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Abstract. Modeling and programming tools for neighborhood search
often support invariants, i.e., data structures specified declaratively and
automatically maintained incrementally under changes. This paper con-
siders invariants for longest paths in directed acyclic graphs, a fundamen-
tal abstraction for many applications. It presents bounded incremental
algorithms for arc insertion and deletion which run in O(‖δ‖log‖δ‖) and
O(‖δ‖) respectively, where ‖δ‖ is a measure of the change in the input
and output. The paper also shows how to generalize the algorithm to
various classes of multiple insertions/deletions encountered in scheduling
applications. Preliminary experimental results show that the algorithms
behave well in practice.

1 Introduction

The last decades have seen significant progress in the design and implementa-
tion of modeling and programming tools for combinatorial optimization. His-
torically, the major focus of that research has been on systematic search (e.g.,
constraint satisfaction and mathematical programming), but recent years have
seen increased attention being devoted to local search and its variations (See,
for instance, [6,8,10,18,20,22]).

The design of modeling and programming tools for local search generally in-
volves abstractions to express the neighborhood and to encapsulate incremental
algorithms. Localizer [10] proposed the concept of invariants, which specifies,
in a declarative fashion, data structures that are then maintained incremen-
tally by the system. Invariants were used subsequently in [8,21]. More recently,
constraint-based approaches to local search (e.g., [3,7,11,22]) were proposed,
where constraints incrementally maintain properties such as their violation de-
grees. The Comet system [9] pushed this idea further and introduced the con-
cept of differential objects, which can be viewed as the counterpart of global
constraints for local search. Differentiable objects not only maintain properties
incrementally, but also make it possible to evaluate the effects of various ac-
tions (or moves) on these properties (e.g., swapping the values of two variables),
since such queries are often used to choose appropriate moves in local search al-
gorithms. In general, differentiable objects capture combinatorial substructures
of the application at hand and they were instrumental in finding novel, more
efficient, algorithms for several combinatorial optimization problems [9,12].

This paper was motivated by the study of differentiable objects for schedul-
ing applications, where it is often critical to maintain longest paths in directed
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acyclic graphs (DAG) in order to evaluate the makespan or, more generally, ear-
liest and latest completion times. These longest paths are then used in list or
bidirectional scheduling (e.g. [5]), in insertion heuristics (e.g., [23]), as well as in
neighborhood search (e.g., [1,5,13]). For instance, a key component of many of
these algorithms is the ability to update the makespan after an insertion or to
evaluate the impact of swapping two tasks on the makespan.

The main technical result of this paper are novel algorithms to maintain
longest paths in directed acyclic graphs under arc insertions and deletions. The
paper presents bounded incremental algorithms for these two operations which
run in time O(‖δ‖log‖δ‖) (insertion) and O(|δ‖) (deletion), where ‖δ‖ represents
the size of the changes in the input and output1. The results use the Bounded
Incremental Computation (BIC) model of Ramalingam and Reps [15]. The BIC
model differentiates more incremental algorithms than the traditional online
computation model, which only analyzes algorithms in terms of the input size.
The BIC model is particularly appropriate for heuristic and neighborhood search,
where the change in the output is often small compared to the total input size.
The paper also shows how to adapt these algorithms for important operations in
scheduling and gives preliminary experimental results indicating the practicality
of the algorithms.

The rest of the paper is structured as follows. Section 2 gives an overview of
the BIC model. Section 3 discusses the intuition behind the algorithms. Sections
4 and 5 describe the algorithms in detail and give their correctness proofs. Section
6 presents generalizations to the algorithms, as well as their applications to
scheduling. Section 7 gives some preliminary experimental results, Section 8
describes related work, while Section 9 concludes the paper.

2 Bounded Incremental Computation

At a high level of abstraction, incremental algorithms can be modelled as updat-
ing the output of a function subject to changes to its input. Let f be a function,
x be an input, and ε be a change on x. An incremental algorithm receives x,
f(x), and ε as inputs and transforms f(x) into f(x+ ε), where x+ ε denotes the
result of applying change ε on input x. For instance, x may be a directed graph
with a source, f may be a function which computes the length of the longest
paths from the source to all vertices, and ε may be the insertion of an arc a → b
or the removal of such an arc. In general, it is useful in incremental algorithms
to maintain auxiliary information in order to compute f(x + ε). Provided that
the auxiliary information is polynomially related in size to the output, the prob-
lem can then viewed as computing an enhanced function f ′ incrementally. As a
consequence, we can safely ignore this issue without loss of generality and work
directly with f ′.

Various models for analyzing incremental algorithms have been proposed
and they include online algorithms, amortized analysis (e.g., [19]), and bounded
incremental computation (BIC) [15]. Many such models analyze the complexity
1 We give more precise bounds later in the paper when the terminology is introduced.
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of incremental algorithm in terms of the input size (e.g., x+ ε). The BIC model,
on the contrary, studies the behavior of incremental algorithms in terms of the
changes in both the input and output. As a consequence, the BIC model has a
finer granularity and can differentiate algorithms that other models cannot. In
addition, it is particularly appropriate in the context of neighborhood search,
where most of the neighborhood generally remain unchanged from one iteration
to the next. Analyzing incremental algorithms in terms of the neighborhood size
is thus not very informative in general.

Since this paper assumes the BIC model, let us describe its main concepts
more precisely. Let ∆(f, x, ε) denote the change between f(x) and f(x + ε) and
let δ(f, x, ε) denote ε+∆(f, x, ε). For instance, in an incremental longest path al-
gorithm, ∆(f, x, ε) may represent the pairs (vertices,lenghts) which have changed
when ε (e.g., an arc insertion) is performed. Since, in general, the function f and
the change ε are clear from the context, we use ∆ and δ for simplicity. The BIC
model analyzes the performance of an algorithm in terms of ‖δ‖, i.e., a measure
of the size of δ. The measure ‖δ‖ may actually be greater than |δ| for reasons
that will become clear shortly, but it is, in general, closely related.

An incremental algorithm is bounded if, for all input x and all allowed change
ε, its execution time depends only on δ, not the size of the entire input x + ε. It
is unbounded otherwise. Of course, many incremental algorithms are unbounded
(e.g., graph reachability) and hence the existence of a bounded algorithm is a
strong guarantee for incremental performance.

An example of bounded incremental algorithm is the shortest path algorithm
of Ramalingam and Reps [15], which runs in O(‖δ‖ log‖δ‖) for arc insertions
and deletions, when the arc weights are strictly positive. Here ‖δ‖ denotes the
number of affected vertices, i.e., the vertices whose shortest paths have changed,
and their adjacent arcs. It is natural to use ‖δ‖, and not |δ|, since any algorithm
would necessarily have to examine the adjacent vertices to an affected vertex in
order to determine if they are affected as well. For graphs with bounded degrees
(e.g., jobshop scheduling), this issue is of course moot.

This paper presents a bounded algorithm for incremental longest paths in a
DAG. The algorithm takes O(|δ| log|δ| + ‖δ‖) for an arc insertion and O(‖δ‖)
for arc deletion. The paper also discusses several generalizations of this result,
including the insertion/deletion of multiple arcs and the detection of cycles.

3 Intuition

We now give the high-level intuition behind the algorithms presented in this pa-
per and we explain why some simple and natural ideas do not lead to bounded
algorithms. We initially focus on graphs with strictly positive weights. This re-
striction is lifted in Section 6. Throughout the paper, we use directed acyclic
graphs with a source s. Given a DAG G = (V, A) and a vertex v ∈ V , we denote
by lp(G, v) the length of a longest path from the source of G to vertex v. The
projection of a graph G = (V, A) wrt its longest paths is the graph G|l = (V, A′)
where
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1. forall(v ∈ V ) do
2. degree(v) = |pred(G, v)|;
3. Q = {v | degree(v) = 0};
4. while Q �= ∅ do
5. v = dequeue(Q);
6. l(v) = max(w ∈ pred(G, v)) l(w) + d(w, v);
7. forall w ∈ succ(G, v) do
8. degree(w) = degree(w) − 1;
9. if degree(w) = 0 then
10. insert(Q, w);

Fig. 1. An Offline Algorithm for Longest Path in a DAG.
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Fig. 2. The Affected Set of an Insertion.

A′ = {x → y | lp(G, x) + d(x, y) = lp(G, y)},

i.e., the subgraph consisting of all arcs belonging to longest paths.
Figure 1 presents an offline algorithm for longest paths in a DAG, which

runs in O(|V |+ |E|) for a directed acyclic graph G = (V, E). The key idea of the
algorithm is to consider the vertices in topological order, which guarantees that,
when a vertex is dequeued, its predecessors have the correct longest path values.
Lines 1-2 compute the initial degree of the vertices and Line 3 inserts the source
in the queue. Lines 4 and 5 dequeue a vertex and compute the length of its
longest path from the source. Lines 7 to 9 decrease the degrees of the successors
of v and insert them in the queue if all their predecessors have been updated,
i.e., when their degrees is 0.

Consider now the problem of updating the longest paths after insertion of an
arc a → b. To obtain a bounded algorithm, it is necessary to consider affected
vertices only, i.e., those vertices whose longest paths have changed. Figure 2
depicts such a situation. The affected vertices are shown in the grey area. Note
that vertex g is not affected, although one of its predecessors is. The reason is
that the new longest path coming from f is not longer than the longest path
from e.

Since the batch algorithm works in terms of degrees, it would be ideal to
apply the batch algorithm on the subgraph consisting of the affected vertices.
Unfortunately, as vertex g indicates, computing the set of affected vertices re-
quires the computation of longest paths.
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procedure insertArc(G,x → y)
begin
1. G = G ∪ {x → y};
2. if l(x) + d(x, y) > l(y) then
3. insert(Q, 〈l(y), y〉);
4. while Q �= ∅ do
5. v = extractMin(Q);
6. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
7. forall(w ∈ succ(G, v)) do
8 if l(v) + d(v, w) > l(w) then
9. if w /∈ Q then insert(Q, 〈l(w), w〉);
end

Fig. 3. A Preliminary Version of Procedure insertArc.

Another natural approach would be to maintain a topological ordering in-
crementally and to use this topological ordering to propagate the changes to the
longest paths. The use of degrees in the offline algorithm is, in fact, a simple way
to order the vertices topologically. This approach is appealling, since there ex-
ists a bounded incremental algorithm for priority ordering which can be used for
that purpose [2]. Unfortunately, this simple idea does not lead to a bounded al-
gorithm. Indeed, a change to the topological ordering does not necessarily entail
a change to the longest paths, so that the incremental algorithm for topological
ordering may consider non-affected vertices. For instance, if successive integers
are used as topological numbers, the arc insertion a → b would change the topo-
logical number of g and its successors, although they are not affected vertices for
the longest paths. Similar examples can of course be produced for other choices
of topological numbers.

The key idea behind our insertion algorithm is the observation that the lengths
of the longest paths in the graph G− before the insertion are, in fact, a topological
order for the affected vertices, since the longest path of a vertex is necessarily
greater than the longest paths of its predecessors. As a consequence, it is possible
to adapt the offline algorithm in order to propagate the changes to the longest
paths using that topological ordering and to enqueue the successors of affected
vertices when the lengths of their longest paths are increasing. Such an algorithm
is shown in Figure 3. Let G− be the graph G at call time. Line 2 tests whether
the new arc x → y changes the longest path of its destination y. If it does, then y
is inserted in the queue with l(y), its longest path in G−, as its key. The affected
vertices are computed and processed in lines 5-9. Line 5 pops the vertex v with
the smallest key and updates its longest paths. It then considers each successor
w of v and inserts w in the queue if its longest paths increases and it is not in
the queue already. The algorithm runs in time O(|δ| log|δ|+‖δ‖) using a priority
queue. It only uses insert and extractMin on the queue (not updateKey, which
updates a key in the queue) and each affected vertex enters the queue at most
once.

The key idea behind deletion is rather different. The algorithm relies on the
fact that the affected vertices can be identified without computing longest paths.
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Fig. 4. The Longest Path Projection G|l.

This is possible because it is sufficient to notice that the length of a longest path
decreases: it is not necessary to know by how much. More precisely, arc deletion
can be tought of as working on subgraphs G|l obtained by keeping only those
arcs that belong to longest paths. If a vertex v is affected and w is one of its
successors in G|l, vertex w is affected if v → w is the only arc incident to w in
G|l. By proceeding this way, all affected vertices can be computed in O(‖δ‖).
Figure 4 depicts the graph G|l from our previous example. Consider the deletion
of a → b which obviously affects b. Its successor c is also affected, since it has
only one incident arc in G|l. On the other hand, vertex e is not affected since
it has two incident arcs. Once the affected vertices are computed, arc deletion
can proceed simply by applying the offline algorithm on the affected vertices.
Of course, the above discussion indicates that G|l (or at least the degrees in
G|l) must be maintained incrementally. As we will see, maintaining G|l does not
increase the complexity of the algorithms. The rest of the paper presents these
algorithms in detail, together with the correctness proofs and some important
generalizations. Once again, we focus on strictly positive weigths, this restriction
being lifted in Section 6.

4 Insertion

Figure 5 depicts procedure insertArc. The main differences with the preliminary
version presented earlier are lines 7-8 and 12-15, which maintain the projected
graph. Lines 7-8 updates the projected graph for an affected vertex v, lines 12-13
adds an arc originating from an affected vertex to a non-affected vertex, while
lines 14-15 handle the case of the inserted arc. We now prove the correctness
of the algorithm. We first define formally the set of vertices affected by an arc
insertion.

Definition 1 (Affected Vertices). Let G = (V, A), x → y /∈ A, and G′ =
(V, A ∪ {x → y}). The set of affected vertices by the insertion of x → y in G is
defined as

AffectedI (G, x → y) = {v ∈ V | lp(G′, v) > lp(G, v)}.
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procedure insertArc(G,x → y)
begin
1. G = G ∪ {x → y};
2. if l(x) + d(x, y) > l(y) then
3. insert(Q, 〈l(y), y〉);
4. while Q �= ∅ do
5. v = extractMin(Q);
6. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
7. Gl = Gl \ {x → v | x → v ∈ Gl};
8. Gl = Gl ∪ {x → v | x ∈ pred(G, v) ∧ l(x) + d(x, v) = l(v)};
9. forall(w ∈ succ(G, v)) do
10. if l(v) + d(v, w) > l(w) then
11. if w /∈ Q then insert(Q, 〈l(w), w〉);
12. else if l(v) + d(v, w) = l(w) then
13. Gl = Gl ∪ {v → w};
14. else if l(x) + d(x, y) = l(y) then
15. Gl = Gl ∪ {x → y};
end

Fig. 5. Procedure insertArc.

In the following, we abuse notations and remove the arguments of AffectedI when
they are clear from the context. The following proposition informally states that
a vertex is affected only if one of its predecessors is affected.

Proposition 1. Let G = (V, A), x → y ∈ A, and G′ = (V, A∪{x → y}). Then,

w ∈ AffectedI (G, x → y) ⇒ ∃v ∈ pred(G′, w) : lp(G′, v) + d(v, w) > lp(G, w).

The proposition makes it natural to define a binary relation affectI.

Definition 2. Let G = (V, A), x → y /∈ A, and G′ = (V, A ∪ {x → y}). The
binary relation affectI is defined as

affectI (v, w) ⇔ lp(G′, v) + d(v, w) > lp(G, w) ∧ v ∈ pred(G′, w).

We use affectI∗ to denote the transitive closure of affectI.

The following proposition characterizes the affected vertices.

Proposition 2. Let G = (V, A), x → y /∈ A, G′ = (V, A ∪ {x → y}), and let
v ∈ AffectedI (G, x → y) (v 	= y). Then, affectI ∗(y, v) holds, i.e., there exists a
path of affected vertices from y to v.

Definition 3 (Specification of insertArc). Let G = (V, A) be a DAG with
strictly positive weights, x → y /∈ A, and G′ = (V, A ∪ {x → y}). Procedure
insertArc(G, x → y) satisfies the following specification:

Pre: ∀v ∈ V : l(v) = lp(G, v) ∧ Gl = G|l.
Post: ∀v ∈ V : l(v) = lp(G′, v) ∧ Gl = G′

|l.
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Theorem 1. Procedure insertArc is correct and terminates.

Proof. The proof relies on the observation that the algorithm partitions the
affected vertices in three sets

P = {x ∈ AffectedI | l(x) = lp(G′, x)};
Q = {x ∈ AffectedI | ∃v ∈ P : v → x & x /∈ P};
R = {x ∈ AffectedI | ∃v ∈ Q : affectI ∗(v, x) & x /∈ P ∪ Q}

and that the following two invariants hold at line 4 in the algorithm

AffectedI = P ∪ Q ∪ R (1)
∀v ∈ P,∀x ∈ Q : lp(G, v) ≤ lp(G, x). (2)

Initially, P = ∅, Q = {y}, and R = AffectedI \ {y}, and the invariants hold
by Proposition 2. Assume now that the invariants hold at iteration i. We show
that lines 5-13 restore the invariant for iteration i + 1. Line 5 pops the vertex v
with the smallest value l(v) = lp(G, v) from Q. Since lp(G, v) > lp(G, p) for all
p ∈ pred(G, v), all its affected predecessors must be in P by Invariant (2) and
the fact that

∀y ∈ succ(G, x) : lp(G, x) < lp(G, y).

As a consequence, line 6 correctly computes l(v) = lp(G′, v). Each successor w
of v now belongs to Q ∪ R by Invariant (2) and lines 8-10 move these successors
of v from R to Q, since v ∈ P after line 6. Observe that no new vertices are
added to the union Q ∪ R and hence Invariant (1) is restored. By selection of v
and since ∀y ∈ succ(G, x) : lp(G, x) < lp(G, y), Invariant (2) holds as well. On
termination, Q is empty, which entails that R is empty, and hence l(v) = lp(G′, v)
for all v ∈ V . The algorithm is also guaranteed to terminate, since the size of
Q ∪ R strictly decreases at each iteration. It is easy to verify that Gl is also
updated correctly, since it is recomputed for each affected vertex (lines 7-8) and
since arcs to successors of affected vertices are inserted in lines 13 and 15.

5 Arc Deletion

Figures 6 and 7 depict the algorithms to compute the deletion of an arc x → y.
Function computeAffected in Figure 6 computes the set of affected vertices by
a deletion. It starts with the deleted arc x → y and works on the projected
graph. Each iteration dequeues an affected vertex and inserts its successors in
the queue if they are affected. A successor w is affected if all its predecessors
in the projected graph are affected. This is tested by removing from Gl all arcs
v → w, where v is affected. When a vertex has no predecessor in Gl, it is
affected. Procedure removeArc in Figure 7 is the main routine. If the deletion
of x → y affects y, the procedure computes the affected vertices using function
computeAffected. It then initializes the degrees of all affected vertices using
the affected vertices only. Indeed, the unaffected vertices can be considered as
having been processed, since the lengths of their longest paths did not change.
It then applies the traditional offline algorithm on the affected vertices. We now
formalize the various concepts and give the correctness proofs.
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function computeAffected(Gl, y)
begin
1. Q = {y};
2. A = ∅;
3. while Q �= ∅ do
4. u = dequeue(Q);
5. A = A ∪ {u};
6. forall(v ∈ succ(Gl, u)) do
7. Gl = Gl \ {u → v};
8. if pred(Gl, v) = ∅ then
9. insert(Q, v);
10. return A;
end

Fig. 6. Function computeAffected.

procedure removeArc(G,x → y)
begin
1. G = G \ {x → y};
2. if x → y ∈ Gl then
3. Gl = Gl \ {x → y};
4. if pred(Gl, y) = ∅ then
5, Affected = computeAffected(Gl, y);
6. forall(v ∈ Affected) do
7. degreelp(v) = |pred(G, v) ∩ Affected |;
8. Q = {v ∈ Affected | degreelp(v) = 0};
9. while Q �= ∅ do
10. v = dequeue(Q);
11. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
12. Gl = Gl ∪ {x → v | x ∈ pred(G, v) ∧ l(x) + d(x, v) = l(v)};
13. forall(w ∈ succ(G, v) ∩ Affected) do
14. degreelp(w) = degreelp(w) − 1;
15. if degreelp(w) = 0 then insert(Q, w);
end

Fig. 7. Procedure removeArc.

Definition 4 (Affected Vertices). Let G = (V, A), x → y ∈ A, and G′ =
(V, A \ {x → y}). The set of affected vertices by the deletion of x → y in G is
defined as

AffectedD(G, x → y) = {v ∈ V | lp(G′, v) < lp(G, v)}.

As before, we abuse notations and remove the arguments of AffectedD when
they are clear from the context. We also denote by x →l y an arc in G|l and by
x →∗

l y the existence of a path from x to y in G|l. The following proposition is
the counterpart to Proposition 1 and states that a vertex is affected if and only
if all its predecessors in the projected graph are affected.



Maintaining Longest Paths Incrementally 549

Proposition 3. Let G = (V, A), x → y ∈ A, G′ = (V, A \ {x → y}), and let
v ∈ V such that v 	= y. Vertex v is affected iff

∀p ∈ pred(G|l) : p ∈ AffectedD(G, x → y).

Proof. By definition, v is affected iff lp(G′, v) < lp(G, v) which is equivalent to
∀p ∈ pred(G, v) : lp(G′, p) + d(p, v) < lp(G, v). Since

∀p ∈ pred(G, v) \ pred(G|l, v) : lp(G, p) + d(p, v) < lp(G, v)

and since lp(G′, p) ≤ lp(G, p), it follows that v is affected iff ∀p ∈ pred(G|l, v) :
lp(G′, p)+d(p, v) < lp(G, v) which is equivalent to ∀p ∈ pred(G|l, v) : lp(G′, p) <
lp(G, p). The result follows.

Corollary 1. Let G = (V, A), x → y ∈ A, G′ = (V, A\{x → y}), and let v ∈ V
such that v 	= y. Vertex v is affected implies y →∗

l v.

Proof. Suppose that no such path exists. Then a longest path to v cannot go
through y. By Proposition 3, the source must be affected, which is impossible.

Definition 5 (Specification of computeAffected). Let G = (V, A) be a DAG
with strictly positive weights, x → y ∈ A, G′ = (V, A\{x → y}), and lp(G′, y) <
lp(G, y). Procedure computeAffected(G, x → y) satisfies the specification:

Pre: Gl = G|l.
Post: Gl = G′

|l \ {v → w | v ∈ AffectedD};
the function returns AffectedD.

Theorem 2. Procedure computeAffected is correct and terminates.

Proof. The proof relies on the observation that the algorithm partitions the
affected vertices in three sets A, Q, and R, satisfying the invariants

v ∈ A ⇒ v ∈ AffectedD (1)
v ∈ Q ⇒ v ∈ AffectedD (2)
R = {w ∈ AffectedD \ (A ∪ Q) | ∃v ∈ Q : v →∗

l v} (3)
Gl = Gl \ {v → w|v ∈ A ∪ Q} (4).

in line 3 of the algorithm. Initially, A is empty, Q = {y}, and the invariants hold
by Corollary 1. By Invariant (2), lines 4 and 5 are correct. Moreover, if v is a
successor of u and the test on line 8 succeeds, by Invariant (4), all predecessors
of v must be in A ∪ Q and are affected. By Proposition 3, v is affected and line
9 is correct. Moreover, all other affected vertices are still reachable from vertices
in Q. Indeed, if the only path to an affected vertex w not in A ∪ Q goes through
u, i.e., y →l . . . →l u →l s →l . . . →l w, then s is in Q (because of lines 8-9)
and s →∗

l w. On termination, Q is empty and A is the set of affected vertices.
The algorithm terminates, since |Q ∪ R| strictly decreases at each iteration.

Definition 6 (Specification of removeArc). Let G = (V, A) be a DAG with
strictly positive weights, x → y ∈ A, and G′ = (V, A \ {x → y}). Procedure
removeArc(G, x → y) satisfies the specification:
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procedure propagateChanges(G,S)
begin
1. Q = S;
2. while Q �= ∅ do
3. v = extractMin(Q);
4. l(v) = max(x ∈ pred(G, v)) l(x) + d(x, v);
5. forall(w ∈ succ(G, v)) do
6 if l(v) + d(v, w) �= l(w) then
7. if w /∈ Q then insert(Q, 〈l(w), w〉);
end

Fig. 8. Procedure propagateChanges.

Pre: ∀v ∈ V : l(v) = lp(G, v) ∧ Gl = G|l.
Post: ∀v ∈ V : l(v) = lp(G′, v) ∧ Gl = G′

|l.

Theorem 3. Procedure removeArc is correct and terminates.

Proof. The proof follows from Theorem 2 and the fact that the degrees for the
non-affected vertices are initialized correctly.

6 Generalizations and Applications to Scheduling

Multiple Insertions/Deletions. It is easy to generalize the insertion algorithm
to accommodate a set of arcs of the form {x → y1, . . . , x → yn}. Indeed, since
all these arcs have the same origin, the values lp(G, v) are still a valid topolog-
ical ordering for the affected vertices, since no new topological constraints are
introduced between the affected vertices. Such multiple insertions are typical
in list-scheduling and bidirectional search algorithms for jobshop scheduling [5].
This suggests that, as long as insertions/deletions do not change the topological
ordering, adaptations of Procedure insertArc may be used.

Consider for instance changing (increasing or decreasing) the weights of a set
of arcs of the form {x → y1, . . . , x → yn}, i.e., changing d(x, y1), . . . , d(x, yn).
Obviously, the lengths of longest paths lp(G, v) provide a topological ordering
of the graph, since the graph has not changed (only the weights). We can thus
apply an algorithm similar to insertArc in order to propagate the changes to
vertices in {y1, . . . , yn}. The core of such an algorithm is depicted in Figure 8
and is essentially similar to insertArc. The main difference is in line 6, which
tests whether the lengths have changed (i.e., have been increased or decreased).
This procedure may be called with S initialized to those vertices in {y1, . . . , yn}
which are affected.

A more complex use of multiple insertions/deletions arises in local search
algorithms for jobshop or openshop scheduling. Here a typical move consists of
swapping two vertices (or tasks) on a critical path which are executing on the
same machine. Observe that swapping two such vertices is guaranteed not to
create cycles [1] and that evaluating the impact of such moves on the makespan
for a restricted set of vertices is the basic operation of the successful tabu-search
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Fig. 9. Inverting Two Vertices on a Critical Path.
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Fig. 10. A Graph with a Zero-Weight Arc and its Transformation.

algorithm of Nowicki [13]. The left side of Figure 9 depicts such a situation. In the
figure, pv, v, w, sw are executed on the machine, and sj(v) and sj(w) represent
the job successors of vertices v and w. Such a move seems rather complex.
However, observe that we can add an arc pv → w with weight d(pv, v) + d(v, w)
in constant time, since no vertex is affected. We can now remove v → w in
constant time since, again, no vertex is affected. Now the effect of swapping v and
w on the makespan is achieved simply by modifying the weights of pv → v and
pv → w appropriately. As a consequence, algorithm propagateChanges gives
us a bounded O(|δ|log|δ| + ‖δ‖) incremental algorithm for evaluating changes
to the makespan when swapping two critical vertices. Of course, none of the
above arc operations need to take place in practice. It is sufficient to apply
propagateChanges on the affected vertices. Similar reasoning can be applied
to many more situations, including moves in the neighborhood NB in [5] and
arc additions in insertion algorithms [23] for scheduling. Observe also that our
deletion algorithm supports multiple deletion naturally, since it only reasons on
the projected graph.

Zero Weight Arcs. Our algorithm naturally generalizes to the case of zero-weight
arcs. The difficulty here is that several vertices may have the same longest path
lengths, although they are topologically ordered. Consider, for instance, the left
side of Figure 10 which depicts parts of a DAG and assume that vertices c
and d have the same longest path lengths and are affected (due to some of
their predecessors). Vertices c and d are thus on the queue and d could be
dequeued before c, although it comes after c in the topological ordering. This
does not raise any major issue however. The intuition is to recognize that the
arc c → d can be replaced by adding arcs p → d for each arc p → c, and that
this transformation, whose result is shown in on the right side of Figure 10,
preserves the longest paths. After the transformation, observe that c and d are
topologically independent and can be processed in any order.
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Table 1. Experimental Evaluation of the Incremental Algorithms.

abz7 abz8 abz9 la31 la32 la33 la34 la35
Offline 88.39 87.41 87.32 157.05 159.36 156.75 166.41 155.68
Incr 1.93 1.94 1.94 3.40 3.44 3.39 3.45 3.45
Incr(i+d+i) 2.75 2.88 2.70 5.00 4.95 4.78 5.00 4.97

Negative Weight Arcs. Negative weights can be handled by a similar transfor-
mation. When an arc a → b has a negative weight, it must be replaced by arcs
of the form p → b for each predecessor p of a, whose weights must be reduced
appropriately. In scheduling applications, these negative arcs represent a gener-
alization of precedence constraints: they are not dynamic and generally shorter
than the duration of the tasks. Hence the transformation is simple and only
introduce a marginal increase in the size of the graph. Even if such insertions
are dynamic, they correspond to cases which are well-handled by our algorithm,
since they preserve the existing topological order of the affected vertices. The
bookkeeping is however more tedious, since a more complex mapping between
actual and virtual arcs must be maintained.

Cycle Detection. It is also easy to generalize our algorithm to detect cycles. Since
procedure insertArc guarantees that a vertex can only be processed once, it
suffices to mark the vertices popped from the queue. A cycle is detected if such
a vertex is about to be reinserted in the queue.

7 Experimental Results

Table 1 reports some preliminary experimental results on the practicality of the
algorithms. The only purpose of these experiments is to show that the algo-
rithms can be implemented efficiently (i.e., the constants are not prohibitive)
and may bring significant benefits. To validate this claim, we instrumented an
implementation of bidirectional search so that each arc addition is propagated
immediately. We then compared the behavior of a differentiable object with
offline and incremental algorithms. Table 1 reports the results of running the
resulting procedures on 10 longest paths simultaneously to minimize the impact
of other parts of the procedure. Line offline depicts the offline implementa-
tion, line Incr gives the results of the incremental implementation, and line
Incr(i+d+i) describes the results of the procedure testing deletion. In the in-
strumentation Incr(i+d+i), an arc addition is replaced by a sequence of three
operations (addition,deletion,addition) of the same arcs. Of course, the differen-
tiable object has no idea that it is being used in a bidirectional search procedure
and cannot perform any optimization. The results show the significant benefits
that may result from the incremental algorithm. For instance, la35 shows an
improvement of a factor 48 for a graph of 300 tasks. Note also the excellent
times Incr(i+d+i), where the times for the additional deletion and insertion
are amortized by other parts of the bidirectional implementation.
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8 Related Work

The bounded incremental computation (BID) model was formally introduced by
Ramalingam and Reps [15]. However, it was used as early as 1982 (by Reps again
[17]) to analyze algorithms for attribute grammars, as well as in several other
papers, primarily in the programming language community. Ramalingam and
Reps also proposed a bounded algorithm for maintaining shortest paths, which
was the inspiration for this research. Their algorithms are adaptations of Dijk-
stra’s shortest path algorithm, while ours are adaptations of topological sorting
for longest paths. Their insertArc procedure runs in O(|δ|log|δ| + ‖δ‖), but it
needs a Fibonacci heap, since it updates elements of the queue. Their deleteArc
procedure runs in O(|δ|log|δ|+ ‖δ‖), starts by computing the set of affected ver-
tices using a projected subgraph, and uses the completement of the projected
graph to initialize a Dijkstra-like second phase. Our deletion procedure runs in
O(‖δ‖) and uses an offline algorithm (based on degrees) on the subgraph, once
the affected vertices are computed. Reference [14] presents a grammar problem
which can be viewed as a generalization of the shortest path problem. Using
the transformations described earlier, it is possible to reduce longest paths to
this problem, since longest paths give rise to superior functions. The resulting
algorithm handles arbitrary multiple insertions/deletions. However, it runs in
O(‖δ‖log‖δ‖) and is more costly from a practical standpoint as well. Its addi-
tional complexity is not necessary for many applications, as we discussed earlier,
where our simpler algorithms are significantly faster and should be preferred.
Ramalingam [16] considers incremental feasibility of systems of difference con-
straints using incremental shortest path algorithms. These algorithms can be
applied to incremental feasibility of temporal constraint networks [4].

9 Conclusion

This paper considered invariants for longest paths in directed acyclic graphs,
a fundamental abstraction for programming tools supporting local search. It
presented bounded incremental algorithms for arc insertion and deletion which
run in O(|δ|log|δ| + ‖δ‖) and O(‖δ‖) respectively, where ‖δ‖ is a measure of the
change in the input and output. The algorithms were also shown to be practical
experimentally and their generalizations to various scheduling applications were
also discussed. There are several open issues raised by this research. On the
one hand, it would be interesting to determine if there exists a O(‖δ‖) insertion
algorithm, since the incremental algorithm has an additional log factor compared
to the offline algorithm. On the other hand, it would be interesting to find out
an algorithm that can handle negative weights without graph transformations.
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