path (or all paths) between the two 
nodes are found. Then. by simply applying the transitivity relationships along the 
path. a relationship between the two nodes can be inferred. If one is careful about 
structuring the reference hierarchy. this can be done with little loss of information 
from the original complete propagation scheme. 

To find a relationship between two nodes I and J, where N(ij) represents the 
network relation between nodes i  and j  as in Section IV.l, we usc the algorithm: 

If N(I,J) exists  
tIleD return  N(I,J)'  
else do  

Paths : = Find-Paths(I,J) 
For each path in Paths do 

R := R n Constrain-along-path(path) 
return  R;  

end;  

The function Find-Paths does a straightforward graph search for a path between 
the two nodes with the restriction that each step of the palh must be belween a node 
and one of its reference intervals except for the one case where a direct connection is 
found. Thus a path is of the general form 

where all of the following ho~d: 
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for all i  from 1 to k~l) ni+1 is a reference interval for nj;  

nk and nk+ 1  are connected explicitly;  
for all i  from k+ 1 to m~ 1. ni is a reference interval for ni+ I;  

The function Constrain-along-path simply takes a path and computes the 
transitivity constraints along it. Thus if a path consisted of the nodes nl. n2_ n3' ...• 

n •  we compute the relation between n1 and nm a,sfollows:m

R .­'- N(nl,n2); 
R  .­'­ Constraints{R.N(n2.n3» 
R '.­·- Constraints(R,N(n3.n4» 

R : = Constraints{R,N(n _l.I1rn»m

where Constraints was defined in Section IV.I. 

V.2. Examples 

There are no restrictions imposed by the system on the use of reference intervals. 
Their organization is left up to the system designer. Certain principles of 
organization, however, are particularly useful in designing systems that remain 
efficient in retrieval. and yet capture the required knowledge. The most obvious of 
·these is a consequence of the path search algorithm in the previous section: the more 
tree-like the reference hierarchy. the more efficient the retrieval process. The others 
considered in this section exploit characteristics of the temporal knowledge being 
stored. 

With domains that capture historical information, it  is best to choose the 
reference intervals to correspond to key events that naturally divide the facts in the 
domain. Thus, if modeling facts about the history of a particular person, key events 
might be their birth, their first going to school, their graduation from university, ele. 
Kahn and Gorry [1977] introduced such a notion of reference events in their system. 
Other times in their system were explicitly related to these reference events (Le.• 
p:>ints). In our system, the intervals between such key events would become the 
reference intervals. Other time intervals would be stored in the cluster(s) identified 
by the reference intervals that contain them. Thus, we could have a series of 
reference intervals for the time from birth to starting school (PRESCHOOL). during 
school (PREGRAD), and after graduation (POSTGRAD). In addition, certain 
reference intervals could be further decomposed. For example, PREGRAD could be 
divided into primary and secondary school (PRIM and SECOND) and the time at 
university (UNlV). The times of the rest of the events would be stored with respect 
to this reference hierarchy. Figure 8 depicts this set of facts including its reference 
hierarchy, plus intervals such as the time spent learning chess (CHESS), the time the 
person won the state lottery (WIN), and the time of the first job (JOB), If an event 
extended over two reference intervals, then it would be stored with respect to both. 
For example, if learning to play chess occurred during primary and secondary school, 
the interval CHESS would have two reference intervals, namely PRIM and 
SECOND. 
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<Figure 8> 

We can now trace the retrieval algorithm for this set of facts. Let us find the 
relationship between CHESS and WIN. There is no explicit relationship between the 
intervals, so we must search up the reference hierarchy. Only one path is found, 
.namely: 

CHESS(PRIM) --(d)- PRIM(PREGRAD) --«)- UNIV(pREGRAD) 
--(di)- WIN(UNIV) 

Applying the transitivity relations along the fIrst path; we infer fIrst that 

CHESS before UNIV 

and then 

CHESS. before WIN. 

The fact that CHESS is before JOB can be inferred in a similar manner from the 
path 

CHESS --(d)- PRIM --(s)- PREGRAD --(m)- POSTGRAD --(di)- JOB. 

Consider another domain, namely that of representing information about 
processes or actions. Such knowledge is required for problem-solving systems that 
are used to guide the activity of a robot. Each process can be described as a partial 
sequence of subprocesses. Such a decomposition is not described in absolute 
temporal terms (Le., using dates), but by the subprocess's relation to its containing 
process. Thus a natural reference hierarchy can be constructed mirroring the process 
hierarchy. For example. consider a process Jl consisting of a sequence of steps Pl, P2, 
and P3 and another process Q consisting of subprocesses Ql and Q2 occuring in any 
order, but not at the same time. Furthermore, let Q2 be decomposed into two 
subprocesses Q21 and Q22, each occuring simultaneously. To simulate a world in 
which process P begins before Q begins we can construct the reference hierarchy in 
Figure 9. 

<Figure 9> 

With this organization we can infer relationships between subprocesses of Q aud 
subprocesses of P in the same manner as above. As long as the decomposition of 
processes or actions can be done independently (such as in the NOAH system 
[Sacerdoti, 1977]), this organization will capture all the relevant temporal knowledge. 

More interesting cases arise when there may be interactions among subprocesses. 
For, instance, we might want to add that Ql must occur before Q21. Note that, in 
addmg Q1 before Q21, we can infer a new relationship between Ql and Q2 from the 
path 
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Ql(Q) --«)-1> Q21(Q2) --(e)-I> Q2(Q) 

because Ql and Q2 share the reference interval Q. It does not matter that Q21 does 
not share a reference interval with Ql. In more complicated cases,. we will find 

. relationships between subprocesses such that an important relationship between the 
processes containing the subprocesses will not be inferred because they do not share 
a reference interval. For instance, if we learn that Q2 overlaps PI, adding this will not 
cause the relationship between Q and P to be constrained to simply the overlaps 
relation even though that would be a consequence in the system without reference 
intervals. There is no path consisting of two arcs from Q to P that is affected by 
adding Q2 overlaps Pl. 

To allow this  inference. we need to reorganize the reference hierarchy. For 
example. we could, when add.ing a relation between two noncompatible nodes, 
expand one of the node's reference intervals with· the other node's reference 
intervals. In this scheme. to add Q2 overlaps PI, say, we would first add P to Q2's 
reference interval list. Then adding the relation will allow the appropriate changes. In . 
particular, among others. we would infer that 

Q2(Q,P) -:-(0)-1> P(X) 

from the path 

Q2(Q,P) --(0)-1> Pl(P) --(s)-I> P(X), 

and then infer 

Q(X) --(0)-1> P(X) 

from the path 

Q(X) --(di)-I> Q2(Q,P) --(0)-1> P(X) 

and the previous constraints between Q and P. The final state of the processes after 
these two additions .is summarized in Figure 10. . 

<Figure 10> 

ManipUlating the reference hierarchies as in this example can be effective if used 
sparingly. With overuse, such tricks tend to "flatten out" the reference hierarchy as 
more intervals become explicitly related. In d~mains where such interactions are rare 
compared with the pure decompositional interactions, it can be very effective. 

V.3 Representing the Present Moment 

The technique of reference interval hierarchies provides a simple solulion to the 
problem of representing the present moment. In many applications, such as natural 
language processing and process modeling, the present is constantly moving into the 
future. Thus a representation of NO W must allow for frequent updating without 
involving large-scale reorganization of the data base each time. 
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Suppose we have a data base in which all assertions are indexed by the temporal 
interval over which they hold. As time passes, we are interested in monitoring what is 
true at the present time, as well as in the past and future. The method suggested here 
is to represent NO ~v as a variable that., at any specific time, is bound to an interval in 
the data base. To update NOW, we simply reassign the variable to a new interva~ th~t 
is after the previous interval representing the present moment. The key observaUon is 
that while the present is continually changing, most of the world description is 
remaining the same. We can exploit this fact by using reference intervals to control 
the inferences resulting from updating NO W. 

For example, let NOW be interval.NI, which is during its reference interval Rl. 
An example state of the data base would be 

Nl(Rl) during. Rl 
Rl before 11, Rl after 12, RI during 13 

From this we can infer easily that the present (i.e., Nl) is during 13, before II, and 
after 12. If NOW then is updated (slightly), N2 can be defined as the new NOW 
using the' same reference interval by adding the facts· 

N2(Rl) during RI, N2(Rl) after Nl(Rl) 

Thus. NO W has been updated but most of the relations in the data base have been 
unaffected; for the· effects of N2 will only propagate to intervals referenced by Rl. 
The reference interval Rl has "protected" the rest of the data base from a minQr 
change in the present moment. 

Of course, eventually NO W will cease to be dudng Rl and a new reference 
interval will be needed. This will involve a more major update to the data base, but 
the amount of work can be reduced if Rl itself has a reference interv.al that 
"protects" . much of the, data base from it. 

Thus we need a hierarchy of reference intervals, each containing the present 
moment. This hierarchy could be designed to mirror the set of English terms that can 
be used to refer to the present. For example, in English we can refer to the exact 
moment of an utterance (e.g., at a race, the starter may say "Go now!"). as 'well as to 
larger intervals such as "this morning," "today:' and "this year." We can also refer to 
more event-oriented intervals such as "during this lecture" and "while at this bar." 
These' are the types of intervals that should be maintained in the hierarchy 
representing the present. Furthermore, these intervals typically have well defined 
starting and termination points. Thus it is reasonable to assume that the temporal 
data base will receive explicit notification when one of tllem ceases to contain the 
present. This allows the following important assumption: 

When updating the NO fV interval, unless otherwise stated, its 
relationship to its reference interval(s) remains constant. 

When one of the reference intervals in the hierarchy ceases to contain the presen t 
moment, a new reference interval is selected. (This new interval should usually be 
provided by the user.) This update is done in the identical fashion as described above 
with NO w: In particular, the relationship with the higher-level reference in terval 

http:interv.al
http:interval.NI
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remains constant. A new NOW interval, below the new reference interval ill the 
hierarchy, must be introduced. For example, the beginning of a new day would make 
much of the old hierarchy part of the past (Le., "yesterday"). 

While many intervals will be generated by this succession of intervals for NO W, 
many of them can be garbage collected when the reference intervals are updated. In 
particular. any interval that is not used to index any events or facts may be removed 
from the data base. In a system modeling a natural language dialogue, a large 
number of these intervals would be used only to index the time of an utterance. 
These generally can be deleted without harm. 

VI. Discussion 

The temporal representation described is notable in that it is boUl expressive and 
computationally feasible. In particular, it does not insist that all events occur in a 
known fixed order, as in the state space approach, and it allows disjunctive 
knowledge, such as that event A occurred either before or after event n,  not 
expressible in date-based Systems or simple systems based on before/after chaining. 
It is not as expressive as a full temporal logic (such as that of McDermott [1982]), but 
these systems do not currently have viable implementations. 

This balance between expressive power and computational efficiency is achieved 
by the restricted fonn of disjunctions allowed in the system. One can only assert 
disjunctive information about the relationship of two intervals. In other words, we 
can assert that A is before or meets B, but not that (A meets B) or (C before D). This 
limited form of disjunction is ideal for the constraint propagation algorithm. 

The System has been implemented and is being used in a variety of applications. 
Both FRANZ LISP [Foderaro, 1980] and INTERLISP versions are running on .a 
VAX 11/780 under UNIX. The system presently also includes the duration reasoner 
described below. It is currently being used in research in representing actions, events, 
and interactions that arise in natural language dialogues [Allen, Frisch, and Litman, 
1982]. We are also using the representation as a world model for research in 
automatic problem-solving systems [Allen and Koomen, 1983]. Such systems have 
long been constrained by their inadequate temporal models. 

Vilain [1982] has implemented a version of this system which, at the cost of 
greater space requirements, can perform consistency maintenance. In other words, in 
his system, when an inconsistency is found, the set of facts that caused the 
inconsistency can be identified. This system also explicitly allows time points in the 
representation and has a larger transitivity table, including all interval/point and 
point/point interactions. This violates the semantics of the interval representation, 
and so has not been adopted in our present system. 

Let us consider why we would like time points, however. They seem to be 
referred to in English. We can, for instance, talk about the beginning and ending of 
events. There is no reason to assume, however, that these "endpoints" are truly zero­
width points rather than intervals small enough so that tiley appear to be 
instantaneous. What this suggests is that there might be a minimum duration c, such 
that all intervals of duration less than £ would be viewed as ~ints. This would 
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simplify our reasoning about such times for we would not have to worry aboullhe 
possibility of two such intervals overlapping. It would be assumed either Ulat these 
small intervals are equal or that one is before the other. 

But this minimum size cannot be fixed in advance. A hisLorian, for instance, may 
be happy to consider days as points. whereas the computer engineer, when reasoning 
about a logic circuit, would consider a day to be an eternity. Thus the interval size, 
where it is appropriate to simplify reasoning by assuming point-like times, varies 
with the reasoning task. 

VII. Future ResearcJl and Extensions 

There are many areas in which this system is being extended. In particular, an 
interface to a duration reasoner has been incorporated into the system, and a system 
for reasoning about dates will be implemented in the near future. Finally. we are 
investigating reasoning systems that depend on the notion of persistence. 

VU.I. Duration Reasoning 

We have designed a duration reasoning system based on the same principles as 
the interval relation reasoner described above. In particular, it is designed to allow 
relative information (e.g.. interval A  took longer than interval B) as well as 
representing uncertainty. The reasoner is again based on constraint propagation aild 
a notion of reference durations can be defined.. 

Very briefly. the duration relationship between two intervals is expressed by 
outlining a range that includes the multiplicative factor 'which the duration of the 
flrst would be multiplied by to get the duration of the second. For example. the fact 
that the duration of A  is less than the duration of B. expressed as 

dw{A) < dw(B) 

is  represented by the relation 

A --(0 (1»-. B. 

In other words. dut{A) >= O*dw{B) and dut{A) <l*dut{B). The parentheses about 
the factor 1 indicate an open endpoint; thus the durations of A and B could. not be 
equal. Both the upper and lower duration limits may be open or closed. 

Duration information is encoded in a network orthogonal to the relationship 
network. Propagation across two duration restrictions is accomplished simply by 
multiplying the respective upper and lower duration limits. For example. if we have 
the facts 
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dur(A) (=  dur(B) 
dur(C) (=  dur(B) 
dur(B) ( 2·dur(C) 

which in network fonn would be 

A --(0 1)-. B --(1 (2»-. C 

we derive the relation 

A --(0 (2»-. C. 

The duration reasoner and the interval reasoner are. not independent of each 
other, however. They constrain each other by rules such as the following: 

If I --Cd s 1)-. J  then dur(I) ( dur(J). 

Using this rule, constraints introduced in one network may introduce conSl!ainlS in 
the other. In many examples, the networks may exchange information back and forth 
multiple times before the propagation terminates. 

Reference durations correspond to the notion of scales, or common units. 
Constraints do not propagate through a reference duration. Thus, if the duration 
HOUR is  a reference duration, and we add that dur(A) is between 1 and 2 hours, 
and dur(B) is  less than one half an hour, no relation between dur(A) and dur(B) will 
be inferred. It will be derived at retrieval time via the reference duration HOUR. 
Further details on the duration reasoner can be found in [Al1en and Kautz, 1983].· 

VII.2. Date Lines 

Having considered the maintenance of relative temporal information in detail, we 
now consider how to exploit date infonnation when it is available. Let a date line be 
any representation consisting of a fully ordered set of values taken to correspond to 
times. For example, a date line corresponding to a simple calendar could be defined 
as follows: 

values: ordered triples of integers, representing year, month (1-12). 
and day (1-31) (for example, (50 3 25) represents March 25, 1950) 

comparison operation: orders triples in the obvious manner (for 
example, (50 3 25) ( (75 1 1» 

With date lines, the comparison operation between two times on the same dale line is 
relatively inexpensive compared to searching the network of temporal relations. 

Date line information could be incorporated into the present system by allowing 
any interval in the network t9 have date line information associated with it which 
identifies the dating system and dates associated with its start and end. The name of 
the date line is  necessary to identify the operations for comparing values. A new 
interval, added with date line infonnation specified. may affect the relationship to its 
reference interval and to the other intervals in its "reference class." For example, if 
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two intervals are dated by the same date line, and have date values specified. lhose' 
values can be used to calculate the exact relation between the intervals. If this 
relation is more specific than the information stored in the relational network, the 
'network is updated and its effects propagated as usual. 

When retrieving a relationship between two intervals dated by the same date line, 
the date information should be considered first before applying the usual network 
retrieval mechanism. Sometimes, however, the date line information will 110t be 
specific enough to pinpoint a specific relationship, and a network search will still be 
necessary. It may occur that one of the intervals being considered is dated but the 
other isn't. In this case, the date information may be used only if a relationship can 
be found between the non-dated interval and another interval dated by the same 
date line. In general, this may be too expensive to consider. A specific case that could 
be very useful. however, occurs when a reference interval involved in the search is ' 
dated by the appropriate date line. We can then compare the two dated intervals to 
obtain a relationship, which can be propagated back to the non-dated interval. 

A useful date line for dialogue systems is the time-or-day line. A reasonable 
implementation of this might have the basic duration that of one minute, and have 
values consisting of an hour-minute pair. If the system were given access to a clock, 
this date line could be used extensively in the NO W hierarchy. Of course, the relative 
time data base is still required to store the facts that are acquired during the dialogue 
as facts typically hold for much longer than the time that they are being talked about. 

If the system does not have such easy access to an internal clock, it may still get 
time-of-day information occasionally during a dialogue. In this case, some of the 
NOWintervals will map onto the time-of-day line, while others will only be related 
to it by some relation (e.g., after 10 o'clock). In such a scheme, a new reference 
interval for the NOW interval would be created each time a precise time-of-day 
value was identified. For example, if the system learns that it is presently 10 o'clock, 
it can create an "after 10 o'clock" reference interval in which the NOW intervals will 

, be contained until the next specific time is acquired. Whether such a technique is' 
feasible requires further research. 

VII.3 Persistence of Intervals 

The last requirement described in the introduction was that the representation 
should facilitate plausible inferences of the form "if fact P is true now, it will remain 
true until noticed otherwise." Most of the issues concerning this fall outside the 
range of this paper, as this system only knows about time intervals. However, a 
simple trick using this representation makes inferences of the above form easy to 
implement. 

Typically, when a new fact is learned, its exact extent in time is nol known. For  
instance, when I parked my car in the parking lot this morning I knew its location.  
Sitting at my desk now, I assume it is still there, though I have no proof of that fact.  
In general, I assume it will remain where it is until I pick it up. Thus, although I  
don't know the extent of the interval in which my car is parked, I want to be able to  
assume that this fact holds .later in the day.  
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The temporal representation is already based on the observation that m~st time 
..  intervals do not have precisely defined limits. If we allow the user to specIfy that 

some intervals should be assumed to extend as far as possible given the constraints. 
then we can use such intervals to index facts that are assumed to persist until 
discovered otherwise. 

Thus. if we let a fact P be indexed by a persisten! interval Tp, then testing Plater 
during an interval t will succeed (by assumption) if it is possible that t is during T. 
Checking whether relationships between intervals are possible is easy. since the 
representation explicitly maintains this information. 

- . 
For example. let Tp represent the interval in which my car is in the parking lot. I 

know that Tp is met by Tarrive. where Tarrive is the time that I arrived at school 
today. Then. if NO W is represented as interval Tnow. where Tnow after Tarrive, we 
can test if my car is on the parking lot. Since it is there during Tp. we are interested 
in whether it is possible that Tnow is during Tp. The known constraints allow us to 
infer the following: . 

Tp  mel by Tarrive. Tarrive before Tnow 
=> Tp --« 0  di m)- Tnow . 

Thus it is possible that Tnow is duringTp. since it is possible that Tp contains ("din) 
Tnow. So the test succeeds. 

Of COlll'Se. if it is later learned that the car was found to be missing during time 
interval Tmiss. then Tp is constrained to be before Tmiss (even though it  is still 
persistent). If Tnow is then after or during Tmiss, then it is not possible any longer 
that Tnow is during Tp. 

Managing a system such as this is a difficult problem that requires some form of 
truth maintenance (e.g.• see [Doyle, 1979]). These issues, however, are independent of 
the temporal representation. All that is shown here is that the necessary temporal 
calculations are easily done within this framework. 

An interesting technique suggested by the above may simplify Illllch of the 
cOmputation . required for truth maintenance for this ,type of assumption. In 
particular, let us assume th~r P holds during interval Tp, where Tp is a persistent 
interval. Furthermore~ assume that for any time, P implies Q. Then if we lest P at 
time t. and find it is true by assumption, so we can infer Qduring time 1. However. if 
we index Qby Tp rather than by 1.  then we still can use the fact that Q is true during 
t (by assumption), but if we ever discover further constraints on T that Olen eliminate 
the possibility that t is during Tp, then both P and Q will cease to be true (by 
assumption) during t  Thus. by indexing all the cOhsequences of P by the same 
interval. Tp, we can revise our beliefs about P and all its consequences simply by 
adding constraints about Tp. While this idea obviously requires further investigation, 
it appears that it may allow a large class of assumption-based belief revision to be 
performed  easily. . 
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Summary 

We have described a system for reasoning about temporal intervals that is both • 
expressive and computationally effective. The representation capLures the temporal 
hierarchy implicit in many domains by using a hierarchy of reference intervals, which 
precisely control the amount of deduction performed automatically by the system. 
This approach is partially useful in domains where temporal information is  imprecise 
and relative, and techniques such as dating are not possible. 
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Interval Relation Equivalent Relations on Endpoints 

t<s t+ < s- 

t=s (t- = s-) &  (t+ . = s+)  

t overlaps s (t- < s-) &  (t+ > s-) &  (t+ <s+)  

t meets s t+ = s- 

t during s «t- > s-) &  (t+ =< s+» or 
«t- >= s-) &  (t+ < .s+» 

, 

Figure 1: Interval Relation Defined by Endpoints 

Relation Symbol Symbol for 
Inyerse 

Pictoral 
Example 

X bejoreY <  > xxx yyy 

X equalY - - xxx 
yyy 

X meetsY m  mi XXXyyy 

X overlapsY 0 oi XXX 
yyy 

. X during Y d di XXX 
yyyyyy 

X starts Y s si . XXX 
yyyyy 

Xfinishes Y f  fi  XXX 
yyyyy 

Figure 2: TIle Thirteen Possible RelationsJlips 

Relation Network Representa"tion 

1.·i duringj Ni --(d)-+ Nj 

2. i during j or Nj --( < d di)-+ Nj 

i  before j  or 
j  during i 

3. (i <j) or (i ) j) or Ni ­­«  > m mi).... Nj 
i  meets j  or 
j  meets i 

Figure 3: Representing Knowledge of Temporal Relations in a Network 
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Figure 4: The Transitivity Table for the Twelve Temporal UeJatiolls (omitting" =") 
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Figure 5: An Inconsistent Labeling 

/,Il(Rl)" /,I7~2)", 

14(Rl) + 12(Rl,R2):--+-- 16(R2) 

"'"I3(Rl) /' " IS(R2) /' . 

Figure 6: The Connectness of a Network with Two Reference Intervals. 
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/Rl"  

R2(Rl) ---- R5(Rl)  

~i~ /\ 
R3(R2) R4(R2) 

~(~~ /\
Il(R3) - 12(R3) 14(R4)-I5(R4) 

Figure 7: ATree-Like Hierarchy Based on Reference Intervals. 
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m<  m 
PRESCHOOOL(UFE) ~PREGRAD(LIFE).-;t. POSTG RAD(LIl;E) 
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.ld JOIl(~STGRAl)f 

( 
PRIM{pREGRAD)-+SECOND(pREGRAD)'-"UNIV(PREGRAD)

f <.  .  ~ 
CHESS(PRIM) WIN(UNI V) 

Figure 8: ATypical Reference HierarcllY for AHistory of a Person 
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Ql(Q) )0 Q2(Q) Pl(P)~P2(P)-4-P3(P) 

. le\ 
Q21(Q2)--:> Q22(Q2) 

Figure 9: AReference Hierarchy Mirroring a Process HierarcllY. 
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<~1.1
.'  Q21(Q2) ~Q22(A2) 

Figure 10: The Process Knowledge After Two Updates. 



L 

,  "" 

References 

Allen, I.F., A.M. Frisch, and D.J. Litman, "ARGOT: The Rochester Dialogue 
System," Proc., National Conference on .Artificial Inlelligence, AAAI-82, 
Pittsburgh, P A, August 1982. 

Allen, J.F. and H.A. Kautz, "A model of naive temporal reasoning," to appear in 
l.R. Hobbs and R. Moore (Ed). Vol. 1 of Series entitled Contributions in 
Artificial Intelligence. Ablex Publishing Company. 1983. 

Allen, J.F. and I.A. Koomen, "Planning using a temporal world model," submilted 
to 8th IJCAI, August 1983. 

Bruce,  B.C., "A model for temporal references and its application in a question 
answering program,II  Artificial Intelligence 3, 1-25, 1972. . 

Bubenko, lA., Jr., "Information modeling in the context of system development:' 
Proc., IFIP Congress 80, October 1980. 

Doyle, J., t'A truth maintenance system," Artificial Intelligence 12, 3, November 
1979. 

Fikes, R.E. and N.J. Nilsson, "STRIPS: A new approach to the application of 
theorem proving to problem solving," Artificial Intelligence 2, 189-205, 1971. 

Foderaro, J.K. The FRANZ LISP Manual. 1980. 

Freuder, E.C., "A sufficient condition for backtrack-free search:' JACM 29, 1,24-32, 
January 1982. 

Hayes, P.J., "The Naive Physics manifesto," in. D. Michie (Ed). Expert Systems. 
Edinburgh U. Press, 1979. 

Hayes, P.I., "Naive Physics I: Ontology for liquids," Working Paper 63, Inslitut pour 
les Etudes Semantiques et Cognitives, Geneva, 1978. 

Hendrix, 0.0., "Modeling simultaneous actions and continuous processes," ArtifiCial 
Intelligence 4, 3, 1973. 

Kahn, K.M. and A.O. Oorry, ItMechanizing temporal knowledge:' Artificial­
_ Intelligence 9, 2, 87-108, 1977. . 

McCarthy, l. and P. Hayes, "Some philosophical problems from the standpiont of 
artificial intelligence," Machine Intelligence 4, Edinburgh U. Press.• 1969. 

McDennott, D., "A temporal logic for reasoning about processes and plans," 
Cognitive Science 6, 101-155, 1982. 

Rescher, N. and A. Urquhart. Temporal Logic. New York: Springer Verlag, 1971. 

Sacerdoti, E.D. A Structure for Plans and Behavior. New York: Elsevier Norlh-
Holland,  Inc.,  1977. 

Vilain,  M.,  "A  system  for  reasoning  about  time,"  Proc., AAAI,  Pittsburgh,  PA, 
August  1982. 



Time  Modality  Coding  Substrate
Range  Specific? 

edge 
retina­

I 
input or  1/4 modality  detectors,  ,

second  specificI  sensory  LGN­

etc. 

channels, 
striate 

??? ,  ..  • 

STM 
Short­term  seconds to 

"loops"minutes  mixed  <next paper) 

I 
I 

I 

?? ?!Intermediate·  ..hours  . 
"chemical 

markers" 
I  ITM 

organizedcommonLong­Term  synapses"permanent" 
propositionsLTM 

I 
I 

Figure 1: Contemporary view of  (visual) memory phases. 



left move 
t--+----I~ 1eft 

right move 
right 

start 

Figure 2: A simple example of encapsulation. Two 
units can be considered as a single unit. 
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Figure  3:   Conjunctive  connections  and  disjunctive
input  sites. 
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Z ::: f(x,y) = xy 

x-units 

----____ ~A~ ____------------_ 

CD  *'(1) 

y-units - . .~ 

® 
z unit: ~ 

Figure 4: A multiplication table using conjunctive 
connections to a single unit for each 
output value. 
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a) Mutual inhi biti on. 

t P(A) P(B) 

1  .6 .5 
2 .55 .4 
3 .55 .35 
4 .6 .3 
5 .65 .2 
6 .75 .1 
7 .95 0 
8  Sat 0 

Suppose Al received an input of ~ units, then 2 per time step 

Suppose Bl received an input of 5 units, then 2 per time step 

b) Two mutually inhibitory coalitions. 

t P(A) P(B) p(C) P{D) 

1 
2 
3 
4 

.6 

.65 

.75 

.95 
Sat 

.5 

.45 

.35 

.15 
0 

.6 

.65 

.75 

.95 
Sat 

.5 

.45 

.35 

.15 
0 

Figure 5: Two simple nebJOrks. 
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Figure 6a: Winner-Take-All network. Each unit 
stops if it sees a higher value. 

Figure 6b: Regulated network. If sum exceeds UB 
all units get uniform inhibition; 
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physical 
retinal size 
size units 
units 

Figure 7a:  Modifier depth network. For example,
depth = 2 blocks the links between equal
size units. 

physical 
retinal size 
size units 
units 

Figure 7:  Two alternative networks for encoding the 
relations among depth, retinal size, and 
physical size. 

Figure 7b:  Conjunctive depth network. Physical size 
2 requires both retinal size 2 and depth =  1. 
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Figure 8: Dynamic links. A must be quicklylinl\able 

to either a or b. 
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to b 

Figure 9: Uniform dynamic link network. 
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Inter­unit 
One­end  Dual  Block 

Idle  Low  ~ lock 
Blocked 

Low  ~ lock  ~ lock 
Blocked  Idle 

High  (Low)  X Low 

Blocked 
.­

X Idle 

End­unit . ~ 
, 

From
Start  inter 

Idle  Low  Low 

Low  High  High  Idle 

High  (Low)  Low 
..  

Figure 10: State and outpuf tables 

;  .  for dynamic connections. 
• 
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Figure 11: Numerical version of dynamic link network. 
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from 

C 

D 

.. .  .... 

Figure 12: One-end-efficient dynamic connection. 
(Column on right requires three active inputs.) 
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B to beh 
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Figure 13: The 4N3/ 2 dynamic connection network. 
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x 
y 

. K 
P =  (l-F)B 

15"  =  Probabil ity that there is no 1 ink from X to y  

N =  Number of Units in,a IILayer"  

B =  Number of Randomly Outgoing Branches/Unit ~ ~  

F =  B/N (Branching Factor)  

K=  Number of Intermediate Levels (2 in diagram above)  

P for B =1000; different numbers of levels and units 

~ K= 10
6 107 10

8 

0 .999 .9999 .99999 

1  .367 .905 .989 

2  10-440 10-44 10-5 

Figure 14: Making a connection. 
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RANDOM NETWORKS: 

NNODES EACH CONNECTED TO N  OTHERS 

® CD  CD 

ASSUME V = 20 *  POTENTIAL; DECAY IS .2: 

IF  I  G L  0 A  N  ,  • 

T  = 0 

1 1.0 1.0 0 0 0 0  0 

2 1.0 1.0 0  2 ,14 .2 .2 

3  1.0 1.~ .02 .28 .6 .2 .2 

4  1.0 1.~ IJ  4  .36 .2 .2 

5  1.0 1J) Q  .63 1.0 .2 .2 

FIGURE 15: RANDOM CHUNKING NETWORK. 
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d ::: 2v' N d = 3v'N d = 4v'N 

N = 106 
1- 39,042 
2- 733 
3- 8 
4­ 0 

1- 57,953 

2 ­ 1,628 
3 ­ 29 
4- 0 

1- 76.467 
2- 2,854
3 .  67 
4- 1 

N= 107 
1­ 144,352 

2- 1,001 
3- 4 
4- 0 

1­ 215,709 
2- 2,242 
3·  14 
4- 0 

1­ 286,547 
2- 3,966 
3 ­ 35 
4- 0 

N::: 108 
1­ 518,595 

2- 1,295 
3- 2 
4- 0 

1­ 776,848 

2- 2,~09 
3- 7 
4- 0 

1- 106 

2 "  5,162 
3- 16 
4- 0 

Each box has expected number of nodes linking to 
k :::  (1,2.3,4) units of random set R of size iog2 N ....  20. 

Figure 16: Expected number of links into a small random subset. 




