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Abstract—With changing workloads, cloud service providers
can leverage vertical container scaling (adding/removing re-
sources) so that Service Level Objective (SLO) violations are
minimized and spare resources are maximized. In this paper, we
investigate a solution to the self-adaptive problem of vertical
elasticity for co-located containerized applications. First, the
system learns performance models that relate SLOs to workload,
resource limits and service level indicators. Second, it derives
limits that meet SLOs and minimize resource consumption via
a combination of optimization and restricted brute-force search.
Third, it vertically scales containers based on the derived limits.
We evaluated our technique on a Kubernetes private cloud of
8 nodes with three deployed applications. The results registered
two SLO violations out of 16 validation tests; acceptably low
derivation times facilitate realistic deployment. Violations are
primarily attributed to application specifics, such as garbage
collection, which require further research to be circumvented.

I. INTRODUCTION

Deploying applications on lightweight containers enables
fine-grained control of the distribution of resources on multi-
tenant clouds. This increases the density of cloud systems and
improves their capacity to dynamically resize resources based
on levels of load, which is referred to as elasticity.

However, using containers lowers isolation and increases
the risk of violating service requirements. Acceptable lev-
els of performance are specified by Service Level Objec-
tives (SLOs) which define acceptable performance thresholds.
Cloud providers aim to 1) satisfy application owners’ by
enforcing SLOs; 2) decrease the overprovisioning of hardware
resources to make room for new tenants and decrease opera-
tional costs; and, crucially, 3) continue doing so while SLOs,
demand levels, deployed applications and hardware change
dynamically. Contemporary container orchestration platforms,
e.g. Kubernetes, expose an API to manage the number of
containers (horizontal scaling) and the size of resources they
receive (vertical scaling). Horizontal scaling is preferred but it
is not as effective when the cloud has become saturated [1].

In this paper, we study autonomic vertical scaling for co-
located applications on saturated containerized clouds. We
investigate the connection between Service Level Indicators
(SLIs) such as response time, and the workload, resource
limits and SLIs of other tenants. The research question is how
should resources be shared among co-located containerized
applications if adding extra instances is no longer possible.
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Fig. 1. MAPE-K-Inspired Architecture of the Proposed Technique

The research aims were achieved by 1) deploying a private
Kubernetes cluster, 2) stress-testing it with sample applications
to create a dataset, 3) building machine learning-powered
models to predict SLIs, 4) applying single- and multi-objective
optimization on the models to derive CPU limits such that
SLOs are met while resource consumption is minimized, and
5) conducting validation tests of the derived resource limits.

Our proposed solution (Fig. 1) is inspired by the Monitor-
Analyze-Planning-Execution-Knowledge (MAPE-K) architec-
ture for self-adaptive software [2] and aims to facilitate goal-
and constraint-driven adaptation under uncertainty caused by
co-location-induced performance interference. The main con-
tribution of this work is a novel approach for deriving SLO-
compliant resource limits for application containers in multi-
tenant clouds based on a) machine learning techniques for
constructing performance models and b) single- and multi-
objective optimization. More broadly, the paper also studies
the synergy of machine learning models and anomaly-removal
that take the role of the analysis (A) component of MAPE-K
as well as multi-target optimization models serving as its plan
(P) component. The paper also contributes to the design of
testbed cloud environments.

II. BACKGROUND AND RELATED WORK

Containers are managed by a runtime, such as Docker
Engine. Dockerfiles describe a set of commands that bring
a container to a desirable state, which is subsequently stored



as an image in a repository. Docker can start a new container
based on an image and apply desired resource limits1.

Cloud Services Providers (CSP) rely on container orches-
tration software, such as Kubernetes, to autonomically manage
the life-cycle of containers. Kubernetes manages a cluster
of physical and/or virtual nodes. A subset of these nodes
take the role of a master, the remaining are workers. Each
worker node contains a controller, called kubelet, which
receives instructions from a master regarding the desired state
it needs to maintain in its node and then uses a container
runtime software (commonly Docker) to create, manage and
interconnect containers inside pods. Kubernetes limits the CPU
a pod receives in the following two ways: (i) Soft limits using
CPU shares, which guarantee that at least a certain percentage
of the CPU will be available to the processes of a container;
and (ii) hard limits using CPU slices, which guarantee that no
more than a given percentage of the CPU will be awarded to a
container. In both cases, the limits are expressed in millicores
or milliCPUs (mCPUs), a milliCPU being one 1

1000 of a
worker node’s CPU.2

The area of Self-Adaptive Systems studies such self-
managing technologies. These technologies started with “hap-
hazard” scripts that automated infrastructure management and
progressed with the establishment of Self-Adaptive archi-
tectures, such as the flagship Monitor-Analyze-Plan-Execute-
Leveraging-Knowledge MAPE-K Loop. Later, runtime per-
formance models were identified as means to adapt the
infrastructure such that SLOs are satisfied and guarantees
are provided. Control-theory has also been proposed as an
alternative; however, it is beyond the scope of this paper [2].

Optimal application placement in the cloud and cloud/edge
environments is a recent research topic. [3] proposes to use
cost and round trip time metrics to decide whether to place
latency-critical Internet of Things applications to edge or to
the central data center. An approach based on the notion of
technical debt was proposed in [4] to manage the elasticity
of SaaS applications by establishing coalitions of applications
sharing the cloud resources to fulfill the corresponding SLOs.

Studies in resource allocation for placing virtual machines
in data centers address similar cloud resource management
challenges but on the level of virtual infrastructure. In [5], the
authors present an approach to SLO- and performance-aware
resource allocation in overbooked data centers which is also
based on a constrained optimization task. The problem of the
scalability of resource allocation for virtual machines can be
addressed by solving an optimization problem in a distributed
peer-to-peer manner over a scale-free overlay as shown in
[6]. The vertical elasticity of VMs to meet SLOs imposed
on cloud applications was studied from the control-theoretic
point of view in [7]. The proposed approach to vertical scaling
was extended with probabilistic cloning of requests in [8],
which improved SLO-compliance of running applications and
reduced over-provisioning in comparison to [9]. The effects of

1https://www.docker.com/
2https://kubernetes.io/

performance interference between co-located VMs on SLOs
were thoroughly studied in [4], resulting in a technique that,
depending on unmet demand and spare capacity, reconfigures
the load balancer and adjusts the scaling actions.

Container performance interference for PaaS clouds has
additionally been investigated in [1] and [10]: the authors
measured slowdowns inflicted on PaaS tenants based on
the resource-intensiveness, calculated performance models for
CPU utilization, and proposed request-reordering to maximize
SLO compliance, but did not leverage data-driven adaptation.

Our study conceptually differs from the previous works by
focusing on containerized applications instead of VMs, by
also considering soft resource limits3, and by incorporating
the data-based SLIs prediction models into the SLO-compliant
resource limits derivation via an optimization-based technique.

III. DATASET

To investigate the efficacy of our approach, we collected ex-
perimental data consisting of 8,864 observations from a private
cloud we created for this purpose. We decided against exper-
imenting on public clouds because of their unpredictability
in consistently allocating the same types of physical resources
and their loose performance isolation guarantees4. Load to our
cloud was driven by a separate machine, which also recorded
SLIs. Multiple configurations of the deployed applications
were repeated 500 times, each time randomly selecting the
available CPU resources and the level of concurrency (number
of parallel requests) driving their load.

A. Private Kubernetes Cloud

We used a single physical machine with an Intel(R) Xeon(R)
CPU E5-2670 @ 2.60GHz with 32 virtual cores, 256GB of
RAM and running Ubuntu 18.04.1 LTS (Bionic Beaver). Using
a Vagrant and Virtual Box script from Oracle5, we deployed
a Kubernetes private cluster with 8 virtual nodes. Each node
was a VMBox Virtual Machine running Ubuntu with 4 VCPUs
and 15GB of RAM. One of the nodes was selected as the
master node and the remaining 7 as worker nodes. To minimize
the effect of performance interference, no other user accessed
the machine while our experiments were running. The single-
site single-machine configuration of the private cloud for the
experiments was selected to avoid the influence of the network
effects on the model for the co-located applications.

B. Deployed Applications

We started the following three deployments on our private
cloud: Nginx, Liberty and Guestbook. First of all, Nginx
(App1) exposes a Kubernetes Load Balancer service, which
forwards incoming requests to one of the available replicas
of an nginx:1.15.6 container that produces a hello-world
response.

3The amount of resources that is guaranteed for the container, also known
as resource request in the Kubernetes’ terms. The actual amount of allocated
resources could be higher, but not lower than the soft limit.

4Our investigation happens from the point of view of the cloud provider.
5https://github.com/oracle/vagrant-boxes



Secondly, Liberty (App2) exposes a Kubernetes Load Bal-
ancer service, which in turn forwards incoming HTTP(s)
requests to one of the available replicas of a websphere-
liberty:18.0.0.3-javaee8 Docker container. A default hello-
world response is produced by each liberty pod when a request
is made at it. However, unlike nginx pods, liberty pods run a
more complex stack of applications. Each pod executes the
Eclipse OpenJ9 Java Virtual Machine, which is a runtime for
Java. On top of OpenJ9, the Java application Liberty profile
is running, which is a Java EE application server.

Thirdly and finally, Guestbook (App3) is a three-tier Kuber-
netes tutorial application. Its PHP front-end enables users to
view and add comments that are stored on a Redis backend.
A Kubernetes Load Balancer service is exposed to forward
incoming requests to replicas of a Guestbook container imple-
menting the frontend part of the application. The PHP pods are
connected through an internal Kubernetes service to a single
Redis-master pod, which drives replicated Redis-slave pods.

C. Load-Driving

Our load-driving script was executed on a separate machine
with an Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz with
8 virtual cores, 16GB of RAM and running Ubuntu 16.04.5
LTS (Xenial Xerus). We placed our load-driving machine on
the same network and building as our Kubernetes cluster to
minimize network-related performance unpredictability. The
script also controlled the vertical scaling of the deployed
containers via remotely accessing the Kubernetes API.

The goal of our load-driving script was to explore various
combinations of levels of concurrency and allocated CPU
resources for each of the three deployed applications. The
ranges explored were between 100 and 700 mCPUs per pod
and between 20 and 80 clients repeatedly firing requests in
parallel. For all applications, we set the number of replicas to
7, to match the available worker nodes and saturate the system.

The script used the load-tool Apache ab to send requests.
The experimental results were averaged across the 16 cycles
of each configuration and accumulated in a csv file with
awk. Each request-firing cycle lasted for 60s. Each random
configuration of concurrencies and mCPUs was repeated for
16 cycles and 500 random configurations were tested. Because
Kubernetes restarts services to perform vertical scaling, our
script waited until all pods were ready. We conducted two
sets of experiments using hard and soft CPU limits.

IV. DERIVING SLO-COMPLIANT RESOURCE LIMITS

Derivation of resource limits for co-located containerized
applications such that SLOs imposed on these applications
are met (further addressed as SLO-compliant resource limits)
is challenging because of several reasons. First, the specifics
of the particular application or technology stack might pro-
duce sporadic artifacts in the collected data. Second, accurate
resource limits might only be identified with trial-and-error
for real workloads in the production environment on all the
potential deployment settings, which is unfeasible. Third, the
effects of co-location of applications might interfere with the

collected SLIs (response time and throughput) in unexpected
ways. Finally, SLO-compliance should be ensured for all co-
located applications at the same time.

The outlined challenges in SLO-compliant resource limit
allocation for containerized applications in dynamic environ-
ments are addressed with the following steps. Firstly, by
removing anomalies that cannot be explained by available
features; and secondly, by learning prediction models that
relate available features (resource limits, request rates, SLIs of
other applications observed simultaneously) to SLIs. Various
types of prediction model are considered, evaluated and se-
lected for further use based on their efficacy in predicting SLIs:
independent (each SLI predicted independently), application-
wise (all SLIs are predicted per application), SLI-wise (SLI is
predicted based on all applications), all-targets (all SLIs are
predicted for all application). The third way that the challenges
are addressed is by deriving resource limits for co-located
containerized applications, optimizing SLIs and ensuring that
predefined SLOs are met. We envision these steps in a MAPE-
K loop that periodically applies the derived limits to perform
autonomic vertical scaling along side load forecasting.

The evaluation of the proposed steps can be–and were–
conducted by deploying the derived configuration, generating
load, and comparing the actual SLIs with the SLOs set. Each
step of the proposed approach as well as its evaluation is
studied in detail in the following sections of the paper.

V. MODELS TO PREDICT SLIS

The target variables for prediction are SLIs for: 1) The 99%-
tile of response time (ms), which is defined as the time 99% of
requests were processed. 2) Throughput (requests per second,
RPS), which is the number of requests processed per second.

The model features can be divided into three groups: First,
unmanageable features representing user demand, denoted as
Concurrency i for the ith application and measured in RPS.
Though these features can be set during stress-testing, when
we apply the model these features will become the workload
of the end users, which can only be forecasted.

Second, manageable features represent the resource limits
that are allocated to applications: mCPUsi for the ith appli-
cation and measured in millicores (a.k.a., mCPUs or shares of
processor time). We note that other resource types could be
considered considered here but we focus on just one.

Third, partially-manageable features represent SLIs of
other co-located applications. These SLIs can be partially
influenced by the amount of allocated resources; the other
influence is through unmanageable features, such as the load of
the target and any co-located applications. Crucially, introduc-
ing such features enables modelling the effects of co-location.

A. Selecting a Modeling Approach

The aim of our initial modelling attempt was to select an
ideal machine learning technique for predicting SLIs from the
combination of features. To this end, we tested three com-
mon approaches: linear regression, which performs ordinary
least-squares regression and produces a linear model; lasso



Algorithm Prediction Target
Resp 1 Resp 2 Resp 3

Linear reg. 0.44±0.05 0.04±0.03 0.47±0.05
Linear reg. (poly) 0.56±0.06 0.06±0.05 0.59±0.06
Lasso reg. 0.44±0.05 0.04±0.03 0.47±0.04
Lasso reg. (poly) 0.57±0.06 0.08±0.03 0.59±0.05
Random forest 0.52±0.06 0.09±0.05 0.55± 0.06
Random forest (poly) 0.53±0.07 0.10±0.04 0.57±0.06

Algorithm Prediction Target
Thru 1 Thru 2 Thru 3

Linear reg. 0.90±0.02 0.65±0.10 0.92±0.02
Linear reg. (poly) 0.93±0.02 0.68±0.10 0.95±0.01
Lasso reg. 0.90±0.02 0.65±0.10 0.92±0.02
Lasso reg. (poly) 0.93±0.02 0.68±0.09 0.95±0.01
Random forest 0.89±0.03 0.65±0.09 0.90±0.03
Random forest (poly) 0.88±0.03 0.65±0.09 0.89±0.02

TABLE I
COEFFICIENT OF DETERMINATION (R2) RESULTS BY PREDICTION TARGET
(COLUMN) AND ALGORITHM (ROW). ENTRIES IN THE TABLE GIVES MEAN

PREDICTIVE PERFORMANCE (± STANDARD DEVIATION) OVER ONE
DEPLOYMENT-GROUPED 10-FOLD CROSS VALIDATION.

regression, which also produces a linear model but via a more
sophisticated method and using an L1 regularization [11], [12];
and random forests [13], an ensemble-based decision-tree tech-
nique that usually works well “out of the box”. Furthermore,
since the total number of manageable and unmanageable fea-
tures is small, we also considered each of the above algorithms
in conjunction with second order polynomial features, such as
Concurrency 2×mCPUs1 and (mCPUs3)2. The rationale
for including such additional features is that they better enable
linear models to capture non-linear patterns in the data.

The results of our initial explorations in this direction (Table
I) indicate that lasso-based regression with polynomial features
is the best performer in terms of R2. Furthermore, we observed
that the lasso models, due to the typically heavier degree
of regularization of the model, were substantially simpler
(i.e., had significantly more zero coefficients) than the linear
regression models. The only SLI where lasso (and all other
methods, in fact) fail is 99%-tile response time for Liberty. In
light of this, we proceeded with subsequent machine learning
experiments using the lasso model (and its multi-target variant)
with second order polynomial features.

B. Removing the Anomalies

Variation of observations is usually considered an asset
in machine learning tasks [14]. However, the absence of
features in a dataset might render so-called anomalous samples
deleterious to the quality of the model. Ideally, anomalous
features need to be included in the training set to improve the
accuracy of predicting the normal behaviour of the system. In
the following paragraphs we evaluate the impact of anoma-
lous samples in the collected dataset on predicting SLIs and
introduce an approach to prune the anomalies.

1) Influence of Anomalies on the Quality of Models:
Preliminary analysis of distributions for the 99%-tile response
time and throughput for all three applications clearly points
out anomalies among the observations of the 99%-tile response
time for application 2, Liberty (Fig. 2). It turns out that around
8.2% of all observations for the response time are higher than

Fig. 2. Distribution of SLIs values in the dataset, five number summary.

Fraction of removed Averaged R2 Score R2 Score variance
observations

0.00 -0.07 0.2391
0.01 0.16 0.0100
0.02 0.24 0.0128
0.03 0.33 0.0116
0.04 0.36 0.0100
0.05 0.43 0.0127
0.06 0.51 0.0083
0.07 0.57 0.0054
0.08 0.58 0.0050
0.09 0.59 0.0044
0.10 0.61 0.0036
0.11 0.61 0.0036
0.12 0.61 0.0038
0.13 0.60 0.0037
0.14 0.59 0.0035
0.15 0.59 0.0033
0.16 0.58 0.0030
0.17 0.57 0.0026
0.18 0.56 0.0025
0.19 0.56 0.0026

TABLE II
IMPACT OF THE FRACTION OF REMOVED ANOMALOUS OBSERVATIONS

ON THE R2 SCORE OF THE FITTED 6-TARGET LASSO REGRESSION MODEL

1.5s, which in practice means failed requests as an end-user
is unlikely to wait for so long to receive a response. Although
observations above 1.5s can be used as a threshold to identify
anomalies, there are also anomalies that might impact the
quality of the model that are below the threshold, such as
network issues that result into a near-zero response time.

The influence of anomalies on the quality of prediction
models is easy to track by removing an increasing fraction
of anomalies from the dataset and evaluating the R2 score on
the pruned dataset. Table II shows that the most significant
improvement in 10-fold cross-validated R2 scores for the 6-
target prediction model of order 2 is for a removed anomalies
fraction between 0.10 and 0.12. The identification of anomalies
is done using Isolation Forest [15]. Crucially, setting the
fraction of removed anomalies to 0.11, causes the distribution
of the 99%-tile response time for the second application
(Liberty) to approach normality (see Fig. 3).

2) Unsupervised Anomaly Identification and Removal:
The approach proposed in the previous subsection could,
in principle, be used for removing anomalies. However, the



Fig. 3. Distribution of SLIs values in the dataset with 11% of anomalies
removed with Isolation Forest, five number summary.

Fig. 4. Clusters Created using EM Algorithm

parameters of Isolation Forest depend on the actual data,
which generally differ among applications. Accurate manual
tuning of hyperparameters for Isolation Forest is not com-
patible with the autonomic goals of this paper. Hence, to
automate anomaly-removal, we propose utilizing clustering
algorithms. Unlike Isolation Forest, clustering avoids using a
fixed anomaly fraction. Instead, it results in grouping subsets
of the data by identifying latent similarities.

Thus, we used an Expectation-Maximization (EM) algo-
rithm [16] to perform 6-target clustering. EM creates a number
of clusters that best capture similarities between observations.
We set EM to provide 10-fold cross-validation and finish
in 100 iterations. This clustering method is performed on
pre-processed data where the corresponding median of each
deployment is used instead of the individual SLI values.

The results of applying EM (Fig. 4) clearly show 5 clusters:
cluster0 represents the anomalies of the dataset, capturing “too
high” or “too low” SLI values. Also, this cluster contains 13%
of the data and is considered anomalous as it had the highest
standard deviation (582.78ms) among the other clusters whose
standard deviation was 34–38ms. Crucially, the fraction of the
data in cluster0 is close to the optimal fraction of removed
anomalies (0.10–0.12) as shown in Table II.

3) Use of Anomalies for Search-Space Reduction: Knowing
that anomalies might be related to the configuration parame-

Model Degree Averaged R2 Score R2 Score variance
1 0.43 0.0119
2 0.66 0.0040
3 0.76 0.0049

TABLE III
IMPACT OF SLIS AS PREDICTORS ON ANOMALIES MODELS

ters, one might try to use the identified anomalies to limit the
search space of potential applications’ resource allocations.
For that, it is necessary to derive a model of an anomaly, i.e.,
to relate the resource allocation parameters to the SLIs.

Anomaly detection on the given dataset resulted in obser-
vations of two types being labeled as anomalies: observations
with very low response time for Application 2 and observa-
tions with high response time for the same application. In the
absence of data about error codes, one should focus on the
requests that take the longest to be processed. In the dataset,
there are 710 observations that took longer than 1,521 ms
to complete. This threshold is the maximal response time
after filtering out the 11% of outliers with Isolation Forest.
Leaving only these observations for modeling, we are able
to cover 72.8% of all the anomalies in the dataset. These
anomalies are important to model as it is not known whether
low response times that are also considered anomalies are due
to the response being completed with error.

Deriving a lasso regression model for the filtered anomalies
is not straightforward as the dataset does not contain the direct
predictors of anomalies. Indeed, fitting a single-target model to
predict the 99%-tile response time for the second application
ends up with an R2 score lower than 0.07 for model degrees of
1, 2, 3 using 10-fold cross-validation. However, including the
target variables for co-located applications 1 and 3, increases
the R2 score to 0.76 for the degree-3 model (Table III).

Essentially, these results yield two ideas: 1) with the lim-
ited data on application-specific parameters (e.g., garbage
collection invocations) one can still extract these features
indirectly by using SLIs of co-located applications; 2) when
building a prediction model for single or multiple applications
simultaneously, it might be worthwhile to include SLIs as
predictors—that way, one is forced to use the prediction
model at runtime, which imposes strict limitations on the
computational complexity of the model; however, the accuracy
of predictions increases dramatically. The proposed regression-
based approach to anomaly modeling might also be changed
to the classification-based approach, if the data format allows.

When the regression model is fit to the anomalies, it is
possible to specify a threshold on a target variable (SLI) and
then to derive valid intervals for predictors. Following, these
intervals can be used during resource allocation, limiting the
search space for the deployment configuration. Due to size
limitations, the derivation of parameters’ boundaries according
to these ideas was shifted to a future work.

C. Models’ Evaluation

The evaluation of the models’ quality was done using 10-
fold cross-validation and max iterations number of 10,000



Application SLI Degree = 1 Degree = 2 Degree = 3
R2 V [R2] R2 V [R2] R2 V [R2]

Nginx RT 0.43 0.0022 0.56 0.0029 0.57 0.0033
T 0.90 0.0008 0.93 0.0007 0.94 0.0007

Liberty RT 0.60 0.0199 0.60 0.0177 0.61 0.0173
T 0.65 0.0177 0.69 0.0182 0.69 0.0191

Guestbook RT 0.45 0.0035 0.58 0.0037 0.59 0.0045
T 0.92 0.0004 0.95 0.0003 0.96 0.0002

TABLE IV
EVALUATION OF INDEPENDENT MODELS

Application SLI Degree = 1 Degree = 2
R2 V [R2] R2 V [R2]

Nginx Response time 0.80 0.0033 0.80 0.0073
Throughput 0.95 0.0001 0.99 0.0000

Liberty Response time 0.76 0.0037 0.84 0.0021
Throughput 0.89 0.0019 0.91 0.0010

Guestbook Response time 0.80 0.0028 0.81 0.0023
Throughput 0.95 0.0001 0.99 0.0000

TABLE V
EVALUATION OF INDEPENDENT MODELS WITH TARGET VARIABLES

with grouping by deployment on the anomaly-free dataset.
The following notation is used: RT, 99% response time; T,
throughput; R2, average R2 score; and V [R2], variance of
R2. The evaluation was done on a machine with Intel Core
i7-6700HQ (2.60 GHz) and 16 GB of RAM under 64-bit OS
Windows 10 HE. The scripts were run on Jupyter Notebook.

1) Independent Models: Independent models predict each
SLI individually; thus, for three applications with SLI of
99%-tile response time and of throughput there are six such
models. The advantage of these models is their high discrimi-
natory power. However, using such models to derive an SLO-
compliant resource allocation might lead to diverging results.

Independent models without target variables as predic-
tors. Table IV shows that independent lasso regression models
have a good potential for predicting the throughput of some
applications. An additional advantage of the independent lasso
regression is its short time needed to fit the model: even for
models of degree 3, the fitting time stayed below 1 minute.

Independent models that include target variables as
predictors. Including target variables as predictors into inde-
pendent models improves their predictive power. Each model
includes only those target variables as predictors that were
not used as their own target variable. Crucially, the average
R2 score of the the degree-2 model does not fall below
0.80 for any target (Table V). Nevertheless, this improvement
does not yield consistent resource limits. Moreover, with the
introduction of target variables as predictors, the fitting time
increased up to 1 min for degree 2. This rendered the use
of higher-degree models unfeasible for the most of the tasks
requiring fast resource allocation to co-located applications.

2) Application-wise Models: A single multi-SLI prediction
model per application is able to produce resource allocation
that is consistent for all the SLOs imposed on an applica-
tion. However, per-application prediction models will still fail
in supporting consistent resource allocation across multiple
applications. Nevertheless, the use of such models might be
justified, since per-application prediction models can easily

Application Degree = 1 Degree = 2 Degree = 3
R2 V [R2] R2 V [R2] R2 V [R2]

Nginx 0.47 0.0014 0.59 0.0023 0.60 0.0025
Liberty 0.74 0.0093 0.75 0.0087 0.76 0.0081
Guestbook 0.51 0.0025 0.62 0.0028 0.63 0.0033

t = 1.44 min t = 6.44 min t = 68.36 min
TABLE VI

EVALUATION OF APPLICATION-WISE MODELS

Application Degree = 1 Degree = 2
R2 V [R2] R2 V [R2]

Nginx 0.81 0.0027 0.81 0.0071
Liberty 0.79 0.0046 0.83 0.0032
Guestbook 0.82 0.0021 0.83 0.0017

t = 5.79 min t = 130.91 min
TABLE VII

EVALUATION OF APPLICATION-WISE MODELS WITH TARGET VARIABLES

scale with the increasing number of applications due to the
mutual independence of such models.

Application-wise models without target variables as pre-
dictors. Table VI clearly shows that the combined prediction
of two SLIs per application loses accuracy of individual
predictions for throughput. In essence, each prediction model’s
R2 score is limited by the lowest R2 score of the target SLIs,
what can be inferred by comparing these results with Table IV.

The joint consideration of R2 scores with the average
models fitting times for different degrees (given at the bottom
of the table) indicates that it is pointless to increase the degree
for application-wise models beyond 2 — the increase of R2

score by 0.01 is not worth an additional hour of fitting time.
Application-wise models that include target variables

as predictors. Including target variables as predictors into
application-wise models enables fairly high predictive power.
As shown in Table VII, the R2 score stayed above 0.8 for mod-
els with degree of 2. This is never achieved for application-
wise models without target variables as predictors, even though
the maximal degree of a model is higher. High average fitting
time (more than two hours), makes these models impractical.

3) SLI-wise Models: Contrasting, SLI-wise models are able
to span multiple applications, hence they can be considered as
globally consistent. As each such model uses only one SLI
as a target variable (either response time or throughput), the
resulting resource limits acquired using these models will be
inconsistent for a single application. Such models could scale
well for more SLIs in case there are other mechanisms to
resolve the inconsistency in derived resource limits.

SLI-wise models without target variables as predic-
tors. Table VIII indicates that the 99%-tile response time
is not well-explained by the available features; in contrast,
throughput is well-described. This follows from the long-tail
distribution of response times in comparison to throughput,
with the latter being closer to normally-distributed.

SLI-wise models that include target variables as predic-
tors. Inclusion of the target variables as predictors does not
help to significantly increase the predictive power of SLI-wise
models as is demonstrated by the average R2 score in Table IX



SLI (target) Degree = 1 Degree = 2 Degree = 3
R2 V [R2] R2 V [R2] R2 V [R2]

Response time 0.41 0.0056 0.54 0.0079 0.57 0.0066
Throughput 0.83 0.0034 0.86 0.0035 0.87 0.0035

t = 1.62 min t = 6.79 min t = 60.38 min
TABLE VIII

EVALUATION OF SLI-WISE MODELS

SLI (target) Degree = 1 Degree = 2
R2 V [R2] R2 V [R2]

Response time 0.48 0.0094 0.59 0.0093
Throughput 0.88 0.0013 0.93 0.0008

t = 5.71 min t = 134.70 min
TABLE IX

EVALUATION OF SLI-WISE MODELS WITH TARGET VARIABLES

being only slightly better than that of Table VIII for SLI-wise
models that do not incorporate target variables as predictors
(by 0.05–0.07). The significant overhead in fitting time even
for the degree of 2 renders use of such a model impractical.

4) All-targets Model: Though the all-targets model allows
to predict all targets at once (both SLIs for all three applica-
tions in our case), it has two significant drawbacks that render
its use questionable: 1) this model scales poorly as new SLIs
and applications will make it more complex and will require
longer fitting; 2) its predictive capacity is susceptible to the
changes even for a single parameter. In order to compensate
for the increase in the variety of application types, one would
have to include more application-specific predictors that would
allow to capture the performance model accurately and to
produce reliable resource limits after optimization.

As the model under discussion already predicts all possible
target variables, there is only a single case for its evaluation
whose results are presented in the Table X. Poor predictive
properties of the model can be explained by the presence of
the 99%-tile response time for all three applications among
the target variables, which was previously shown to be the
problematic case for Lasso regression models when considered
without other target variables as predictors.

5) Models Comparison: Tables IV, VI, VIII and X clearly
show that using lasso regression degrees higher than 2 does not
significantly improve the R2 score and also, results in a larger
duration of model fitting step. Hence, lasso regression-based
models of degree 2 suffice for predicting SLIs.

Including target variables as predictors into the Lasso re-
gression models increased R2 (Tables IV–IX). In some cases
(e.g. Table VI vs Table VII) this yielded a two-fold increase
in R2; thus, co-location effects strongly influence SLIs.

Evaluating the All-targets model revealed a low predictabil-
ity of SLIs even with anomalies removed (Table X). In
contrast, the available predictors of SLI-wise models suffice

Degree = 1 Degree = 2 Degree = 3
R2 V [R2] R2 V [R2] R2 V [R2]
0.50 0.0020 0.61 0.0036 0.63 0.0034
t = 2.16 min t = 7.56 min t = 62.57 min

TABLE X
EVALUATION OF THE ALL-SIX-TARGETS SIMULTANEOUSLY MODEL

to infer throughput but not response time (Tables VIII and
IX), which makes them unsuitable. The case of independent
models (one model per SLI-application combination) is well
captured by Lasso regression; however, it is not applicable
due to inconsistencies in the results. Application-wise models
with target variables as predictors are the most well-balanced
models for our dataset. All these models simultaneously pre-
dict both 99%-tile response time and throughput, which makes
them both consistent for resource allocation on the level of the
application and easily scalable. With the small difference in
average R2 estimates for degree 1 and 2 in Table VII as well
as a large difference in fitting times, one could consider using
the model of degree 2 while at the same time reducing the
number of iterations for the model fit and/or loosening the
termination condition. Consequently, this type of model was
selected for SLO-compliant resource allocation.

VI. SLO-COMPLIANT RESOURCE ALLOCATION

Having models that relate resource limits and workload
to SLIs while being purified of anomalies, we now have an
Analyze (A) component placed in our MAPE-K loop. The next
step is the Plan (P) stage, which requires utilizing the derived
models to acquire resource limits based on the required SLOs
satisfaction requirements. In essence, planning is formulated
as an SLO-compliant resource allocation problem. Crucially,
a Self-Adaptive solution is required to compensate the uncer-
tainty created by the performance interference that co-located
containers induce to each other based on their levels of load.

The task of SLO-compliant resource allocation to co-located
applications is a multi-objective constrained optimization task.
It could be formulated both as an integer programming prob-
lem as well as a continuous optimization problem. In our work,
we solve the continuous optimization problem 1) to allow the
maximum possible flexibility in the resource limits and 2) to
minimize the duration of the optimization.

A. Problem Formulation

Consider n co-located applications as well as the through-
put SLO (Ti) as Ti ≥ T

(SLO)
i and the 99%-tile response

time SLO (RTi) as RTi ≤ RT
(SLO)
i of the ith applica-

tion. Also, consider the limitation on the available resources:∑n
i=1mCPUsi ≤

∑m
j=1 coresj · 1000 where m is the

number of hosts (VMs or physical servers) and coresj is the
number of cores available at jth host. The number of cores is
normalized to milliCPUs by multiplying by 1000, hence we
consider the homogeneous case where hosts have the same
cores. Resource limits on milliCPUs for all the applications
under consideration can be grouped into the single vector
mCPUs = [mCPUs1,mCPUs2, ...mCPUsn]T . SLI val-
ues predicted with the trained lasso models for the above
vector of resource limits are denoted with R̂Ti(mCPUs) and
T̂i(mCPUs) for the 99%-tile response time and throughput
respectively. Based on the introduced notations, the following
objective functions can be formulated for each application:



f
(RT )
i (mCPUs) =

R̂Ti(mCPUs)

RT
(SLO)
i

(1)

f
(T )
i (mCPUs) =

T̂i(mCPUs)

T
(SLO)
i

−1

(2)

The multi-objective cost function for application-wise, SLI-
wise, and all-targets options respectively, is:

g
(App)
i = f

(RT )
i (mCPUs) · f (T )

i (mCPUs) (3)

g
(SLI)
j =

n∏
i=1

f
(SLI)
i (mCPUs), SLI ∈ {RT, T} (4)

g(All) =

n∏
i=1

f
(RT )
i (mCPUs) · f (T )

i (mCPUs) (5)

Thus, our problem is formulated as the following multi-
objective constrained optimization problem:



mCPUs∗i = arg min g
(App)
i

||mCPUs∗i ||1 ≤
∑m

j=1 coresj · 1000

R̂Ti(mCPUs∗i ) ≤ RT (SLO)
i

T̂i(mCPUs∗i ) ≥ T (SLO)
i

mCPUsk ≥ 100∀mCPUsk ∈mCPUs∗i

(6)

The solution of the optimization problem, as specified in
Eq. 6, yields potential discrepancies between optimal resource
allocations acquired for each application as ∀ (i, j) : i ∈
1, 2, ...n, j ∈ 1, 2, ...n, i 6= j we have:

|mCPUs∗i −mCPUs∗j | ≥ 0 (7)

The only multi-objective cost function that would avoid such
a discrepancy is g(All), but its use is infeasible due to a linear
growth in size the vector mCPUs, and the poor predictive
properties of the all-target model (Table X).

Next, we introduce an approach to alleviate the discrepancy
between the solutions provided by application-wise optimiza-
tion at the cost of sub-optimality. It is important to note that
applications might consist of multiple containerized microser-
vices (as in case of Guestbook application)—in that case
the resource limits should be allocated to each microservice
individually. In the following section we evenly distribute the
derived resource limit of the Guestbook application among
its services, but in practice one should take into account the
features of each microservice via sandboxing of microservices
for capacity and performance profiles derivation [17].

B. Approach to SLO-compliant Resource Allocation

1) Pure Continuous Constrained Optimization: The non-
linear integer programming formulation of the same prob-
lem is NP-hard and so far does not have any practically-
feasible (i.e. non-time consuming) solution [18]. Hence, the
most straightforward and feasible approach to the solution
of the optimization problem in Eq. 6 is to solve it as a

continuous constrained optimization problem. For that, one
can use trust region-based methods for nonlinear constrained
optimization [19]. Such a method is conveniently implemented
in Python’s scipy.optimize6. Due to the dependence of the
form of SLI prediction models on the collected data, the use of
the 2-point numerical Jacobian approximation and symmetric-
rank-1 (SR1) Hessian update strategy in optimization is justi-
fied. The results of the continuous constrained optimization
acquired for each application should be summarized (e.g.
averaged) and rounded or made integer in some other way.

An initial guess of the parameters to be optimized may
severely impact the optimality of the solution as the cost
function might have multiple local minima over the parame-
ters’ search space. In order to overcome this issue, continuous
constrained optimization was performed multiple times for a
random mCPUs0; the final result is the rounded median of
results of the conducted random runs. Preliminary tests of con-
tinuous optimization showed that 15 random runs are enough
to acquire stable optimization results. The proposed adjustment
is an adapted version of the Basin-Hopping algorithm [20].

2) Constrained Optimization with Limited Brute Force:
The accuracy of the solution provided by the pure continuous
constrained optimization might be improved by conducting a
brute force search over a small neighborhood of the acquired
solution. The following parameters can be specified for such an
approach: 1) the search step ∆, e.g., 50 mCPUs, 2) the number
of search steps φ in the direction of increase and decrease of
the proposed solution, which can be approximated by:

φ =

⌈∑m
j=1 coresj · 1000

2 · n ·∆

⌉
(8)

Considering mCPUs∗ as the result of continuous con-
strained optimization (averaged and rounded over all applica-
tions), the search space is limited by: mCPUs∗±[(φ ·∆)×n].

3) Evaluation: The baseline for evaluating the optimality
of the solutions produced by the optimization approaches
described above was the result of a brute force (exhaustive)
search with a grid cell size of 10×10×10, BF-10. Brute force
with coarse-grained grid (cell size of 50×50×50), BF-50, was
used to highlight the tradeoff between the quality of the ac-
quired parameters’ vector and the running time of brute force
search depending on the cell size. Both brute force cases used
a pre-trained all-target model as in Section V-C4 to acquire an
SLI prediction for subsequent global optimization. The results
acquired with brute force were compared to the results of the
continuous optimization approach, CO, from Section VI-B1
and the continuous optimization with limited coarse-grained
brute force search on top, Hyb, from Section VI-B2.

In evaluation, the following parameters were used:
RT

(SLO)
i = 800 and T

(SLO)
i = 200 ∀ i ∈ 1, 2, 3. The joint

limit on CPU was 3000 mCPUs. Concurrencies and SLIs were
generated randomly for each test in allowed boundaries; 10
tests were conducted for both the soft and hard limit cases.

6docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html



Limit Distance (median) Execution Time, s (median)
Type BF-50 CO Hyb BF-10 BF-50 CO Hyb
Soft 56.6 1229.2 515.9 209.2 1.68 69.1 71.4
Hard 40.0 1310.6 515.8 121.8 0.95 44.0 45.2

TABLE XI
QUALITY OF SOLUTIONS BY SLO-COMPLIANT RESOURCE ALLOCATION

APPROACHES AS COMPARED TO THE BRUTE FORCE

The evaluation results are shown in Table XI. The Distance
column addresses the Euclidean distance between the opti-
mization result for the considered approach and the result of
the fine-grained brute force (BF-10). A high execution time of
2–4 minutes of the fine-grained brute force clearly prohibits its
use for dynamic reconfiguration of the co-located applications,
especially when the count of applications increases beyond 3.
The coarse-grained brute force search gives results that are
close to that of the fine-grained approach, but significantly
faster (only 1–2 seconds are required). Despite the observed
small duration of the coarse-grained brute force search BF-
50, it scales poorly for environments with a high number of
co-located applications (e.g. 50-100) and higher numbers of
resource limits configurations.

Methods that are based on continuous optimization using
trust regions show similar execution time but significantly
different quality of results. Adding subsequent coarse-grained
brute force search on a limited neighborhood improves quality
(the distance from the baseline decreased more than 2-fold);
the main contributor to the execution time of 1–1.5 minutes for
these methods were the multiple runs of the optimization for
random values of the initial parameter vector. The execution
time might be decreased via a heuristic that estimates the initial
parameters vector or decreases its generation time.

VII. EVALUATION

A. Validation Test Design & Settings

The validation of our approach includes two steps: First, a
Preliminary Validation Test (PVT) to acquire the values of
SLIs used as features in application-wise prediction models—
in a production environment these values should be collected
dynamically and applied in the scope of a continuous resource
allocation process. The test uses fixed request rates and an
initial guess for resource allocation; a load test is repeated
16 times with ab as described in Section III-C. Second, an
Evaluation Validation Test (EVT) to conduct the real testing
similar to PVT but with the following major changes: 1) SLIs
prediction models are acquired by applying the application-
wise lasso regression on the same concurrencies as in PVT
with medians of SLIs values received as a result of PVT; 2)
continuous constrained optimization with limited brute force
(Hyb) is applied to the acquired models and the desired SLOs.

A single validation test according to the description above
was conducted to validate our approach. The test was con-
ducted both for hard and soft limits on our Kubernetes cluster.
The settings for PVT are given in Table XII. The settings
for EVT are shown in Table XIII (partially acquired as the
results of PVT). The same SLOs were set for all applications

Limit Concurrencies Resource Limits
Type App1 App2 App3 App1 App2 App3
Soft 58 61 53 200 550 120
Hard 58 63 75 300 500 100

TABLE XII
SETTINGS FOR THE PRELIMINARY VALIDATION TEST

during EVT: RT (SLO)
i = 800 ms and T

(SLO)
i = 200 RPS

∀ i ∈ {1, 2, 3}. These SLOs were selected as realistic values
based on the collected dataset.

B. Validation Results

The conducted validation test showed the overall validity of
the approach proposed in the paper with at most two cases out
of 16 trials violating SLOs as shown in Table XIV (marked as
Nv in table). Almost all the SLO violation cases (9 out of 10)
are attributed to the SLO on the 99%-tile response time, which
is more unstable than the throughput. Among these violations,
4 cases were identified for the second application Liberty data
that contained anomalies due to garbage collection invoked
periodically, which is also pointed out by related work [21],
[22]. For the selected test environment, soft and hard limits
on Kubernetes pods’ resources do not seem to significantly
influence the amount of SLO violations.

The conducted validation test demonstrated the validity of
the designed approach to SLO-compliant resource allocation.
The presence of a few SLO violations points out the necessity
to include additional features in the SLI prediction models that
should capture unique properties of particular applications and
their runtimes, such as garbage collection delays.

VIII. CONCLUSION AND FUTURE WORK

The presented approach to the SLO-compliant resource
allocation problem for co-located containerized applications
demonstrated its validity both for soft and hard limits on
CPU resources allocated to Kubernetes pods with at most 2
SLO violations out of 16 trials for a highly-volatile 99%-
tile response time SLI. This approach includes four major
steps: 1) collecting SLI values for various resource limits
and workload rates; 2) removing anomalies that cannot be
explained through available features via clustering; 3) learning
prediction models relating SLIs to parameters of workload
and resource limits via Lasso regression; and 4) deriving the
resource limits for applications deployment via continuous
optimization and limited brute force search for known SLOs.

Aside from the proposed approach, the paper also offers
an approach to select the model features and parameters
thereof in order to increase the accuracy of the SLI prediction
model. It was also demonstrated that the application-wise
SLIs prediction model is the best for the case of co-located
applications due to a good balance between its prediction
properties (R2 score) and its scalability to maintain the service
availability for a higher number of applications and SLIs. From
the machine-learning and MAPE-K planning point of view,
one example finding of our work is that lasso regression-based
models of degree 2 seem to suffice for predicting SLIs.



Limit Concurrencies Resource Limits 99%-tile Response Time Throughput
Type App1 App2 App3 App1 App2 App3 App1 App2 App3 App1 App2 App3
Soft 58 61 53 1250 500 130 414.0 466.0 421.0 266.9 254.3 241.2
Hard 58 63 75 200 550 120 562.0 627.0 571.5 231.1 227.6 292.9

TABLE XIII
SETTINGS FOR THE EVALUATION VALIDATION TEST; RESOURCE LIMITS ARE RESULTS OF PROPOSED APPROACH

99%-tile Response Time
App1 App2 App3

Value Nv Value Nv Value Nv

With Soft Limits
524.9± 142.7 1 568.8± 130.2 2 537.9± 149.6 2

With Hard Limits
507.9± 108.4 1 705.2± 592.8 2 294.5± 109.3 1

Throughput
App1 App2 App3

Value Nv Value Nv Value Nv

With Soft Limits
264.6± 5.4 0 252.2± 4.1 0 237.9± 4.6 0

With Hard Limits
231.9± 5.3 0 225.1± 9.9 1 294.5± 7.2 0

TABLE XIV
RESULTS OF THE VALIDATION TEST

A limitation of the current study is its simplistic dataset.
However, the focus of this paper, was to come up with a
suitable self-adaptive technique and establish a methodology
for testing it: the next step is to repeat with a larger and more
realistic application dataset. Other future work includes: 1)
evaluation of the impact of runtime/technology-specific behav-
iors like garbage collection on SLIs and search for predictors
for such behaviors; 2) evaluation of artificial neural networks
for predicting SLIs due to cheap forward pass; 3) SLO-
compliant resource allocation for individual microservices of
compound applications; 4) derivation of models for allocation
of other resources like RAM; 5) joint resource allocation for
pods and virtual machines; and 6) investigation of anomaly
detection techniques to improve outlier identification.
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