
Ricardo Jorge Freire Dias

Mestre em Engenharia Informática

Maintaining the Correctness of Transactional

Memory Programs

Dissertação para obtenção do Grau de Doutor em

Engenharia Informática

Orientador : João Manuel dos Santos Lourenço,

Prof. Auxiliar, Universidade Nova de Lisboa

Júri:

Presidente: José Legatheaux Martins

Arguentes: Timothy L. Harris

João M. Cachopo

Vogais: José Cardoso e Cunha

Luís E. Rodrigues

Rui C. Oliveira

João Costa Seco

João M. Lourenço

Novembro, 2013

iii

Maintaining the Correctness of Transactional Memory Programs

Copyright c© Ricardo Jorge Freire Dias, Faculdade de Ciências e Tecnologia, Universidade Nova

de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e

sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha

a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e

distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado

crédito ao autor e editor.

iv

To my wife and children

Ana, Diogo and Vasco

vi

Acknowledgements

The work presented in this dissertation would not have been possible without the collaboration

of a considerable number of people to whom I would like to express my gratitude.

First and foremost I would like to deeply thank my thesis advisor João Lourenço, who always

helped me to overcome all the challenges that I had to face during my PhD studies. I’ve learned

a lot from him, and I truly hope to be able to advise my students as well as he advised me.

To João Seco for his guidance in an area of research which was completely new to me, and for

our discussions about the theoretical parts of my work. To Nuno Preguiça for always being avail-

able to discuss my ideas and give excellent tips and suggestions which allowed me to improve

the quality of my work. To Dino Distefano for hosting me at the computer science department

of the Queen Mary, University of London, for teaching me everything I know about separation

logic, and for his insightful suggestions to solve some hard problems that emerged during the

development of this thesis.

To Tiago Vale for all the collaboration in the implementation and testing in parts of my ex-

perimental work, and for all the fruitful discussions we had. To Vasco Pessanha for his help in

the designing and implementation of the MoTH tool and its functionalities. To João Leitão for

reviewing the last draft of this thesis.

To all my colleagues with whom I shared the ASC open space, including: Valter Balegas,

Lamia Benmouffok, Jorge Custódio, Bernardo Ferreira, João Luis, David Navalho, Daniel Porto,

Paulo Quaresma, João Soares, and Tiago Vale.

Finally, my very heartful thanks to my family. To my wife Ana, whom I owe everything of

good in my life, including my beautiful children Diogo and Vasco. I stole too much of the time

that was rightfully theirs in these past years. To my parents that although being far away always

give the support that I need. To my parents-in-law for all the tasteful lunches and dinners, and

for the comfort they provided while I was living at their home.

I also would like to acknowledge the following institutions for their hosting and financial

support: Departamento de Informática and Faculdade de Ciências e Tecnologia of the Univer-

sidade Nova de Lisboa; Centro de Informática e Tecnologias da Informação of the FCT/UNL;

Fundação para a Ciência e Tecnologia in the PhD research grant SFRH/BD/41765/2007, and in

the research projects Synergy-VM (PTDC/EIA-EIA/113613/2009), and RepComp (PTDC/EIA-

EIA/108963/2008).

vii

viii

Abstract

This dissertation addresses the challenge of maintaining the correctness of transactional mem-

ory programs, while improving its parallelism with small transactions and relaxed isolation lev-

els.

The efficiency of the transactional memory systems depends directly on the level of paral-

lelism, which in turn depends on the conflict rate. A high conflict rate between memory trans-

actions can be addressed by reducing the scope of transactions, but this approach may turn the

application prone to the occurrence of atomicity violations. Another way to address this issue is

to ignore some of the conflicts by using a relaxed isolation level, such as snapshot isolation, at

the cost of introducing write-skews serialization anomalies that break the consistency guarantees

provided by a stronger consistency property, such as opacity.

In order to tackle the correctness issues raised by the atomicity violations and the write-skew

anomalies, we propose two static analysis techniques: one based in a novel static analysis algo-

rithm that works on a dependency graph of program variables and detects atomicity violations;

and a second one based in a shape analysis technique supported by separation logic augmented

with heap path expressions, a novel representation based on sequences of heap dereferences that

certifies if a transactional memory program executing under snapshot isolation is free from write-

skew anomalies.

The evaluation of the runtime execution of a transactional memory algorithm using snapshot

isolation requires a framework that allows an efficient implementation of a multi-version algo-

rithm and, at the same time, enables its comparison with other existing transactional memory

algorithms. In the Java programming language there was no framework satisfying both these

requirements. Hence, we extended an existing software transactional memory framework that

already supported efficient implementations of some transactional memory algorithms, to also

support the efficient implementation of multi-version algorithms. The key insight for this ex-

tension is the support for storing the transactional metadata adjacent to memory locations. We

illustrate the benefits of our approach by analyzing its impact with both single- and multi-version

transactional memory algorithms using several transactional workloads.

Keywords: Concurrent Programming, Transactional Memory, Snapshot Isolation, Static Analy-

sis, Separation Logic, Abstract Interpretation

ix

x

Resumo

Esta dissertação aborda o desafio de manter a correcção dos programas de memória transaci-

onal, quando são usadas pequenas transacções e níveis de isolamento relaxado para melhorar o

paralelismo dos programas.

A eficiência dos sistemas de memória transacional depende directamente do nível de parale-

lismo, o que por sua vez depende da taxa de conflitos. Uma elevada taxa de conflitos entre as

transações em memória pode ser diminuida através da redução do tamanho das transações, mas

esta abordagem poderá tornar a aplicação propensa à ocorrência de violações de atomicidade.

Outra forma de abordar esta questão é ignorar alguns dos conflitos usando um nível de isola-

mento relaxado, tal como o nível de isolamento snapshot isolation, com o custo da introdução de

anomalias de serialização, denominados como write-skews, que quebram a consistência garantida

por uma propriedade de consistência forte, como a opacidade.

Com o intuito de abordar as questões levantadas pela correção das violações de atomicidade e

das anomalias de write-skews, propomos duas técnicas de análise estática: uma baseada num novo

algoritmo de análise estática que utiliza um grafo de dependências entre variáveis de programa

para detectar violações de atomicidade; e uma segunda com base numa técnica de análise baseada

em lógica de separação extendida com expressões de heap paths, uma nova representação baseada

em sequências de desreferênciações da memória, que certifica se um programa que usa memória

transacional, baseada em snapshot isolation, está livre de anomalias write-skew durante a execução.

A avaliação da execução de um algoritmo de memória transacional usando o nível de isola-

mento relaxado snapshot isolation requer uma estrutura que permita a implementação eficiente de

algoritmos baseados em multi-versão e, ao mesmo tempo, permitir a sua comparação com outros

algoritmos de memória transacional existentes. Na linguagem de programação Java não existe

uma ferramenta que satisfaça estes dois requisitos. Como tal, estendemos uma ferramenta de

memória transacional por software já existente, que já permite a implementação eficiente de al-

guns algoritmos de memória transacional, a também permitir a implementação eficiente de algo-

ritmos multi-versão. A principal ideia desta extensão é o suporte para armazenar os metadados

transacionais junto às localizações de memória. Nós ilustramos os benefícios da nossa aborda-

gem, analisando o seu impacto tanto com algoritmos de memória transacional uni-versão como

multi-versão utilizando vários tipos de testes transacionais.

Palavras-chave: Programação Concorrente, Memória Transacional, Snapshot Isolation, Análise

Estática, Lógica de Separação, Interpretação Abstrata

xi

xii

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions and Results . 7

1.3 Outline of the Dissertation . 8

2 Fundamental Concepts and State of the Art 9

2.1 Transactional Memory . 9

2.1.1 Semantics . 10

2.1.2 Algorithms Implementation . 11

2.1.3 STM Extensible Frameworks . 12

2.2 Atomicity Violations . 16

2.2.1 High-Level Data Races and Stale-Value Errors 16

2.2.2 Access Patterns Based Approaches . 17

2.2.3 Invariant Based Approaches . 17

2.2.4 Dynamic Analysis Based Approaches . 17

2.3 Snapshot Isolation . 18

2.3.1 Transaction Histories . 19

2.3.2 Transaction Dependencies . 20

2.3.3 Dependency Serialization Graph . 20

2.3.4 Snapshot Isolation Anomalies . 21

2.3.5 Static Dependency Graph . 23

2.3.6 Detection of Anomalies in a SDG . 24

2.3.7 Static Analysis of Snapshot Isolation . 25

2.3.8 Snapshot Isolation in Transactional Memory 26

2.4 Static Analysis . 26

2.4.1 Abstract Interpretation . 26

2.4.2 Shape Analysis . 27

2.4.3 Shape Analysis based on Separation Logic 29

2.4.4 Shape Analysis to Detect Memory Accesses 34

xiii

xiv CONTENTS

3 Detection of Atomicity Violations 37

3.1 Introduction . 37

3.2 Core Language . 39

3.3 Causal Dependencies . 40

3.3.1 Dependency Analysis . 41

3.4 Atomicity Violations . 45

3.4.1 High Level data races . 45

3.4.2 Stale-Value Error . 50

3.5 The MoTH Prototype . 52

3.5.1 Process Analysis . 52

3.5.2 Instance Type Analysis . 54

3.5.3 Native Methods . 55

3.6 Evaluation . 57

3.7 Related Work . 59

3.8 Concluding Remarks . 60

4 Verification of Snapshot Isolation Anomalies 61

4.1 Introduction . 61

4.1.1 Motivation . 62

4.1.2 Verification of Snapshot Isolation Anomalies 64

4.2 Snapshot Isolation . 65

4.3 Abstract Write-Skew . 66

4.3.1 Soundness . 67

4.4 StarTM by Example . 68

4.5 Core Language . 73

4.5.1 Syntax . 73

4.5.2 Operational Semantics . 74

4.6 Abstract States . 77

4.6.1 Symbolic Heaps . 77

4.6.2 Heap Paths . 79

4.6.3 Abstract Read- and Write-Sets . 80

4.6.4 From Symbolic Heaps to Heap Paths . 81

4.7 Abstract Semantics . 84

4.7.1 Past Symbolic Heap . 85

4.7.2 Symbolic Execution Rules . 86

4.7.3 Rearrangement Rules . 88

4.7.4 Fixed Point Computation and Abstraction 89

4.7.5 Write-Skew Detection . 90

4.8 Experimental Results . 91

4.9 Related Work . 92

4.10 Concluding Remarks . 93

5 Support of In-Place Metadata in Transactional Memory 95

5.1 Introduction . 95

5.2 Deuce and the Out-Place Strategy . 98

CONTENTS xv

5.3 Supporting the In-Place Strategy . 99

5.3.1 Implementation . 99

5.3.2 Instrumentation Limitations . 105

5.4 Implementation Assessment . 105

5.4.1 Overhead Evaluation . 106

5.4.2 Implementing a Multi-Versioning Algorithm: JVSTM 107

5.4.3 Speedup Evaluation . 109

5.4.4 Memory Consumption Evaluation . 110

5.5 Use Case: Multi-version Algorithm Implementation 112

5.5.1 SMV – Selective Multi-versioning STM . 112

5.5.2 JVSTM Lock Free . 113

5.5.3 MVSTM – A New Multi-Version Algorithm 114

5.6 Supporting the Weak Atomicity Model . 114

5.6.1 Read Access Adaptation . 115

5.6.2 Commit Adaptation . 116

5.6.3 MV-Algorithms Adaptation . 117

5.7 Performance Comparison of STM Algorithms . 121

5.8 Concluding Remarks . 126

6 Conclusions and Future Work 129

A Detailed Execution Results 141

A.1 In-place Metadata Overhead . 141

A.2 JVSTM-Inplace Speedup . 146

xvi CONTENTS

List of Figures

1.1 Example of atomicity violations. 3

1.2 Write-skew example . 4

2.1 Example of two memory transactions. 10

2.2 Example of a data-race between transactional and non-transactional code. 11

2.3 DSTM2 programming model. 13

2.4 Deuce’s programming model. 15

2.5 Withdraw program. 18

2.6 DSG of history H3 . 21

2.7 DSG(Hws): Example of write skew. 22

2.8 DSG(Hro): Example of SO read-only anomaly. 23

2.9 Bank account program (P1). 24

2.10 Static dependency graph of the withdraw function. 24

2.11 Singly linked list represented as a shape graph. 28

2.12 Symbolic heaps syntax . 30

2.13 Symbolic heaps semantics . 31

2.14 Simple imperative language. 31

2.15 Operational Symbolic Execution Rules . 32

3.1 Example of atomicity violations. 38

3.2 Core language syntax . 39

3.3 Dependency graph example . 41

3.4 Symbolic execution rules of data dependencies analysis 43

3.5 Example of the variables that guard each block . 44

3.6 Symbolic execution rules of control dependencies analysis 46

3.7 Symbolic execution rules for creating a view . 48

3.8 Example of compatibility property between a process p and a maximal view vm. In

this case, process p is incompatible with maximal view vm. 49

3.9 Example of an atomic block that generates a false-negative. 50

3.10 MoTH architecture. 52

3.11 Call-graph of the above code examples. 53

3.12 Dynamic dispatch example. 54

xvii

xviii LIST OF FIGURES

3.13 Type instance analysis rules. 56

3.14 Example of a native method XML specification. 57

4.1 Linked List (top) and Skip List (bottom) performance throughput benchmarks with

50% and 90% of write operations. 63

4.2 Withdraw program. 66

4.3 Order Linked List code. 69

4.4 Predicates and Abstraction rules for the linked list. 70

4.5 Sample of StarTM result output for the Linked List example. 71

4.6 Dummy write access in remove(int) method. 72

4.7 Sample of StarTM result output for corrected remove(int) method. 73

4.8 Core language syntax. 74

4.9 Linked list example in the core language. 75

4.10 Structural operation semantics. 76

4.11 Separation logic syntax. 77

4.12 Separation Logic semantics. 78

4.13 Graph representation of the Node(x, y) and List(x, y) predicates. 78

4.14 Heap Path syntax. 80

4.15 Heap Path semantics. 80

4.16 Operational Symbolic Execution Rules. 87

4.17 Compress abstraction function. 90

5.1 Context interface for implementing an STM algorithm. 99

5.2 Metadata classes hierarchy. 99

5.3 TxField class. 100

5.4 Context interface for implementing an STM algorithm supporting in-place meta-

data. 100

5.5 Declaration of the STM algorithm specific metadata. 101

5.6 Example transformation of a class with the in-place strategy. 101

5.7 Memory structure of a TxArrIntField array. 103

5.8 Example transformation of array access in the in-place strategy. 103

5.9 Memory structure of a multi-dimensional TxArrIntField array. 104

5.10 Performance overhead measure of the usage of metadata objects relative to out-

place TL2. 106

5.11 VBox in-place implementation. 109

5.12 In-place over Out-place strategy speedup: the case of JVSTM. 109

5.13 Performance and transaction aborts of JVSTM-Inplace/Outplace for the Intruder

and KMeans benchmarks. 110

5.14 Relative memory consumption of TL2-Overhead and JVSTM-Inplace 111

5.15 SMV transactional metadata class. 113

5.16 JVSTM-LockFree transactional metadata class. 113

5.17 Performance comparison between original JVSTM and adapted JVSTM. 118

5.18 Performance comparison between original MVSTM and adapted MVSTM. 118

5.19 Performance comparison between original SMV and adapted SMV. 119

5.20 JVSTM-LockFree original commit operation. 120

LIST OF FIGURES xix

5.21 JVSTM-LockFree adapted commit operation. 121

5.22 Performance comparison between original JVSTM-LockFree and adapted JVSTM-

LockFree. 122

5.23 Micro-benchmarks comparison. 123

5.24 STAMP benchmarks comparison. 125

5.25 STMBench7 comparison. 126

5.26 Snapshot Isolation algorithms comparison. 127

xx LIST OF FIGURES

List of Tables

3.1 Results for benchmarks . 58

3.2 Results for benchmarks . 58

4.1 Read- and write-set statistic per transaction for a Linked List (top) and a Skip List

(bottom). 64

4.2 StarTM applied to STM benchmarks. 91

5.1 Comparison between primitive and transactional arrays. 104

xxi

xxii LIST OF TABLES

1
Introduction

Gordon Moore, back in 1965, observed that the number of transistors per square inch doubles

every 18 months, and the rate of growth has been relatively steady since then. As the number of

transistors was growing, the processor clock frequency grew along. However, since the appear-

ance of CPUs (central processor units) with clock frequencies in the order of the gigahertzs, the

growth of the clock frequency slowed down, even though the number of transistors is still rising

at a steady pace. The CPU manufacturers opted to use the additional transistors by designing

processors with more than one operational core, leading to the current widespread of multi-core

architectures.

In the past, performance improvements had a strong dependency on the increasing of pro-

cessor speed, unfortunately, processor speed has stabilized. The multi-core architectures are cur-

rently ubiquitously available, from industrial to home computers and embedded devices, and the

need to exploit their full computational power raised considerably the interest in the discipline of

parallel programming.

Leveraging parallelism in multi-threaded programs requires synchronization constructs to

control accesses to shared resources, such as main memory. From a programmer point of view,

current synchronization constructs (locks, monitors, and condition variables) require a great ef-

fort to be used correctly and achieve high scalability at the same time [LPSZ08]. The use of coarse

grained locks in large data structures hinders parallelism and does not scale, while fine grained

locks are prone to many difficult problems in large systems, such as priority inversion, convoying,

and most specially, deadlocks.

Transactional Memory (TM) [ST95; HLMWNS03] is a synchronization technique that aims at

solving the inherent pitfalls associated with the use of locks. It promises to ease the development

of scalable parallel applications with performance close to finer grain locking but with the sim-

plicity of coarse grain locking. A memory transaction, borrows the concept of transaction from the

database world, but instead manages concurrent accesses to main memory. A database transac-

tion is a unit of work that executes several operations while providing the four ACID properties:

1

1. INTRODUCTION 1.1. Problem Statement

atomicity, consistency, isolation, and durability. A memory transaction only provides three of

these properties: atomicity, consistency, and isolation. Durability is dropped due to the nature of

the storage medium.

Transactional memory runtime systems usually adopt an optimistic execution model, where

transactions execute concurrently and conflicts are solved by a contention management algo-

rithm, which can be as simple as aborting one of the conflicting transactions. The assertion of

when two TM transactions conflict is algorithm dependent, but usually the conflict detection de-

pends on the TM system keeping track of the memory locations accessed during the transactions

lifetime, and on the validation of all those accesses during the execution of the transaction and/or

at commit time.

The level of parallelism allowed by a transactional memory system depends directly on the

conflict occurrence rate. A high rate of conflicts forces more transactions to abort and reduces

the overall transactional throughput. Furthermore, the conflict rate depends on both the size of

the transaction and on the level of permissiveness of the transactional system. Depending on the

kind of workload, coarse-grain transactions may increase the probability of conflicts, which in

turn reduces the system performance. The permissiveness level controls the kind of conflicts that

are allowed, thereby ignored, by the transactional system without losing the desired consistency

property. In the case of transactional memory the desired consistency property is opacity [GK08].

In some situations it is possible to reduce the number of conflicts by reducing the size of the

transactions, splitting the large transactions into a sequence of smaller ones. Opposed to the

use of finer-grain locks, which can easily lead to deadlocks, memory transactions never cause

deadlocks. However, the use of finer-grain transactions may still lead to other concurrency bugs

know as atomicity violations [LPSZ08], and thus we may expect that reducing the size of the

transactions in an application may compromise its correctness. Additionally, we can also increase

the permissiveness level of the transactional runtime by allowing the occurrence of some conflicts.

This can be achieved by relaxing the isolation level, but at the cost of losing opacity.

In this dissertation we will address these two main problems: how to ensure the correct usage

of finer-grain transactions by avoiding atomicity violations, and how to increase transactional

memory performance by relaxing the isolation level without losing correctness.

1.1 Problem Statement

We argue that it is possible to develop a set of solutions that enable an increased parallelism of

transactional memory without losing correctness. More specifically, we propose to address this

problem by allowing the safe usage of finer-grain transactions with the avoidance of atomicity

violations, and by the use of a relaxed isolation level without losing a stricter consistency property,

such as opacity.

In summary the work presented in this thesis aims at demonstrate the truth of the following

thesis statement:

Thesis Statement

It is possible to maintain the correctness of transactional memory programs, while improving its

parallelism with small transactions and relaxed isolation levels.

2

1. INTRODUCTION 1.1. Problem Statement

1 atomic void getA() {

2 return pair.a;

3 }

4 atomic void getB() {

5 return pair.b;

6 }

7 atomic void setPair(int a, int b){

8 pair.a = a;

9 pair.b = b;

10 }

11 boolean areEqual(){

12 int a = getA();

13 int b = getB();

14 return a == b;

15 }

(a) A high-level data race.

1 atomic int getX() {

2 return x;

3 }

4 atomic void setX(int p0) {

5 x = p0;

6 }

7 void incX(int val) {

8 int tmp = getX();

9 tmp = tmp + val;

10 setX(tmp);

11 }

(b) A stale value error.

Figure 1.1: Example of atomicity violations.

In the following we present a brief overview of the main techniques used to corroborate this

thesis statement.

Detection of atomicity violations Although using transactional memory is much simpler than

using fine-grain locking, the use of finer-grain transactions may still introduce concurrency bugs

known as atomicity violations.

High-level data races are a form of atomicity violations and result from the misspecification of

the scope of an atomic block, which is split into two or more atomic blocks with other (possibly

empty) non-atomic block between them. This anomaly is illustrated in Figure 1.1(a). In this exam-

ple a thread uses the method areEqual() to check if the fields a and b are equal. This method

reads both fields in separate atomic blocks, storing their values in local variables, which are then

compared. The atomicity violation results from the interleaving of this thread with another thread

running the method setPair(). If the method setPair() is executed between lines 12 and 13

of the method areEqual(), when areEqual() is resumed at line 13 the value of the pair may

have changed. In this scenario the thread executing areEqual() observes an inconsistent pair,

composed by the old value of a and the new value of b.

Figure 1.1(b) illustrates a stale value error, another source of atomicity violations in concurrent

programs. The non-atomic method incX() is implemented by resorting to two atomic methods,

getX() (at line 1) and setX() (at line 4). During the execution of line 9, if the current thread is

suspended and another thread is scheduled to execute setX(), the value of x changes, and when

the execution of the initial thread is resumed it overwrites the value in x at line 10, causing a lost

update. This program fails due to a stale-value error, as at line 8 the value of x escapes the scope

of the atomic method getX() and is reused indirectly (by way of its private copy tmp) at line 10,

when updating the value of x in setX().

The early detection of these kind of anomalous interleavings in the development phase of the

application is crucial to avoid runtime bugs that are very hard to find and to debug. To address

this challenge, the dissertation will focus on the following question:

Is it possible to develop a tool capable of detecting atomicity violations in transactional memory

programs, at compile-time, with high precision and scalability?

3

1. INTRODUCTION 1.1. Problem Statement

void withdrawX(int amount) {

atomic {

if (accountX + accountY > amount)

accountX -= amount;

}

}

void withdrawY(int amount) {

atomic {

if (accountX + accountY > amount)

accountY -= amount;

}

}

BEGIN withdrawX

READ(accountX)

READ(accountY)

WRITE(accountX)

COMMIT

BEGIN withdrawY

READ(accountX)

READ(accountY)

WRITE(accountY)

COMMIT

Figure 1.2: Write-skew example

We propose a novel approach for the detection of high-level data races and stale-value errors

in transactional memory programs. The approach is based on a novel notion of variable depen-

dencies, which we designate as causal dependencies. There is a causal dependency between two

variables if the value of one of them influences the writing of the other. We also extended pre-

vious work from Artho et al. [AHB03] by reflecting the read/write nature of accesses to shared

variables inside atomic regions, which we combine with the dependencies information to detect

both high-level data races and stale-value errors. We formally describe the static analysis algo-

rithms to compute the set of causal dependencies of a program and define safety conditions for

both high-level data races and stale-value errors. The matter of detecting atomicity violations in

TM programs is addressed in Chapter 3.

Consistent relaxed isolation level To solve the problem of relaxing the isolation level to in-

crease transactional parallelism, we took inspiration from the database setting. Database systems

frequently rely on weaker isolation models to improve performance. In particular, Snapshot Iso-

lation (SI) is widely used in industry. An interesting aspect of SI is that only write-write conflicts

are checked at commit time and considered for detecting conflicting transactions. As a main re-

sult, a TM system using this isolation model does not need to keep track of read accesses, thus

considerably reducing the book-keeping overhead.

By only detecting write-write conflicts, and ignoring read-write conflicts, the SI model allows

a much higher commit rate, which comes at the expense of allowing some real conflicting trans-

actions to commit. Thus, relaxing the isolation level of a transactional program to SI may lead

previously correct programs to misbehave due to the anomalies resulting from malign data-races

that are now allowed by the relaxed transactional runtime. These anomalies can be precisely

characterized, and are often called in the literature as write-skew anomalies [BBGMOO95].

In Figure 1.2 we show an example of two concurrent transactions that trigger a write-skew

anomaly. These two transactions are originated from the execution of the two methods withdrawX

and withdrawY. The presence of the write-skew is due to the fact that both committed transac-

tions read a data item written by the other (withdrawX reads accountY written by withdrawY,

and withdrawY reads accountX written by withdrawX), and both write in different data items.

If we invoke methods withdrawX and withdrawY with the arguments 30 and 40 respectively,

where the shared state is defined by accountX = 40 and accountY = 20, the result of these

two concurrent transactions, under snapshot isolation, would cause an inconsistent state where

accountX = 10 and accountY = -20, which is impossible to obtain in a serializable execu-

tion of those transactions.

4

1. INTRODUCTION 1.1. Problem Statement

A possible approach to solve the problem of identifying the write-skew anomalies in a pro-

gram running under SI could be to give the programmer the burden of this task. However, this

task could be overwhelming for the average programmer, the development would be very costly

and error prone, and hardly worth the performance benefits. In the database setting, a different

approach was followed where several algorithms were proposed to dynamically avoid write-

skew anomalies, and hence provide a serializable model, while maintaining similar performance

of snapshot isolation. Although this solution was well succeeded in databases, the application of

such dynamic algorithms in a TM setting is not a viable option due to the significant overhead

introduced at runtime, which is exactly the opposite of our objective of reducing the TM runtime

overhead.

Another possible way to address the matter of correctness of TM programs executing in TM

runtimes using SI, is to assert at compile-time, using static analysis techniques, that a TM pro-

gram will execute without generating write-skew anomalies. This approach avoids the runtime

overhead imposed by dynamic algorithms, and provide opacity guarantees to the programmer

by asserting that the computations are free from write-skew anomalies.

To address this problem, the dissertation will focus on the following question:

Is it possible to develop a verification procedure to identify write-skew anomalies in programs

written using an imperative language with support for dynamically allocated (heap) memory?

To address this specific question, we propose a technique that performs deep-heap analysis

(also called shape analysis) based on separation logic [Rey02] to approximate the memory loca-

tions in the read- and write- sets for each distinguished transaction in a program. The analysis

only requires the specification of the state of the heap for each transaction and is able to automati-

cally compute loop invariants during the analysis. Our analysis approximates read and write-sets

of transactions using heap paths: a regular expression based representation that captures derefer-

ences through field labels, choice, and repetition.

For those conflicting transactions that are prone to trigger anomalies, there are different strate-

gies [FLOOS05] that can be applied to correct the runtime behavior of such transactions making

them correct under SI. For instance, it is possible to modify the transaction code, or to execute the

transaction in a more strict isolation level.

Using this approach, we achieve improved performance by relying on a less expensive snap-

shot isolation-based TM runtime, while guaranteeing correctness of program execution by avoid-

ing write-skews and keeping opacity. Because it is based on static-analysis techniques, our ap-

proach introduces no runtime overhead. Our approach to detect write-skew anomalies for a

general-purpose language is described in Chapter 4.

SI performance evaluation In terms of performance, the evaluation of our approach requires a

fair comparison with other opaque TM algorithms. The implementation or adaptation of several

TM algorithms to use the same transactional interface, and to work with the same benchmark

code, is an unfeasible task. To solve this problem, generic and extensible frameworks were de-

veloped, allowing the implementation of different TM algorithms by following a well defined

interface that captures the essential steps performed by a memory transaction (e.g. transaction

start, memory read, memory write, transaction commit, and transaction abort).

The problem with the generic frameworks is that they are usually biased to some specific

implementation techniques which only fit well to some TM algorithms. This implies that the

5

1. INTRODUCTION 1.1. Problem Statement

comparison of two different TM algorithms, where one of them is unfit for the specific framework,

cannot be made in a straightforward process and the obtained results will be biased towards the

algorithm that better fits the framework.

The unfitness problem between the TM algorithm and the generic framework may be caused

by the management of transactional runtime information required by the TM algorithm. TM algo-

rithms manage information per transaction (frequently referred to as a transaction descriptor), and

per memory location (or object reference) accessed within that transaction. The transaction de-

scriptor is typically stored in a thread-local memory space and maintains the information required

to validate and commit the transaction. The per memory location information depends on the na-

ture of the TM algorithm, which we will henceforth refer to as metadata, and may be composed

by e.g. locks, timestamps or version lists. Metadata is stored either “near” each memory loca-

tion (in-place strategy), or in an external table that associates the metadata with the corresponding

memory location (out-place or external strategy).

TM libraries targeting imperative languages, such as C, frequently use an out-place strategy,

while those targeting object-oriented languages bias towards the in-place strategy. The out-place

strategy is implemented by using a table-like data-structure that efficiently maps memory refer-

ences to its metadata. Storing the metadata in a pre-allocated table avoids the overhead of dy-

namic memory allocation, but incurs in overhead for evaluating the location-metadata mapping

function, and has limitations imposed by the size of the table. The in-place strategy is usually im-

plemented by using the decorator design pattern [GHJV94] that is used to extend the functionality

of an original class by wrapping it in a decorator class, which also contains the required meta-

data. This technique allows the direct access to the object metadata without significant overhead,

but is very intrusive to the application code, which must be deeply rewritten to use the decora-

tor classes. This decorator pattern based technique also incurs in two additional problems: some

additional overhead for non-transactional code, and multiple difficulties to cope with primitive

and array types. A brief discussion of the tradeoffs of using in-place versus out-place strategies is

presented in [RB08].

An efficient technique to implement a snapshot isolation based TM algorithm is to use multi-

versioning. In a multi-version algorithm, several versions of a data item exist. In the particular

case of transactional memory, several versions of the same memory block exist. The implementa-

tion of a multi-version algorithm is not tolerant to the false-sharing introduced by the mapping-

table approach, and is more adequate to an in-place strategy, which associate the list of versions

to its respective memory block in a one-to-one relation, i.e., without false-sharing. As there was

no single generic TM framework supporting efficiently both the in-place and the out-place strate-

gies, it was inviable to compare a snapshot isolation TM algorithm (which requires the in-place

strategy) with other kinds of opaque TM algorithms that use the out-place strategy. To tackle this

problem, this dissertation will also address the following question:

Is it possible to build a generic and extensible runtime infrastructure for software transactional

memory that fits equally well for both the in-place and the out-place algorithm implementation

strategies?

We address this particular question by extending a well known and very efficient Java STM

framework, the Deuce [KSF10], which is biased towards the out-place strategy, to additionally

support the in-place strategy as well. Our extension allows the efficient implementation of multi-

version TM algorithms, and in particular allows the implementation of a snapshot isolation based

6

1. INTRODUCTION 1.2. Contributions and Results

TM algorithm. We implemented a simple SI algorithm and compared it against different state-

of-the-art TM algorithms already available in the Deuce framework. Some of the benchmarks

were successfully certified as write-skew free by our static analysis technique. Others were not

possible to certify due to limitations of the analysis in terms of data structures support or because

of time scalability problems. The matter of supporting the in-place strategy in Deuce is addressed

in Chapter 5.

1.2 Contributions and Results

This dissertation presents contributions to the state of the art on three major challenges:

a) Verification of atomicity violations in transactional memory programs.

• Definition of a novel notion of causal dependencies between program variables, which

unifies the data-flow and control-flow relation between variables;

• Refinement of existing high-level data-races and stale-value errors definition to incor-

porate causal dependencies information;

• An implementation of our technique in a tool, called MoTH, the application of the tool

to a set of well known faulty examples from the literature, and its comparison with

previous works.

b) Verification of write-skew anomalies in transactional memory programs.

• The first program verification technique to statically detect the write-skew anomaly in

transactional memory programs;

• The first technique able to verify transactional memory programs in the presence of

deep-heap manipulation, thanks to the use of shape analysis techniques;

• A model that captures fine-grained manipulation of memory locations based on heap

paths;

• An implementation of our technique and the application of the tool to a set of intricate

examples.

c) Development of a generic and extensible runtime infrastructure for Java software transac-

tional memory with support for efficient implementations of multi-version algorithms.

• Extension of Deuce to support in-place transactional metadata;

• Comparative analysis of multi-version algorithms using in-place metadata support;

• Proposal of a new multi-version algorithm with bound sized version lists and per

write-set entry locking;

• Definition of a new algorithmic adaptation for multi-version algorithms to support

weak-atomicity.

7

1. INTRODUCTION 1.3. Outline of the Dissertation

1.3 Outline of the Dissertation

The remainder of this dissertation is organized in five chapters, whose contents are summarized

below:

Chapter 2. This chapter introduces the fundamental concepts to clearly understand the follow-

ing chapters. It also presents the state-of-the-art of the techniques and tools related to the

matters addressed by this dissertation.

Chapter 3. This chapter describes a new static analysis technique to detect atomicity violations.

This novel approach to detect high-level data races and stale-value errors relies on the notion

of causal dependencies to improve the precision of previous detection techniques. We formal-

ize the analysis technique to compute the causal dependencies of a program, and formalize

the refinement of existing safety conditions, for high-level data races and stale-value errors,

using the causal dependencies. Finally, we describe the implementation of these techniques

in a tool to verify Java bytecode, and evaluate its precision with well known examples from

the literature.

Chapter 4. This chapter presents the design and development of a static analysis technique to

verify if a concurrent program, which uses snapshot isolation based memory transactions,

is free from the occurrences of write-skew anomalies. We define the notion of heap path ex-

pressions, present their semantics, and define their construction from separation logic for-

mulas. We formalize the analysis abstract domain, composed by symbolic heaps and sets of

heap path expressions, and abstract semantics. We finish with the experimental evaluation

of the proposed technique.

Chapter 5. This chapter presents the design and implementation of an extension to the Deuce

framework to support in-place transactional metadata, i.e., the co-location of transactional

metadata near the memory locations instead of in a shared external mapping table. We

describe in detail the technique used to implement the extension and thoroughly evalu-

ate its performance and memory overhead. We also present the implementation of two

state-of-the-art multi-version algorithms in the extended framework, and preform the first

evaluation comparing multi-version algorithms within the same framework.

Chapter 6. This chapter summarizes the main results and contributions of the research work de-

scribed in this dissertation, and lists some directions for future research activities.

8

2
Fundamental Concepts

and State of the Art

In this chapter we present the research context for the theme of this dissertation. We start by

describe the fundamental concepts of (software) transactional memory and present two extensi-

ble STM frameworks that allow to experiment new STM algorithms for the Java programming

language. Furthermore, we describe the state of the art in detection of atomicity violations, and

describe throughly the concept of snapshot isolation and its known anomalies based on the sem-

inal work of Fekete et al. [FLOOS05]. Finally, we present the current techniques of static analysis

based on the abstract interpretation framework with special emphasis on shape analysis using

separation logic, i.e., static analysis of heap structures.

2.1 Transactional Memory

In 1977 Lomet [Lom77] explored the idea of including an atomic action as a method for program

structuring, based on the idea of database atomic actions. Many years later in 1993 Herlihy et

al. [HM93] introduced, for the first time, the terminology Transactional Memory for describing a

hardware architecture to optimize the efficiency and usability of lock-free synchronization. In

1995, Nir Shavit et al. [ST95] proposed a software approach to transactional memory, calling it

Software Transactional Memory.

Software transactional memory (STM) is a promising concurrency control approach to multi-

threaded programming. More than a concurrency control mechanism, it is a new programming

model that brings the concept of transactions into the programming languages, by way of new

language constructs or as a simple API with a supporting library. Transactions are widely known

as a technique that ensure the four ACID properties [GR92]: Atomicity (A), Consistency (C), Iso-

lation (I) and Durability (D).

9

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.1. Transactional Memory

Memory transactions, with roots in the database transactions, must only ensure three of the

ACID properties: Atomicity, Consistency and Isolation. The Durability property is dropped, as

memory transactions operate in volatile memory (RAM).

2.1.1 Semantics

The first step to study software transactional memory is to understand its execution behavior.

Informally, a memory transaction is a group of read and write operations that will execute in a

single step, or atomically. Thus, conceptually, no two memory transactions will ever execute at

the same time. Two memory transactions are depicted in Figure 2.1. Transaction T1 increments

two variables x and y. Transaction T2 compares the values of the two variables, x and y, and if

the two variables have different values the transaction will enter in an infinite loop. Before any of

these transactions execute, the variables, x and y, have the same value. As a transaction executes

in a single step there are only two possible outcomes of the execution of these two transactions:

either T1 executes before T2, or T1 executes after T2. Therefore, transaction T2 will never enter in

an infinite loop, because it will never be interleaved with T1.

Transaction 1 (T1)

1 atomic {

2 x = x+1;

3 y = y+1;

4 }

Transaction 2 (T2)

1 atomic {

2 while(x != y) {

3 // infinite loop

4 }

5 }

Figure 2.1: Example of two memory transactions.

A simple implementation of this behavior would be to use a global lock, and before a transac-

tion starts its execution it has to acquire the global lock, releasing it at end of the transaction. This

guarantees that only one transaction will execute at a time. The semantics just described is called

Single Global Lock Semantics[MBSATHSW08].

More formal definitions are used to describe the semantics of memory transactions. Inherited

from the databases literature, the serialization criteria [EGLT76] defines formally the semantics of

database transactions, and can be used also to define the semantics of memory transactions. The

serialization theory states that the result of a parallel execution of a program with transactions

must be equivalent to a sequential execution of all transactions.

Another criteria commonly used to describe concurrent shared objects and sometimes used

as a correction criteria for transactional memory is linearizability [HW90]. This criteria states that

every transaction should appear as if it took place at some single, unique point in time during its

lifespan.

Although serializability suites very well for database transactions, and linearizability for con-

current shared objects, none of them is sufficient to clearly define the semantics of a memory

transaction [GK08]. Guerraoui et al., in [GK08], defines a new criteria called opacity. This criteria

fits well for the transactional memory model, as it takes into account the property of memory

consistency during the execution of a transaction. The informal definition of this criteria is that

all operations performed by every committed transaction appear as if they happened at some

single, indivisible point during the transaction lifetime, no operation performed by any aborted

transaction is ever visible to other transactions (including live ones), and every transaction always

10

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.1. Transactional Memory

observes a consistent state of the system.

While the semantic definitions presented above define the behavior of the execution of trans-

actions, they do not define the behaviour between code executed within a transaction and code

executed outside of transactions. Although we would expect all references to shared data to be

contained within transactions, legal programs may contain unprotected references to shared vari-

ables (i.e., outside transactions) without creating malignant data races, so both transactional and

non-transactional code can refer to the same data. Figure 2.2 depicts an example of a transaction

that is executing concurrently with a thread executing code outside a transaction.

Transaction 1 (T1)

1 atomic {

2 x = y+1;

3 y = x+1;

4 }

Thread 2 (Th2)

1 /* ... */

2 x = y;

3 /* ... */

Figure 2.2: Example of a data-race between transactional and non-transactional code.

There are two approaches to define the behavior of the example depicted in Figure 2.2. These

two approaches proposed in [BLM05] are called weak atomicity and strong atomicity.

Under weak atomicity model, the behavior of the example depicted in Figure 2.2 is undefined.

The code executed by thread Th2, can execute right between line 2 and line 3 of the transaction T1.

Thus, the isolation guaranteed by the memory transaction is lost with respect to non-transactional

code. Blundell et al. [BLM05] define weak atomicity to be a semantics in which transactions are

atomic only with respect to other transactions (i.e., their execution may be interleaved with non-

transactional code).

This model permits very efficient implementations as it passes the burden of race errors to the

programmer, and many STM frameworks implement this model such as DSTM [HLMWNS03]

and TL2 [DSS06].

Under strong atomicity, the behavior of the example depicted in Figure 2.2 is either the trans-

action T1 executes before the code section of thread Th2, or the transaction T1 executes after the

code section of thread Th2. Thus, in respect to transaction T1, the code in thread Th2 is executed

as a memory transaction. Blundell et al. [BLM05] defines strong atomicity to be a transaction

semantics in which transactions execute atomically with respect to both other transactions and

non-transactional code.

The implementation of this model implies a great performance penalty in order to enclose

non-transactional shared accesses in transactions. Efficient implementations require specialized

hardware support not available on existing commodity systems, a sophisticated type system that

may not be easily integrated with languages such in Java or C++, or runtime barriers on non-

transactional reads or writes that can incur substantial cost in programs that do not use transac-

tions [MBSATHSW08]. Some STM frameworks implement this model, such as JVSTM [CRS06].

2.1.2 Algorithms Implementation

Two main techniques are used to implement STM algorithms: blocking and non-blocking. Blocking

techniques rely mainly on locks to implement the transactional engine, but they may suffer from

problems of deadlocking and priority inversion. Non-blocking techniques rely on well study lock-

free data structures to implement the transactional engine. This latter technique, although being

11

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.1. Transactional Memory

free from deadlock problems, may have some performance issues due to the implementation

complexity. Independently of the technique used to implement memory transactions, the same

semantics must be always preserved.

Michael Scott in [Sco06] proposed a classification of the STM algorithms independent of the

implementation techniques. This classification is based on the conflict detection strategy. The

conflict detection strategy can be classified as: lazy invalidation, eager W-R, or eager invalidation.

A lazy invalidation algorithm detects conflict only at commit time. This means that the trans-

action will execute until the end, and in the end, it will execute the validation phase where it will

check if all shared variables read are still consistent (i.e., if no previous committed transaction

wrote to those same shared variable). This algorithm allows efficient implementations of read

accesses, because it does not have to validate the consistency of the variable for every read access,

but doomed transactions may waste processor time, and it may allow transactions to execute

in inconsistent states, hence not satisfying the opacity semantics. The OSTM [FH07] framework

implements this conflict detection algorithm.

An eager W-R algorithm detects the same conflicts as the lazy invalidation and also detects a con-

flict if a transaction performs a read access on a shared variable already written by an incomplete

concurrent transaction. Although this algorithm prevents doomed transactions from continue its

execution, it may also abort transactions that would not abort under lazy invalidation. Also, the

implementation of read accesses suffers from a performance penalty. The DSTM [HLMWNS03]

framework implements this conflict detection algorithm.

An eager invalidation algorithm detects the same conflicts as the eager W-R and also detects a

conflict if a transaction tries to write a shared variable already read by an incomplete concurrent

transaction. This conflict detection strategy is only possible to implement if the STM algorithm

implements visible readers. In visible readers implementations, transactions have access to a list

of incomplete transactions that have read a shared variable. On the opposite, in invisible read-

ers implementations, the set of incomplete transactions that read a shared variable is not known.

The implementation of a invisible readers algorithm is quite straightforward, but the implementa-

tion of a visible readers algorithm requires that each shared variable keep record of all incomplete

transactions that accessed such shared variable for reading.

Another classification of the STM algorithms, which is orthogonal to the one just described,

is based on the recovery strategy. STM algorithms can be classified as lazy update or eager update.

Lazy update algorithms keep write accesses to shared variables in a private log. This technique

also called deferred update, allows an aborted transaction to just discard this private log of tentative

values. If the transaction commits, then the tentative values in the private log must substitute the

respective values in the shared variables. Eager update algorithms perform write accesses directly

in the shared variables, keeping track of their previous values in a private log. This technique,

also called direct update, allows transactions to commit very efficiently because they just have to

discard the private log, however for long transactions, conflicts are more likely to happen.

2.1.3 STM Extensible Frameworks

Software Transactional Memory (STM) algorithms differ in the properties and guarantees they

provide. Among others distinctions, one can list distinct strategies used to read (visible or invisi-

ble) and update memory (direct or deferred), the consistency (opacity or snapshot isolation) and

12

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.1. Transactional Memory

1 @atomic

2 interface INode {

3 int getValue();

4 void setValue(int v);

5 INode getNext();

6 void setNext(INode n);

7 }

(a) INode interface.

1 class List {

2 static Factory<INode> fact =

3 dstm2.Thread.makeFactory(INode.class);

4 INode root = fact.create();

5

6 void insert(int v) {

7 INode newNode = fact.create();

8 newNode.setValue(v);

9 newNode.setNext(root.getNext());

10 root.setNext(newNode);

11 }

12 }

(b) insert transaction.

1 List list = ...;

2 int v = ...;

3 dstm2.Thread.doIt(new Callable<Void>() {

4 public Void call() {

5 list.insert(v);

6 return null;

7 }

8 });

(c) Invoking insert.

Figure 2.3: DSTM2 programming model.

progress guarantees (blocking or non-blocking), the policies applied to conflict resolution (con-

tention management), and the sensitiveness to interactions with non-transactional code (weak or

strong atomicity). The existence of extensible frameworks allows the experimentation with new

STM algorithms and their comparison, by providing a unique transactional interface and different

implementations for each STM algorithm.

For the Java programming language only two extensible frameworks were proposed: DSTM2

[HLM06] and Deuce [KSF10]. These frameworks allow to experiment new STM algorithms but

each one is biased towards some design choices and neither by itself is optimal for implementing

all kind of STM algorithms. In Chapter 5 we present an extension of Deuce to support efficient

implementation of multi-version algorithms.

In the following sections we will describe in detail the two frameworks: DSTM2 and Deuce.

2.1.3.1 DSTM2

From the work of Herlihy et al. comes DSTM2 [HLM06]. This framework is built on the assump-

tion that multiple concurrent threads share data objects. DSTM2 manages synchronization for

these objects, which are called Atomic Objects. A new kind of thread is supplied that can exe-

cute transactions, which access shared Atomic Objects, and provides methods for creating new

Atomic Classes and executing transactions.

Perhaps the most notorious difference from the standard programming methodology lies on

the implementation of the Atomic Classes. Instead of just implementing a class, this process is

separated in two distinct phases:

Declaring the interface First we must define an interface annotated as @atomic for the Atomic

Class. This interface defines one or more properties by declaring their corresponding getter and

13

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.1. Transactional Memory

setter. These must follow the convention signatures T getField() and void setField(T t),

which can be thought as if defining a class field named field of type T. Additionally, this type T

can only be scalar or atomic. This restriction means that Atomic Objects cannot have array fields,

so an AtomicArray<T> class is supplied that can be used wherever an array of type T would be

needed, in order to overcome this. In Figure 2.3a we show an example of the INode interface to

be used in a transactional linked list.

Implementing the interface The interface is then passed to a transactional factory constructor

that returns a transactional factory capable of creating INode instances, which is charged with

ensuring that the restrictions presented in the previous phase are met. This factory is able to create

classes at runtime using a combination of reflection, class loaders, and the Byte Code Engineering

Library (BCEL)1, a collection of packages for dynamic creation or transformation of Java class files.

This means that atomic objects are no longer instantiated with the new keyword, but by calling

the transactional factory’s create method.

In the example in Figure 2.3b, the transactional factory is obtained in line 2, and an atomic

object is created in line 7.

Lastly, in Figure 2.3c, we inspect how does invoking a method differ from invoking a transac-

tion. DSTM2 supplies a new Thread class that is capable of executing methods as transactions.

Specifically, its doIt method receives a Callable<T> object whose call method body will be

executed as a transaction, wrapped in a start-commit loop.

All things considered, DSTM2’s programming model is very intrusive when compared to the

sequential model. Atomic classes cannot be implemented directly, instead an @atomic interface

must be declared (Figure 2.3a). The instantiation of atomic objects is not done through the new

keyword, but by calling the create method of the transactional factory (Figure 2.3b). And, fi-

nally, starting a transaction is a rather verbose process. We wrap the transaction’s body in the

call method of a Callable object that is passed as argument to the dstm2.Thread.doIt

method (Figure 2.3c). Moreover, the usage of arrays in atomic objects must be replaced by in-

stances of the AtomicArray<T> class.

2.1.3.2 Deuce

A more recent proposal of a framework is Deuce [KSF10]. Korland et al. aimed for an efficient Java

STM framework that could be added to existing applications without changing its compilation

process or libraries.

In order to achieve such non-intrusive behavior, it relies heavily on Java Bytecode manipula-

tion using ASM2, an all-purpose Java Bytecode manipulation and analysis framework that can

be used to modify existing classes or dynamically generate classes, directly in binary form. This

instrumentation is performed dynamically as classes are loaded by the JVM using a Java Agent3.

Therefore, implementing classes to be modified through transactions is no different from regular

Java programming (Figure 2.4a), as Deuce will perform all the necessary instrumentation of the

loaded classes.

To tackle performance-related issues, Deuce uses sun.misc.Unsafe4, a collection of meth-

ods for performing low-level, unsafe operations. Using sun.misc.Unsafe allows Deuce to

1http://commons.apache.org/bcel
2http://asm.ow2.org
3http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
4http://www.docjar.com/docs/api/sun/misc/Unsafe.html

14

http://commons.apache.org/bcel
http://asm.ow2.org
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-sum mary.html
http://www.docjar.com/docs/api/sun/misc/Unsafe.html

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.1. Transactional Memory

1 class Node {

2 int value;

3 Node next;

4

5 int getValue() {

6 return value;

7 }

8 void setValue(int v) {

9 value = v;

10 }

11 Node getNext() {

12 return next;

13 }

14 void setNext(Node n) {

15 next = n;

16 }

17 }

(a) Node class.

1 class List {

2 Node root = new Node();

3

4 @Atomic

5 boolean insert(int v) {

6 Node newNode = new Node();

7 newNode.setValue(v);

8 newNode.setNext(root.getNext());

9 root.setNext(newNode);

10 }

11 }

(b) insert transaction.

1 List list = ...;

2 int v = ...;

3 list.insert(v);

(c) Invoking insert.

Figure 2.4: Deuce’s programming model.

directly read and write the memory location of a field f given the 〈O, fo〉 pair, where O is an

instance object of class C and fo the relative position of f in C. This pair uniquely identifies its

respective field, thus it is also used by the STM implementation to log field accesses.

As a framework, Deuce allows to plug in custom STM implementations, by implementing a

Context interface which provides the typical operations used by an STM algorithm, namely:

start, read, write, commit, and abort.

We now briefly present the manipulations performed by Deuce. For each field f in any loaded

class C, a synthetic constant field is added, holding the value of fo. In addition to the synthetic

field, Deuce will also generate a pair of synthetic accessors, a Gf getter and Sf setter. These acces-

sors encapsulate the read and write operations, by delegating the access to the Deuce runtime (the

Context implementation). The accessors are invoked with the respective 〈this, fo〉 pair, so the

runtime effectively knows which field is being accessed and can read and write its value using

sun.misc.Unsafe.

Besides instrumenting class fields, Deuce also duplicates all methods. For each method m

Deuce will create a synthetic method mt, a copy of method m, to be used when in the context of

a transaction. In mt, read and write accesses to any field f are replaced by calls to the synthetic

accessors Gf and Sf , respectively. Besides the rewriting of field accesses, method calls within

mt are also instrumented. Each call to any method m′ is replaced by a call to its transactional

synthetic duplicate m′
t. The original method m remains unchanged, to avoid any performance

15

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.2. Atomicity Violations

penalty on non-transactional code as Deuce provides the weak atomicity model.

This duplication has one exception. Each method ma annotated with @Atomic is to be exe-

cuted as a transaction (Figure 2.4b). Therefore, after the creation of its ma
t synthetic counterpart,

ma is itself instrumented so that its code becomes the invocation of ma
t wrapped in the start-

commit transactional loop. The practical effect of this is that invoking a transaction is simply

calling a method, as seen in Figure 2.4c, provided that the programmer annotates the method

with @Atomic, of course.

In retrospective, Deuce is optimal regarding programming model intrusion, only requiring

the @Atomic annotation when compared to the sequential model. Leveraging STM on an ex-

isting application using Deuce requires only the annotation of the desired methods, as all these

transformations are performed behind the scenes dynamically at class loading.

2.2 Atomicity Violations

Atomicity violations are race conditions where the lack of atomicity of the operations cause incor-

rect behavior of the program. The atomicity violation depends on the intended atomic properties

that the program relies on to ensure the correctness of program executions. A program can con-

tain atomicity violations while being free from data races. This can happen when a program

executes two operations in two atomic phases, and the intended behavior is only assured if those

two operations execute as a single atomic operation.

Atomicity violations are one of the most causes of errors in concurrent programs [LPSZ08]. In

the following sections we present some of the more relevant work in this area.

2.2.1 High-Level Data Races and Stale-Value Errors

Artho et al. defined the notion of view consistency in [AHB03]. View consistency violations are

defined as High-Level Data Races and represent sequences of atomic operations in the code that

should be atomic in a whole, but are not. A view of an atomic operation is the set of variables

that are accessed in that atomic operation. The set of views of a thread t is defined as V (t) and a

thread t is said to be compatible with a view v if and only if {v ∩ v′ | v′ ∈ V (t)} forms a chain,

i.e., is totally ordered under ⊆. The program is view consistent if every view from every thread is

compatible with every other thread.

The notion of High-Level Data Races (HLDR) does not capture every anomaly regarding the

execution of atomic operations, and a HLDR does not imply a real atomicity violation. However

this concept is precise enough to capture real world anomalies.

This definition was subsequently extended by Praun and Gross [VPG04] to introduce methods

view consistency. Method consistency is an extension of view consistency. Based on the intuition

that the set of variables that should be accessed atomically in a given method contains all the

variables accessed inside a synchronized block. The authors define the concept of method views,

which relates to Artho et al’s maximal views, and aggregates all the shared variables accessed in a

method, and also differentiates between read and write memory accesses. This approach is more

precise than Artho et al’s because it also detects stale-value errors.

Stale value errors are other type of anomalies that are also related to atomic operations that

should be treated as an entire atomic operation. These anomalies are characterized by the re-usage

of a value read in an atomic operation in other atomic operations. This may represent an atomicity

16

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.2. Atomicity Violations

violation because the value may be stale, since it could have been updated by a concurrent thread.

The freshness of the values may or may not be a problem depending on the application. Analysis

to detect stale value errors are formalized in [AHB04; BL04].

The technique that we present in this dissertation, is comparable to the works just described

as it detects both high-level data races and stale-value errors with a high precision.

2.2.2 Access Patterns Based Approaches

Vaziri et al. [VTD06] defines eleven access patterns that potentially represent an atomicity viola-

tion. The access patterns are sequences of read and write accesses denoted by Rt(L) and Wt(L)

and represent, respectively, read and write accesses to memory locations L, performed by thread

t. The sequence order represents the execution order of the atomic operations. An example of

an access pattern defined in this paper is Rt(x) Wt′(x) Wt(x), that represents a stale value error,

since thread t is updating variable x based on an old value. The patterns make explicit use of the

atomic set of variables, i.e. sets of variables that must be accessed atomically, and these correlated

variables are assumed to be known. These eleven patterns are proved to be complete with respect

to serializability.

A related approach by Teixeira et al. [LSTD11] identifies three access patterns that capture a

large number of anomalies. These anomalies are referred as RwR, where two related reads are

interleaved by a write in those variables; WrW where two related writes are interleaved by a read

in those variables; and RwW that represents a stale value error.

2.2.3 Invariant Based Approaches

Another approach to detect atomicity violations is by directly knowing the intended semantics of

the program. This was the approach followed in [DV12] by Demeyer and Vanhoof. The authors

defined a pure functional concurrent language that is a subset of Haskell, and includes the IO

Monad, hence modeling sequential execution and providing shared variables that can be accesses

inside atomic transactions. A specification of the invariants of the program’s functions are pro-

vided by the programmer in logic. A shared variable is said to be consistent if all invariants upon

it hold before and after every atomic transaction. The static analysis acquires the facts about the

program and feeds them to a theorem prover to test if every shared variable will be consistent.

This approach is very accurate provided that the programmer can express the notion of pro-

gram correctness by using invariants on the global state, but is also expensive because of the

theorem proving involved.

2.2.4 Dynamic Analysis Based Approaches

Flanagan et al also proposed several methods for detecting atomicity violations [FF04; FFY08;

FF10]. In [FF04] is presented a dynamic analysis for serializability violations. The central notion

of this work are Lipton’s reductions [Lip75]. If a reduction exists from one trace to another then

the execution of both traces yield the same state (although different states may be obtained in-

termediately). Reductions can be found by commuting right- and left-mover operations. Their

analysis specifies which operations are movers and uses a result from Lipton’s Theory of Reduc-

tions to show that there exists a reduction from the atomic operations in the concurrent trace

17

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

1 void Withdraw(boolean b, int value) {

2 if (x + y > value) {

3 if (b) {

4 x = x - value;

5 }

6 else {

7 y = y - value;

8 }

9 }

10 }

Figure 2.5: Withdraw program.

obtained dynamically to a serialization trace. If these condition are not met, then an anomaly is

reported, this can, however, lead to false positives.

Another work from Flanagan et al provides a sound and complete dynamic analysis for atom-

icity violations [FFY08]. This work uses a well-known result from database theory that states that

a trace is serializable if and only if no cycle exists in the happen-before graph of instructions of

atomic operations [BHG87]. The dynamic analysis maintains a happens-before graph and reports

anomalies if a cycle is found.

A different approach is presented by Shacham et al. [SBASVY11]. In this work the atomic

operations are extracted from the program to be analyzed to create an adversary that will run

them concurrently to the original program, if two different runs yield different results then an

anomaly is reported. Some heuristics are used to explore the search space of possible interleavings

from the adversary.

2.3 Snapshot Isolation

Snapshot Isolation (SI) [BBGMOO95] is a well known relaxed isolation level widely used in

databases, where each transaction executes with relation to a private copy of the system state—a

snapshot— taken at the beginning of the transaction and stored in a local buffer. All write oper-

ations are kept pending in the local buffer until they are committed in the global state. Reading

modified items always refer to the pending values in the local buffer.

Tracking memory operations introduces some overhead, and TM systems running under opac-

ity must track both memory read and write accesses, incurring in considerable performance

penalties. Validating transactions in SI only requires to check if any two concurrent transaction

wrote at a common data item. Hence the runtime system only needs to track the memory write

accesses per transaction, ignoring the read accesses, possibly boosting the overall performance of

the transactional runtime.

Although appealing for performance reasons, the use of SI may lead to non-serializable ex-

ecutions, resulting in two kinds of consistency anomalies: write-skew and SI read-only anomaly

[FLOOS05]. Consider the following example that suffers from the write-skew anomaly. A bank

client can withdraw money from two possible accounts represented by two shared variables, x

and y. The program listed in Figure 2.5 can be used in several transactions to perform bank oper-

ations customized by its input values. The behavior is based in a parameter b and in the sum of the

two accounts. Let the initial value of x be 20 and the initial value of y be 80. If two transactions

T1 and T2 execute concurrently, calling Withdraw(true, 30) and Withdraw(false, 90)

18

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

respectively, then one possible execution history of these two transactions under SI is:

H = R1(x, 20) R2(x, 20) R1(y, 80) R2(y, 80) R1(x, 20) W1(x,−10) C1 R2(y, 80) W2(y,−10) C2

After the execution of these two transactions the final sum of the two accounts will be −20, which

is unacceptable. Such execution would never be possible under opacity, as the last transaction to

commit would abort because it read a value that was written by the first (committed) transaction.

In the following sections we present the notions of transaction dependency, which is based

on execution histories and static dependency between transactional programs. These notions are

used to precisely define the possible anomalies that may occur under snapshot isolation.

2.3.1 Transaction Histories

The execution of a transaction can be defined as a sequence of read and write accesses to shared

data items that ends either with a commit operation or an abort operation. A transaction implicitly

starts upon the execution of the first operation in the sequence. Each transaction results from

the execution of a program, hence a program is the static representation of a transaction, and a

set of programs constitute an application. We write Rn(X) and Wn(X) to denote read and write

accesses to location X in a transaction Tn of application A. We define a history of an application A,

written H(A), to an interleaving of the executions of all its transactions. For example consider the

application history H1 for some application A with transactions T1 and T2 and shared variables

X and Y :

H1(A) = R1(X) R2(X) W2(X) C2 W1(X) A1

Notice that both transactions T1 and T2 read variable X and that T2 writes variable X and

commits. Transaction T1 then writes variable X but finishes with an abort operation which reverts

all the changes made by T1, and in the end the value of X is the one written by T2.

An application history H is said to be serializable if its effect on the state of the application is

equivalent to the one of a serializable history S where all transactions are executed sequentially

in some given order. For example, consider the following history H2 for application A where

variable X is initialized with value 50, and where transaction T1 tries to increment X by 10 and

transaction T2 tries to increment X by 20:

H2(A) = R1(X, 50) R2(X, 50) W2(X, 70) C2 W1(X, 60) C1

Consider that the only two possible histories that sequentially execute transactions T1 and T2

to a committed state are S1 and S2 below:

S1 = R1(X, 50) W1(X, 60) C1 R2(X, 60) W2(X, 80) C2

S2 = R2(X, 50) W2(X, 70) C2 R1(X, 70) W1(X, 80) C1

If history H2 is serializable then the final value of variable X should be the same as the one

resulting from either S1 or S2. Also the two read operations performed by T1 and T2 in history

H2 could never yield the same result. Hence, we conclude that history H2 is not serializable.

However, if we consider history H3 below, where transaction T1 is aborted, we would have

a serializable application history equivalent to a sequential history where only transaction T1 is

executed.

H3 = R1(X, 50) R2(X, 50) W2(X, 70) C2 W1(X, 60) A1

19

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

2.3.2 Transaction Dependencies

Fekete et al. [FLOOS05] defines a dependency relation between two transactions based on their

execution history. Dependencies between transactions are classified into the following three cate-

gories:

• There is a write-read dependency, Tn
x−wr
−−−−→ Tm, if a committed transaction Tn wrote a vari-

able x and a committed transaction Tm read the value of variable x written by Tn.

• There is a write-write dependency, Tn
x−ww
−−−−→ Tm, if a committed transaction Tn has written

variable x and a committed transaction Tm has also written variable x after Tn.

• There is a read-write dependency, Tn
x−rw
−−−−→ Tm, if a committed transaction Tn reads vari-

able x which will be later written by a committed transaction Tm, and no other committed

transaction Tp writes to the same variable between the read of Tn and the write of Tm.

From this definition we can observe that if there is a write-read dependency T1
x−wr
−−−−→ T2 we

know that T1 has committed before the start of T2, thus T1 and T2 are not concurrent. Otherwise,

T2 would not be able to read the value written by T1. A write-write dependency T1
x−ww
−−−−→ T2

means that transaction T1 has committed before the start of T2 due to the First-Committer-Wins

rule, and hence they are not concurrent. A read-write dependency T1
x−rw
−−−−→ T2 indicates that T1

read a value from variable x which will be later written by a committed transaction T2, and in this

case T1 and T2 executed concurrently.

The above dependencies can be generalized as:

• There is a Tn
wr
−−→ Tm dependency if Tn

i−wr
−−−→ Tm for any data item i.

• There is a Tn
ww
−−→ Tm dependency if Tn

i−ww
−−−−→ Tm for any data item i.

• There is a Tn
rw
−−→ Tm dependency (also called an anti-dependency) if Tn

i−rw
−−−→ Tm for any

data item i.

• There is a Tn −→ Tm dependency if any of the following dependencies hold: Tn
wr
−−→ Tm,

Tn
ww
−−→ Tm or Tn

rw
−−→ Tm.

Using these dependency definitions we can construct a dependency graph called dependency

serialization graph (DSG) for a history H .

2.3.3 Dependency Serialization Graph

A dependency serialization graph is defined over a history H with vertices representing commit-

ted transactions and each distinctly labeled edge from Tm to Tn corresponding to a Tm
wr
−−→ Tn,

Tm
ww
−−→ Tn or Tm

rw
−−→ Tn dependency.

Consider the follow history:

H3 : W1(X) W1(Y) W1(Z) C1 W3(X) R2(X) W2(Y) C2 R3(Y) C3

The corresponding dependency serialization graph of history H3, DSG(H3), is shown in Fig-

ure 2.6.

The edges corresponding to read-write dependencies are drawn as dashed edges to differen-

tiate from other types of edges. Read-write edges have a special role when analyzing the graph

in search for serialization anomalies.

20

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

T1

T2ww

wr

T3
ww

wr

rw

rw

Figure 2.6: DSG of history H3

2.3.4 Snapshot Isolation Anomalies

Snapshot Isolation anomalies can be defined in terms of a DSG of a history H . Fekete et al.

in [FLOOS05] define a theorem that states the following:

Theorem 2.1. Suppose H is a history produced under Snapshot Isolation that is not serializable. Then there

is at least one cycle in the serialization graph DSG(H), and we claim that in every cycle there are three

consecutive transactions Ti.1, Ti.2, Ti.3 (where it is possible that Ti.1 and Ti.3 are the same transaction)

such that Ti.1 and Ti.2 are concurrent, with an edge Ti.1 −→ Ti.2, and Ti.2 and Ti.3 are concurrent with an

edge Ti.2 −→ Ti.3.

The type of dependencies of Ti.1 −→ Ti.2 and Ti.2 −→ Ti.3 must be read-write because Ti.1

and Ti.2 are concurrent and Ti.2 and Ti.3 are also concurrent. Using this theorem we can easily

analyse the dependency graph for anomalies by searching for cycles of the form Ti.1
rw
−−→ Ti.2

rw
−−→

Ti.3
wr|ww
−−−−→ Ti.1 where Ti.1 and Ti.3 may be the same transaction.

Write Skew The write skew anomaly happens when two transactions running concurrently

have read-write conflicts with each other.

Example: there are two accounts x and y and two methods each one to withdraw from the

respective account. The condition to withdraw money from one of the accounts is that the sum of

the accounts be higher than the value to be withdrawn.

1 int x=20, y=80;

2

3 void withdrawX(int value) {

4 if (x + y > value) {

5 x = x - value;

6 }

7 }

1

2

3 void withdrawY(int value) {

4 if (x + y > value) {

5 y = y - value;

6 }

7 }

If two transactions execute concurrently, one calling the withdrawX(30) (T1) and the other

calling the withdrawY(90) (T2), then one possible execution history of the two transactions

under SI is:

Hws : R1(x, 20) R2(x, 20) R1(y, 80) R2(y, 80) R1(x, 20) W1(x,−10) C1 R2(y, 80) W2(y,−10) C2

21

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

T1 T2
rw

rw

Figure 2.7: DSG(Hws): Example of write skew.

After the execution of this two transactions the final sum of the two accounts will be −20 which

is negative. Such execution would never be possible under Serializable isolation level as the last

transaction to commit would abort because it had read a value that was written by the already

committed concurrent transaction. According to [FLOOS05] this example has two dependency

relations between transaction T1 and transaction T2: a read-write dependency T1
rw
−−→ T2 resulting

from the operations R1(y = 80) and W2(y = −10), and a read-write dependency T2
rw
−−→ T1

resulting from the operations R2(x = 20) and W1(x = −10). Therefore, there exists a cycle

between the dependency relations: T1
rw
−−→ T2

rw
−−→ T1. Figure 2.7 depicts the dependency graph

for history Hws. This example fits in the case of Theorem 2.1 where Ti.1 and Ti.3 are the same

transaction.

SI Read-Only Anomaly A SI read-only anomaly occurs when a read-only transaction reads a

state which cannot occur under Serializable isolation.

Example: There are two accounts x and y and three methods: the deposit method deposits

an amount v in account y, the withdraw method withdraws an amount v from account x if the

sum of the accounts x and y is positive otherwise it withdraws an amount of v+1, and the method

readonly reads the amount available on each account x and y.

1 int x=0, y=0;

2

3 void deposit(int v) {

4 y = y + v;

5 }

1 void withdraw(int v) {

2 if (x+y > 0) {

3 x = x - v;

4 }

5 else {

6 x = x - v - 1;

7 }

8 }1 void readonly() {

2 int tx = x;

3 int ty = y;

4 // print tx and ty

5 }

Assume that accounts x and y start with value zero. If a client decides to first make a deposit

of 20 (deposit(20)) in account y and then it issues the operation to print the amounts of each

account (readonly()) to make sure that the effects of the deposit operation are persistent, and

finally withdraws the amount of 10 from account x (withdraw(10)). A possible execution of

this scenario under SI is given by history Hro:

Hro : R2(x, 0) R2(y, 0) R1(y, 0) W1(y, 20) C1 R3(x, 0) R3(y, 20) C3 W2(x,−11) C2

22

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

As we can see from history Hro when the readonly operation finishes it read the state af-

ter the deposit operation, but the withdraw operation read the state previous to the deposit

operation and commits after the readonly operation. This would never be possible under Se-

rializable isolation because the withdraw operation would have aborted and restarted again in

the new state.

T1

T3y-wr

T2y-rw

x-rw

Figure 2.8: DSG(Hro): Example of SO read-only anomaly.

In Figure 2.8 is depicted the dependency graph of history Hro. By looking at the DSG(Hro) is

easy to prove using Theorem 2.1 that this execution is not serializable due to the cycle T3
x−rw
−−−−→

T2
y−rw
−−−−→ T1

y−wr
−−−−→ T3.

2.3.5 Static Dependency Graph

We now define a similar dependency relation on programs and build a static dependency graph

(SDG) where the nodes are programs rather than transactions. Remember that transactions are

the runtime instances of programs. A program P may define the behavior of many executing

transactions. The edges of the SDG correspond to dependencies between programs defined as

follows.

For each possible dependency between two transactions Tn
x−ρ
−−−→ Tm, where x is a state vari-

able and ρ ∈ {wr,ww, rw}, there should exist a corresponding static dependency in the SDG. We

say that there is a static dependency, written Pn −→ Pm, between program Pn and program Pm if,

for any transactions Tn and Tm, instantiating Pn and Pm, there is Tn
x−ρ
−−−→ Tm on any variable x.

A static dependency is said to be vulnerable [FLOOS05] if there exists a history which has

the properties above and in which Tn and Tm are concurrent. The vulnerable static dependency

between Pn and Pm is represented as Pn ⇒ Pm.

It is important to note that in a SDG, a program P may have dependencies to itself because it

may generate two different transactions.

In summary, an SDG(A) of an application A is a graph with programs P1, ..., Pk of A as nodes

and labeled edges of the form Pn
ρ
−→ Pm (non-vulnerable) or Pn ⇒ Pm (vulnerable) representing

static dependencies.

Recall the write-skew anomaly given in Section 2.3.4 where a bank client can withdraw some

money from two possible accounts represented by two shared variables, x and y. The program

(P1) listed in Figure 2.9 can be used in several transactions to perform bank operations customized

by its input values. The behavior is based on a parameter b and on the sum of the two accounts.

Let the initial value of x be 20 and the initial value of y be 80.

23

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

1 void withdraw(bool b, int value) {

2 if (x + y > value) {

3 if (b) {

4 x = x - value;

5 }

6 else {

7 y = y - value;

8 }

9 }

10 }

Figure 2.9: Bank account program (P1).

P1

ww

wr

rw

Figure 2.10: Static dependency graph of the withdraw function.

Consider the following execution history with two transactions of program P1:

H4 = R1(x, 20) R2(x, 20) R1(y, 80) R2(y, 80) R1(x, 20) W1(x,−10) C1 R2(y, 80) W2(y,−10) C2

Given the above history we can extract the static dependencies of program P1 and construct

a graph with a single node representing P1 and with edges representing the dependencies. The

static dependency graph of program withdraw is depicted in Figure 2.10. There is one node in

the graph representing program withdraw (P1) and there are three edges: P1
ww
−−→ P1, P1

wr
−−→ P1

and P1
rw
⇒ P1 (vulnerable). The vulnerable edge is represented by a dashed arrow in the diagram.

Intuitively the three edges represent the following situations: the dependency P1
ww
−−→ P1 results

from the case where program P is called twice with the same value for parameter b; dependency

P1
wr
−−→ P1 results from a situation where the program is initiated twice with different values

for parameter b and one of the transactions starts after the commit of the other (non concurrent

transactions); dependency P1
rw
⇒ P1 exists when program P is called twice with different values

for parameter b and the two transactions are concurrent.

2.3.6 Detection of Anomalies in a SDG

We can not apply the Theorem 2.1 to a SDG because a cycle in a SDG may not correspond to

a serialization problem. Fekete et al. [FLOOS05] defines the concept of dangerous structure in a

static dependency graph. He shows that if some SDG(A) has a dangerous structure then there

are executions of application A which may not be serializable and that if a SDG(A) does not have

any dangerous structure then all executions of application A are serializable.

Definition 2.1 (Dangerous structures [FLOOS05]). We say that a SDG(A) has a dangerous structure

if it contains nodes P , Q and R (not necessarily distinct) such that:

24

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.3. Snapshot Isolation

Algorithm 1: Dangerous Structure detection algorithm.

Data: nodes[], edges[]
Result: true or false
initialisation;
foreach Node n : nodes do

foreach Edge in : incoming(n, edges) do
if vulnerable(in) then

foreach Edge out : outgoing(n, edges) do
if vulnerable(out) then

if existsPath(target(out), source(in)) then
return true;

return false;

• There is a vulnerable edge from R to P .

• There is a vulnerable anti-dependency edge from P to Q.

• Either Q = R or there is a path in the graph from Q to R; that is, (Q,R) is in the reflexive transitive

closure of the edge relationship.

The detection of dangerous structures in a SDG can be performed mechanically by Algo-

rithm 1.

According to this definition, the SDG in Figure 2.10 has a dangerous structure. Once again

the existence of a dangerous structure does not imply that the application will have a SI anomaly,

only that it may have one.

2.3.7 Static Analysis of Snapshot Isolation

Fekete et al. [FLOOS05] presents a SQL-based syntactic analysis to detect SI anomalies for the

database setting. This analysis computes the set of dependencies between programs, where each

program represents a single transaction. Their work assumes that the applications are described

in some form of pseudo-code using SQL statements to read or write to the database. Programs

with if-then-else structures that have branches with different static dependencies to other pro-

gram vertices must be split into two or more programs with preconditions.

The analysis may be divided in two phases. The first phase covers the extraction of the lookup

and update accesses for each transaction, building their corresponding read and write sets that

are composed by sets of table column names. These sets are then used in the second phase to

construct a static dependency graph, where the dangerous structures detection algorithm is ap-

plied. The analysis presented was applied manually to the TPC-C benchmark, and proved that

the benchmark was free of snapshot isolation anomalies.

A sequel of this work, presented in [JFRS07], describes a prototype that automatically analyses

database applications. Their syntactic analysis is based on the names of the columns accessed in

the SQL statements that occur within the transaction. They also discuss some solutions to reduce

the number of false positives produced by their analysis.

25

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

2.3.8 Snapshot Isolation in Transactional Memory

Transactional memory systems commonly implement opacity to ensure the correct execution of

transactional memory programs. To the best of our knowledge, SI-STM [RFF06] is the only imple-

mentation of a STM using snapshot isolation. Their work focuses on the improvement of trans-

actional processing throughput by using a snapshot isolation algorithm on top of a multi-version

concurrency control mechanism. They ground on the previous DSTM algorithm and extend it by

adding a list of versions to each transactional object. Then each transaction has a validity range that

is used to retrieve the correct version of each transactional object accessed for reading. The commit

operation only checks for write/write conflicts and uses a contention manager to ensure the first-

commiter-wins rule. They also propose a SI-safe variant of the algorithm where anomalies are

automatic and dynamically avoided by enforcing validation of read/write conflicts. They report

performance benefits on using snapshot isolation, although the benchmarks had to be adapted to

avoid write-skew anomalies.

In our work, we aim at providing the opacity semantics under snapshot isolation STM sys-

tems. This is achieved by performing a static analysis to assert that no SI anomalies will occur

when executing a transactional application.

2.4 Static Analysis

In the work presented in this dissertation, we describe two techniques to detect atomicity vio-

lations and write-skew anomalies in transactional memory programs. In the particular case of

write-skew detection, although targeting similar results, our work deals with significantly dif-

ferent problems than the work of Fekete et al. [FLOOS05]. The most significant one is related

to the full power of general purpose languages and the use of dynamically allocated heap data

structures.

Both our proposed static analysis techniques are based on abstract interpretation [CC77; Cou01].

Abstract interpretation is a theory of semantics approximation. The objective is to define a new

semantics of a programming language that satisfies two conditions: the semantics always termi-

nates and the state of every program statement contains a superset of the values that are possible

in the concrete semantic, for every possible input.

2.4.1 Abstract Interpretation

Abstract interpretation techniques use a partial order set to define the state, or abstract state, of

a program. The partial order set must be a lattice to guarantee termination of fix point computa-

tions. A partial order of a set S is a mathematical structure L = (S,⊑) that satisfies the following

conditions:

• Reflexivity: ∀x ∈ S : x ⊑ x

• Transitivity: ∀x, y, z ∈ S : x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

• Anti-symmetry: ∀x, y ∈ S : x ⊑ y ∧ y ⊑ x ⇒ x = y

A set on which there is a defined partial order may also be called a poset. Let X be a subset of S.

An element s ∈ S is an upper bound of X if x ⊑ s for all x ∈ X . If the set of the upper bounds

of X has a least element z, then z is called the least upper bound of X and is denoted as z = ⊔X .

26

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

Dually, an element s ∈ S is a lower bound of X if s ⊑ x for all x ∈ X . If the set of lower bounds

of X has a maximum element z, then z is called the greatest lower bound of X and is denoted as

z = ⊓X .

A lattice is a partial order (S,⊑) with a least upper bound ⊔X where X ⊆ S, a greatest lower

bound ⊓X , a least element ⊥ ∈ S, and a greatest element ⊤ ∈ S. The least upper bound between

two elements x, y ∈ S is denoted as x ⊔ y and often called the join operator; the greatest lower

bound between x, y ∈ S is denoted as x ⊓ y and often called the meet operator.

The abstract interpretation framework is not complete without an abstract semantics function

AFstm : AS → AS that is applied to each program statement stm and where AS is the abstract

state. The correctness of the abstract semantics can be assessed by defining an approximation

relation with the concrete state. Let CS be the concrete state and AS the abstract state where both

sets are lattices. The concrete semantics function CFstm : CS → CS defines the concrete semantics

of a program. Moreover, two additional functions must be defined: function γ : AS → CS ,

also called concretization function, which transforms an abstract value onto a concrete one, and

function α : CS → AS , also called abstraction function, which transforms a concrete value onto

an abstract one. The abstract semantics soundness is given by the following theorem:

Theorem 2.2 (Abstract semantics soundness). The abstract semantics is a sound over-approximation

of the concrete semantics: ∀s ∈ AS : α(CFstm(γ(s))) ⊑ AFstm(s)

Sometimes the abstract state lattice may have an infinite height, i.e., there is not a least upper

bound or a greatest lower bound of the whole set, although exist for the subsets. In these cases,

fix-point computations may take a large amount of time to converge. To solve this problem, a

widening operator ∇ [Cor08] is used to accelerate the convergence of the analysis. The widening

operator may be defined as ∇ : AS ×AS → AS where ∀x, y ∈ AS : x ⊑ x∇y and y ⊑ x∇y.

Optimizing compilers use simple static analyses to optimize code execution. These analyses

use very simple abstract states such as a set of variables, or a map between variables and ab-

stract values. Examples of these analyses include: the live variable analysis and the reaching

definitions analysis, among others. But more complex abstract state definitions exist to analyze

complex program behaviors. In the context of this work we are concerned about the behavior of

dynamically allocated memory, or heap, which is a strong dynamic property of programs. Static

analysis techniques that analyze the state of the heap are called shape analysis.

2.4.2 Shape Analysis

The heap is a structure that can have an infinite size and therefore a compact and bounded size

representation is needed to analyze a program. From the several representations proposed in the

literature, we describe the three most influent: shape graphs [SRW96; SRW98], 3-valued logic

representation [SRW99; SRW02], and separation logic [Rey02]. The latter will be extensively de-

scribed as is the base of our static analysis to detect snapshot isolation anomalies.

Shape Graphs A shape graph is a finite, labeled, directed graph that approximates the concrete

stores that can arise during program execution. It abstracts the stack and heap of a program by

using the notion of abstract location, which is the representative for one (or more) heap cells in

the program heap.

A shape graph is composed by an abstract state S , which is a mapping from variable names to

abstract locations, and an abstract heap H, which is a mapping from abstract locations to abstract

27

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

next next

next

h

n{h,p}

np

n∅n{n}

Figure 2.11: Singly linked list represented as a shape graph.

locations by means of selectors. We write n
X

to denote an abstract location, where X ⊆ Vars

is the set of stack variables pointing to that location. In the general case, abstract locations are

associated to one (and only one) heap cell. When X = ∅ we call n∅ the summary location. In this

particular case, n∅ is the representative of more than one heap cell, more precisely, of all the heap

cells that are not directly pointed by a stack variable. For instance, n{x,y} is the abstract location

that represents a heap cell pointed by the stack variables x and y. This also means that variables

x and y are aliases of the same heap cell.

Shape graphs also maintain information about sharing. More specifically they keep track of

abstract locations that may be the target of more than one pointer from other distinct abstract

locations. This information is represented as a map between abstract locations and a boolean

value indicating weather the location is shared or not. This is particularly important for summary

locations that may represent several concrete heap locations. For instance, if a summary location

n∅ is pointed by two abstract locations, and is-shared(n∅) = false , then we know that the two

abstract locations point to distinct locations in the summary location. Sharing information can be

used to distinguish between acyclic- and cyclic-lists.

In Figure 2.11 is shown an example of a shape graph representing a singly linked list with some

additional variables. Variables h and p are alias of each other for the list head, and variable n is

pointing to the second node of the list. In this case the, the sharing information of the summary

location n∅ would be is-shared(n∅) = false , denoting an acyclic linked list.

3-Valued Logic Sagiv et al. developed a parametric framework for specifying shape analysis

in which the concrete and abstract states were represented as 2-valued and 3-valued logic for-

mulas respectively. Memory locations are represented as logical constants ranging in u1, . . . , un.

Stack variables pointing to some memory location are represented as unary predicates where the

variable name is used as the predicate name. Links between memory locations are represented as

binary predicates where the field name is used as the predicate name. In 3-valued logic, predicates

may evaluate to three different values: 0, 1, or 1/2 (i.e., false, true, and unknown, respectively).

In the representation of abstract heaps, summary locations are not represented with a spe-

cial logical constant, but rather using the 1/2 (unknown) value when evaluating a predicate that

denotes some variable or location pointing to the summary location. Moreover, an additional

unary predicate, called sm , is used to denote if a constant u represents more than one location.

This predicate evaluates to 0 whenever the respective constant represents only one location, and

1/2 when it represents more than one location. For instance, consider the linked list example of

Figure 2.11. The 3-valued logic representation of such shape graph would be:

h(u1) = 1 ∧ p(u1) = 1 ∧ next(u1, u2) = 1 ∧ n(u2) = 1

∧ next(u2, u3) = 1/2 ∧ next(u3, u3) = 1/2 ∧ sm(u3) = 1/2

28

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

where h, p and n are stack variables, next is a memory field, and u1, u2, u3 are logical constants.

Separation Logic Separation logic [Rey02], is a first order logic extended with a separation con-

junction operator (∗) and a points-to predicate (7→).

The abstract heap is modeled as a symbolic heap [BCO05] composed by a pure and a spatial

part (Π|Σ). The pure part is composed by a conjunction of equalities between stack variables,

capturing their aliasing. The spatial part captures the structure of the heap by representing it as a

separation logic formulae.

The separation conjunction P ∗ Q denotes that the heap region represented by formula P is

disjoint from the heap region represented by formula Q. The points-to predicate x 7→ [next : y]

denotes that variable x is pointing to a location where the next field holds a pointer to the same

location as variable y.

The possible infinite heap structure of recursive data structures is represented in separation

logic using recursively defined predicates. For instance, a non-empty list segment between vari-

able x and variable y can be defined as:

lseg(x, y) ⇔ x 7→ [next : y] ∨ ∃ z′. x 7→ [next : z′] ∗ lseg(z′, y)

Consider the linked list example of Figure 2.11. The equivalent separation logic representation

would be:

h = p | h 7→ [next : n] ∗ lseg(n, nil)

In the following section, we will present in detail the shape analysis technique based on sepa-

ration logic.

2.4.3 Shape Analysis based on Separation Logic

The pioneer work of Distefano et al. [DOY06] formalized the first shape analysis algorithm based

on separation logic capable of automatically inferring loop invariants and proving shape proper-

ties of list data structures for a simple imperative language with dynamically allocated memory.

This shape analysis algorithm is an intra-procedural analysis (i.e., analysis of single program

without procedure calls.) over a program annotated with pre- and post-conditions. The algorithm

verifies that the pos-condition is implied by the analysis result. The abstract domain is composed

by a set of symbolic heaps [BCO05], briefly described in the previous section. In the following

sections we will describe in detail the semantic of symbolic heaps and the abstract semantics of

this shape analysis algorithm.

2.4.3.1 Symbolic Heaps

Separation logic is an extension of Hoare’s logic [Hoa69] which as been used to reason about

dynamically allocated memory. The success key of this approach is the separation conjunction (∗),

which allows to reason about only a portion of the heap with the guarantee of non-interference

of other portions. The assertion P ∗ Q is satisfied by two disjoint portions of the heap h1 and h2

where h1 satisfies formula P and h2 satisfies formula Q.

This separateness property is fundamental to reason about programs that manipulate the heap

in a local way. This local reasoning concept is materialized by the frame rule:

29

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

e ::= (expressions)
x, y, . . . ∈ Vars (program variables)

| x′, y′, . . . ∈ Vars′ (existential variables)
| nil (null value)

ρ ::= f1 : e, . . . , fn : e (record)

S ::= e 7→ [ρ] | p(~e) (spatial predicates)
P ::= e = e (pure predicates)
Π ::= true | P ∧Π (pure part)
Σ ::= emp | S ∗ Σ (spatial part)

H ::= Π|Σ (symbolic heap)

Figure 2.12: Symbolic heaps syntax

{P} c {Q}

{P ∗R} c {Q ∗R}
(FRAME RULE)

The frame rule allows to extend a local specification with other independent resources. The

local specification of a program statement c, also called the footprint of c, is the portion of the heap

that is used by c. For program verification purposes this property allows to build compositional

verification procedures [CDOY09].

In program verification only a fragment of separation logic is used. The classical conjunction

(∧) and disjunction (∨), or the separation implication (—∗) are dropped because of the complexity

rapidly becomes unmanageable. In fact, it has been shown that unrestricted separation logic is

undecidable even in the purely propositional setting [BK10].

Symbolic heaps [BCO05] are commonly used as the abstract domain of shape analysis based

on separation logic. The store model used to define the semantics of symbolic heaps is composed

by a stack (a mapping from variables to values, which include memory locations) and a heap (a

mapping from locations to values through field labels). Moreover, we assume a countable set of

program variables Vars (ranged over by x, y, . . .), a countable disjoint set of primed variables Vars′

(ranged over by x′, y′, . . .), a countable set of locations Locations, and a finite set of field names

Fields.

Values = Locations∪ {nil}

Stacks = (Vars∪Vars′) → Values

Heaps = Locations ⇀fin (Fields → Values)

The fragment of separation logic formulae that we use to describe symbolic heaps is defined

by the grammar in Figure 2.12. Satisfaction of a formula H by a stack s ∈ Stacks and a heap

h ∈ Heaps is denoted s, h |= H and defined by structural induction on H in Figure 2.13. There,

JpK is as usual a component of the least fixed point of a monotone operator constructed from a

inductive definition set; a full description can be found in [BBC08]. In this heap model a location

maps to a record of values. The formula e 7→ [ρ] can mention any number of fields in ρ, and the

values of the remaining fields are implicitly existentially quantified.

30

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

s, h |= emp iff dom(h) = ∅

s, h |= x 7→ [f1 : e1, , fn : en] iff h = [s(x) 7→ r] where r(fi) = s(ei) for i ∈ [1, n]

s, h |= p(~e) iff (s(~e), h) ∈ JpK

s, h |= Σ0 ∗ Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= e1 = e2 iff s(e1) = s(e2)

s, h |= Π1 ∧Π2 iff s, h |= Π1 and s, h |= Π2

s, h |= Π|Σ iff ∃~v′.
(
s(~x′ 7→ ~v′), h |= Π

)
and

(
s(~x′ 7→ ~v′), h |= Σ

)

where ~x′ is the collection of existential variables

in Π|Σ

Figure 2.13: Symbolic heaps semantics

e ::= (expression)
x (variables)

| null (null value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x.f := e (heap write)
| new(x) (allocation)

b ::= (boolean exp)
e⊕b e (boolean op)

| true | false (bool values)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| if b thenS elseS (conditional)
| while b doS (loop)

Figure 2.14: Simple imperative language.

Symbolic heaps are abstract models of the heap of the form H = Π|Σ where Π is called the

pure part and Σ is called the spatial part. Primed variables (x′
1, . . . , x

′
n) are used to implicitly denote

existentially quantified variables that occur in Π|Σ. The pure part Π is a conjunction of pure

predicates which states facts about the stack variables and existential variables (e.g., x = nil). The

spatial part Σ is the ∗ conjunction of spatial predicates, i.e., related to heap facts. In separation

logic, the formula S1 ∗ S2 holds in a heap that can be split into two disjoint parts, one of them

described exclusively by S1 and the other described exclusively by S2.

2.4.3.2 Abstract Semantics

The abstract semantics is defined over a simple imperative language defined in Figure 2.14. This

language captures essential features of imperative languages with dynamically allocated memory

such as object creation (new), field dereferencing (x.f), and assignment (x := e).

For the sake of simplicity, and without losing generality, we define the abstract semantics for

a single symbolic heap. We present the abstract semantics rules in Figure 2.15. The simplified ab-

stract semantics is a function AF : SHeaps −→ P(SHeaps) where SHeaps is the set of all symbolic

heaps. In the ASSIGN rule, variable x is renamed to an existential variable x′ in symbolic heap

H and a new equality x = e is added the pure part denoting the new assignment of x. In the

READ rule, variable x is assigned with the value of y.f therefore we need to rename x as in the

ASSIGN rule, and add the equality x = z where z is the value of y.f in the symbolic heap H. In

31

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

〈H, S〉 =⇒ 〈H′〉

x′ is fresh

〈H, x := e〉 =⇒ 〈x = e[x′/x] ∧H[x′/x]〉
(ASSIGN)

H ⊢ H′ ∗ y 7→ [f : z] x′ is fresh

〈H, x := y.f〉 =⇒ 〈x = z[x′/x] ∧H[x′/x]〉
(READ)

H ⊢ H′ ∗ x 7→ [f : y]

〈H, x.f := e〉 =⇒ 〈H′ ∗ x 7→ [f : e]〉
(WRITE)

x′ is fresh

〈H, new(x)〉 =⇒ 〈H[x′/x] ∗ x 7→ []〉
(ALLOCATION)

Figure 2.15: Operational Symbolic Execution Rules

the WRITE rule, the value e is associated with field f of the memory location pointed by variable

x. In the ALLOCATION rule, a new points-to predicate for variable x is added to the spatial part

of the symbolic heap after renaming the occurrences of x.

To define the final abstract semantics definition, we can lift the domain of AF to P(SHeaps) by

defining the following function AF† : P(SHeaps) −→ P(SHeaps) where:

AF†(H†) =
⋃

H∈H†

AF(H)

The abstract semantics of conditional statements is the union of the resulting symbolic heaps of

each branch. The resulting symbolic heap of a loop statement, which corresponds to the loop

invariant, is computed using a fix-point computation over the abstract semantics rules defined in

Figure 2.15.

The READ and WRITE rules require, in the pre-condition, a symbolic heap with an explicit

points-to predicate for variable y (in READ), or variable x (in WRITE), in order to read, or write,

the value associated with field f . To satisfy this requirement, the symbolic heap must be trans-

formed before applying the rule. This transformation is called rearrangement. A rearrangement

rule rearr : SHeaps×Vars −→ P(SHeaps) is a function defined as:

rearr(H, x) = {H′ ∗ x 7→ [. . .] | H ⊢ H′ ∗ x 7→ [. . .]}

The application of the rearrangement rule may generate more than one symbolic heap due to

the unfolding of inductive predicates. For example, the rearrangement of the symbolic heap

x = y | lseg(x, nil) for variable x would generate the following set of symbolic heaps:

{x = y |x 7→ [next : nil], x = y |x 7→ [next : z′] ∗ lseg(z′, nil)}

Where predicate lseg is defined as:

lseg(x, y) ⇔ x 7→ [next : y] ∨ ∃ z′. x 7→ [next : z′] ∗ lseg(z′, y)

32

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

The unfolding of inductive predicates may lead the analysis to diverge because infinite appli-

cations of the rearrangement rule may occur while analyzing a loop statement, generating an

infinite sequence of points-to predicates. To solve this problem a new set of rules must be applied

to the symbolic heaps in the end of each loop iteration. These set of rules are called abstraction

rules. Abstraction rules are rewrite rules that transform symbolic heap in a more abstract one,

usually by folding a sequence of points-to predicates in an inductive predicate. The rewriting

rules have the following structure:

premises

H ⊢ emp H′ ⊢ emp
(ABSTRACTION RULE)

This rewrite is sound if the symbolic heap H implies the symbolic heap H′. The application of

these rules ensure termination of the analysis, and allow to automatically compute loop invari-

ants. Below we show an example of an abstraction rule for the lseg predicate:

x′ /∈ Vars(H)

x 7→ [next : x′] ∗ lseg(x′, nil) ∗ H lseg(x, nil) ∗ H

The existential variable x′ must not occur in remaining symbolic heap H, because otherwise we

may be losing essential information for the analysis, such as some other program variable point-

ing to the middle of the list.

2.4.3.3 Evolution of Separation Logic Based Shape Analysis

Since the pioneer work of Distefano et al. [DOY06], several extensions and significant improve-

ments have been proposed. There exists an extensive literature on the subject. We will point out

only a few works that led to the development of scalable shape analysis algorithms capable of

analyzing large and complex systems.

In [GBC06] is presented an inter-procedural version of the shape analysis described in the

previous section. By relying in the spatial locality of each procedure, this new analysis is able to

automatically compute procedure summaries represented by symbolic heaps.

Shape analysis based on separation logic traditionally require user-annotated pre- and post-

conditions. In [CDOY07], Calcagno et al. present the first work to automatically infer pre-

conditions without user assistance. They call the analysis footprint analysis, as the analysis tries

to discover an over-approximation of the memory footprint, specified in separation logic. With

the footprint analysis one might analyze several procedures independently, and then use the re-

sults as partial summaries to avoid analyzing the whole program, which sometimes might not be

even available.

In [BCCDOWY07] is presented an extension of the shape analysis abstract domain to support

composite data-structures, e.g., “singly-linked lists of cyclic doubly linked lists with back-pointers

to head nodes”. This extension relies in a generic higher-order inductive predicates describing

spatial relationships. This new predicate definition allows to describe complex data-structures

present in system code such as device drivers.

In [YLBCCDO08] is presented a sound join operator for the separation logic domain which

increases the analysis scalability without incurring in false negatives. This new analysis is the

first working application of shape analysis to verification of whole industrial programs, such as

33

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

windows and linux device drivers.

In [DPJ08] is presented the jStar framework. jStar is an automatic verification tool for Java

programs, based on separation logic, that enables the automatic verification of entire implemen-

tations of several design patterns. The framework is highly customizable allowing the developer

to define the properties to be verified.

In [CDOY09] is presented a compositional shape analysis based on separation logic. The anal-

ysis follows a bottom-up approach where pre- and post-conditions are automatically inferred us-

ing a technique called bi-abduction. Bi-abduction is the technique to infer the anti-frame (missing

part of the state) and the frame (portion of state not touched by an operation) of a separation logic

assertion. The described analysis is able to analyze the entire code-base of several open-source

projects including the linux kernel.

In [CD11] is presented a new automatic program verification tool aimed at proving memory

safety of C programs. This is an industrial tool developed by Monoidics Ltd5.

2.4.4 Shape Analysis to Detect Memory Accesses

One of the main contributions of this thesis concerns the detection of snapshot isolation anomalies

at compile time. To perform such detection we need to compute the set of read and write mem-

ory accesses made by programs. Achieving this objective requires the use of a shape analysis

technique capable of computing an approximation of the read and write accesses.

There are some works in the literature describing analysis algorithms with similar objectives,

especially in the area of purity analysis (e.g., checking that a method does not make updates

to memory). Salcianu and Rinard [SR05] present a purity analysis method for Java programs

capable of asserting if a method makes an update to an external abstract location (i.e., an abstract

location that already existed upon the start of the method). Methods that do not make updates to

external abstract locations are considered pure. This analysis computes a points-to graph for each

method that distinguishes between locations that are allocated inside the method and locations

that are received by parameter or are loaded from parameters. Along with the points-to graph, the

analysis also computes a set of abstract field accesses, which stores the updates made to parameter

locations or loaded locations.

Prabhu et al. [PRV10] informally describes a static analysis to infer that speculative execu-

tions do not need to rollback. To successfully infer this safety property, the analysis computes an

over-approximation of the read and write accesses made by each method. The analyses uses a

combined pointer and escape analysis similar to previous described analysis [SR05]. Moreover,

the analysis also computes an under-approximation of write accesses.

The work described in [PMPM11] presents a novel shape analysis to optimize programs with

set and graph data structures, which infers properties for optimizing speculative parallel graph

programs. The shape analysis was implemented using the TLVA system, which implements the 3-

valued logic shape analysis presented in [SRW02]. The analysis computes an under-approximation

of the set of objects that are always locked at a program point. For each root variable is generated

a set of path expressions (i.e., sequence of fields starting from a program variable) denoting the

set of locked objects. These path expressions are limited to bounded size data structures, which

limits the applicability of this method, for example, to recursive data structures.

5http://www.monoidics.com

34

http://www.monoidics.com

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

The approach described in [RCG09] defines an analysis to detect memory independences be-

tween statements in a program, which can be used for parallelization. They extended separation

logic formulae with labels, which are used to keep track of memory regions through an execu-

tion. They can prove that two distinct program fragments use disjoint memory regions on all

executions, and hence, these program fragments can be safely parallelized.

35

2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART 2.4. Static Analysis

36

3
Detection of Atomicity Violations

Concurrent programming is not a trivial task even when using high-level abstractions such as

memory transactions. Memory transactions provide the ACI (atomicity, consistency, and isola-

tion) model semantics, which allows the programmer to reason sequentially about the transaction

code. Although a single transaction code executes without interference from others, the execu-

tion of two consecutive transactions by the same thread may be interleaved by transactions ran by

other thread. The programmer must be aware of this fact when writing the code for each transac-

tion, otherwise application invariants may be broken and other semantic errors may arise. These

errors are called atomicity violations and are mostly due to the wrong definition of the scope of

transaction in the program.

In this chapter we present a technique to detect two kinds of atomicity violations: high-level

data-races and stale-value errors. These atomicity violations are detected using static analysis

algorithms, which we will describe in detail throughout the chapter.

3.1 Introduction

The absence or misspecification of the scope of atomic blocks1 in a concurrent program may trig-

ger atomicity violations and lead to runtime misbehaviors.

Low-level data races occur when the program includes unsynchronized accesses to a shared

variable, and at least one of those accesses is a write, i.e., one of those accesses changes the value of

the variable. Although low-level data races are still a common source of errors and malfunctions

in concurrent programs, they have been addressed by others in the past [SBNSA97; CLLOSS02;

MHFA13] and are out of the scope of this work. We will consider herein that the concurrent

programs under analysis are free from low-level data races.

High-level data races results from the misspecification of the scope of an atomic block, by

splitting it in two or more atomic blocks with other (possibly empty) non-atomic block between

1Memory transactions can be specified using atomic blocks.

37

3. DETECTION OF ATOMICITY VIOLATIONS 3.1. Introduction

1 atomic void getA() {

2 return pair.a;

3 }

4 atomic void getB() {

5 return pair.b;

6 }

7 atomic void setPair(int a, int b){

8 pair.a = a;

9 pair.b = b;

10 }

11 boolean areEqual(){

12 int a = getA();

13 int b = getB();

14 return a == b;

15 }

(a) A high-level data race.

1 atomic int getX() {

2 return x;

3 }

4 atomic void setX(int p0) {

5 x = p0;

6 }

7 void incX(int val) {

8 int tmp = getX();

9 tmp = tmp + val;

10 setX(tmp);

11 }

(b) A stale value error.

Figure 3.1: Example of atomicity violations.

them. This anomaly is often referred as a high-level data race, and is illustrated in Figure 3.1a.

A thread uses the method areEqual() to check if the fields ‘a’ and ‘b’ are equal. This method

reads both fields in separate atomic blocks, storing their values in local variables, which are then

compared. However, due to an interleaving with another thread running the method setPair()

between lines 12 and 13, the value of the pair may have changed and the first thread observes an

inconsistent pair, composed by the old value of ‘a’ and the new value of ‘b’.

Figure 3.1b illustrates a stale value error, another source of atomicity violations in concurrent

programs. The non-atomic method incX() is implemented by resorting to two atomic methods,

getX() (at line 1) and setX() (at line 4). If the current thread is suspended immediately before

or after the execution of line 9, and another thread is scheduled to execute setX(), the value of

‘x’ changes, and when the execution of the initial thread is resumed it overwrites the value in

‘x’ at line 10, causing a lost update. This program fails due to a stale-value error, as at line 8 the

value of ‘x’ escapes the scope of the atomic method getX() and is reused indirectly (by way of

its private copy ‘tmp’) at line 10, when updating the value of ‘x’ in setX().

In this work we propose a novel approach for the detection of high-level data races and stale-

value errors in concurrent programs. Our proposal only depends on the concept of atomic regions

and is neutral concerning the mechanisms used for their identification. The atomic regions are

delimited using the @Atomic method annotation. Our approach is based on a novel notion of

variable dependencies, which we designate as causal dependencies. There is a causal dependency

between two variables if the value of one of them influences the writing of the other. We also

extended previous work from Artho et al. [AHB03] by reflecting the read/write nature of accesses

to shared variables inside atomic regions and additionally use the dependencies information to

detect both high-level data races and stale-value errors. We formally describe the static analysis

algorithms to compute the set of causal dependencies of a program and define safety conditions

for both high-level data races and stale-value errors.

Our approach can yield both false positives and false negatives. However, the experimental

results demonstrate that it still achieves high precision when detecting atomicity violations in well

know examples from the literature, suggesting its usefulness for software development tools.

In the next section we define a core language and introduce some definitions that support

38

3. DETECTION OF ATOMICITY VIOLATIONS 3.2. Core Language

e ::= (expression)
x (variables)

| null (null value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x := func(~y) (method call)
| x.f := e (heap write)
| x := new id ∈ C (allocation)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| if e thenS elseS (conditional)
| while e doS (loop)
| return e (return)
| skip (Skip)

M ::= func(~x) {S} (methods decl)

C ::= class id {field∗ (M | atomicM)∗} (class decl)

P ::= C+ (program)

Figure 3.2: Core language syntax

the remainder of the Chapter, namely Sections 3.3 and 3.4, where we propose algorithms for

defining causal dependencies between variables and for detecting atomicity violations (data races).

In Section 3.5 we briefly describe a tool that applies the proposed algorithms with static analysis

techniques for Java Bytecode programs, and discuss the results obtained in Section 3.6. This

chapter terminates with the presentation of the relevant related work in Section 3.7, and with

some concluding remarks in Section 3.8.

3.2 Core Language

We start by defining a core language that captures essential features of a subset of the Java pro-

gramming language, namely class declaration (class id{...}), object creation (new), field derefer-

encing (x.f), assignment (x := e), and method invocation (func(~x)). The syntax of the language is

defined by the grammar in Figure 3.2.

A program in this language is composed by a set of class declarations. Atomic blocks corre-

spond to methods that are declared using the atomic keyword. Variables can hold integers or ob-

ject references and boolean values are encoded as integers using the value ’1’ for true and value ’0’

for false. We also do not support exception handling as normally found in typical object-oriented

languages.

We now define some sets that are necessary to the definition of the static analysis algorithms:

• Classes: is the set of the identifiers of all the classes declared in the program.

• Fields: is the set of all the class fields defined in the program.

39

3. DETECTION OF ATOMICITY VIOLATIONS 3.3. Causal Dependencies

• Methods: is the the set of all the methods defined in the program.

• Atomics ⊆ Methods: is the subset of the methods that were declared as atomic.

We define a local (stack) variable as a pair of the form (x,m) where x is the variable identifier

and m ∈ Methods is the method where this variable is declared. For the sake of simplicity we

write the pair (x,m) as only x whenever is not ambiguous to do so. The set of all local variables

of a program is denoted as LocalVars.

We define a global variable as an object field and we represent it as the pair (c, f) where

c ∈ Classes represents the class where field f ∈ Fields is declared. The set of all global variables

is denoted as GlobalVars. These global variables appear in the code when dereferencing an object

reference. For instance, in the statement x.f := 4, the expression x.f represents a global variable

of the form (c, f) where c is the class of the object reference pointed by local variable x.

We define a function typeof : LocalVars → Classes, which given a local variable returns the class

of the object reference that it holds. So, in the example above c = typeof(x). This information can

be easily obtained because we assume that variables have type annotations as in the Java pro-

gramming language, although we do not explicitly represent these annotations in the language

syntax.

Please note that by deciding to represent an access to a field of an object as a pair with the class

of the object reference and the field accessed, we are not able to differentiate between different

object instances of the same class, and hence we may consider that there is always at most one

object instance of each declared class in the program. This allows us to avoid pointer analysis at

the cost of losing precision and becoming unsound in some cases but, as the results in Section 3.6

show, this design choice has proven to be very effective.

Finally we define the set Vars ≡ LocalVars+GlobalVars, which corresponds to all variables

used in the program, both local and global variables.

3.3 Causal Dependencies

There is a causal dependency, which we will designate herein simply as dependency, between two

program variables (local or global) if the value read from one variable influences the value written

into the other. For instance, the following expression

y := x

generates a dependency between variable x and y because the value that is written into variable y

was read from variable x. As another example, consider the following code:

if (x == 0) { y := 4 }

In this example, the variable y is written only if the condition x = 0 is true, thus it depends on the

current value of variable x and therefore there is also a dependency between variables x and y.

We represent a dependency between two variables x and y as x →֒ y where x ∈ Vars is the variable

read and y ∈ Vars is the variable written.

For each program (in the core language introduced in Section 3.2), we can compute a directed

graph of causal dependencies. The information provided by this graph plays an important role in

finding correlations between variables, which can be used to detect atomicity violations. We can

define two kinds of correlations between variables.

40

3. DETECTION OF ATOMICITY VIOLATIONS 3.3. Causal Dependencies

valgetX.ret

0setX.p3h tmp,2h tmp,

Figure 3.3: Dependency graph example

Definition 3.1 (Direct Correlation). There is a direct correlation between a read variable x and a written

variable y if there is a path from x to y, in a dependency graph D.

We denote as DC(x, y) a direct correlation between variables x and y.

Definition 3.2 (Common Correlation). There is a common correlation between a read variable x and a

read variable y if there is a written variable z, where z 6= x and z 6= y, for which exists a direct correlation

between x and z (DC(x, z)), and a direct correlation between y and z (DC(y, z)).

We denote as CC(x, y) a common correlation between variables x and y.

In the following section we describe how to compute the graph of dependencies from the

program code using a static analysis algorithm.

3.3.1 Dependency Analysis

The construction of the dependency graph is done in two steps. In the first step we only detect

data dependencies between variables. In the second step we detect control dependencies between

variables. In the end we merge all dependencies in a single graph.

3.3.1.1 Data Dependencies

The accurate detection of data dependencies relies on the precise localization of where the vari-

ables are defined. SSA (Single Static Assignment) [AWZ88] could be used, because each variable

would only have one definition site, but this only works for local variables, and we would still

need to track each definition site for global variables. Therefore we did not use SSA as inter-

nal representation and we solve the problem by defining a new variable version whenever the

variable is updated.

A variable version is defined as a triple of the form (x, h,m) where x ∈ Vars is a variable (local

or global), h is a unique identifier, and m ∈ Atomics ∪ {⊥} indicates if this variable is used inside

an atomic method or not (⊥). The set of all variable versions is denoted as Versions.

The unique identifier h is a hash value based on the line of code of the respective definition

site. If the version of the variable is not known in the current context, as in the case of method

arguments, a special hash value is used. We denote this special hash value as h?.

Figure 3.3 depicts the dependency graph for the method ‘incX()’ from Figure 3.1b. For

the sake of simplicity, we omitted the method (m) part of the version representation. We de-

note getX .ret as the return value of method getX(), and setX .p0 as the parameter of method

setX(int p0). Both the parameter and the return value have no need of an associated hash

value, which was thus omitted from their representation.

41

3. DETECTION OF ATOMICITY VIOLATIONS 3.3. Causal Dependencies

In method incX(int val), the value returned by the method getX() is written into a tem-

porary variable tmp, which is then incremented using parameter val , and is used afterwards as a

parameter on the invocation of method setX(int p0).

While analyzing this method, we first start by creating the dependency getX .ret →֒ (tmp, h2)

between the return value of getX() method and variable tmp with an hash value h2. In the

next statement variable tmp is redefined with a value resulting from the sum of the previous tmp

variable and the val parameter, and hence we create two dependencies (tmp, h2) →֒ (tmp, h3)

and val →֒ (tmp, h3), where the new version of tmp variable has the hash value h3. Finally, we

invoke method setX(int p0) with the value of tmp as parameter and therefore we create the

dependency (tmp, h3) →֒ setX .p0 .

The symbolic execution rules are defined as a transition system (〈D,H, S〉 =⇒ 〈D′,H′〉) over a

state composed by a dependency graph D and a set of versions, denoted as H ⊆ Versions, which

holds the current versions of each program variable. In a single program point, we may find

different versions of the same variable because our analysis over-approximates the runtime state

of a program. The rules are depicted in Figure 3.4, where always omit the method (m) parameter

from the representation of a variable version.

Function verH is used to retrieve the set of current versions of a variable, and is defined as

follows:

Definition 3.3 (Version Retrieval). Given a set of versions H and a variable v ∈ Vars:

ver : P(Versions)× Vars → P(Versions)

verH(v) ,

{(v, h,m) | (v, h,m) ∈ H} if ∃(v, h,m) ∈ H

{(v, h?,m)} otherwise

If a variable version cannot be found in H, a version with the special hash value h? is returned.

Every time that a variable is written, it is created a new version for such variable and all other

existing current versions are replaced by the new one. We define a helper function subsH for this

purpose as:

Definition 3.4 (Version Substitution). Given a set of versions H and a variable version (v, h,m) ∈

Versions:

subs : P(Versions)× Versions → P(Versions)

subsH((v, h,m)) , (H \ {(v, h′,m′) | (v, h′,m′) ∈ H}) ∪ {(v, h,m)}

Each hash value is generated using the function nhash, which given a statement S generates

a new and unique hash value based in the line number of that statement. This function is deter-

ministic in the sense that for any statement S the same hash value is always returned.

At the beginning of the analysis, the sets D and H are empty. We represent the parameters of

methods as meth.pi, and the return value of a method as meth.ret . When evaluating the RETURN

statement, the return value of the method is denoted as retVar.

All assignment operations, namely ASSIGN, HEAP READ, and HEAP WRITE, create depen-

dencies between all versions of the variables used in the right side of the assignment and the new

42

3. DETECTION OF ATOMICITY VIOLATIONS 3.3. Causal Dependencies

〈D,H, S1〉 =⇒ 〈D′,H′〉 〈D′,H′, S2〉 =⇒ 〈D′′,H′′〉

〈D,H, S1;S2〉 =⇒ 〈D′′,H′′〉
(SEQ)

h = nhash(x := y)
H′ = subsH((x, h)) D′ = D ∪ {v →֒ (x, h) | v ∈ verH(y)}

〈D,H, x := y〉 =⇒ 〈D′,H′〉
(ASSIGN)

c = typeof(y) h = nhash(x := y.f) H′ = subsH((x, h))
D′ = D ∪ {v →֒ (x, h) | v ∈ verH((c, f))}

〈D,H, x := y.f〉 =⇒ 〈D′,H′〉
(HEAP READ)

c = typeof(x) h = nhash(x.f := y) H′ = subsH(((c, f), h))
D′ = D ∪ {v →֒ ((c, f), h) | v ∈ verH(y)}

〈D,H, x.f := y〉 =⇒ 〈D′,H′〉
(HEAP WRITE)

h = nhash(x := newC()) H′ = subsH((x, h))

〈D,H, x := newC()〉 =⇒ 〈D,H′〉
(ALLOCATION)

h = nhash(x := func(~y)) spec(func) = 〈Df ,Hf 〉 D′ = Df ∪ D
D′′ = D′ ∪ {vi →֒ meth.pi | yi ∈ ~y ∧ vi ∈ verH(yi)} ∪ {meth.ret →֒ (x, h)}

H′ = {(v, h) | (v, h) ∈ H ∧ ((v, h?) ∈ Hf ∨ (v, h) /∈ Hf)}
H′′ = {(v, h) | (v, h) ∈ Hf ∧ h 6= h?}

〈D,H, x := func(~y)〉 =⇒ 〈D′′,H′ ∪H′′〉
(METH CALL)

〈D,H, S1〉 =⇒ 〈D′,H′〉 〈D,H, S2〉 =⇒ 〈D′′,H′′〉
H′′′ = H′ ∪H′′ ∪ {(v, h?) | (v, h1) ∈ H′ ∧ (v, h2) /∈ H′′}

∪{(v, h?) | (v, h1) ∈ H′′ ∧ (v, h2) /∈ H′}

〈D,H, if b thenS1 elseS2〉 =⇒ 〈D′ ∪ D′′,H′′′〉
(CONDITIONAL)

〈D,H, S〉 =⇒ 〈D′,H′〉 H′′ = H ∪H′ ∪ {(v, h?) | (v, h1) ∈ H ∧ (v, h2) /∈ H′}
∪ {(v, h?) | (v, h1) ∈ H′ ∧ (v, h2) /∈ H}

〈D,H,while b doS〉 =⇒ 〈D ∪ D′,H′′〉
(LOOP)

D′ = D ∪ {v →֒ retVar | v ∈ verH(x)}

〈D,H, returnx〉 =⇒ 〈D′,H〉
(RETURN)

〈D,H, skip〉 =⇒ 〈D,H〉
(SKIP)

Figure 3.4: Symbolic execution rules of data dependencies analysis

43

3. DETECTION OF ATOMICITY VIOLATIONS 3.3. Causal Dependencies

version of the assigned variable. The newly generated version is then used to replace all existing

versions of that same variable.

In the rule METH CALL, the function spec() returns the result, denoted as 〈Dp,Hp〉, of the

analysis of method func. The dependencies in Dp are merged with the current dependencies

and we create a dependency between each value that is passed as an argument to func and the

respective declared parameter meth.pi. We also need to update the variables’ versions that are

generated inside the method. If a variable was redefined (h 6= h?) inside func then we replace the

existing versions with the new version, otherwise we keep the current versions. Finally, we add

one more dependency between the return value of method func and the assigned value.

In the rule CONDITIONAL, the dependencies are generated in both branches and are merged

with the initial D. We also generate the versions for each branch, and if a variable x has a version

h 6= h? in one branch but there is no version for the same variable in the other branch, then we

generate a special version h? for variable x and we join it to all the other versions. The intuition

behind this operation is that if a variable is written only in one of the branches then we also need

to add the case that the variable might not have been written. The rule LOOP is similar to the

CONDITIONAL rule. The remaining rules should be self-explanatory.

After analyzing all methods of the program we get a dependency graph for the whole pro-

gram, based on data-flow information. Next, we have to add the remaining dependencies based

on the control flow information.

3.3.1.2 Control Dependencies

If an assignment or return statement is guarded by some condition then that assignment or return

statement depends on the variables used in the condition. This situation may occur with every

conditional statement such as an if then else, or a while loop.

The analysis of control dependencies traverses the control flow graph and keeps the set of

variables that the assignments may depend on. When an assignment or return statement is found

we create a dependency between the current variables, that it may depend on, and the respective

assigned variable.

boolean b1,b2,b3,b4;

if(b1){

// depends on b1

if(b2){

// b1 and b2

}

else if(b3){

// b1, b2 and b3

}

else{

// b1, b2 and b3

}

// b1

}

Figure 3.5: Example of the variables that guard each block

In Figure 3.5 is shown an example with nested conditional statements and the information

of the variables that guard each inner branch block of the conditions. The state of our symbolic

44

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

execution will maintain the same information.

The symbolic execution rules are shown in Figure 3.6 as a transition system (〈IS,D, S〉 =⇒

〈IS ′,D′〉). The state is composed by a set of conditional variables IS ⊆ Versions, which corre-

spond to the variable versions that the current statement depends on, and a dependency graph

D. In the beginning of the analysis the dependency graph is empty, and the set of conditional

variables has the union of all conditional variables that are present at all calling contexts of the

method that is going to be analyzed. For instance, given the program methods m1, m2 and m3

where method m1 calls method m2 with the current conditional variables set IS = {c1, c2}, and

m3 calls method m2 with the current conditional variables set IS = {c3, c4}, then the initial set of

conditional variables when analyzing method m2 is IS = {c1, c2, c3, c4}.

In the end of this analysis the resulting graph of dependencies is merged with the one that

resulted from the data dependencies analysis, described in the previous section, thus forming the

complete graph of causal dependencies.

For every kind of assignment we create a dependency between the current conditional vari-

ables and the assigned variable. This situation may occur in the rules ASSIGN, HEAP READ, HEAP

WRITE, ALLOCATION and METH CALL. In the case of a return statement, as in rule RETURN, we

create a dependency with the special variable retVar.

In the rules CONDITIONAL and LOOP, we analyze each branch with a new set of conditional

variables, which include the current conditional variables plus the variable of the condition. Each

variable is actually a variable version with an unique hash value. When we exit the scope of the

condition we remove the condition variable and proceed with the analysis. The remaining rules

are self-explanatory.

The result of these two analysis generate the graph of causal dependencies that is used to detect

the existence of atomicity violations in a concurrent program, as we will show in the following

sections.

3.4 Atomicity Violations

The purpose of our work is to detect two kinds of atomicity errors, the high-level data race and

the stale-value error, that may occur during the execution of concurrent programs that use atomic

blocks to guarantee mutual exclusion in the access to shared data.

The definition of both errors assume that the concurrent program has no low-level data races,

meaning that all accesses to shared variables are done inside atomic blocks.

3.4.1 High Level data races

A view, as described by Artho et al. in [AHB03] is a dynamic property that expresses what vari-

ables are accessed inside a given atomic code block. In this work we export this definition as

a static property, and additionally extend it, by also keeping the kind of access (read or write)

that was made for each variable in the view. As in all static analysis, this static property must

be an approximation of the dynamic property. In our setting, a view is an over-approximation of

the variables accessed inside a given atomic method. Please note that a view only stores global

variables. Local variables are not shared between threads and thus do not require synchronized

accesses.

We denote as Accesses the set of memory accesses made inside an atomic block. An access

45

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

〈IS,D, S1〉 =⇒ 〈IS ′,D′〉 〈IS ′,D′, S2〉 =⇒ 〈IS ′′,D′′〉

〈IS,D, S1;S2〉 =⇒ 〈IS ′′,D′′〉
(SEQ)

h = nhash(x := y) D′ = D ∪ {v →֒ (x, h) | v ∈ IS}

〈IS,D, x := y〉 =⇒ 〈IS,D′〉
(ASSIGN)

h = nhash(x := y.f) D′ = D ∪ {v →֒ (x, h) | v ∈ IS}

〈IS,D, x := y.f〉 =⇒ 〈IS,D′〉
(HEAP READ)

c = typeof(x)
h = nhash(x.f := y) D′ = D ∪ {v →֒ ((c, f), h) | v ∈ IS}

〈IS,D, x.f := y〉 =⇒ 〈IS,D′〉
(HEAP WRITE)

h = nhash(x := newC()) D′ = D ∪ {v →֒ (x, h) | v ∈ IS}

〈IS,D, x := newC()〉 =⇒ 〈IS,D′〉
(ALLOCATION)

h = nhash(x := func(~y)) spec(func) = 〈ISf ,Df 〉
D′ = D ∪Df ∪ {v →֒ (x, h) | v ∈ IS}

〈IS,D, x := func(~y)〉 =⇒ 〈IS,D′〉
(METH CALL)

IS ′ = IS ∪ {b}
〈IS ′,D, S1〉 =⇒ 〈IS ′,D′〉 〈IS ′,D, S2〉 =⇒ 〈IS ′,D′′〉

〈IS,D, if b thenS1 elseS2〉 =⇒ 〈IS,D′ ∪ D′′〉
(CONDITIONAL)

IS ′ = IS ∪ {b} 〈IS ′,D, S〉 =⇒ 〈IS ′,D′〉

〈IS,D,while b doS〉 =⇒ 〈IS,D ∪D′〉
(LOOP)

D′ = D ∪ {v →֒ retVar | v ∈ IS}

〈IS,D, returnx〉 =⇒ 〈IS,D′〉
(RETURN)

〈IS,D, skip〉 =⇒ 〈IS,D〉
(SKIP)

Figure 3.6: Symbolic execution rules of control dependencies analysis

46

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

a ∈ Accesses is a pair of the form (α, v) where α ∈ {r, w} represents the kind of access (r-read

or w-write) and v ∈ GlobalVars is a global variable2. A view is a subset of Accesses and the set of

all views in a program is denoted as Views. A view is always associated with one atomic method,

and we define the bijective function Γ that given a view returns the associated atomic method as:

Γ : Views → Atomics

The inverse function, denoted as Γ−1, returns the view associated with a given atomic method.

The set of generated views of a process p, denoted as V (p), corresponds to the atomic blocks exe-

cuted by one process, and is defined as:

v ∈ V (p) ⇔ m = Γ(v) ∧ executes(p,m)

The predicate executes asserts if a method m may be executed by process p, and is defined by an

auxiliary static analysis that computes the set of processes and the atomic methods that are called

in each process using the program call graph.

We can refine the previous definition of V (p) with a parameter α, where α ∈ {r, w}, to get only

the views of a process with read (Vr) or write accesses (Vw).

Definition 3.5 (Process Views).

Vα(p) = {v2 | v1 ∈ V (p) ∧ v2 = {(α, x) | (α, x) ∈ v1}} where α ∈ {r, w}

In Figure 3.7 we show the symbolic execution rules for creating a view from the analysis of

an atomic method. The result of the analysis is a single view that corresponds to the analyzed

atomic method. This view represents an over-approximation of the memory accesses that are

made during the execution of the atomic method. The analysis of all atomic methods in the

program results in a set of views. The analysis is defined as a reduction relation on an abstract

state composed by a single view, denoted as V , which is empty at the beginning of the analysis.

Every time a global variable is read or written, the corresponding read or write access is cre-

ated and added to the view. This operation is demonstrated in rules HEAP READ and HEAP

WRITE. The rules ASSIGN, ALLOCATION, and RETURN, only access local variables and therefore

nothing is done as in the SKIP rule.

In rule METH CALL, the function spec(func) returns the view Vf that resulted from the analysis

of function func, and we merge the resulting view with the current view Vf ∪ V .

The rules CONDITIONAL and LOOP merge the resulting views of all branches. This decision

allows us to avoid a state explosion and have a scalable analysis with the number of lines of code.

Given the set of views of a process, the maximal views of a process, denoted as Mα, are all the

views of the process that are not a subset of any other view in that same process. A maximal view

is defined as follows:

Definition 3.6 (Maximal Views). Given a process p, a maximal view vm is defined as:

vm ∈ Mα(p) ⇔ vm ∈ Vα(p) ∧ (∀v ∈ Vα(p) : vm ⊆ v ⇒ v = vm) where α ∈ {r, w}

Each maximal view represent the set of variables that should be accessed atomically, i.e., should

2Please remember that global variables are represented as a pair with a class identifier and the field accessed.

47

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

〈V, S〉 =⇒ 〈V ′〉

〈V, S1〉 =⇒ 〈V ′〉 〈V ′, S2〉 =⇒ 〈V ′′〉

〈V, S1;S2〉 =⇒ 〈V ′′〉
(SEQ)

〈V, x := e〉 =⇒ 〈V〉
(ASSIGN)

c = typeof(y) V ′ = V ∪ {(r, (c, f))}

〈V, x := y.f〉 =⇒ 〈V ′〉
(HEAP READ)

c = typeof(x) V ′ = V ∪ {(w, (c, f))}

〈V, x.f := e〉 =⇒ 〈V ′〉
(HEAP WRITE)

〈V, x := newC()〉 =⇒ 〈V〉
(ALLOCATION)

spec(func) = Vf V ′ = Vf ∪ V

〈V, x := func(~y)〉 =⇒ 〈V ′〉
(METH CALL)

〈V, S1〉 =⇒ 〈V ′〉 〈V, S2〉 =⇒ 〈V ′′〉

〈V, if e thenS1 elseS2〉 =⇒ 〈V ′ ∪ V ′′〉
(CONDITIONAL)

〈V, S〉 =⇒ 〈V ′〉

〈V,while e doS〉 =⇒ 〈V ∪ V ′〉
(LOOP)

〈V, return e〉 =⇒ 〈V〉
(RETURN)

〈V, skip〉 =⇒ 〈V〉
(SKIP)

Figure 3.7: Symbolic execution rules for creating a view

48

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

int x, y; // global variables

Maximal View vm

atomic {

x = 4;

y = 5;

}

Process p

int tx, ty;

atomic {

tx = x;

}

...

atomic {

ty = y;

}

print(tx+ty);

Figure 3.8: Example of compatibility property between a process p and a maximal view vm. In
this case, process p is incompatible with maximal view vm.

always be accessed in the same atomic block.

Given a set of views of a process p and a maximal view vm of another process, we define the

read or write overlapping views of process p with view vm as all the non empty intersection views

between vm and the views of process p.

Definition 3.7 (Overlapping Views). Given a process p and maximal view vm:

overlapα(p, vm) , {vm ∩ v | v ∈ Vα(p) ∧ vm ∩ v 6= ∅} where α ∈ {r, w}

The notion of compatibility between a process p and a view vm, defined in [AHB03], states

that a process p and a view vm are compatible if all their overlapping views form a chain, i.e., a total

ordered set. We explain the intuition behind this definition using the example shown in Figure 3.8.

In this example process p and maximal view vm are not compatible because process p reads the

variables x and y in two different atomic blocks, although the same variables are accessed in

the same atomic block associated with the maximal view vm. Hence, the atomic block of vm

may execute between the two atomic blocks of process p and therefore, process p, might see an

inconsistent state, or at least, a state that was not intended to be seen by the update done by vm.

We extended this definition with the information given by the causal dependencies graph, and

we additionally require that, even if the read overlapping views do not form a chain, there may

not exist a common correlation (Definition 3.2) between the variables in the read overlapping views.

Definition 3.8 (Process Compatibility). Given a process p and maximal view vm:

compw(p, vm) ⇔ ∀v1, v2 ∈ overlapw(p, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1

compr(p, vm) ⇔ ∀v1, v2 ∈ overlapr(p, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1 ∨ ¬CC(v1, v2)

The intuition behind this additional condition is that, even if two shared variables that belong

to a maximal view were read in different atomic blocks, we will only consider that there is an

incompatibility if both variables are used in a common write operation as in the example shown

in Figure 3.8.

49

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

int x, y; // global variables

int getXorY(boolean cond) {

int res;

atomic {

if (cond)

res = x;

else

res = y;

}

return res;

}

Maximal View vm

atomic {

x = 4;

y = 5;

}

Process p

int tx, ty;

tx = getXorY(true);

ty = getXorY(false);

print(tx+ty);

Figure 3.9: Example of an atomic block that generates a false-negative.

We can now define the view consistency safety property in terms of the compatibility between

all pairs of processes of a program. A process may only have views that are compatible with all

maximal views of another process. A program is free from high-level data races if the following

condition holds:

Definition 3.9 (View Consistency).

∀p1, p2 ∈ PS ,mr ∈ Mr(p1),mw ∈ Mw(p1) : compw(p2,mr) ∧ compr(p2,mw)

where PS is the set of processes.

If the view consistency property is not met, then we consider that there is a high-level data

race in the analyzed program.

In order to achieve scalability, our method is unsound, i.e., reports false negatives, mainly due

to the way we treat conditional statements. In conditional statements, we join the variables ac-

cessed in both branches, although in a concrete execution, only one of the branches is executed.

This join operation directly influences the result of the compatibility test between a maximal view

and another process. For instance, consider the example shown in Figure 3.9. In this example,

the atomic block in method getXorY generates a view with two accesses on variables x and y,

although at runtime only one of the variables is actually accessed each time the getXorY is in-

voked. Therefore, in this case the two views from process p form a chain and our analysis detects

no high-level data race.

3.4.2 Stale-Value Error

Stale-value errors are a class of atomicity violations that are not detected by the view consistency

property. Our approach to detect this kind of errors uses the graph of causal dependencies to

50

3. DETECTION OF ATOMICITY VIOLATIONS 3.4. Atomicity Violations

detect values that escape the scope of an atomic block (e.g., by assigning a shared variable to a

local variable) and are later used inside another atomic block (e.g., by assigning the previous local

variable to a shared variable).

First we define the set IVersions ⊆ Versions, which stores all global variable versions that were

accessed inside an atomic block. Each variable version has a parameter m that indicates in which

atomic method it was defined, or has the value ⊥ if it was not used inside an atomic method.

Definition 3.10 (Atomic Variable Version). A global variable version (x, h,m) is an atomic variable if:

(x, h,m) ∈ IVersions ⇔ (x, h,m) ∈ Versions ∧ x ∈ GlobalVars ∧ m 6= ⊥

Now we define a new graph, denoted as DV , which represents the dependencies between

views. A labeled edge of this graph DV is represented as (m1, x,m2) where m1,m2 ∈ Atomics

and x ∈ GlobalVars, and can be interpreted as atomic method m2 depends on atomic method m1

through global variable x. Intuitively, this means that the value of variable x exited the scope of

method m1 and entered the scope of method m2, and while it was out of the atomic scope it might

have become outdated.

Each edge (m1, x1,m2) of a view dependency graph DV , is created when, given two version

variables a1 = (x1, h1,m1) ∈ IVersions and a2 = (x2, h2,m2) ∈ IVersions, and a causal dependency

graph D, the following conditions hold:

(
DCD(a1, a2) ∧m1 6= m2

)
∨
(
m1 = m2 ∧ DCD(a1,m1 .ret)

∧ DCD(m1 .ret ,m1 .pi) ∧ DCD(m1 .pi, a2)
)

The predicate DC asserts if two variables are directly correlated according to Definition 3.1.

These conditions state that there is a dependency between m1 and m2 through variable x1, if

the variable version a1 is directly correlated with a2 when m1 and m2 are two different atomic

methods, or if the two methods m1 and m2 are the same, then there must exist a data-flow relation

such that the value of a1 exits method m1, through its return variable m1 .ret , and enters again the

same method through one of its parameters m1 .pi and is assigned to variable a2.

A process p writes in a variable x ∈ Vars if there is a write access on variable x in one of the

views of process p:

writes(x, p) ⇔ ∃v ∈ Vw(p) : (w, x) ∈ v

The safety property for stale-value errors can be defined as the case where no process writes to

a global variable that leaves, and then enters, the scope of an atomic method of another process.

Definition 3.11 (Stale-Value Safety).

∀p ∈ PS , (m1, x,m2) ∈ DV : ¬writes(x, p) where PS is the set of processes,

and DV is the graph of view dependencies

If there is a view dependency for variable x and there is a process p that writes on that variable

then a stale-value error is detected.

51

3. DETECTION OF ATOMICITY VIOLATIONS 3.5. The MoTH Prototype

TM#based)Java)

ByteCode)program)

Instance)Type)

Analysis)

Views)

Analysis)

Soot)

S
e
n
so
r'
M
a
n
a
g
e
r'

View)Consistency)

Sensor)

Single)Variable)

Sensor)

."."."

Collec.ng'Informa.on' Datarace'Detec.on'

Causal)Dependency)

Analysis)

Process)

Analysis)

Figure 3.10: MoTH architecture.

3.5 The MoTH Prototype

To evaluate the accuracy of our algorithms and techniques, the theoretical framework described in

the previous sections were adapted and implemented in the MoTH tool, in the context of the MSc

of Pessanha [Pes11]. This tool targets the Java bytecode language, where the atomic blocks are

represented as methods using the @Atomic method annotation, and uses the data-flow analysis

infrastructure of the Soot framework [RHSLGC99].

To apply our atomicity violation detectors to real programs, some practical problems had first

to be solved, namely: identification of the possible set of processes, or threads, generated by the

application, cope with virtual method invocations (dynamic dispatch problem), and cope with

native method invocations.

The prototype, which we baptized as MoTH, implements the algorithms previously described

to detect high-level data races and stale-value errors. MoTH has a very modular architecture that

allows to easily extend it with more analysis to detect other properties. We show the architecture

schematic in Figure 3.10. The architecture is composed by two different sets of modules. The

collectors set, contains the static analysis algorithms that collect abstract information about the

program being analyzed. This abstract information serves as input to the second set of modules.

The sensors set, contains all the algorithms that verify abstract properties about the program.

In the following sections we will first describe how to identify the possible set of processes

that may be generated by the application, and then describe how we deal with the invocation of

interface and native methods.

3.5.1 Process Analysis

Atomicity violations are generated through anomalous interactions between transactions running

in different threads. Thus, to detect such interactions it is necessary to ascertain which thread

execution flows are generated by the program and which transactions are executed in each thread.

The process analysis aims at identifying the set of different static control-flows that are possible

to be executed within an application thread and which atomic methods are executed in each

process. We represent the static control-flow of a process as a call-graph, i.e., a graph of method

invocations where each node represents a method and the edges correspond to invocations. We

52

3. DETECTION OF ATOMICITY VIOLATIONS 3.5. The MoTH Prototype

static void main(String[] args) {

MyThread1 t1 = new MyThread1();

MyThread2 t2 = new MyThread2();

startTimer();

t1.start();

t2.start();

stopTimer();

}

class MyThread1 {

public void run(){

m1();

m2();

}

}

class MyThread2 {

public void run(){

m3();

m4();

}

}

!"#$%

&'"(')#!*(% &'+,)#!*(%
)-(*"./0

(1$%

)-(*".20

(1$%

!!!"
!2% !/% !3% !4%

!!!"

!!!"

!!!"

Figure 3.11: Call-graph of the above code examples.

define a process as being a sequence of atomic methods that are possible to be executed in the

corresponding process’s call-graph.

A Java thread may be created by implementing a class that inherits from the Runnable inter-

face, or that extends the Thread class. In MoTH we define two kinds of processes, the process

generated by the execution of the main method (the program’s entry point), and the processes

generated by the creation of new Java threads. We denote as Pmain the former and as PC the latter

kind of process. In Figure 3.11 we show an example of a Java program that creates two threads,

and present the corresponding call-graph. The grey-filled nodes represent the run methods that

create new processes.

Since the same thread class, may be used to create an unbound number of threads at runtime,

we always create two processes for each thread class in order to be detected interactions between

different instances of the same thread class. Furthermore, since we do not use any May-Happens-

In-Parallel analysis, we take a pessimistic approach and assume that all the generated threads may

execute in parallel and may interleave each other, i.e., a transaction from one thread may execute

between any two transactions from other thread.

The process analysis works by traversing the program call-graph using a pre-order depth-

first strategy while maintaining the current process information. The analysis begins at the main

method, with the Pmain as the current process. Whenever an edge is found to a run method, from a

class that extends the Thread class, or inherits the Runnable interface, is created a new process

that becomes the current process of the analysis. Furthermore, whenever an atomic method is

found, we associate it to the current process. Hence, for each process we collect the sequence of

53

3. DETECTION OF ATOMICITY VIOLATIONS 3.5. The MoTH Prototype

Algorithm 2: Function analyseNode

Input: method, process, visited[]
Result: void
foreach Edge e : outOf(method) do

if !visited.contains(process, target(e)) then
visited.add(process, target(e));
if isThreadCreationEdge(e) then

process = createProcess(target(e));
analyseNode(target(e), process, visited);

else
if isAtomicMethod(target(e)) then

associate(process, target(e));
else

analyseNode(target(e), process, visited);
end

end

end

end

protected static List<Integer> list;

public static void main(String[] args) {

Random r = new Random();

int value = r.nextInt();

if(value % 2 == 0)

list = new ArrayList<Integer>();

else

list = new LinkedList<Integer>();

list.add(1);

}

Figure 3.12: Dynamic dispatch example.

atomic methods that may be executed by such process.

In Algorithm 2 we present the algorithm that computes the set of processes of a program.

Function analyseNode is first called for the main method, with Pmain process and with a visited

empty set. The result of this analysis is a set of processes, where each contains a sequence of

atomic methods.

3.5.2 Instance Type Analysis

The analysis to compute the causal dependencies, and to compute the views, are inter-procedural

analysis, i.e., are able to analyze method invocations. To analyze a method invocation, we need to

know which class has the method’s implementation. This could be a problem in languages that

support dynamic dispatch, such as the Java programming language.

Consider the example shown in Figure 3.12. In this example variable list is declared with

type List, and randomly is either instantiated as an ArrayList or a LinkedList. When the

add method is invoked, it is not possible at compile-time to know which class was used to in-

stantiate variable list, and as a consequence, we do not know what is the implementation of the

add method.

54

3. DETECTION OF ATOMICITY VIOLATIONS 3.5. The MoTH Prototype

To overpass this difficulty we developed a simple data-flow analysis that computes an over-

approximation of the set of possible classes that were used to instantiate a particular variable.

We can then use this information to annotate the method invocation nodes of the control-flow

graph with the set of classes that may implement the method being invoked. The analysis that

use this information, such as the causal dependency analysis, and the views analysis, analyze the

methods of each class in the set and join the results. For instance, in the views analysis, we join

the accesses of all method’s implementations.

In Figure 3.13 we show the rules of this analysis, which we call type instance analysis. The

rules are define using a reduction relation 〈CS, S〉 =⇒ 〈CS ′〉, over an abstract state composed by

a map from variables to a set of classes: CS ⊆ VarClass ≡ Vars×Classes.

All the assignment rules, ASSIGN, HEAP READ, HEAP WRITE, and METH CALL, use two auxil-

iary functions: impl : P(VarClass)×Vars −→ P(Classes), which returns the set of classes associated

with a given variable, and kill : P(VarClass)×Vars −→ P(VarClass), which removes from the state

the implementations for the given variable. We define these functions below:

Definition 3.12 (Implements Function). Given the current state CS and a variable v ∈ Vars.

impl(CS, v) , {c | (v, c) ∈ CS}

This function is sometimes used with an expression e. If the expression corresponds to the null

value then the result of this function is the empty set.

Definition 3.13 (Kill Function). Given the current state CS and a variable v ∈ Vars.

kill(CS, v) , CS \ {(v, c) | (v, c) ∈ CS}

In the METH CALL rule, we need to propagate the implementation classes to the assigned

variable x. The retVar is a special variable that corresponds to the returning variable of function

func, and which has all the associated implementation classes.

In the CONDITIONAL and LOOP rules, we join the states of all branches. This rule solves the

problem identified in the example shown in Figure 3.12. At the invocation point of statement

list.add(1), our analysis identifies the set of possible instantiation classes for variable list,

which in this case is { ArrayList , LinkedList }.

3.5.3 Native Methods

During the analysis we might encounter methods that are implemented in a different language

and are accessed through Java runtime using a JNI3 interface. Since our prototype can only ana-

lyze Java bytecode, it cannot analyze these methods. Furthermore, the same problem may happen

if we do not have access to the code of some java library. Our solution to this problem was a con-

servative one, and is specific to each analysis that needs to analyze methods’ code.

Causality Dependency Analysis When analyzing a native method, or a method belonging to

some missing library, we consider that the returning value, if it exists, depends from all the

method’s parameters. This conservative approach allows to not lose any dependency path even

if the value of some variable enters into a native method.

3Java Native Interface

55

3. DETECTION OF ATOMICITY VIOLATIONS 3.5. The MoTH Prototype

〈CS, S1〉 =⇒ 〈CS ′〉 〈CS ′, S2〉 =⇒ 〈CS ′′〉

〈CS, S1;S2〉 =⇒ 〈CS ′′〉
(SEQ)

CS ′ = kill(CS, x) ∪ {(x, c) | c ∈ impl(CS, e)}

〈CS, x := e〉 =⇒ 〈CS ′〉
(ASSIGN)

c′ = typeof(y) CS ′ = kill(CS, x) ∪ {(x, c) | c ∈ impl(CS, (c′, f))}

〈CS, x := y.f〉 =⇒ 〈CS ′〉
(HEAP READ)

c′ = typeof(x) CS ′ = kill(CS, (c′, f)) ∪ {((c′, f), c) | c ∈ impl(CS, e)}

〈CS, x.f := e〉 =⇒ 〈CS ′〉
(HEAP WRITE)

CS ′ = kill(CS, x) ∪ {(x,C)}

〈CS, x := newC()〉 =⇒ 〈CS ′〉
(ALLOCATION)

spec(func) = CSf CS ′ = CSf ∪ kill(CS, x) ∪ {(x, c) | c ∈ impl(CS, retVar)}

〈CS, x := func(~y)〉 =⇒ 〈CS ′〉
(METH CALL)

〈CS, S1〉 =⇒ 〈CS ′〉 〈CS, S2〉 =⇒ 〈CS ′′〉

〈CS, if e thenS1 elseS2〉 =⇒ 〈CS ′ ∪ CS ′′〉
(CONDITIONAL)

〈CS, S〉 =⇒ 〈CS ′〉

〈CS,while e doS〉 =⇒ 〈CS ∪ CS ′〉
(LOOP)

CS ′ = CS ∪ {(retVar, c) | c ∈ impl(CS, e)}

〈CS, return e〉 =⇒ 〈CS ′〉
(RETURN)

〈CS, skip〉 =⇒ 〈CS〉
(SKIP)

Figure 3.13: Type instance analysis rules.

56

3. DETECTION OF ATOMICITY VIOLATIONS 3.6. Evaluation

class MathComputer{

/**

* This method returns the maximum between x1 and x2

* @param x1 first number

* @param x2 second number

* @return the maximum of both numbers

*/

public native int getMax(int x1, int x2);

}

<class id="MathComputer">

<method id="getMax(int,int)">

<reads>this</reads>

<writes>this</writes>

<reads>0</reads>

<writes>0</writes>

<reads>1</reads>

<writes>1</writes>

</method>

</class>

(a) Automatic generated specification.

<class id="MathComputer">

<method id="getMax(int,int)">

<reads>0</reads>

<reads>1</reads>

</method>

</class>

(b) User assisted specification.

Figure 3.14: Example of a native method XML specification.

Views Analysis The analysis of a method with an unavailable implementation is done by as-

suming that such method accesses, for read and write, all method’s parameters, and the this

variable. Since, this is a very conservative approach we generate an XML specification for each

native method that includes these conservative assumptions, and we allow the programmer to

modify this specification in order give more precise information to system. In Figure 3.14 is shown

an example of a specification for the native method getMax. In the specification, method parame-

ters are identified by integers that correspond to the order of declaration. In Figure 3.14a is shown

the specification generated by our system, and in Figure 3.14b is shown the specification corrected

by the programmer after reading the documentation of the native method.

3.6 Evaluation

Besides comparing our results with those reported in the literature for individual benchmarks,

we did an exhaustive comparison with two other approaches: the work of Artho et al [AHB03],

because our approach is an extension of Artho’s work; and the work of Teixeira et al [TLFDS10],

because their results are currently a reference for the field. The results presented were obtained

by running our tool with the algorithms described in this Chapter; by using Artho et al’s algo-

rithm implemented with static analysis techniques (rather than the dynamic analysis reported

in [AHB03]); and by running Teixeira’s tool on the Java source (instead of the Bytecode).

Tables 3.1 and 3.2 summarize the results achieved by applying our tool to a set of benchmark-

ing programs, most of them well known from related works and compares them with the two

works cited above. Teixeira’s tool was unable to process some of the benchmarks, so they are re-

ported in a separate second set. Columns AV indicate the number of known atomicity violations,

false negatives indicate the number of known program atomicity violations that were missed by the

57

3. DETECTION OF ATOMICITY VIOLATIONS 3.6. Evaluation

Table 3.1: Results for benchmarks

AV False Negatives False Positives Acc. LOC Time
Tests MoTH Artho Teix. MoTH Artho Teix. Vars (sec.)

Connection [BBA08] 2 0 1 1 0 0 1 34 112 45

Coord03 [AHB03] 1 0 0 0 0 0 3 13 170 43
Local [AHB03] 1 0 1 0 0 0 1 3 33 42
NASA [AHB03] 1 0 0 0 0 0 0 7 121 43

Coord04 [AHB04] 1 0 0 0 0 0 3 7 47 40
Buffer [AHB04] 0 0 0 0 1 0 7 8 64 41
DoubleCheck [AHB04] 0 0 0 0 1 0 2 7 51 41

StringBuffer [FF04] 1 0 1 1 0 0 0 12 52 44

Account [vG03] 1 0 1 0 0 0 0 3 65 40
Jigsaw [vG03] 1 0 0 0 0 0 1 33 145 40
OverReporting [vG03] 0 0 0 0 0 0 2 6 52 42
UnderReporting [vG03] 1 0 1 0 0 0 0 3 31 39

Allocate Vector [Ibm] 1 0 1 0 0 0 1 24 304 41

Knight [TLFDS10] 1 0 1 0 0 0 2 10 223 41
Arithmetic Database [TLFDS10] 3 0 3 1 1 0 0 24 416 54

Total 15 0 10 3 3 0 23 – – –

Table 3.2: Results for benchmarks

AV False Negatives False Positives Acc. LOC Time
Tests MoTH Artho MoTH Artho Vars (sec.)

Elevator [vG03] 16 0 16 6 4 39 558 46
Philo [vG03] 0 0 0 2 0 9/594 96 45/612
Tsp [vG03] 0 0 0 2 0 635 795 869
Store 2 0 1 0 1 44/608 901 149/1763

Total 18 0 17 10 5 – – –

approach4, false positives indicate the number of reported but non-existing atomicity violations,

Acc. Vars indicate the number of variables accessed inside atomic regions and is an indication of

the problem size, together with the number of LOC, and how long it took for our analysis to run.

In the case of Table 3.2, the benchmarks Philo and Store have two different values for accessed

variables and time. The second values report on the original benchmarks, which includes some

(non-essential) calls to I/O methods in the JDK library. The first values report on a tailored version

of the benchmarks where those calls to the JDK library were commented.

For the benchmarks listed in Table 3.1, our approach revealed a very high accuracy by report-

ing no false negatives and only three false positives. The false positive in the Buffer benchmark

is due to an assumption claim from its authors that is not implemented in the actual code. The

information collected by the Causal Dependency Analysis is incomplete and imprecise and orig-

inates false positives in the Double Check and Arithmetic Database benchmarks while checking

for stale-value errors, which are not detected by Artho et al’s approach.

For the benchmarks listed in Table 3.2, our approach again revealed very high accuracy. Al-

though it reported 10 false positives (vs. only 5 from Artho et al’s), it reported zero false negatives

(vs. 17 from Artho et al’s). These benchmarks also indicate that our algorithms scale well with the

the size of the problem, both in the number of accessed variables inside the atomic blocks and the

number of lines of code.

4The identification of false negative is only possible because the sets of atomicity violations in the benchmarking pro-
grams are well known.

58

3. DETECTION OF ATOMICITY VIOLATIONS 3.7. Related Work

3.7 Related Work

Several past works have addressed the detection of the same class of atomicity violations in con-

current programs as addressed in this work.

The work from Artho et al. [AHB03] introduces the concept of view consistency, to detect high-

level data races. A view of an atomic block is a set containing all the shared variables accessed

(both for reading and writing) within that block. The maximal views of a process are those views

that are not a subset of any other view. Intuitively, a maximal view defines a set of variables that

should always be accessed atomically (inside the same atomic block). A program is free from

high-level data races if all the views of one thread that are a subset of the maximal views from

another thread form an inclusion chain among themselves.

Our work builds on the proposal from Artho et al. [AHB03], but we extend it by incorporating

the type of memory access (read or write) into the views, and refine the rules for detecting high-

level data races to combine this additional information with the information given by the causal

dependencies: Our refinement of the rules has a considerable positive impact in the precision of

the algorithm, as demonstrated in Section 3.6.

Praun and Gross [vG03] introduce method consistency as an extension of view consistency.

Based on the intuition that the variables that should be accessed atomically in a given method are

all the variables accessed inside a synchronized block, the authors define the concept of method

views that relates to Artho’s maximal views. A method view aggregates all the shared variables

accessed in a method, differentiating read and write memory accesses. Similarly to ours, this

approach is more precise than Artho’s because it also detects stale-value errors. Our algorithm

however has higher precision than Praun’s and give less false positives, as we use maximal views

rather than method views.

Wang and Stoller [WS03] use the concept of thread atomicity to detect and prevent data races,

where thread atomicity guarantees that all concurrent executions of a set of threads is equivalent

to a sequential execution of those threads. In an attempt to reduce the number of false positives

yield by Wang and Stoller [WS03], Teixeira et al. [TLFDS10] proposed a variant of this algorithm

based in the intuition that the majority of the atomicity violations come from two consecutive

atomic blocks that should be merged into a single one. The authors detect data races by defining

and detecting some anomalous memory access patterns for both high-level data races and stale-

value errors. Our approach may be seen as a generalization of this concept of memory access

patterns, but in our case supported by the notion of causal dependencies between variables, which

allow to reduce considerably the number of both false negatives and false positives.

Other related approaches include Flanagan et al. [FQ03] work that proposes a type system that

verifies the atomicity of code blocks. This concept is further explored by Beckman et al. [BBA08],

which present an intra-procedural static analysis formalized as a type system, based in the con-

cept of access permissions to detect data races. Contrarily to our approach, this work demands that

the programmer explicitly declares the access permissions and invariants for the objects in the

program.

Vaziri et al. [VTD06] proposes a new definition for the concept of data race, through the the-

oretical assemblage of all possible anomalous memory access patterns, including both low- and

high-level data races. Although this work shares with ours the goals in detecting atomicity vi-

olations, it grounds on a completely different concurrent programming model where locks are

59

3. DETECTION OF ATOMICITY VIOLATIONS 3.8. Concluding Remarks

associated directly with program variables and not with code statements, which make it imprac-

tical to use with traditional programming languages such as Java.

3.8 Concluding Remarks

In this Chapter we presented a novel approach to detect high-level data races and stale-value

errors in concurrent programs. The proposed approach relies on the notion of causal dependencies

to improve the precision of previous detection techniques. The high-level data races are detected

using an algorithm based on a previous work by Artho et al. refined to distinguish between read

and write accesses and extended with the information given by the causal dependencies. The

stale-value errors are detected using the information given by the causal dependencies, which

exposes the values of variables that escaped an atomic block and entered into another atomic

block.

Our detection analysis still remains unsound mainly due to the absence of pointer analysis

and to the way that views are computed. But these design decisions allowed us to maintain the

scalability of our approach without incurring in a strong precision loss, as our experimental re-

sults confirm.

We evaluated our analysis techniques with well known examples from the literature and com-

pared them to previous works. Our results show that we are able to detect all atomicity violations

present in the examples, while reporting a low number of false positives.

Publications The contents of this chapter were partially published in:

• [PDLFS11] Practical verification of transactional memory programs. Vasco Pessanha, Ri-

cardo J. Dias, João M. Lourenço, Eitan Farchi, and Diogo Sousa. In proceedings of PADTAD

2011 (Workshop), July 2011.

• [DPL12] Precise detection of atomicity violations. Ricardo J. Dias, Vasco Pessanha, and

João M. Lourenço. In proceedings of Haifa Verification Conference 2012, November 2012.

60

4
Verification of Snapshot Isolation

Anomalies

In this chapter we describe a verification technique to certify that a multi-threaded Java program,

using transactional memory with snapshot isolation, is free from write-skew anomalies. This tech-

nique resorts to a shape analysis based on separation logic to model memory updates performed

by transactions.

4.1 Introduction

Full-fledged Software Transactional Memory (STM) [ST95; HLMWNS03] usually provides strict

isolation between transactions and opacity semantics. Alternative relaxed semantics approaches,

based on weaker isolation levels that allow transactions to interfere and to generate non-serializa-

ble execution schedules, are known to perform considerably better in some cases. The interfer-

ence among non-serializable transactions are commonly known as serializability anomalies [BBG-

MOO95].

Snapshot Isolation (SI) [BBGMOO95] is a well known relaxed isolation level widely used in

databases, where each transaction executes with relation to a private copy of the system state

— a snapshot — taken at the beginning of the transaction. All updates to the shared state are

kept pending in a local buffer (the transaction write-set). If the transaction succeeds, the pending

updates are committed in the global state. Reading modified items always refer to the pending

values in the local buffer. Committing transactions always obey the general First-Commiter-Wins

rule. This rule states that a transaction A can only commit if no other concurrent transaction B

has committed modifications to data items pending to be committed by transaction A (i.e., the

write-sets of A and B were not disjunct). Hence, for any two concurrent transactions modifying

a common data item, only the first one to commit will succeed.

61

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.1. Introduction

Although appealing for performance reasons, SI may lead to non-serializable executions, re-

sulting in a serializability anomaly called write-skew. The following example illustrates the occur-

rence of this anomaly.

x := x+ y || y := y + x

When the above statements are executed in concurrent transactions, whose write-sets are disjoint,

it is possible to find a non-serializable trace of execution in which both transactions commit and

yield unexpected results. In general, the write-skew anomaly occurs when two transactions are

writing on disjoint memory locations (x and y in the example above) and also reading the data

that is being modified by the other.

Tracking memory operations adds some overhead to the computations. TM systems running

under opacity must track both memory read and write accesses, thus incurring in considerable

performance penalties. As the validation of transactions under SI only requires the checking of

conflicting updates to shared data items by concurrent transactions, an SI-based runtime system

may ignore memory read accesses and only track the write accesses and check for write-write

conflicts. Hence, the use of SI may boost the overall performance of the transactional runtime.

In the remainder of this chapter, we use the terms serializability and opacity interchangeably,

as in the context of transactional memory, opacity is the default strong consistency criteria.

4.1.1 Motivation

To validate our hypothesis of performance boosting of Transactional Memory by using SI instead

of serializability [DLP11], we adapted JVSTM [CRS06], a multi-version STM, to support SI and

ran some micro benchmarks (a Linked List and a Skip List) to compare the throughput of run-

ning memory transactions in serializability and SI. The list implementations in both micro bench-

marks suffer from the write-skew anomaly when running under SI, triggered by the concurrent

execution of transactions executing the insert and remove operations. Because the programmer is

expecting the resulting computation to be serializable, we created and evaluated a second version

of each micro benchmark where the write-skew anomaly was corrected with dummy-writes.

Figure 4.1 depicts the results of the execution of the Linked List and Skip List micro bench-

marks, with a maximum of 10 000 keys, for two workloads that differ in the number of update—

insert and remove—transactions executed, with approximately 50% and 90% of updates. The

tests were performed in a Sun Fire X4600 M2 x64 server, with eight dual-core AMD Opteron

Model 8220 processors @ 2.8 GHz and 1024 KB of cache in each processor.

The serializable isolation variant corresponds to the original JVSTM algorithm. Since the

JVSTM is a multi-version STM, the read-only transactions are already highly optimized and have

similar performance to the read-only transactions in the snapshot isolation variant. The observed

performance improvement for SI depends only on the read-write (RW) transactions. The original

JVSTM must keep track of the memory read accesses in RW transactions to validate the transac-

tion at commit time, while the SI variant never tracks the memory read accesses. This performance

gain is higher when the frequency of updates increases. The SI variant performs better than the

serializable for both micro benchmarks, and scales much better for the Linked List than for the

Skip List. This is due to the internal structure and organization of each data structure. The Skip

List has a low read-write conflict rate and thus the benefits of only detecting write-write conflicts

are limited.

Another important fact of these results is that the corrected version of the snapshot isolation,

62

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.1. Introduction

0

5

10

15

20

25

 1 2 4 8 16

O
p

e
ra

ti
o

n
s
/s

e
c
o

n
d

 x
 1

0
0

0

Number of threads

Serializable Isolation
Snapshot Isolation

Safe Snap. Isol.

Linked List 50% updates
0

2

4

6

8

10

12

14

16

18

20

 1 2 4 8 16

O
p

e
ra

ti
o

n
s
/s

e
c
o

n
d

 x
 1

0
0

0

Number of threads

Serializable Isolation
Snapshot Isolation

Safe Snap. Isol.

Linked List 90% updates

0

50

100

150

200

250

300

350

400

 1 2 4 8 16

O
p

e
ra

ti
o

n
s
/s

e
c
o

n
d

 x
 1

0
0

0

Number of threads

Serializable Isolation

Skip List 50% updates

Snapshot Isolation
Safe Snap. Isol.

0

50

100

150

200

250

300

 1 2 4 8 16

O
p

e
ra

ti
o

n
s
/s

e
c
o

n
d

 x
 1

0
0

0

Number of threads

Serializable Isolation
Snapshot Isolation

Safe Snap. Isol.

Skip List 90% updates

Figure 4.1: Linked List (top) and Skip List (bottom) performance throughput benchmarks with
50% and 90% of write operations.

which is anomaly-free, has almost the same performance as the non-safe version. In this case the

correction was a single dummy write introduced in the remove operation in both benchmarks.

These results on performance and scalability confirmed the potential performance benefits of

using snapshot isolation in STM. To acquire some additional insight about the potential perfor-

mance gains of using SI in the Distributed Software Transactional Memory (DSTM) setting, we

calculated the size of the read and write-sets for each variant. The size of the read- and write-sets

is directly related to the network traffic generated by the DSTM runtime, hence we can extrapolate

on the potential impact of using SI with DSTM.

Table 4.1 depicts the average and maximum size of the read- and write-sets for the execution of

the three variants of the Linked List and Skip List micro benchmarks, with a maximum of 10 000

keys and 90% of write operations. The SI variants always have empty read-sets. For the Linked

List under JVSTM, the read-set has an average size of 1992.9 entries. This result clearly depends

on the nature of the benchmark application. In the case of the Linked list, to insert a node in the

middle of the list, one has to traverse all nodes until the right position, implying larger read sets.

The average size of the write-sets for all variants in both data structures is almost the same. The

small difference between the two SI variants is due to the dummy write introduced in the safe

version of both data structures.

These preliminary results were encouraging, and we pursued with our goal of using static

analysis to allow the transactional runtime to safely use snapshot isolation while providing seri-

alization semantics.

63

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.1. Introduction

Linked List

Read-Set Write-Set
Traffic

Avg Max Avg Max

Serializable 1992.9 4929 1.6 2 100%
Snap. Isol. 0.0 0 1.6 2 0.08%
Safe Snap. Isol. 0.0 0 2.0 2 0.1%

Skip List

Read-Set Write-Set
Traffic

Avg Max Avg Max

Serializable 36.3 103 2.0 20 100%
Snap. Isol. 0.0 0 2.0 22 5.2%
Safe Snap. Isol. 0.0 0 2.6 22 6.8%

Table 4.1: Read- and write-set statistic per transaction for a Linked List (top) and a Skip List
(bottom).

4.1.2 Verification of Snapshot Isolation Anomalies

In this chapter we propose a verification technique for STM Java programs that statically de-

tects if any two transactions may cause a write-skew anomaly when executed concurrently. This

verification technique may be used to optimize the execution of STM programs, by providing a

serializable semantics to the program while letting the STM runtime mix the serializability and SI

semantics, and use the latter whenever possible. The verification technique performs deep-heap

analysis (also called shape analysis) based on separation logic [Rey02; DOY06] to compute mem-

ory locations in the read- and write-sets for each distinguished transaction in a Java program.

The analysis can automatically compute loop invariants and only requires the specification of the

state of the heap at the beginning of each transaction. Read and write-sets of transactions are then

computed using heap paths, which capture dereferences through field labels, choice and repetition.

For instance, a heap path of the form x .(left | right)∗.right describes the access to a field labeled

right , on a memory location reachable from variable x after a number of dereferences through the

left or right fields.

StarTM is a tool that implements the proposed verification technique, and analyzes Java Byte-

code programs extended with STM annotations. StarTM was then validated with a transactional

Linked List and a transactional Binary Search Tree, and also with a Java implementation of the

STAMP Intruder benchmark [CMCKO08]. Our results show evidence that i) supporting the ar-

guments of [RFF06], it is possible to safely execute concurrent transactions of a Linked List under

snapshot isolation with noticeable performance improvements; ii) it is possible to build a transac-

tional insert method in a Binary Search Tree that is safe to execute under SI; and iii) our automatic

analysis of the STAMP Intruder benchmark found a new write-skew anomaly in the existing im-

plementation.

Our technique can verify programs for the absence of write-skew anomalies only between pairs

of transactions and if the program use acyclic data structures, such as tree-like data structures. The

limitation of only detecting anomalies generated by pairs of transactions, precludes the detection

of the SI read-only anomaly, which can only occur with at least three concurrent transactions. This

64

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.2. Snapshot Isolation

limitation can be solved by extending the verification model, although for the sake of simplicity

we use a model to detect anomalies generated by only pairs of transactions.

The main contributions of the work described in this chapter are:

• The first program verification technique to statically detect the write-skew anomaly in trans-

actional memory programs;

• The first verification technique to certify the absence of write-skew anomalies in transactional

memory programs, even in presence of deep-heap manipulation, thanks to the use of shape

analysis techniques based in separation logic;

• A model that captures fine-grained manipulation of memory locations based on heap paths;

and

• An implementation of our technique in a software tool and its application to a set of intricate

examples.

The remainder of the chapter describes the theory of our analysis technique and the valida-

tion experiments. We start by introducing the fundamental concepts of snapshot isolation in

Section 4.2, and present the abstract write-skew condition in Section 4.3. Then we describe a step-

by-step example of applying StarTM to a simple example in section 4.4. We then present the core

language, in section 4.5, and the abstract domain for the analysis procedure in section 4.6. In sec-

tion 4.7, we present the symbolic execution of programs against the abstract state representation.

We finalize the chapter by presenting some experimental results in Section 4.8 and comparing our

approach with others in Section 4.9.

4.2 Snapshot Isolation

Snapshot Isolation [BBGMOO95] is a relaxed isolation level where each transaction executes with

respect to a private copy of the system state, taken in the beginning of the transaction and stored

in a local buffer. All write operations are kept pending in the local buffer until they are committed

in the global state. Reading modified items always refers to the pending values in the local buffer.

Considering that the lifetime of a successful transaction is the time span that goes from the

moment it starts start(Ti) to the moment it commits commit(Ti). Two successful transactions T1

and T2 are said to be concurrent if:

[start(T1), commit(T1)] ∩ [start(T2), commit(T2)] 6= ∅

During the execution of a transaction Ti, its write operations are not visible to any other con-

current transactions. When any transaction Ti is ready to commit, it obeys the First-Commiter-Wins

rule, which states a transaction Ti can only commit if no other concurrent transaction Tk (i 6= k)

has committed modifications to data items pending to be committed by transaction Ti. Hence, for

any two concurrent transactions modifying the same data item, only the first one to commit will

succeed.

One of the significant advantages of the relaxed snapshot isolation level over serializability is

that read-write conflicts are ignored. This could allow significant performance improvements in

workloads with high contention between transactions.

65

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.3. Abstract Write-Skew

1 void Withdraw(boolean b, int value) {

2 if (x + y > value)

3 if (b) x = x - value;

4 else y = y - value;

5 }

Figure 4.2: Withdraw program.

Although appealing for performance reasons, the application of SI may lead to non-serializable

executions, resulting in a write-skew consistency anomaly [FLOOS05]. Consider the following ex-

ample that suffers from the write-skew anomaly. A bank client can withdraw money from two

possible accounts represented by two shared variables, x and y. The program listed in Figure 4.2

can be used in several transactions to perform bank operations customized by its input values.

The behavior is based on a parameter b and on the sum of the two accounts. Let the initial value

of x be 20 and the initial value of y be 80. If two transactions execute concurrently, one calling the

Withdraw(true, 30) (T1) and the other calling the Withdraw(false, 90) (T2), then one

possible execution history of the two transactions under SI is:

H = R1(x, 20) R2(x, 20) R1(y, 80) R2(y, 80) R1(x, 20) W1(x,−10) C1

R2(y, 80) W2(y,−10) C2

After the execution of these two transactions the final sum of the two accounts will be −20, which

is a negative value. Such execution would never be possible under serializable isolation level, as

the last transaction to commit would abort because it read a value that was written by the first

transaction.

4.3 Abstract Write-Skew

The write-skew anomaly can be defined by the existence of a cycle in a dependency serialization

graph (Section 2.3.3), but in this particular work we will define it has a condition over the read-

and write-sets of transactions. Although a write-skew may be triggered by the interaction of three

or more transactions, we limit the detection of write-skews to only two transactions. By opting

for only detecting write-skews between pairs of transactions, we can define the write-skew as a

logical condition over the read- and write-sets of the two transactions, without using the depen-

dency serialization graph. A write-skew occurs when two transactions are writing on disjoint

memory locations but are also reading data that is being modified by the other. We formalize this

description in the following definition:

Definition 4.1 (Concrete Write-Skew). Let T1 and T2 be two transactions, and let Rc
i and Wc

i (i = 1, 2)

be their corresponding read- and write-sets. There is a write-skew anomaly if

Rc
1 ∩Wc

2 6= ∅ ∧ Wc
1 ∩Rc

2 6= ∅ ∧ Wc
1 ∩Wc

2 = ∅

If the above condition is true for any concurrent execution of two transactions T1 and T2, then

there was a write-skew anomaly and the application state may have become inconsistent.

The purpose of this work is to prevent these situations by statically verifying the application

66

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.3. Abstract Write-Skew

code and check if any two transactions may generate a write-skew anomaly when executed con-

currently. Since the detection of write-skew anomalies only depends on the read- and write-sets

of the two concurrent transactions, and as this sets are local to each transaction, we do not need to

consider how the application threads interact with each other, and the code for each transaction

can be verified separately.

A single transaction, declared in the application code, may generate different read- and write-

sets each time it is executed. The verification technique we propose computes over- and under-

approximations of the read- and write-set of each transaction, and use these approximations to

check the satisfiability of an abstract write-skew condition, as defined below:

Definition 4.2 (Abstract Write-Skew). Let T1 and T2 be two transactions, and let Ri, W
>
i and W<

i

(i = 1, 2) be their corresponding abstract over-approximated read-, over-approximated (may) write- and

under-approximated (must) write-sets. There is a write-skew anomaly if

R1 ∩W>
2 6= ∅ ∧ W>

1 ∩R2 6= ∅ ∧ W<
1 ∩W<

2 = ∅

If the above condition is satisfiable then a write-skew anomaly may exist at runtime, otherwise

the concurrent execution of these two transactions T1 and T2 will never generate a write-skew

anomaly.

4.3.1 Soundness

Our approach is sound for the detection of the write-skew anomaly between pairs of transactions.

We claim that, by analyzing the satisfiability test described in Definition 4.2, if no write-skew

anomaly is detected by our algorithm then there is no possible execution of the program that

contains a write-skew.

The question then remains whether an occurrence of a write-skew condition at runtime is

captured by our test. To see this, let’s assume that Rc
1, Wc

1 , Rc
2, Wc

2 are concrete, exact read- and

write- sets for transactions T1 and T2. Notice that a write-skew condition occurs between T1 and

T2 if

Rc
1 ∩Wc

2 6= ∅ ∧ Wc
1 ∩Rc

2 6= ∅ ∧ Wc
1 ∩Wc

2 = ∅

Our static analysis computes abstract over-approximations of read-sets (R1 and R2), write-sets

(W>
1 and W>

2), and under-approximation of write-sets (W<
1 and W<

2), which are related to the

concrete read- and write-sets as follows:

Rc
1 ⊆ R1, Rc

2 ⊆ R2, Wc
1 ⊆ W>

1 , Wc
2 ⊆ W>

2 , W<
1 ⊆ Wc

1 , W<
2 ⊆ Wc

2

These set relations allow us to prove that the condition on abstract sets is implied by the condition

on concrete sets:

(Rc
1 ∩Wc

2 6= ∅ ∧ Wc
1 ∩Rc

2 6= ∅ ∧ Wc
1 ∩Wc

2 = ∅) ⇒

(R1 ∩W>
2 6= ∅ ∧ W>

1 ∩R2 6= ∅ ∧ W<
1 ∩W<

2 = ∅)

Hence we can conclude that if a real write-skew exists in an execution this will be detected by our

test, which implies that our method is sound. The implication above also shows that our method

may present false positives, i.e., it may detect a write-skew that will never occur at runtime. This

is a classical unavoidable effect of conservative methods based on abstract interpretation.

67

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.4. StarTM by Example

4.4 StarTM by Example

StarTM analyzes Java multithreaded programs that make use of memory transactions. The scope

of a memory transaction is defined by the scope of a Java method annotated with @Atomic. In

our case, this @Atomic annotation requires a mandatory argument with an abstract description

of the initial state of the heap. Other methods called inside a transactional method do not require

this initial heap-state description, as it is automatically computed by the symbolic execution.

To describe the abstract state of the heap, we use a subset of separation logic formulae com-

posed of a set of predicates — among which a points-to (7→) predicate — separated by the special

separation conjunction (∗) typical of separation logic. The user can define new predicates in a

proper scripting language and also define abstraction functions which, in case of infinite state

spaces, allows the analysis to converge. An abstraction function is defined by a set of abstrac-

tion rules as in the jStar tool [DPJ08]. The user defined predicates and abstraction rules are de-

scribed in separate files and are associated with the transactions’ code by the class annotations

@Predicates and @Abstractions, which receive as argument the corresponding file names.

We use as running example the implementation of an ordered singly linked list, adapted from

the Deuce [KSF10] samples, shown in Figure 4.3. The corresponding predicates and abstractions

rules are defined in Figure 4.4.

The predicate Node(x,y), which is defined in Figure 4.4 as

Node(x, y) ⇔ x 7→ [next : y]

is valid if variable x points to a memory location where the corresponding next field points to the

same location as variable y, or both the next field and y point to nil. Predicate List(x,y), which

is defined as

List(x, y)⇔ x 6= y ∧ (Node(x, y) ∨ ∃z′.Node(x, z′) ∗ List(z′, y))

is valid if variables x and y point to distinct memory locations and there is a chain of nodes leading

from the memory location pointed by x to the memory location pointed by y. The predicate is also

valid when both y and the last node in the chain point to nil.

In Figure 4.3, we annotate the add(int) and remove(int) methods as transactions with

the initial state described by the following formula:

| this->[head:h’] * List(h’,nil)

This formula states that variable this points to a memory location that contains an object of

class List, and whose field head points to the same memory location pointed by the existential

variable1 h′, which is the entry point of a list with at least one element.

StarTM performs an inter-procedural symbolic execution of the program. The abstract domain

used by the symbolic execution is composed by a separation logic formula describing the abstract

heap structure, and the abstract read- and write-sets. The abstract write-set is defined by two sets:

a may write-set and a must write-set. As the naming implies one over-approximates, and the other

under-approximates the concrete write-set. The abstract read-set is an over-approximation of the

concrete read-set. The read- and write-sets are defined as sets of heap paths. A memory location

1Throughout this chapter we consider primed variables as implicitly existentially quantified.

68

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.4. StarTM by Example

1 @Predicates(file="list_pred.sl")

2 @Abstractions(file="list_abs.sl")

3 public class List {

4

5 public class Node{ ... }

6

7 private Node head;

8

9 public List() {

10 Node min = new Node(Integer.MIN_VALUE);

11 Node max = new Node(Integer.MAX_VALUE);

12 min.next = max;

13 head = min;

14 }

15

16

17 @Atomic(state= "| this -> [head:h’] * List(h’, nil)")

18 public void add(int value) {

19 boolean result;

20 Node prev = head;

21 Node next = prev.getNext();

22 while (next.getValue() < value) {

23 prev = next;

24 next = prev.getNext();

25 }

26 if (next.getValue() != value) {

27 Node n = new Node(value, next);

28 prev.setNext(n);

29 }

30 }

31

32 @Atomic(state= "| this -> [head:h’] * List(h’, nil)")

33 public void remove(int value) {

34 boolean result;

35 Node prev = head;

36 Node next = prev.getNext();

37 while (next.getValue() < value) {

38 prev = next;

39 next = prev.getNext();

40 }

41 if (next.getValue() == value) {

42 prev.setNext(next.getNext());

43 }

44 }

45 }

Figure 4.3: Order Linked List code.

69

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.4. StarTM by Example

// list_pred.sl file

/*** Predicate definition ***/

Node(x,n) <=> x -> [next:n] ;;

List(x,y) <=> x != y /\

(Node(x,y) \/ E z’. Node(x,z’) * List(z’,y));;

// list_abs.sl file

/*** Abstractions definition ***/

Node(x, y’) * Node(y’,z)∼∼>List(x, z):

y’ nin context;

y’ nin x;

y’ nin z

;;

...

List(x,y’) * Node(y’,z)∼∼>List(x, z):

y’ nin context;

y’ nin x;

y’ nin z

;;

Figure 4.4: Predicates and Abstraction rules for the linked list.

is represented by its path, in terms of field accesses, beginning from some shared variable. We

assume that the parameters of a transactional method and the instance variable this are shared

in the context of that transaction.

The sample of the results of our analysis, depicted in Figure 4.5, includes two possible pairs

of read- and write-sets for method add(int). The may write-set is denoted by label WriteSet>

and the must write-set is denoted by label WriteSet<. The first result has an empty write-set2,

and thus corresponds to a read-only execution of the method add(int), where the heap path in

the read-set can be interpreted as follows. The heap path this.head.(next)[*A].next.value

asserts that method add(int) reads the head field from the memory location pointed by vari-

able this and following the memory location pointed by head it reads the next field, then for each

memory location it reads the next and value fields and hops to the next memory location through

the next field. In the last memory location accessed it only reads the value field. In general, we

can interpret the meaning of an abstract read-set as all the memory locations represented by the

heap paths present in the read-set and also by their prefixes.

The star (∗) operator has always a label attached, in case of [*A], the label is A. This label

is used to identify the subpath guarded by the star and can be interpreted, in this case, as A =

(next)∗. This label is existentially quantified in a pair of read- and write-sets.

The second pair of read- and write-sets of method add(int) in Figure 4.5 contains the same

read-set and a different write-set. In this case the may and must write-sets are equal. The heap path

this.head.(next)[*B].next asserts that the next field, of the memory location represented

by the path this.head .(next)∗B , was written.

It is important to notice that the interpretations of the read- and write-set are different. In the

2If the context is not ambiguous we will always refer to both the may and must write-sets.

70

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.4. StarTM by Example

Method boolean add(int value)

Result 1:

ReadSet: { this.head.(next)[*A].next.value }

WriteSet>: { }

WriteSet<: { }

Result 2:

ReadSet: { this.head.(next)[*B].next.value }

WriteSet>: { this.head.(next)[*B].next }

WriteSet<: { this.head.(next)[*B].next }

Method boolean remove(int value)

Result 1:

ReadSet: { this.head.(next)[*C].next.value }

WriteSet>: { }

WriteSet<: { }

Result 2:

ReadSet: { this.head.(next)[*D].next.value,

this.head.(next)[*D].next.next }

WriteSet>: { this.head.(next)[*D].next }

WriteSet<: { this.head.(next)[*D].next }

Figure 4.5: Sample of StarTM result output for the Linked List example.

read-set we consider that all the path prefixes of all heap path expressions were read, while in the

write-set we consider that there was a single write operation in the last field of each heap path

expression.

The may write-set may contain heap paths of the form this.head .(next)∗̄B . In this case, the inter-

pretation of this expression is that the field next is written in every memory location represented

by the path this.head .(next)∗B . More details on heap path expressions are given in Section 4.6.2.

The analysis also originates two possible results for method remove(int). The first result

for this method is similar to the first result for method add(int). In the second result for method

remove(int), the field next is read for all memory locations including the last memory location

where field value was accessed, since the star label is the same in the two heap path expressions in

the read-set. The write-set is the same as in the add(int) method.

We can now check for the possible occurrence of a write-skew anomaly by testing the condition

presented in Definition 4.2. We will consider that each result (a pair of a read- and a write-set)

corresponds to a single transaction instance. From the abstract write-skew condition we may

trivially ignore the results with an empty write-set. Hence, only result pairs with non-empty

write-sets need to be checked.

We denote the second result of the add(int) method as Tadd, and the second result of the

remove(int) method as Trem. To detect the possible existence of a write-skew we need to check

the following pairs:

(Tadd,Tadd), (Trem,Trem), (Tadd,Trem)

Let’s examine in detail the pair (Tadd,Trem). We simplify the description of the read-set of each

transaction by ignoring the field value, since neither transactions writes to that field and thus

71

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.4. StarTM by Example

32 @Atomic(state= "| this -> [head:h’] * List(h’, nil)")

33 public void remove(int value) {

34 boolean result;

35 Node prev = head;

36 Node next = prev.getNext();

37 while (next.getValue() < value) {

38 prev = next;

39 next = prev.getNext();

40 }

41 if (next.getValue() == value) {

42 prev.setNext(next.getNext());

43 next.setNext(null);

44 }

45 }

Figure 4.6: Dummy write access in remove(int) method.

we will focus only on interactions with the field next. We assume that the shared variable this

points to the same object in both transactions, otherwise conflicts would never arise. The read-

and write-set for transactions Tadd, and Trem (relative to field next) are

Radd = {this.head , this.head .B , this.head .B .next}

W>
add = W<

add = {this.head .B .next}

Rrem = {this.head , this.head .D , this.head .D .next , this.head .D .next .next}

W>
rem = W<

rem = {this.head .D .next}

Given these read- and write-sets, if an instantiation of B and D exist that satisfies the write-skew

condition then the concurrent execution of these two transactions may cause a write-skew anomaly.

In this particular case, the assertion B = D .next , which means that the memory locations repre-

sented by B and by D .next are the same, satisfies the write-skew condition. Hence, the concurrent

execution of the add(int) method with the remove(int) method may generate a write-skew

anomaly.

The write-skew anomaly can be corrected by making an additional write operation between

lines 42 and 43 of the code (next.setNext(null)) shown in Figure 4.3. This change is illustrate

in Figure 4.6. This write operation, although unnecessary in terms of the list semantics, is essential

to make the list implementation safe under snapshot isolation as we shall see. Given the new list

implementation from Figure 4.6, the result of the analysis by StarTM is depicted in Figure 4.7.

Notice that the write-set has two heap paths describing that the transaction writes the next field

of the penultimate and last memory locations. Now, the new read- and write-set for transactions

Tadd, and Trem (relative to field next) are

Radd = {this.head , this.head .B , this.head .B .next}

W>
add = W<

add = {this.head .B .next}

Rrem = {this.head , this.head .D , this.head .D .next , this.head .D .next .next}

W>
rem = W<

rem = {this.head .D .next , this.head .D .next .next}

72

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.5. Core Language

Method boolean remove(int value)

Result 2:

ReadSet: { this.head.(next)[*D].next.value,

this.head.(next)[*D].next.next }

WriteSet>: { this.head.(next)[*D].next,

this.head.(next)[*D].next.next }

WriteSet<: { this.head.(next)[*D].next,

this.head.(next)[*D].next.next }

Figure 4.7: Sample of StarTM result output for corrected remove(int) method.

In this case, it is not possible to find an instantiation for B and D, such that the write-skew condition

is true. Hence, these transactions can execute concurrently under snapshot isolation without ever

triggering the write-skew anomaly.

4.5 Core Language

In this section we introduce the core language that will be used as the base language to define

the static analysis algorithms. This language corresponds to a very simple object-oriented lan-

guage that captures essential features of the Java programming language, such as object’s field

dereference, method invocation, and object creation.

4.5.1 Syntax

In this section we define the core language syntax. We include the subset of Java that captures

essential features such as object creation (new), field dereferencing (x.f), assignment (x := e), and

function invocation (func(~x)). The syntax of the language is defined by the grammar in Figure 4.8.

A program in this language corresponds to a set of functions definitions func(~x) = S where func

is the function identifier, ~x is a shorthand for a list of function parameters x1, . . . , xn, and S is the

function body or statement.

Although this language will be used to verify properties of transactional memory programs,

we do not need to explicitly represent transactions nor any parallel constructs. We assume that

all functions can be executed as transactions, and for the purpose of the verification of static

properties, all functions may execute concurrently with each others. Moreover, and as stated in

Section 4.3, the verification of snapshot isolation anomalies can be done as if no interferences of

other concurrent transactions occur.

The values of this language are composed by integers, memory locations (pointers), and the

special value nil to represent null pointers. Boolean values may be encoded as integers. The ex-

pression e⊕a e denotes any arithmetic binary operation such as addition, subtraction, or multipli-

cation. The expression e⊕b e denotes any boolean binary operation such as equality, or inequality.

In this language, objects are created using the new construct, and each object has a countable

set of fields that can be accessed by two syntactic constructs: in the x := y.f statement, variable

x is assigned with the value associated with field f in the object pointed by variable y; in the

x.f := e statement, the value of expression e is associated with field f in the object pointed by

variable x.

73

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.5. Core Language

e ::= (expression)
x (variables)

| n (constant)
| e⊕a e (arithmetic op)
| null (null value)

b ::= (boolean exp)
e⊕b e (boolean op)

| true (true value)
| false (false value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x := func(~y) (function call)
| x.f := e (heap write)
| x := new (allocation)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| if b thenS elseS (conditional)
| while b doS (loop)
| return e (return)
| skip (Skip)

P ::=
(
func(~x) = S

)+
(program)

Figure 4.8: Core language syntax.

Function definitions should end with the return e statement, and may be invoked in an assign-

ment statement x := func(~x). The skip statement denotes a no-op operation.

In Figure 4.9 we show an example of a program that creates and manipulates an ordered

linked list of integers, written using the syntax of the core language.

4.5.2 Operational Semantics

The operational semantics of the core language is defined by a reduction relation over configu-

rations of the form 〈s, h, S〉, where s ∈ Stacks is a stack (a mapping from variables to values),

h ∈ Heaps is a (concrete) heap (a mapping from locations to values through field labels), and S is

a statement. We assume a countable set of program variables Vars (ranged over by x, y, . . .).

Values = Z ∪ Locations∪ {nil}

Stacks = Vars → Values

Heaps = Locations ⇀ Fields → Values

Each function is identified by a name f ∈ Funcs, Funcs is a countable set of function names,

and a map FuncMap : Funcs → Params× Stmt. Function FuncMap is used to retrieve the func-

tion body and respective parameters given the function identifier. We define a semantic function

A : Exp → Stacks → Values to evaluate expressions, where ⊕a represents the arithmetic binary

74

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.5. Core Language

ll_create() = (

list := new;

pivot_min := new;

pivot_max := new;

pivot_min.value := -2147483648;

pivot_min.next := pivot_max;

pivot_max.value := 2147483647;

pivot_max.next := null;

list.head := pivot_min;

return list

)

ll_add(list, value) = (

node := new;

node.value := value;

node.next := null;

prev := list.head;

next := prev.next;

while next.value < value do (

prev := next;

next := prev.next

);

if next.value != value then (

node.next := next;

prev.next := node;

return true

)

else

return false

)

ll_remove(list, value) = (

node := new;

node.value := value;

node.next := null;

prev := list.head;

next := prev.next;

while next.value < value do (

prev := next;

next := prev.next

);

if next.value != value then (

prev.next := next.next;

return true

)

else

return false

)

Figure 4.9: Linked list example in the core language.

operations +,−,×, . . .

AJeKs =

n, if e = n

s(x), if e = x

nil, if e = null

AJe1Ks ⊕a AJe2Ks, if e = e1 ⊕a e2

Likewise, boolean expressions are evaluated according to the semantic function B : BExp →

{true, false}, where ⊕b represents the boolean binary operations =, 6=, <,≤, . . .

BJbKs =

true, if b = true

false, if b = false

AJe1Ks ⊕b AJe2Ks, if b = e1 ⊕b e2

The small step structural operational semantics of the language is defined by the set of rules in

Figure 4.10.

The structural operation rules define the behavior of the program over a stack and a heap.

75

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.5. Core Language

〈s, h, S〉 =⇒ 〈s′, h′, S′〉

〈s, h, S1〉 =⇒ 〈s′, h′, S′
1〉

〈s, h, S1 ;S2〉 =⇒ 〈s′, h′, S′
1 ;S2〉

(SEQ 1)
〈s, h, S1〉 =⇒ 〈s′, h′, skip〉

〈s, h, S1 ;S2〉 =⇒ 〈s′, h′, S2〉
(SEQ 2)

BJeKs = true

〈s, h, if e thenS1 elseS2〉 =⇒ 〈s, h, S1〉
(COND 1)

BJeKs = false

〈s, h, if e thenS1 elseS2〉 =⇒ 〈s, h, S2〉
(COND 2)

BJeKs = true

〈s, h,while e doS〉 =⇒ 〈s, h, S ;while e doS〉
(LOOP 1)

BJeKs = false

〈s, h,while e doS〉 =⇒ 〈s, h, skip〉
(LOOP 2)

AJeKs = v

〈s, h, return e〉 =⇒ 〈s[ret 7→ v], h, skip〉
(RETURN)

AJeKs = v

〈s, h, x := e〉 =⇒ 〈s[x 7→ v], h, skip〉
(ASSIGN)

s(y) = l l ∈ dom(h) h(l)(f) = v

〈s, h, x := y.f〉 =⇒ 〈s[x 7→ v], h, skip〉
(HEAP READ)

s(x) = l l ∈ dom(h) AJeKs = v

〈s, h, x.f := e〉 =⇒ 〈s, h(l)[f 7→ v], skip〉
(HEAP WRITE)

FuncMap(func) = (~x, S) S′ = S
{
~y/~x

}

〈s, h, x := func(~y)〉 =⇒ 〈s, h, S′;x := ret〉
(FCALL)

l /∈ dom(h)

〈s, h, x := new〉 =⇒ 〈s[x 7→ l], h[l 7→ _], skip〉
(ALLOCATION)

Figure 4.10: Structural operation semantics.

The ALLOCATION rule creates a new object by generating a fresh location l that was not part of

the domain of the current heap. Both the HEAP READ and HEAP WRITE rules require that the

object’s location l exist in the domain of the heap, otherwise the program gets stuck, which may

correspond to a runtime error such as dereferencing a null pointer. The ASSIGN rule only changes

the stack, leaving the heap untouched. The FCALL rule denotes the invocation of function func

76

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

e ::= (expressions)
x, y, . . . ∈ Vars (program variables)

| x′, y′, . . . ∈ Vars′ (existential variables)
| nil (null value)

ρ ::= f1 : e, . . . , fn : e (record)

S ::= e 7→ [ρ] | p(~e) (spatial predicates)
P ::= e = e (pure predicates)
Π ::= true | P ∧Π (pure part)
Σ ::= emp | S ∗ Σ (spatial part)

H ::= Π|Σ (symbolic heap)

Figure 4.11: Separation logic syntax.

where (~x, S) corresponds to the parameter’s list and function body respectively. The parameters

~x are capture-avoiding substituted by the arguments in ~y in statement S. After executing the

substituted statement S′, a special variable ret contains the function return value. The return

of a function (RETURN rule) is defined as assigning to a special return variable ret the value of

expression e;

The structural operation semantics rules defines the concrete semantics of the core language.

In the following sections we will define the abstract semantics, or symbolic execution rules, for

the same language to compute the approximations of read- and write-sets of each transaction.

4.6 Abstract States

We define an abstract state as the tuple (H,M,R,W), where H is a symbolic heap defined using a

fragment of separation logic formulae, M is a map between variables and heap path expressions,

and R and W are read- and write-sets respectively. The write-set W in our analysis is actually

composed by two sets: a may write-set, denoted by W>, which over-approximates the concrete

write-set, and a must write-set, denoted by W<, which under-approximates the concrete write-set.

The fragment of separation logic formulae that we use to describe symbolic heaps is defined

by the grammar in Figure 4.11. Satisfaction of a formula H by a stack s and heap h is denoted

s, h |= H and defined by structural induction on H (see Figure 4.12). There, as usual JpK is a

component of the least fixed point of a monotone operator constructed from a inductive definition

set; see [BBC08] for details. In this heap model a location maps to a record of values. The formula

e 7→ [ρ] can mention any number of fields in ρ, and the values of the remaining fields are implicitly

existentially quantified.

4.6.1 Symbolic Heaps

Symbolic heaps are abstract models of the heap of the form H = Π|Σ, where Π is called the pure

part and Σ the spatial part. We use prime variables (x′
1, . . . , x

′
n) to implicitly denote existentially

quantified variables that occur in Π|Σ. The pure part Π is a conjunction of pure predicates which

states facts about the stack variables and existential variables (e.g., x = nil). The spatial part Σ is

the ∗ conjunction of spatial predicates, i.e., related to heap facts. In separation logic, the formula

S1 ∗ S2 holds in a heap that can be split into two disjoint parts, one of them described exclusively

77

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

s, h |= emp iff dom(h) = ∅

s, h |= x 7→ [f1 : e1, , fn : en] iff h = [s(x) 7→ r] where r(fi) = s(ei) for i ∈ [1, n]

s, h |= p(~e) iff (s(~e), h) ∈ JpK

s, h |= Σ0 ∗ Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= e1 = e2 iff s(e1) = s(e2)

s, h |= Π1 ∧Π2 iff s, h |= Π1 and s, h |= Π2

s, h |= Π|Σ iff ∃~v′.
(
s(~x′ 7→ ~v′), h |= Π

)
and

(
s(~x′ 7→ ~v′), h |= Σ

)

where ~x′ is the collection of existential variables

in Π|Σ

Figure 4.12: Separation Logic semantics.

x

Node(x, y)

y x

List(x, y)

y

...

Figure 4.13: Graph representation of the Node(x, y) and List(x, y) predicates.

by S1 and the other described exclusively by S2.

In symbolic heaps, memory locations are either pointed directly by program variables (e.g., v)

or existential variables (e.g., v′), or they are abstracted by predicates. Predicates are abstractions

for the graph-like structure of a set of memory locations. For example, the predicate Node(x, y),

in Figure 4.13, abstracts a single memory location pointed by variable x, while the predicate

List(x, y) abstracts a set of an unbound number of memory locations, where each location is

linked to another location of the set by the next field.

A predicate p(~e) has at least one parameter, from its parameter set, that is the entry point for

reaching every memory location that the predicate abstracts. We denote this kind of parameter

as entry parameters. Also, there is a subset of parameters that correspond to the exit points of

the memory region abstracted by the predicate. These parameters denote variables pointing to

memory locations that are outside the predicate but the predicate has memory locations with

links to these outsider locations. In Figure 4.13 we can observe that the predicate List(x, y) has one

entry parameter x and one exit parameter y.

We can infer the entry and exit parameters of a predicate by analyzing its body. The predi-

cate body is composed by a disjunction of spatial formulas, which are composed by predicates,

including the points-to (7→) predicate. When defining a predicate, the name of the predicate may

appear in its body, thus creating an inductive predicate definition. We denote nonRec(P) as the

set of predicates with a different name from the one that is being defined, and rec(P) as the set of

predicates with the same name as the one that is being defined. We define an inductive function

δ+P (x) to assert if parameter x is an entry parameter of predicate P .

Definition 4.3 (Entry Parameter). Given a predicate P with a set of parameters ~x, variable x ∈ ~x is an

78

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

entry parameter of predicate P if:

δ+P (x) ⇔

true if P = x 7→ [ρ]

∃p ∈ nonRec(P) : δ+p (param(p, x)) otherwise

We resort to an auxiliary function param(p, x), which returns the parameter name, that is as-

sociated with variable x within the body of predicate p. Dually we define an inductive function

δ−P (x) to assert if parameter x is an exit parameter of predicate P .

Definition 4.4 (Exit Parameter). Given a predicate P with a set of parameters ~x, variable x ∈ ~x is an

exit parameter of predicate P if:

δ−P (x) ⇔

true if P = y 7→ [ρ] ∧ x ∈ FV(ρ)

∃p ∈ nonRec(P) : δ−p (param(p, x))

∧ ∀p ∈ nonRec(P) ∪ rec(P) : ¬ δ+p (param(p, x)) otherwise

The free variables of a record FV (ρ) are defined as {x1, . . . , xn} where ρ = f1 : x1, . . . , fn : xn.

In summary a parameter variable x is an entry parameter if it occurs in the left side of a points-

to predicate, or if it is used as an argument bind with an entry parameter of a predicate different

from the one being defined. A parameter variable x is an exit parameter if it occurs in the right

side of a points-to predicate, or if it is used as an argument bind with an exit parameter of a

predicate, including the one being defined, and it must not be an entry parameter of any other

predicate.

Using these functions one can create a directed graph, denoted as symbolic heap graph, based

on the information present in a symbolic heap, where predicates correspond to nodes and vari-

ables correspond to edges with some restrictions. A variable z can only be an edge between two

nodes, associated with predicates P1 and P2 if it is an exit parameter of predicate P1 and an entry

parameter of predicate P2.

edge(P1(~x), z, P2(~y)) ⇔ z ∈ ~x ∧ z ∈ ~y ∧ δ−P1
(param(P1, z)) ∧ δ+P2

(param(P2, z))

An heap path expression may be computed by a transformation function over a single path of

this graph.

4.6.2 Heap Paths

We are going to represent a memory location as a sequence of fields, starting from a program

variable. If we successively dereference the field labels that appear in the sequence, we reach the

memory location denoted by the sequence. We call these sequences of field labels, prefixed by a

variable name, a heap path. For instance, the path x .left .right , denotes the memory location that is

reachable by dereferencing the field left of the location pointed by variable x, and by dereferencing

the field right of the location represented by x .left .

We can also represent sequences of field dereferences in a heap path by using the Kleene star

(∗) and choice (|) operators. For instance, the path x .(left | right)∗ denotes a memory location that

can be reached by starting on variable x and then dereferencing either the left or right field on

each visited memory location.

79

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

H ::= v | v.P (heap path)
P ::= f | f.P | C∗

A.P (subpath)
C ::= f | f “|” C (choice)

Figure 4.14: Heap Path syntax.

SJvKs,h,l = {l′} where l′ = s(v)

SJv.P Ks,h,l = SJP Ks,h,l′ where l′ = s(v)

SJfKs,h,l = {l′} where l′ = h(l, f)

SJf.P Ks,h,l = SJP Ks,h,l′ where l′ = h(l, f)

SJC∗.P Ks,h,l = SJf1.C
∗.P Ks,h,l ∪ ... ∪ SJfn.C

∗.P Ks,h,l ∪ SJP Ks,h,l where C = f1|...|fn

Figure 4.15: Heap Path semantics.

The syntax of heap paths is depicted in Figure 4.14 and corresponds to a very restrictive subset

of the regular expressions syntax. A heap path always starts with a variable name (v) followed

by sequences of field labels (f), repeating subpath expressions under a Kleene operator (C∗), and

choices of field labels (C). We syntactically restrict heap paths, with respect to regular expressions,

by only allowing choices of field labels guarded by a Kleene operator, and repetitions of choices

of single field labels (not sequences). For instance, the path x.(left | right∗) is not a valid heap path

expression.

Each repeating subpath is always associated with a label. This is used to identify the subpath

guarded by the star and we can rewrite C∗
A.P as A.P where A = C∗. As we shall see later, this

label will be used to identify subpath expressions that denote the same concrete path in the heap.

We may also denote the repetition sequence with a bar on top of the star, e.g., x .C ∗̄
A. This is used

to distinguish between different interpretations, of heap path expressions contained in read- and

write-sets.

We now define the semantics of heap paths with relation to concrete stacks and heaps through

function SJHKs,h,l in Figure 4.15. According to this definition a heap path expression denotes

the set of all memory locations that are reachable by following the path in a concrete memory,

SJHK ⊆ Locations. Abstract read- or write-sets are sets of heap paths. We write HPaths to denote

the set of all heap path expressions.

4.6.3 Abstract Read- and Write-Sets

A heap path represents an abstract memory location, which might correspond to a set of concrete

memory locations. A memory access, which can be a read or a write access, is represented as a

pair composing a heap path and a field, which we will call as heap path access. We write a heap

path access pair as a simple concatenation of the heap path with the field. For instance, a heap

path access of the form (v.P, f) may be simply denoted as v.P.f .

We represent the abstract read- and write-sets as sets of heap path accesses. This sets are

constructed during the static analysis of transactions whenever a heap read or write access is

analyzed.

Read-sets, may write-sets, and must write-sets are interpreted differently. For read-sets, we

always consider the saturation of the read-set with the denotations of all prefixes of its heap

80

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

paths. For must write-sets, we consider one under-approximation where a heap-path H represents

exactly one location in the set SJHK. For may write-sets, we consider the over-approximation by

saturating the set with the expansion of the ∗̄ repetition annotation. For instance, a heap path

expression x .C ∗̄.f in a may write-set, denotes write operations on all fields f for all locations of

the set SJx .C ∗̄K.

4.6.4 From Symbolic Heaps to Heap Paths

During the static analysis procedure, we generate heap paths based on the information given by

the symbolic heap. Recall that the only information given by the user to the verification tool is a

description of the state at the beginning of the transaction using a symbolic heap, everything else

is inferred.

Given a memory location l pointed by some variable x, if there is a path in the symbolic

heap from some other variable s, where s ∈ SVars, to variable x, then we can generate a heap

path that represents the path from the shared variable s to the memory location l. Moreover, the

computation of a heap path from the symbolic heap requires a transformation function (Γ) that

given a predicate and its arguments returns a heap path.

We can use the symbolic heap graph defined in Section 4.6.1, where each node corresponds to

a predicate, and each edge corresponds to a link between each predicate through a variable. We

can compute a heap path from one shared variable to another variable by concatenating the heap

paths computed for each node presented in a path in this symbolic heap graph.

Given a sequence of edges that corresponds to the path between a shared variable s ∈ SVars

and a program variable x ∈ Vars

(P1, x1, P2), (P2, x2, P3), . . . , (Pn, xn, Pn+1)

where s in an entry parameter of P1 and will be denoted as x0, and variable x = xn. The heap

path is computed by the concatenation of the sub-heap paths constructed from the definitions of

the predicates that are present in the sequence of edges, using the function Γ:

n⊙

i=1

Γ(Pi, xi−1, xi)

The big operator ⊙ corresponds to the lift of a single concatenation operation x.P ⊙ z.P ′ to a set

of heap paths. The concatenation operation x.P ⊙ z.P ′ concatenates the path described by P ′ to

the heap path x.P resulting in the heap path x.P.P ′. Note that this concatenation is sound, given

the pre-condition that x.P represents the same memory location as variable z.

For each predicate Pi we construct a heap path from its entry parameter xi−1 to its exit pa-

rameter xi using the function Γ(Pi, xi−1, xi). Function Γ operates over the predicate definition, as

also the δ+ and δ− functions.

The definition of function Γ for the points-to predicate is the following:

Γ(x 7→ [. . . , f : y, . . .], x, y) = x.f

To assist the definition of function Γ for inductive predicates, we first define the structure of

a predicate definition. As we previously stated, an inductive predicate is a disjunction of spatial

81

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

separated predicates:

P (~x) ⇔ p ∗ . . . ∗ p′ | ... | p′′ ∗ . . . ∗ p′′′ ∗ r

Since we are describing an inductive predicate, some disjunctive branches may contain a recur-

sive reference to the predicate P being defined, which are denoted as r. The key idea to define

function Γ is that we separate each disjunctive branch, and for each branch we create a symbolic

heap graph and generate a heap path expression, as described previously using the Γ function

recursively.

Disjunctive branches are dealt differently depending on whether they include or not recursive

references. Consider the following disjunctive branch without a recursive reference:

p1 ∗ . . . ∗ pn︸ ︷︷ ︸
φ

We denote the heap path expression of the disjunctive branch as φ. In the case of a disjunctive

branch with a recursive reference we compute the heap path expression by only considering the

non-recursive references:

p1 ∗ . . . ∗ pn︸ ︷︷ ︸
φr

∗r

In this case the heap path expression is denoted as φr. By processing each disjunctive branch, we

get a set of heap path expressions:

{φ1, . . . , φn, φ
r
1, . . . , φ

r
n}

The final heap path expression corresponds to a special composition of all “sub” heap path ex-

pressions:

φ1 | . . . | φn | φr
1 ⊙ (φr

1 | . . . | φr
n)

∗
A1

⊙ (φ1| . . . | φn) | . . . | φ
r
n ⊙ (φr

1 | . . . | φr
n)

∗
An

⊙ (φ1| . . . | φn)

where x1.P1 ⊙ (x2.P2 | . . . | xn.Pn)
∗ = x1.P1.(P2 | . . . | Pn)

∗. Labels A1, . . . , An are fresh in the

context of the symbolic state where the heap path is computed. Notice that heap path expressions

containing repetitions and choices are only generated when transforming inductive predicates

into heap paths. Although the composition originates a rather complex expression, most of the

times this expression can be simplified as we will see in the following examples.

Consider the examples of a heap path generated for a list segment and a tree segment predi-

cates:

Example 4.1 (Heap Path of the List Segment Predicate).

lseg(x, y) ⇔ x 7→ [next : y] ∨ ∃z′. x 7→ [next : z′] ∗ lseg(z′, y)

Given the lseg predicate definition, the set of disjunctive branches with the respective “sub” heap path is:

x 7→ [next : y]︸ ︷︷ ︸
φ=x.next

, x 7→ [next : z′]︸ ︷︷ ︸
φr=x.next

∗ lseg(z′, y)

82

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.6. Abstract States

Thus, the final heap path expression is composed as:

φ | φr ⊙ φr∗ ⊙ φ = x.next | x.next ⊙(x.next)∗A ⊙ x.next = x.next | x.next .next∗A.next

This expression can be further simplified as:

x.next | x.next .next∗A.next = x.next | x.next .next+A = x.next+A

We abbreviate repeating sequences with at least one field label using symbol + (e.g. next+). The final result

for the heap path that represents the memory location pointed by y and reachable from x is:

Γ(lseg(x, y), x, y) = x .next+A

Example 4.2 (Heap Path of the Tree Segment Predicate).

tnd(x, l, r) ⇔ x 7→ [left : l, right : r]

tree(x) ⇔ ∃l′, r′. tnd(x, l′, r′) ∗ tree(l′) ∗ tree(r′)

tseg(x, y) ⇔ ∃z′.
(
tnd(x, y, z′) ∨ tnd(x, z′, y)

)
∗ tree(y) ∗ tree(z′)

∨ ∃z′, w′.
(
tnd(x, z′, w′) ∨ tnd(x,w′, z′)

)
∗ tseg(z′, y) ∗ tree(w′)

Given the tseg predicate definition, the set of disjunctive branches with the respective “sub” heap path

is:

tnd(x, y, z′)︸ ︷︷ ︸
φ1=x.left

∗ tree(y) ∗ tree(z′)

tnd(x, z′, y)︸ ︷︷ ︸
φ2=x.right

∗ tree(y) ∗ tree(z′)

tnd(x, z′, w′)︸ ︷︷ ︸
φr

1
=x.left

∗ tseg(z′, y) ∗ tree(w′)

tnd(x,w′, z′)︸ ︷︷ ︸
φr

2
=x.right

∗ tseg(z′, y) ∗ tree(w′)

Thus, the final heap path expression is composed as:

φ1 | φ2 | φr
1 ⊙ (φr

1 | φr
2)

∗
A ⊙ (φ1 | φ2) | φ

r
2 ⊙ (φr

1 | φr
2)

∗
A ⊙ (φ1 | φ2)

= x.left | x.right | x.left ⊙(x.left | x.right)∗A ⊙ (x.left | x.right)

| x.right ⊙(x.left | x.right)∗A ⊙ (x.left | x.right)

= x.left | x.right | x.left .(left | right)∗A.(left | right)

| x.right .(left | right)∗A.(left | right)

= x.left | x.right | x.left .(left | right)+A | x.right .(left | right)+A

= x.(left | right)+A

83

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

4.7 Abstract Semantics

Next, we define the abstract semantics, or symbolic execution rules, for the core language pre-

sented in Section 4.5 taking inspiration from [DOY06]. In our case, the abstract semantics de-

fines the effect of statements on abstract states composed by a symbolic heap, a path map, and

a read- and write-set. We represent an abstract state as: 〈H,M,R,W〉 ∈ (SHeaps× (Vars ⇀

HPaths) × Rs×Ws) where SHeaps is the set of all symbolic heaps, (Vars ⇀ HPaths) is the map

between program variables and heap path expressions, Rs is the set of all read-sets, and Ws is the

set of pairs of all may and must write-sets. We write SStates for denoting the set of all abstract

states.

The path map M is a map that associates variables to heap path expressions. In each step of

the symbolic execution, a variable x in this map is associated with a heap path expression that

represents the memory location pointed by x. The purpose of this map is to keep a heap path

expression less abstract than the one that we can capture from the symbolic heap. For instance, in

the map, we may have the information that we only accessed the left field of each node of a tree,

but from the symbolic heap we get the information that we accessed the left or right fields in each

node. The symbolic execution will always maintain the invariant Sp ⊆ Gp where Sp is the heap

path in the path map and Gp is the heap path from the symbolic heap, for a variable x. The subset

relation means that all paths described by Sp are described by Gp, and thus Sp is more precise

than Gp.

Each transactional method is annotated with the @Atomic annotation describing the initial

symbolic heaps for that transaction. The symbolic execution will analyze only transactional meth-

ods and all methods present in the invocation tree that occurs inside their body. In the beginning

of the analysis we have the specification of the symbolic heaps for each transactional method. An

empty path map and empty read- and write-sets are associated to each initial symbolic heap, thus

creating a set of initial abstract states for each transactional method. The complete information

for each method is composed by:

• the initial abstract states, which can be given by the programmer or be computed by the

analysis;

• the final abstract states resulting from the method’s execution. These final abstract states are

computed by the analysis and, in the special case of the transactional methods, are the final

result of the analysis.

For each method, given one initial abstract state, the analysis may produce more than one abstract

states. The abstract semantics is defined by a function exec that yields a set of abstract states or an

error (⊤), given a method body (from Stmt) and an initial abstract state (from SStates):

exec : Stmt× SStates → P(SStates) ∪ {⊤}

To support inter-procedural analysis we also need the auxiliary function spec, that given a method

signature (func(~x) ∈ Sig), yields a mapping from symbolic heaps to sets of abstract states: SHeaps →

P(SStates).

spec : Sig → (SHeaps → P(SStates))

For non-transactional methods, called inside transactions, the initial abstract state is computed

84

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

in the course of the symbolic execution, which is inferred from the abstract state of the calling

context. Recursive functions are currently not supported by our analysis technique.

4.7.1 Past Symbolic Heap

Our analysis require a special kind of predicates, which we call past predicates, denoted as p̂(~e) or

x̂7→ [ρ]. The past symbolic heap is composed by predicates and past predicates. The latter ones

have an important role in the correctness for computing heap paths. Heap paths must always be

computed with respect to the initial snapshot of memory, which is shared between transactions,

and corresponds to the initial symbolic heap. Otherwise we may fail to detect some shared mem-

ory access due to some memory privatization pattern. We illustrate this problem by means of an

example:

Example 4.3. Given an initial symbolic heap, where x ∈ SVars is a shared variable:

{}|List(x, y) ∗ y 7→ [next : z] ∗ z 7→ nil

The heap paths representing the locations pointed by each variable are:

x ≡ x y ≡ x.(next)+A z ≡ x.(next)+A.next

If we update the location pointed by y by assigning its next field to nil we get

{}|List(x, y) ∗ y 7→ [next : nil] ∗ z 7→ nil

After the update, the heap paths representing the locations pointed by x and y remain the same. However,

z is no longer reachable from a shared variable, and hence, we have lost the information that in the context

of a transaction, z is still a shared memory location subject to concurrent modifications.

This example shows that the heap path representing a memory location, that is reachable by a

shared variable in the beginning of the transaction, must not be changed by the updates in the

structure of the heap. So, in order to compute the correct heap path we need to use a “past view"

of the current symbolic heap. To get the past view we need past predicates, which are added to

the symbolic heap whenever an update is made to the structure of the heap. In the case of the

previous example, the result of updating variable y would give the following symbolic heap:

{}|List(x, y) ∗ y 7→ [next : nil] ∗ ŷ7→ [next : z] ∗ z 7→ nil

The past predicate ŷ7→ [next : z] denotes that there was a link between variable y and z in the

initial symbolic heap. Now, if there is a read access to a field of the memory location pointed by

variable z, we compute the heap path of this location in the past view of the symbolic heap. We

define a function that given a symbolic heap returns the past view of such symbolic heap:

Definition 4.5 (Past Symbolic Heap). Let Past(H) be the set of past predicates in H , and NPast(Π|Σ) =

{S | Σ = S ∗ Σ′ ∧ ¬ hasPastΠ|Σ(S)}. Then we define the past symbolic heap by

PastSH(Π|Σ) , Π|⊛S∈NPast(Π|Σ) S ∗⊛
Ŝ∈Past(Π|Σ)

Ŝ

85

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

This function makes use of the hasPast function to assert if there is already a past predicate, in

the symbolic heap, with the same entry parameters. We define hasPast as:

Definition 4.6 (Has Past).

hasPastH(x 7→ [ρ]) ⇔ H ⊢ x̂7→ [ρ] ∗ true

hasPastH(p(~i, ~o)) ⇔ ∀i ∈~i : δ+p (i) ∧ ∃i ∈~i : H ⊢ p̂(. . . , i, . . .) ∗ true

The result of the past heap function applied to the previous example is:

PastSH({}|List(x, y) ∗ y 7→ [next : nil] ∗ ŷ7→ [next : z] ∗ z 7→ nil)

, {}|List(x, y) ∗ y 7→ [next : z] ∗ z 7→ nil

Which corresponds to the initial symbolic heap of Example 4.3. Thus we can calculate correctly

the heap paths of the locations pointed by x, y and z.

We also define a function genPastH(x 7→ [ρ]) that if the symbolic heap H does not contain a

past points-to predicate for a points-to predicate x 7→ [ρ], it creates a new past predicate x̂7→ [ρ].

Definition 4.7 (Generate Past Predicate).

genPastH(x 7→ [ρ]) ,

emp if hasPastH(x 7→ [ρ])

x̂7→ [ρ] otherwise

4.7.2 Symbolic Execution Rules

The symbolic execution is defined by the rules shown in Figure 4.16. For the sake of simplicity,

these rules are defined over a single symbolic heap, although we can easily lift to a set of symbolic

heaps. The abstract semantics of conditional statements is the union of the resulting symbolic

heaps of each branch. The resulting symbolic heap of a loop statement, which corresponds to

the loop invariant, is computed using a fix-point computation over the abstract semantics rules

defined in Figure 4.16.

The rule ASSIGN, when executed in a state 〈H,M,R,W〉 adds the information that in the

resulting state, x is equal to e. As in standard Hoare/Floyd style assignment, all the occurrences

of x, in H and e, are replaced by a fresh existential quantified variable x′. We also compute a new

path map where we associate variable x with the heap path of expression e. If e is null then we

associate variable x with empty ǫ. The read- and write-set are not changed because there are no

changes in the heap.

The HEAP READ rule adds an equality, to the resulting state, between x and the content of the

field f of the location pointed by y. Every time we access the heap, for reading or writing, we

compute a new path map. In this case we generate a heap path for variable y using the symbolic

heap and the current path map. Note that the heap path generated is computed in the past sym-

bolic heap as described in Section 4.7.1. This operation, denoted as genPath, is also responsible for

abstracting the representation of heap paths, as we will describe it in detail in Section 4.7.4. Given

the new computed heap path p, we compute a new path map by associating path p with variable y

and to all its aliases. We use the function updateMap to perform these operations. Then we asso-

ciate variable x with the result of the concatenation of path p with field f , where p represents the

86

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

〈H,M,R,W, S〉 =⇒ 〈H′,M′,R′,W ′〉 ∨ 〈H,M,R,W, S〉 =⇒ ⊤

I(e) ::= e.f := x | x := e.f

H ⊢ y = nil

〈H,M,R,W, I(y)〉 =⇒ ⊤
(HEAP ERROR)

x′ is fresh

〈H,M,R,W, x := e〉 =⇒ 〈x = e[x′/x] ∧H[x′/x],M[x 7→ M(e)],R,W〉
(ASSIGN)

p = genPath(PastSH(H),M, y) M′ = updateMap(M,H, y, p)[x 7→ p.f]
H′ = x = z[x′/x] ∧H[x′/x] x′ is fresh

〈H ∗ y 7→ [f : z],M,R,W, x := y.f〉 =⇒ 〈H′,M′,R∪ {p.f},W〉
(HEAP READ)

p = genPath(PastSH(H ∗ x 7→ [f : z]),M, x) M′ = updateMap(M,H, x, p)
H′ = H ∗ x 7→ [f : e] ∗ genPastH(x 7→ [f : z])

〈H ∗ x 7→ [f : z],M,R,W, x.f := e〉 =⇒ 〈H′,M′,R,W ⋒ {p.f}〉
(HEAP WRITE)

x′ is fresh

〈H,M,R,W, x := new〉 =⇒ 〈H[x′/x] ∗ x 7→ [],M[x 7→ ǫ],R,W〉
(ALLOCATION)

〈H,M,R,W, return e〉 =⇒ 〈ret = e ∧H,M[ret 7→ M(e)],R,W〉
(RETURN)

H ⊢ H′[~y/~z] ∗Q 〈H′′,M′,R′,W ′〉 ∈ spec(func(~z))(H′) H′′′ = Q ∗ H′′[~y/~z]
R′′ = R′[~y/~z] W ′′ = W ′[~y/~z] M′′ = updateAllMap(R′′ ∪W ′′,M,H′′′)

r.P ′ = M′(ret) M′′′ = M′′[x 7→ genPath(PastSH(H′′′),M′′, r).P ′]
R′′′ = R∪ {M′′′(v).P | v.P ∈ R′′} W ′′′ = W ⋒ {M′′′(v).P | v.P ∈ W ′′}

〈H,M,R,W, x := func(~y)〉 =⇒ 〈x = ret ∧H′′′,M′′′,R′′′,W ′′′〉
(FCALL)

aliasH(x) , {y | H ⊢ x = y} ∪ {x}

updateMap(M,H, x, p) , {v 7→ s | v 7→ s ∈ M∧ v /∈ aliasH(x)} ∪ {a 7→ p | a ∈ aliasH(x)}

updateAllMap(V,M,H) ,

{s | v.P ∈ V ∧ p = genPath(PastSH(H),M, v) ∧ s ∈ updateMap(M,H, v, p)}

Figure 4.16: Operational Symbolic Execution Rules.

87

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

memory location pointed to by y. Finally, we add to the read-set the memory access represented

by the heap path p and the field f .

The HEAP WRITE rule denotes an update to the value of field f in the location pointed by x.

Variable x is associated with the generated heap path p (updateMap(M,H, x, p)) in a new path map.

The symbolic heap is extended with a past predicate representing the link between variable x and

the record [f : z] that just ceased to exist. The resulting write-set is extended with the field access

{p.f} (W ⋒ {p.f}). The operation W ⋒ {p.f}, denotes the adding of {p.f} to both components

of the write set W , to the may write-set W> and to the must write-set W<. While adding an heap

path access p.f to the must write-set W< is straightforward, adding p.f to the may write-set W> is

a bit more involved. If W> already contains p.f , then we replace all repeating sequences in p, by

repeating sequences of the kind ∗̄. For instance, in the previous example, if p.f = x .next∗A .next

is already in W>, the may write-set after adding p.f contains x .next ∗̄A .next instead. With this

operation we are conservatively over-approximating the write-set by saying that the transaction

writes on all locations denoted by path p.

When a new memory location is allocated, rule ALLOCATION, and is assigned to variable x

we update the path map entry for variable x with empty (ǫ).

In the FCALL rule, the function spec is used to get the abstract state 〈H′′,M′,R′,W ′〉 which

corresponds to one of the final states of the symbolic execution of a function func. The read- and

write-set are composed by heap path expressions, where each expression v.P represents a memory

location where variable v is the root of the path. This variable is a root variable in the context of

function func but in the context of the function that is being analyzed where func was invoked,

variable v might point to a memory location that is represented by a heap path expression v′.P ′

where v′ 6= v. This means that a memory location that is represented by the expression v.P in the

context of func, is represented by the expression v′.P ′.P in the context of the calling site of func

where v′.P ′ is the expression that represent the memory location pointed by v in the context of

the calling site. We need to update all heap path expressions of all variables that are in the returned

read- (R′) and write-set (W ′). We use the updateAllMap function to iterate over all variables and

generate a new heap path expression and update the path map accordingly. The return value of

function func is assigned to variable x and therefore we update the path map entry for variable

x with the heap path expression that represents memory location pointed by the special return

variable ret in the context of the calling site. In the last step, we merge the read- and write-sets

using the updated path map M′′′ by concatenating the heap path M′′′(v) with the remaining path

returned from the read- (R′) or write-set (W ′). The final symbolic heap H′′′ is computed in the

typical way for inter-procedural analysis using separation logic that is by combining the frame of

the function call (in this case Q)3, and the postcondition of the spec H′′ [DPJ08].

Since we are not aiming at verifying execution errors, we silently ignore the symbolic error

states (⊤) produced by HEAP ERROR rule in our analysis.

4.7.3 Rearrangement Rules

The symbolic execution rules manipulate object’s fields. When these are hidden inside abstract

predicates both HEAP READ and HEAP WRITE rules require the analyzer to expose the fields they

are operating on. This is done by the function rearr defined as:

3The frame of a call is the part of the calling heap which is not related with the precondition of the callee.

88

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

Definition 4.8 (Rearrangement).

rearr(H, x.f) , {H′ ∗ x 7→ [f : y] | H ⊢ H′ ∗ x 7→ [f : y]}

4.7.4 Fixed Point Computation and Abstraction

Following the spirit of abstract interpretation [CC77] and the jStar work [DPJ08] to ensure ter-

mination of symbolic execution, and to automatically compute loop invariants, we apply ab-

straction on sets of abstract states. Typically, in separation logic based program analyses, ab-

straction is done by rewriting rules, also called abstraction rules which implement the function

abs : SHeaps → SHeaps. For each analyzed statement we apply abstraction after applying the

execution rules. The abstraction rules accepted by StarTM have the form:

premises

H ⊢ emp H′ ⊢ emp
(ABSTRACTION RULE)

This rewrite is sound if the symbolic heap H implies the symbolic heap H′. An example of some

abstraction rules, for the List(x, y) predicate, is shown in Figure 4.4. Each rule is only triggered

when the premises are satisfied in the current symbolic heap. Past predicates are also abstracted

in order to ensure the convergence of the analysis.

The heap path expressions that are stored in the path map (M) need also to be abstracted

because otherwise we would get expressions with infinite sequences of fields. Since the symbolic

heap is abstracted we can use it to compute an abstract heap path expression. The abstraction

procedure is done by the genPath(H,M, v) function. This function receives a symbolic heap H, a

path map M, and a variable v for which will be computed the heap path representing the memory

location pointed by such variable.

The heap path stored in the path map M for variable v will be denoted as S, and the heap path

computed from the symbolic heap will be denoted as G. The analysis will always ensure the

invariant S ⊆ G. This subset relation means that all paths described by S are also described by G.

The result of this function is a heap path, denoted as E which satisfies the following invariant:

S ⊆ E ⊆ G. Since the symbolic heap is proven to converge into a fixed point, the heap path E will

also converge into a fixed point because it is a subset of G.

The procedure to compute the path E is based on a pattern matching approach. Taking G

as the most abstract path we generate a pattern from it that must match in S. This pattern is

generated by taking G and substituting all its repeating sequences with wildcards. For instance,

if G = x.(left | right)+A.right then the pattern would be Pt = x .α.right where α is a wildcard.

We also denote αG as the subpath in G that is associated to the wildcard α, and in this case,

αG = (left | right)+A.

We take this pattern and try to apply it to S and check which subpath expression of S matches

the wildcard. For instance, if S = x .left .left .right , then the wildcard α of pattern Pt = x .α.right

will match left .left denoted as αS . The pattern can only be matched successfully if the wildcard

in S (αS) and the wildcard in G (αG) satisfy the following invariant: αS ⊆ αG, which is the case

in our example.

Now we apply an abstraction operation over the wildcard to generate a more abstract subpath.

We denote this operation as compress and is defined in Figure 4.17. The result of applying the

abstraction function to wildcard αS is compress(αS) = left+B . Notice that the abstracted subpath

89

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.7. Abstract Semantics

compress(f1.f2) = (f1)
+
A if f1 = f2 where A is fresh

compress(f1.f2) = (f1|f2)
+
A if f1 6= f2 where A is fresh

compress((C)+C .f1) = (C)+C if f1 ∈ C

compress((C)+C .f1) = (C|f1)
+
C if f1 /∈ C

compress(f1.f2.P) = compress(compress(f1.f2).P)

Figure 4.17: Compress abstraction function.

satisfies the invariant αS ⊆ compress(αS) ⊆ αG. Finally, we substitute the wildcards in the pattern

for the computed abstract subpath expressions. In our example we get the final expression E =

x. left+B .right which is a subset of G.

4.7.5 Write-Skew Detection

The result of the symbolic execution is a set of symbolic states 〈H,M,R,W〉 for each transac-

tional method. In this section, we define the write-skew test, which is based in the abstract read-

and write-set (R,W) and in the satisfiability of the condition of Definition 4.2 (see example in

Figure 4.5).

Recall that the interpretation of read-sets contain all prefixes of its heap paths. Hence, to

compute the satisfiability of the write-skew condition we must compute the set of prefixes of the

heap-paths in both read-sets. We define prefix(x.P) for a heap path expression x.P as follows:

prefix(P.f) , {P.f} ∪ prefix(P) prefix(P.C∗
A) , {P.C∗

A} ∪ prefix(P)

prefix(x.f) , {x.f} prefix(x.C∗
A) , {x.C∗

A}

and we lift the prefix definition for sets of heap paths prefix(R) as

prefix(R) ,
⋃

p∈R

prefix(p).

For instance, the prefixes of the read-set R = {this.head .(next)∗A.next} are:

prefix(R) = {this.head , this.head .A, this.head .A.next}

For the sake of simplicity, we denote repeating sequences by their unique label. Given the sets,

R⋆
1 = prefix(R1), R

⋆
2 = prefix(R2), W

<
1 , W>

1 , W<
2 , and W>

2 , the write-skew condition is the follow-

ing:

R⋆
1 ∩ W>

2 6= ∅ ∧ W>
1 ∩ R⋆

2 6= ∅ ∧ W<
1 ∩ W<

2 = ∅

From this condition we generate a set of (in)equations, on the labels of repeating sequences, nec-

essary to reach satisfiability. For instance, given the sets:

R⋆ = {this.head , this.head .A, this.head .A.next , this.head .A.next .next}

W> = {this.head .B .next}

90

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.8. Experimental Results

Table 4.2: StarTM applied to STM benchmarks.

Benchmark Method Time (sec.) LOC States Write-Skews

List

add

5

16 2
remove 14 2 (add, remove)
contains 11 1 (remove, remove)
revert 11 4

List Safe

add

6
16 2

-remove 15 2
contains 11 1

Tree
treeAdd

11
21 3

-
treeContains 15 2

Intruder
atomicGetPacket

24
9 2

(atomicProcess,
atomicProcess 173 7
atomicGetComplete 15 2 atomicGetComplete)

The condition R⋆ ∩W> 6= ∅ is satisfied if there is a possible instantiation of A and B such that:

B .next ≤ A ∨ B = A ∨ B = A.next

In inequation B .next ≤ A, the operator ≤ denotes prefixing, in this case that B .next is a prefix

of A. After generating the (in)equation system on labels (A, B) needed to satisfy the write-skew

condition, we use a SMT solver to check their satisfiability. If a solution is found, it means that a

write-skew may occur between the two transactions being analyzed. Notice that when comparing

read- and write-sets we make the correspondence between concrete paths in the heap through the

unique labels of repeating sequences.

4.8 Experimental Results

StarTM is a prototype implementation of our static analysis algorithm applied to Java bytecode,

using the Soot toolkit [VRCGHLS99] and the CVC3 SMT solver [BT07]. We applied StarTM to

three STM benchmarks: an ordered linked list, a binary search tree, and the Intruder test program

of the STAMP benchmark. In the case of the list we tested two versions: the unsafe version called

List and the safe version called List Safe. The List Safe version has an additional update in the

remove method as discussed in Section 4.4.

Table 4.2 shows the detailed results of our verification for each transactional method of the

examples above. The results were obtained in a Intel Dual-Core i5 650 computer, with 4 GB of

RAM. We show the time (in seconds) taken by StarTM to verify each example, the number of lines

of code, and the number of states produced during the analysis. The last column in the table

shows the pairs of transactions that may actually trigger a write-skew anomaly.

The expected results for the two versions of the linked list benchmark were confirmed by our

tool. The tool detects the existence of two write-skew anomalies, in the unsafe version of the linked

list, resulting from the concurrent execution of the add and remove methods. The safe version is

proven to be completely safe when executing all transactions under SI.

In the case of the Tree benchmark, the treeAdd method performs a tree traversal and in-

serts a new leaf node. StarTM proves that the concurrent execution of all transactions of the Tree

91

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.9. Related Work

benchmark is safe.

StarTM detects a write-skew anomaly in the Intruder example, which is triggered by the con-

current execution of atomicProcess and atomicGetComplete transactions. This happens

when the transaction atomicProcess pushes an element into a stack, implemented using an

array with two integer pointers controlling the start and end of the stack, and the transaction

atomicGetComplete pops an element from the same stack, which result in writes on different

parts of the memory. However, the Intruder example is not entirely analyzed. A small part of

the code cannot analyzed due to the use of arrays and cyclic data-structures, neither currently

supported by our tool.

4.9 Related Work

Software Transactional Memory (STM) [ST95; HLMWNS03] systems commonly implement opac-

ity to ensure the correct execution of concurrent programs. To the best of our knowledge, SI-

STM [RFF06] is the only existing implementation of a STM using snapshot isolation. This work

focuses on improving the transactional processing throughput by using a snapshot isolation al-

gorithm. It proposes a SI safe variant of the algorithm, where anomalies are dynamically avoided

by enforcing additional validation of read-write conflicts. Our approach avoids this validation by

using static analysis and correcting the anomalies before executing the program.

In our work, we aim at providing opacity semantics under a run-time based on snapshot

isolation for STM. This is achieved by performing a static analysis of the program and asserting

that no SI anomalies will ever occur when executing a transactional application. This allows

to avoid tracking read accesses in both read-only and read-write transactions, thus increasing

performance throughput.

The use of snapshot isolation in databases is a common place, and there are some previous

works on the detection of SI anomalies in this domain. Fekete et al. [FLOOS05] developed the

theory of SI anomalies detection and proposed a syntactic analysis to detect SI anomalies for the

database setting. They assume applications are described in some form of pseudo-code, without

conditional (if-then-else) and cyclic structures. The proposed analysis is informally described and

applied to the database benchmark TPC-C [Tra10] proving that its execution is safe under SI.

A sequel of that work [JFRS07], describes a prototype which is able to automatically analyze

database applications. Their syntactic analysis is based on the names of the columns accessed in

the SQL statements that occur within the transaction.

Although targeting similar results, our work deals with different problems. The most signif-

icant one is related to the full power of general purpose languages and the use of dynamically

allocated heap data structures. To tackle this problem, we use separation logic [Rey02; DOY06]

to model operations that manipulate heap pointers. Separation logic has been the subject of re-

search in the last few years for its use in static analysis of dynamic allocation and manipulation

of memory, allowing one to reason locally about a portion of the heap. It has been proven to scale

for larger programs, such as the Linux kernel [CDOY09].

The approach described in [RCG09] has a close connection to ours. It defines an analysis to

detect memory independences between statements in a program, which can be used for paral-

lelization. They extended separation logic formulae with labels, which are used to keep track

of memory regions through an execution. They can prove that two distinct program fragments

use disjoint memory regions on all executions, and hence, these program fragments can be safely

92

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.10. Concluding Remarks

parallelized. In our work, we need a finer grain model of the accessed memory regions. We also

need to distinguish between read and write accesses to shared and separated memory regions.

The work in [PRV10] informally describes a similar static analysis to approximate read- and

write-sets using escape graphs to model the heap structure. Our shape analysis is based on sep-

aration logic, and, as far as we understand, heap-paths give a more fine-grain representation of

memory locations at a possible expense in scalability.

Some aspects of our work are inspired by jStar [DPJ08]. jStar is an automatic verification tool

for Java programs, based on separation logic, that enables the automatic verification of entire

implementations of several design patterns. Although our work has some aspect in common

with jStar, the properties being verified are completely different.

4.10 Concluding Remarks

We described a novel and sound approach to automatically verify the absence of the write-skew

snapshot isolation anomaly in transactional memory programs. Our approach is based on a gen-

eral model for fine grain abstract representation of accesses to dynamically allocated memory lo-

cations. By using this representation, we accurately approximate the concrete read- and write-sets

of memory transactions, and capture write-skew anomalies as a consequence of the satisfiability of

an assertion based on the output of the analysis, the abstract read- and write-sets.

We present StarTM, a prototype implementation of our theoretical framework, unveiling the

potential for the safe optimization of transactional memory Java programs by relaxing isolation

between transactions. Our approach is not without limitations. Issues that require further devel-

opments range from the generalization of the write-skew condition for more than two transactions,

the support for richer dynamic data structures, to the support for array data types. Together with

a runtime system support for mixed isolation levels, we believe that our approach can scale up to

significantly optimize real-world transactional memory systems.

Publications The contents of this chapter were partially published in:

• [DLP11] Efficient and correct transactional memory programs combining snapshot iso-

lation and static analysis. Ricardo J. Dias, João M. Lourenço, and Nuno M. Preguiça. In

proceedings of HotPar 2011 (Workshop), May 2011.

• [DDSL12] Verification of snapshot isolation in transactional memory java programs. Ri-

cardo J. Dias, Dino Distefano, João C. Seco, and João M. Lourenço. In proceedings of ECOOP

2012, June 2012.

93

4. VERIFICATION OF SNAPSHOT ISOLATION ANOMALIES 4.10. Concluding Remarks

94

5
Support of In-Place Metadata in

Transactional Memory

An efficient technique to implement a snapshot isolation based transactional memory algorithm

is to use multi-version concurrency control techniques. In a multi-version algorithm, several ver-

sions of the same data item may exist. In the particular case of transactional memory, several

versions of the same memory block may exist. The efficient implementation of a multi-version

algorithm requires a one-to-one correspondence between the memory block and the list of past

versions. In this Chapter we propose an extension to a well known Java STM framework — the

Deuce — that allows to efficiently implement multi-version algorithms and compare them against

other kinds of STM algorithms. This chapter also includes the description and evaluation of an

implementation of the proposed extension.

5.1 Introduction

Software Transactional Memory (STM) algorithms differ in the properties and guarantees they

provide. Among others differences, one can list distinct strategies used to read (visible or in-

visible) and update memory (direct or deferred), the consistency (opacity or snapshot isolation)

and progress guarantees (blocking or non-blocking), the policies applied to conflict resolution

(contention management), and the sensitivity to interactions with non-transactional code (weak

or strong atomicity). Some STM frameworks (e.g., DSTM2 [HLM06] and Deuce [KSF10]) ad-

dress the need of experimenting with new STM algorithms and their comparison, by providing

a unique transactional interface and different alternative implementations of STM algorithms.

However, STM frameworks tend to favor the performance for some classes of STM algorithms

and disfavor others. For instance, the Deuce framework favors algorithms like TL2 [DSS06] and

LSA [RFF06], which are resilient to false sharing of transactional metadata (such as ownership

95

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.1. Introduction

records) stored in an external table, and disfavor multi-version algorithms, which require unique

metadata per memory location. This chapter addresses this issue by proposing an extension to

the Deuce framework that allows the efficient support of transactional metadata records per mem-

ory location, opening the way to more efficient implementations of multi-version algorithms and

consequently of snapshot isolation algorithms.

STM algorithms manage information per transaction (frequently referred to as a transaction

descriptor), and per memory location (or object reference) accessed within that transaction. The

transaction descriptor is typically stored in a thread-local memory space and maintains the infor-

mation required to validate and commit the transaction. The per memory location information

depends on the nature of the STM algorithm, and may be composed by, e.g., locks, timestamps

or version lists, will henceforth be referred as metadata. Metadata is stored either adjacent to each

memory location (in-place strategy), or in an external table (out-place or external strategy). STM

libraries for imperative languages, such as C, frequently use the out-place strategy, while those

addressing object-oriented languages bias towards the in-place strategy.

The out-place strategy is implemented by using a table-like data structure that efficiently maps

memory references to its metadata. Storing the metadata in such a pre-allocated table avoids the

overhead of dynamic memory allocation, but incurs in the overhead for evaluating the location-

to-metadata mapping function. The bounded size of the external table also induces a false sharing

situation, where multiple memory locations share the same table entry and hence the same meta-

data, in a many-to-one relation between memory locations and metadata units.

The in-place strategy is usually implemented using the decorator design pattern [GHJV94], by

extending the functionality of an original class by wrapping it in a decorator class that contains

the required metadata. This technique allows the direct access to the object metadata without sig-

nificant overhead, but is very intrusive to the application code, which must be heavily rewritten

to use the decorator classes instead of the original ones. The decorator pattern based technique

bears two other problems: additional overhead for non-transactional code, and multiple difficul-

ties while working with primitive and array types. The in-place strategy implements a one-to-one

relation between memory locations and metadata units, thus no false sharing occurs. Riegel et

al. [RB08] briefly describe the trade-offs of using in-place versus out-place strategies.

Deuce is among the most efficient STM frameworks for the Java programming language and

provides a well defined interface that is used to implement several STM algorithms. On the ap-

plication developer’s side, a memory transaction is defined by adding the annotation @Atomic

to a Java method, and the framework automatically instruments the application’s bytecode to in-

tercept the read and write memory accesses by injecting call-backs to the STM algorithm. These

call-backs receive the referenced memory address as argument, hence limiting the range of viable

STM algorithms to be implemented by forcing an out-place strategy. To implement an algorithm

in Deuce that requires a one-to-one relation between metadata and memory locations, such as a

multi-version algorithm, one needs to use a external table that handles collisions, which signifi-

cantly degrades the throughput of the algorithm.

In the remaining of this chapter we present a novel approach to support the in-place metadata

strategy that does not use the decorator pattern, and thoroughly evaluate its implementation

in Deuce. This extension allows the efficient implementation of algorithms requiring a one-to-

one relation between metadata and memory locations, such as multi-version algorithms. The

developed extension has the following properties:

Efficiency The extension fully supports primitive types, even in transactional code. It does not

96

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.1. Introduction

rely on an external mapping table, thus providing fast direct access to the transactional

metadata. Transactional code does not require the extra memory dereference imposed by

the decorator pattern. Non-transactional code is in general oblivious to the presence of

metadata in objects, hence no significant performance overhead is introduced. And we pro-

pose a solution for supporting transactional n-dimensional arrays with a negligible over-

head for non-transactional code.

Flexibility The extension supports both the original out-place and the new in-place strategies

simultaneously, hence it is fully backwards compatible and imposes no restrictions on the

nature of the STM algorithms to be used, nor on their implementation strategies.

Transparency The extension automatically identifies, creates and initializes all the necessary ad-

ditional metadata fields in objects. No source code changes are required, although some

light transformations are applied to the non-transactional bytecode. The new transactional

array types — that support metadata at the array cell level — are compatible with the stan-

dard arrays, therefore not requiring pre- and post-processing of the arrays when used as

arguments in calls to the standard JDK or third-party non-transactional libraries.

Compatibility Our extension is fully backwards compatible and the already existing implemen-

tations of STM algorithms are executed with no changes and with zero or negligible perfor-

mance overhead.

Compliance The extension and bytecode transformations are fully-compliant with the Java spec-

ification, hence supported by standard Java compilers and JVMs.

This extension allows to efficiently implement snapshot isolation STM algorithms on top of

multi-version techniques. We implemented a snapshot isolation algorithm and evaluated its per-

formance against opaque algorithms. We used micro-benchmarks that are safe under SI, as re-

ported in the previous chapter, such as the Linked List.

The Deuce framework assumes a weak atomicity model, i.e., transactions are atomic only with

respect to other transactions, and hence, their execution may be interleaved with non-transactional

code. Multi-version algorithms store the values of memory blocks in transactional metadata ob-

jects (which contain the version lists), and therefore non-transactional memory accesses cannot

see transactional updates, nor transactional accesses can see non-transactional updates. We tackle

this problem by proposing an algorithmic adaptation for multi-version algorithms that allows to

support a weak atomicity model for multi-version algorithms with meaningless impact on the

performance in general.

This chapter follows with a description of the Deuce framework and its out-place strategy in

Section 5.2. Section 5.3 describes properties of the in-place strategy, its implementation, and its

limitations as an extension to Deuce. We present an evaluation of the extension’s implementation

using several metrics in Section 5.4. Section 5.5 describes the implementation of several state-of-

the-art STM multi-version algorithms using our proposed extension. In Section 5.6 we show how

to adapt the multi-version algorithms to support a weak-atomicity model. Finally, we present a

comparison between different single- and multi-version algorithms using standard benchmarks

in Section 5.7.

97

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.2. Deuce and the Out-Place Strategy

5.2 Deuce and the Out-Place Strategy

Deuce supplies a single @Atomic Java annotation, and relies heavily on bytecode instrumentation

to provide a transparent transactional interface to application developers, which are unaware of

how the STM algorithms are implemented and which strategies they use to store the transactional

metadata.

Algorithms such as TL2 [DSS06] or LSA [RFF06] use an out-place strategy by resorting to a

very fast hashing function and storing a single lock in each table entry. However, due to perfor-

mance issues, the mapping table does not avoid hash collisions and thus two memory locations

may be mapped to the same table entry, resulting in the false sharing of a lock by two differ-

ent memory locations. In these algorithms, the false sharing may cause transactions to fail and

abort that otherwise would succeed, hurting the system performance but never compromising

the correctness.

The out-place strategy suits algorithms where metadata information does not depend on the

memory locations, such as locks and timestamps, but not algorithms that need to keep location-

dependent metadata information, such as multi-version algorithms. The out-place implementa-

tions of these algorithms require a mapping table with collision lists, which significantly degrades

performance.

Deuce provides the STM algorithms with a unique identifier for each object field, composed

by the reference to the object and the field’s logical offset within that object. This unique identifier

is then used by the STM algorithms as the key to any map implementation that associates the

object’s field with the transactional metadata. Likewise for arrays, the unique identifier of an

array’s cell is composed by the array reference and the index of that cell.

The performance of STM algorithms are known to depend with both the hardware and the

transactional workload, and a thorough experimental evaluation is required to assess the optimal

combination of the triple hardware–algorithm–workload. Deuce is an extensible STM framework

that may be used to address such comparison of different STM algorithms. However, Deuce is bi-

ased towards the out-place strategy, allowing very efficient implementations for some algorithms

like TL2 and LSA, but hampering some others, like the multi-version oriented STM algorithms.

To support the out-place strategy, Deuce identifies an object’s field by the object reference and

the field’s logical offset. This logical offset is computed at compile time, and for every field f

in every class C an extra static field fo is added to that class, whose value represents the logical

offset of f in class C. No extra fields are added for array cells, as the logical offset of each cell

corresponds to its index. Within a memory transaction, when there is a read or write memory

access to a field f of an object O, or to the array element A[i], the runtime passes the pair (O, fo)

or (A, i) respectively as the argument to the call-back function. The STM algorithm shall not

differentiate between field and array accesses. If an algorithm wants to, e.g., associate a lock with

a field, it has to store the lock in an external table indexed by the hash value of the pair (O, fo)

or (A, i). STM algorithm implementations must comply with a well defined Java interface, as

depicted in Figure 5.1. The methods specified in the interface are the call-back functions that are

injected by the instrumentation process in the application code. For each read and write of a field

of an object, the methods onReadAccess and onWriteAccess, are invoked respectively. The

method beforeReadAccess is called before the actual read of an object’s field.

We have extended Deuce to support an efficient in-place strategy, in addition to the already

98

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.3. Supporting the In-Place Strategy

1 public interface Context {

2 void init(int atomicBlockId, String metainf);

3 boolean commit();

4 void rollback();

5

6 void beforeReadAccess(Object obj, long field);

7

8 int onReadAccess(Object obj, int value, long field);

9 // ... onReadAccess for the remaining types

10

11 void onWriteAccess(Object obj, int value, long field);

12 // ... onWriteAccess for the remaining types

13 }

Figure 5.1: Context interface for implementing an STM algorithm.

TxField

TxArrIntField TxArrObjectField...

...

User Defined
Class Fields

User Defined
Array Elem

User Defined
Array Elem

Figure 5.2: Metadata classes hierarchy.

existing out-place strategy, while keeping the same transparent transactional interface to the ap-

plications.

5.3 Supporting the In-Place Strategy

In our approach to extend Deuce to support the in-place strategy, we replace the previous pair of

arguments to call-back functions (O, fo) with a new metadata object fm, whose class is specified

by the STM algorithm’s programmer. We guarantee that there is a unique metadata object fm for

each field f of each object O, and hence the use of fm to identify an object’s field is equivalent

to the pair (O, fo). The same applies to arrays, where we ensure that there is a unique metadata

object am for each position of any array A.

5.3.1 Implementation

Although the implementation of the support for in-place metadata objects differs considerably

for class fields and array elements, a common interface is used to interact with the STM algorithm

implementation. This common interface is supported by a well defined hierarchy of metadata

classes, illustrated in Figure 5.2, where the rounded rectangle classes are defined by the STM

algorithm developer.

All metadata classes associated with class fields extend directly from the top class TxField

(see Figure 5.3). The constructor of TxField class receives the object reference and the logi-

cal offset of the field. All subclasses must call this constructor. For array elements, we created

99

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.3. Supporting the In-Place Strategy

1 public class TxField {

2 public Object ref;

3 public final long offset;

4

5 public TxField(Object ref, long offset) {

6 this.ref = ref;

7 this.offset = offset;

8 }

9 }

Figure 5.3: TxField class.

1 public interface ContextMetadata {

2 void init(int atomicBlockId, String metainf);

3 boolean commit();

4 void rollback();

5

6 void beforeReadAccess(TxField field);

7 int onReadAccess(int value, TxField field);

8 // ... onReadAccess for the remaining types

9

10 void onWriteAccess(int value, TxField field);

11 // ... onWriteAccess for the remaining types

12 }

Figure 5.4: Context interface for implementing an STM algorithm supporting in-place metadata.

specialized metadata classes for each primitive type in Java, the TxArr*Field classes, where

* ranges over the Java primitive types1. All the TxArr*Field classes extend from TxField,

providing the STM algorithm with a simple and uniform interface for call-back functions.

We defined a new interface for the call-back methods (see Figure 5.4). In this new interface,

the read and write call-back functions (onReadAccess and onWriteAcess respectively) receive

only the metadata TxField object, not the object reference and logical offset of the Context in-

terface. This new interface coexists with the original one in Deuce, allowing new STM algorithms

to access the in-place metadata while ensuring backward compatibility.

The TxField class can be extended by the STM algorithm programmer to include additional

information required by the algorithm for, e.g., locks, timestamps, or version lists. The newly

defined metadata classes need to be registered in our framework to enable its use by the instru-

mentation process, using a Java annotation in the class that implements the STM algorithm, as

exemplified in Figure 5.5. The programmer may register a different metadata class for each kind

of data type, either for class field types or array types. As shown in the example of Figure 5.5,

the programmer registers the metadata implementation class TL2IntField for the fields of int

type, by assigning the name of the class to the fieldIntClass annotation property.

The STM algorithm must implement the ContextMetadata interface (Figure 5.4) that in-

cludes a call-back function for the read and write operations on each Java type. These functions

always receive an instance of the super class TxField, but no confusion arises from there, as each

1int, long, float, double, short, char, byte, boolean, and Object.

100

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.3. Supporting the In-Place Strategy

1 @InPlaceMetadata(

2 fieldObjectClass="TL2ObjField",

3 fieldIntClass="TL2IntField",

4 ...

5 arrayObjectClass="TL2ArrObjectField",

6 arrayIntClass="TL2ArrIntField",

7 ...

8)

9 public class TL2Context implements ContextMetadata {

10 ...

11 }

Figure 5.5: Declaration of the STM algorithm specific metadata.

1 class C {

2 int a;

3 Object b;

4 }
=⇒

1 class C {

2 int a;

3 Object b;

4 final TxField a_metadata;

5 final TxField b_metadata;

6 }

Figure 5.6: Example transformation of a class with the in-place strategy.

algorithm knows precisely which metadata subclass was actually used to instantiate the metadata

object.

Lets now see where and how the metadata objects are stored, and how they are used on the

invocation of the call-back functions. We will explain separately the management of metadata

objects for class fields and for array elements.

5.3.1.1 Adding Metadata to Class Fields

During the execution of a transaction, there must be a metadata object fm for each accessed field

f of object O. Ideally, this metadata object fm is accessible by a single dereference operation

from object O, which can be achieved by adding a new metadata field (of the corresponding

type) for each field declared in a class C. The general rule for this process can be described

as: given a class C that has a set of declared fields F = {f1, . . . , fn}, for each field fi ∈ F we

add a new metadata object field fm
i+n to C, such that the class ends with the set of fields Fm =

{f1, . . . , fn, f
m
1+n, . . . , f

m
n+n}, where each field fi is associated with the metadata field fm

i+n for any

i ≤ n. In Figure 5.6 we show a concrete example of the transformation of a class with two fields.

Instance and static fields are expected to have instance and static metadata fields, respectively.

Thus, instance metadata fields are initialized in the class constructor, while static metadata fields

are initialized in the static initializer (static { ... }). This ensures that whenever a new

instance of a class is created, the corresponding metadata objects are also new and unique, while

static metadata objects are the same in all instances. Since a class can declare multiple constructors

that can call each other, using the telescoping constructor pattern [Blo08], blindly instantiating the

metadata fields in all constructors would be redundant and impose unnecessary stress on the

garbage collector. Therefore, the creation and initialization of metadata objects only takes place

101

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.3. Supporting the In-Place Strategy

in the constructors that do not rely in another constructor to initialize its target.

Opposed to the transformation approach based in the decorator pattern, where primitive types

must be replaced with their object equivalents (e.g., in Java an int field is replaced by an Integer

object), our transformation approach keeps the primitive type fields untouched, simplifying the

interaction with non-transactional code, limiting the code instrumentation and avoiding auto-

boxing and its overhead.

5.3.1.2 Adding Metadata to Array Elements

The structure of an array is very strict. Each array cell contains a single value of a well defined

type and no other information can be added to those cells. The common approach to overcome

this limitation and add some more information to each cell, is to change the original array to

an array of objects that wrap the original value and the additional information. This straight-

forward transformation has many implications in the application, as code statements accessing

the original array or array elements will now have to be rewritten to use the new array type or

wrapping class respectively. This problem is even more complex if the new arrays with wrapped

elements are to be manipulated by non-instrumented libraries, such as the JDK libraries, which

are unaware of the new array types.

While the instrumentation process can replace the original arrays with the new arrays where

needed, the straight-forward transformation approach needs to be able to revert back to the orig-

inal arrays when presented with non-instrumented code. For example, consider that the appli-

cation code is invoking the non-instrumented method Arrays.binarySearch(int[], int)

from the Java platform. Throughout the instrumented code int[] has been replaced by a new

type, which we denote as IntWrapper[]. As the binarySearch method was not instru-

mented, the array parameter remains of type int[], thus one needs to construct a temporary

int[] array with the same state of the IntWrapper[] array, which can then be passed as an

argument to the binarySearch method. From the caller perspective, the non-instrumented

method itself is a black box which may have modified some array cells.2 Hence, unless we were

to build some kind of black/white list with such information for all non-instrumented methods,

the values from the temporary int[] array have to be copied back to the original IntWrapper[]

array. All these memory allocation and copies significantly hamper the performance when exe-

cuting non-instrumented code, which should not be affected due to transactional-related instru-

mentation. We call the straight-forward approach just described the naïve solution.

The solution we propose is also based on changing the type of the array to be manipulated

by the instrumented application code, but with minimal impact on the performance of non-

instrumented code. We keep all the values in the original array, and have a sibling second array,

only manipulated by the instrumented code, that contains the additional information and refer-

ences to the original array. The type in the declaration of the base array is changed to the type of

the corresponding sibling array (TxArr*Field), as shown in Figure 5.7. This Figure also illus-

trates the general structure of the sibling TxArr*Field arrays (in this case, a TxArrIntField

array). Each cell of the sibling array has the metadata information required by the STM algorithm,

its own position/index in the array, and a reference to the original array where the data is stored

(i.e., where the reads and updates take place). This scheme allows the sibling array to keep a

2In this example we used the binarySearch method which does not modify the array, but in general we do not
know.

102

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.3. Supporting the In-Place Strategy

1 class D {

2 int[] a; //base array

3 }

index=0
array
index=1
array
index=2
array

5

3

8

[0]

[2]

[1]

[0]

[1]

[2]

TxArrIntField[3] int[3]

=⇒
1 class D {

2 TxArrIntField[] a;

3 TxField a_metadata;

4 }

5

6 class TxArrIntField {

7 int[] array; //base array

8 int index;

9 }

Figure 5.7: Memory structure of a TxArrIntField array.

1 void foo(int[] a) {

2 // ...

3 t = a[i];

4 }

=⇒

1 void foo(TxArrIntField[] a) {

2 // ...

3 t = a[0].array[i];

4 }

Figure 5.8: Example transformation of array access in the in-place strategy.

metadata object for each element of the original array, while maintaining the original array al-

ways updated and compatible with non-transactional legacy code. With this approach for adding

metadata support to arrays, the original array can still be retrieved with a minimal overhead by

dereferencing twice the sibling TxArr*Field array. Since the original array serves as the back-

ing store, no memory allocation or copies need to be performed, even when array elements are

changed by non-instrumented code. We call our proposed solution the efficient solution.

Non-transactional methods that have arrays as parameters are also instrumented to replace

the array type by the corresponding sibling TxArr*Field. For non-instrumented methods, rely-

ing on the method signature is not enough to know if there is the need to revert to primitive

arrays. Take, for example, the System.arraycopy(Object, int, Object, int, int)

method from the Java platform. The signature refers Object but it actually receives arrays as

arguments. We identify these situations by inspecting the type of the arguments on a virtual stack3

and if an array is found, despite the method’s signature, we revert to primitive arrays. The value

of an array element is then obtained by dereferencing the pointer to the original array kept in the

sibling, as illustrated in Figure 5.8. When passing an array as argument to an uninstrumented

method (e.g., from the JDK library), we can just pass the original array instance. Although the

instrumentation of non-transactional code adds an extra dereference operation when accessing an

array, we still do avoid the auto-boxing of primitive types, which would impose a much higher

overhead.

5.3.1.3 Adding Metadata to Multi-Dimensional Arrays

The special case of multi-dimensional arrays is tackled using the TxArrObjectField class,

which has a different implementation from the other specialized metadata array classes. This

class has an additional field, nextDim, which may be null in the case of a unidimensional ref-

erence type array, or may hold the reference of the next array dimension by pointing to another

3During the instrumentation process we keep the type information of the operand stack.

103

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.3. Supporting the In-Place Strategy

index=0

array

nextDim

[0]

index=1

array

nextDim

[1]

index=0
array
index=1
array
index=2
array

index=0
array
index=1
array
index=2
array

[0]

[2]

[1]

[0]

[2]

[1]

[0]

[1]
[0]

[1]

[2]

[0]

[1]

[2]

TxArrObjectField[2]

TxArrIntField[3]

TxArrIntField[3]

int[2][3]

int[3]

int[3]

Figure 5.9: Memory structure of a multi-dimensional TxArrIntField array.

Table 5.1: Comparison between primitive and transactional arrays.

Arrays Access nth dimension Objects Non-transactional methods

Primitive arrays n derefs
n∑

i=1

li−1 —

Instrumented arrays 2n+ 1 derefs
n∑

i=1

2li−1 + (li × li−1) 2 derefs

n (dimensions), li (length of ith dimension)

array of type TxArr*Field. Once again, the original multi-dimensional array is always up to

date and can be safely used by non-transactional code.

Figure 5.9 depicts the memory structure of a bi-dimensional array of integers. Each element of

the first dimension of the sibling array has a reference to the original integer matrix. The elements

of the second dimension of the sibling array have a reference to the second dimension of the

matrix array.

Table 5.1 provides a comparison between the regular primitive arrays, used in the out-place

strategy, and our instrumented arrays, used in the in-place strategy. The instrumented arrays

follow the strategy described above. For accessing a cell in a n-dimensional array (Table 5.1,

second column), in a primitive array it takes n object dereferences, i.e., dereferencing all interme-

diate dimension arrays and directly accessing the cell. With our array instrumentation it takes

2n+1 dereferences, introducing an extra dereference per dimension (2n) because each cell is now

a TxArr*Field. Since the original array is used as the backing store, there is an additional deref-

erence of the original array in the last dimension to access the value. Regarding the number of

objects that each approach needs for an n-dimensional array (Table 5.1, third column), for sim-

plicity’s sake let’s assume that all intermediate ith-dimensional arrays have the same length, li.

Primitive arrays have li−1 objects per dimension, i.e., each dimension’s array cell is a reference

to another array, except in the last dimension. The instrumented arrays have twice the number

of arrays, i.e., 2li−1, corresponding to the the original array (which is kept) and the sibling ar-

ray, plus an extra TxArr*Field in every array cell (li × li−1). When an array is to be used by a

non-instrumented method (Table 5.1, fourth column), the instrumented arrays require two deref-

erences to obtain the backing-store primitive array, i.e., dereferencing the sibling array followed

by a dereference of a TxArr*Field cell, from which the array field can be used. These two

104

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

dereferences required by our instrumented arrays contrast with the expensive memory allocation

and copies necessary for the straight-forward naïve solution, described in 5.3.1.2.

5.3.2 Instrumentation Limitations

Some Java core classes, mostly in the java.lang package, are loaded and initialized during

the JVM bootstrap. Because these classes are loaded upon JVM startup, they can either be re-

defined online after the bootstrap, or require an offline, static, instrumentation. Online redefini-

tion of classes has many and strong limitations, and its support is an optional functionality for

JVMs [Ora12]. For this reason, instead of online redefinition of bootstrap-loaded classes, Deuce

provides an offline instrumentation process.

Most JVMs are very sensitive with regard to the order in which classes are loaded during

the bootstrap. If that order is changed due to the execution of instrumented code during the

bootstrapping phase (i.e., because instrumented code may depend on certain classes that need

to be loaded before the instrumented code can be executed), the JVM may crash [BHM07]. The

Deuce online instrumentation injects static fields and their initialization, which would disrupt the

class loading order if done on bootstrap-loaded classes. Deuce solves this problem in the offline

instrumentation by creating a separate class to hold the fields instead. This is possible because

the necessary fields are static.

The instrumentation to support the in-place metadata strategy is more complex, requiring

the injection of instance fields and modifying arrays. For this reason, the instrumentation of

bootstrap-loaded classes is not supported by our current instrumentation process, as these trans-

formations disrupt the bootstrap class loading order by loading the metadata and transactional

array classes.

At the moment there is no support for structural modification of arrays inside non-instrumented

code, such as the java runtime library, because the solution for metadata at array element level

relies on a sibling array where a structural invariant exists between the sibling array and the orig-

inal array. If a non-instrumented method modifies the original array, the structural invariant is

broken and both structures become different.

5.4 Implementation Assessment

The implementation of the proposed Deuce extension, described in the previous sections, intro-

duces more complexity to the transactional processing when comparing with the original Deuce

implementation. This complexity, in the form of additional memory operations and allocations,

may slowdown the performance in some cases. In our first step to assess the extension implemen-

tation performance, we evaluate the overhead of the new implementation by comparing it with

the original Deuce implementation.

In a second step we evaluate the performance speedup of using our extension to implement

a multi-version STM algorithm, against an implementation of the same algorithm using the orig-

inal Deuce interface. We chose a well known multi-version STM algorithm, JVSTM, described

in [CRS06], and implemented two versions of the algorithm, one using the original Deuce in-

terface and an out-place strategy (referred to as jvstm-outplace), and another using our new

interface and extension supporting an in-place strategy (referred to as jvstm-inplace).

105

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

-20

 0

 20

 40

 60

 80

 100

 120

LinkedList 0%
LinkedList 10%

LinkedList 50%

LinkedList 90%

R
B
Tree 0%

R
B
Tree 10%

R
B
Tree 50%

R
B
Tree 90%

S
kipList 0%

S
kipList 10%

S
kipList 50%

S
kipList 90%

S
TM

B
ench7

V
acation-low

+

V
acation-high+

K
M

eans-low
+

K
M

eans-high+

G
enom

e+
Intruder+
Labyrinth+
S
S
C
A
2

O
v
e
rh

e
a
d
 (

%
)

In-place metadata management overhead

38% 35%
33% 33%

14%
16%

16% 14%

22%

11%

9% 13%

7%
3% 3%

11%

7%

11%

1%

19%

95%

Figure 5.10: Performance overhead measure of the usage of metadata objects relative to out-place
TL2.

Both the overhead and speedup evaluations are preformed using several micro- and macro-

benchmarks. Micro-benchmarks are composed by the Linked List, Red-Black Tree, and Skip-List

data structures. Macro-benchmarks are composed by the STAMP [CMCKO08] benchmark suite

and the STMBench7 [GKV07] benchmark. All these benchmarks were executed in our extension

of Deuce with in-place metadata with no changes whatsoever, as all the necessary bytecode trans-

formations were performed automatically by our instrumentation process.

The benchmarks were executed on a computer with four AMD Opteron 6272 16-Core proces-

sors @ 2.1 GHz with 8×2 MB of L2 cache, 16 MB of L3 cache, and 64 GB of RAM, running Debian

Linux 3.2.41 x86_64, and Java 1.7.0_21.

In the following sections we describe in detail, and present the results, of the overhead evalu-

ation as well as the speedup evaluation.

5.4.1 Overhead Evaluation

To evaluate the performance overhead of our extension, we compared the performance of the

TL2 algorithm as provided by the original Deuce distribution, with another implementation of

TL2 (tl2-overhead) using the new interface of our modified Deuce (as described in Figure 5.4

in page 100). The original Deuce interface for callback functions provide a pair with the object

reference and the field logical offset. The new interface provides a reference to the field metadata

(TxField) object. Despite using the in-place metadata feature, the tl2-overhead implemen-

tation is as much alike as the original as possible, and still uses an external table to map mem-

ory references to locks. The main differences between the two versions reside in the additional

management of metadata objects (allocation, and array manipulation), and the two additional

dereferences on the metadata object to obtain the field’s object reference and the field offset, for

each read and write operation. By comparing these two very similar implementations, we can

make a reasonable estimation of the performance overhead introduced by the management of the

metadata object fields and sibling arrays.

106

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

Figure 5.10 depicts the average and standard deviation of the performance overhead of tl2-

-overhead implementation with respect to the original Deuce TL2 implementation. The Figure

reports on several benchmarks, with executions ranging form 1 to 64 threads. Appendix A.1

presents the detailed results for each benchmark. The overhead of the additional management of

metadata objects and sibling arrays is in average about 20%. The benchmarks that use metadata

arrays (SkipList, Kmeans, Genome, Labyrinth, SSCA2) have in general a higher overhead than

the benchmarks that only use metadata objects for class fields (RBTree, STMBench7, Vacation, In-

truder). The micro-benchmarks were all tested in four scenarios: with a read-only workload (0%

of updates), and read-write workloads (10%, 50%, and 90% of updates). These micro-benchmarks

are composed of small transactions which only perform read and write accesses to shared mem-

ory, and thus, the overhead is more visible. The LinkedList benchmark has a high overhead and

does not use metadata arrays. This benchmark has long running transactions that perform a

very high number of read operations, and our extension requires an external table lookup and an

additional object dereference to retrieve the metadata object for each memory read operation.

The STAMP benchmarks, show relatively low overhead with the exception of SSCA2+ bench-

mark. These benchmarks have medium sized transactions which perform some computations

with the data read from the shared memory. The SSCA2+ benchmark only preforms read and

write operations over arrays, and may be considered the worst-case scenario for our extension.

The STMBench7 benchmark was executed with a read-dominant workload, without long-

traversals, and with structural modifications activated. In this benchmarks transactions are com-

putationally much heavier, which hides the small overhead introduced by the management of

in-place metadata.

From this results we can conclude that the extension introduces a small overhead due to the

management of in-place metadata, and additionally it allows the efficient implementation of a

class of STM algorithms that require a one-to-one relation between memory locations and their

metadata. Multi-version based algorithms fit into that class, as they associate a list of versions

(holding past values) with each memory location.

In the next sections we show the comparison of the performance of the same multi-version

algorithm implemented in the original Deuce framework and implemented using our extension.

5.4.2 Implementing a Multi-Versioning Algorithm: JVSTM

The JVSTM algorithm defines the notion of version box (vbox), which maintains a pointer to the

head of an unbounded list of versions, where each version is composed by a timestamp and

the data value. Each version box represents a distinct memory location. The timestamp in each

version corresponds to the timestamp of the transaction that created that version, and the head of

the version list always points to the most recent version.

During the execution of a transaction, the read and write operations are done in versioned

boxes, which hold the data values. For each write operation a new version is created and tagged

with the transaction timestamp. For read operations, the version box returns the version with

the highest timestamp less than or equal to the transaction’s timestamp. A particularity of this

algorithm is that read-only transactions never abort, neither do write-only transactions. Only

read-write transactions may conflict, thus aborting.

On committing a transaction, a global lock must be acquired to ensure mutual exclusion with

all other concurrent transactions. Once the global lock is acquired, the transaction validates the

107

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

read-set, and in case of success, creates the new version for each memory location that was writ-

ten, and finally releases the global lock. To prevent version lists from growing indefinitely, ver-

sions that are no more necessary are cleaned up by a vbox garbage collector.

To implement the JVSTM algorithm, we need to associate a vbox with each field of each object.

For the sake of the correctness of the algorithm, this association must guarantee a relation of one-

to-one between the vbox and the object’s field. We will detail the implementation of this association

for both, the out-place and the in-place strategies.

5.4.2.1 Out-Place Strategy

To implement JVSTM algorithm in the original Deuce framework, which only supports the out-

place strategy, the vboxes must be stored in an external table4. The vboxes are indexed by a unique

identifier for the object’s field, composed by the object reference and the field’s logical offset.

Whenever a transaction performs a read or write operation on an object’s field, the respective

vbox must be retrieved from the table. In the case where the vbox does not exists, we must create

one and add it into the table. These two steps, verifying if a vbox is present in the table and

creating and inserting a new one if not, must be performed atomically, otherwise we would incur

in the case where two different vboxes may be created for the same object’s field. Once the vbox

is retrieved from the table, either it is a read operation and we look for the appropriate version

using the transaction’s timestamp and return the version’s value, or it is a write operation and we

add an entry to the transaction’s write-set.

We use weak references in the table indices to reference the vbox objects and not hamper the

garbage collector from collecting old objects. Whenever an object is collected our algorithm is

notified in order to remove the respective entry from the table.

Despite using a concurrent hash map, this implementation suffers from a high overhead

penalty when accessing the table, since it is a point of synchronization for all the transactions

running concurrently. This implementation (jvstm-outplace) will be used as a base reference

when comparing with the implementation of the same JVSTM algorithm using the in-place strat-

egy (jvstm-inplace).

5.4.2.2 In-Place Strategy

The in-place version of JVSTM algorithm makes use of the metadata classes to hold the same

information as the vbox in the out-place variant. This will allow direct access to the version list

whenever a transaction is reading or writing.

We extend the vbox class from the TxField class as shown in Figure 5.11.

The actual implementation creates a VBox class for each Java type in order to prevent the

boxing and unboxing of primitive types. When the constructor is executed, a new version with

timestamp zero is created, containing the current value of the field identified by object ref and

logical offset offset. The value is retrieved using the private method read().

The code to create these VBox objects during the execution of the application is inserted auto-

matically by our bytecode instrumentation process. The lifetime of an instance of the class VBox

is the same as the lifetime of the object ref. When the garbage collector decides to collect the

object ref, all metadata objects of class VBox associated with each field of the object ref, are also

collected.

4We opted to use a concurrent hash table from the java.util.concurrent package.

108

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

1 public class VBox extends TxField {

2 protected VBoxBody body;

3

4 public VBox(Object ref, long offset) {

5 super(ref, offset);

6 body = new VBoxBody(read(), 0, null);

7 }

8

9 // ... methods to access and commit versions

10 }

Figure 5.11: VBox in-place implementation.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

LinkedList 0%
LinkedList 10%

LinkedList 50%

LinkedList 90%

R
B
Tree 0%

R
B
Tree 10%

R
B
Tree 50%

R
B
Tree 90%

S
kipList 0%

S
kipList 10%

S
kipList 50%

S
kipList 90%

S
TM

B
ench7

V
acation-low

+
V
acation-high+

K
M

eans-low
+

K
M

eans-high+

G
enom

e+
Intruder+
Labyrinth+
S
S
C
A
2

S
p

e
e

d
u

p
 (

x
 f

a
s
te

r)

JVSTM-Inplace Speedup (compared against JVSTM-Outplace)

16x

7x
7x

8x

3x
4x

4x 4x

2x

4x 4x 4x
6x

3x 3x

18x

15x

3x

23x

4x

2x

Figure 5.12: In-place over Out-place strategy speedup: the case of JVSTM.

Our comparison evaluation shows that the direct access to the version list allowed by the in-

place strategy will greatly benefit the performance of the algorithm. We present the comparison

results in the next section by presenting the speedup of the in-place version with respect to the

out-place version.

5.4.3 Speedup Evaluation

From the evaluation of the in-place management overhead, we concluded that this strategy is

a viable option for implementing algorithms biased to in-place transactional metadata. Hence,

we implemented and evaluated two versions of the JVSTM algorithm as proposed in [CRS06],

one in the original Deuce using the native out-place strategy (jvstm-outplace), and another in

the extended Deuce using our in-place strategy (jvstm-inplace), as described in the previous

Section 5.4.2.

Figure 5.12 depicts the average speedup of our two implementations of the JVSTM algorithm:

one In-Place (jvstm-inplace) and another Out-Place (jvstm-outplace). We used the same

set of benchmarks and configuration that was used for the overhead evaluation in Section 5.4.1.

109

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16 24 32 48 64
 0

 2

 4

 6

 8

 10

 12

 14

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#
 T

x
 A

b
o
rt

s
 (

x
1
0

5
)

Threads

Intruder+ (-a10 -l16 -n4096 -s1)

jvstm-outplace
jvstm-outplace-aborts

jvstm-inplace
jvstm-inplace-aborts

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 24 32 48 64
 0

 1

 2

 3

 4

 5

 6

 7

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

#
 T

x
 A

b
o
rt

s
 (

x
1
0

2
)

Threads

KMeans-high+ (-m15 -n15 -t0.05 -irandom-n16384-d24-c16.data)

jvstm-outplace
jvstm-outplace-aborts

jvstm-inplace
jvstm-inplace-aborts

Figure 5.13: Performance and transaction aborts of JVSTM-Inplace/Outplace for the Intruder and
KMeans benchmarks.

In Appendix A.2 we also present the results in detail for each benchmark. The in-place version of

the JVSTM algorithm is in average 7 times faster than its dual out-place version.

The speedup observed for the micro-benchmarks, where transactions are small and contention

is low, shows that the multi-versioning algorithms greatly benefit from our in-place support. In

the case of the STAMP benchmarks, where transactions are submitted to workloads of intensive

contention, the in-place version is much faster than the out-place approach as it avoids com-

pletely the use of a shared external table, which becomes a serious bottleneck in the presence of

high contention. In the special case of KMeans and Intruder benchmarks, the overhead of manag-

ing a shared external table drastically increases the probability of transaction aborts as depicted

in Figure 5.13, which in turn makes the transactional throughput to decrease. The STMBench7

macro-benchmark has many long-running transactions and the overall throughput for both algo-

rithms is relatively low. Even so, the in-place algorithm is in average 6× faster.

5.4.4 Memory Consumption Evaluation

To assess the impact of the in-place strategy in memory usage, we measured the memory con-

sumption of the algorithms we described and used before, namely tl2, tl2-overhead, jvstm-

outplace and jvstm-inplace. The comparison of the two tl2 variants shall give an insight

about the additional memory overhead imposed by the use of in-place metadata. Please remem-

ber that the tl2-overhead variant uses in-place metadata just to reference the locks, associated

with each object’s field, stored in an external table. Hence, the tl2-overhead should use the

same amount of memory as the tl2 variant plus the memory consumed by the metadata objects.

The comparison of the two jvstm variants assess the additional memory benefits of using the

in-place metadata strategy, besides the performance improvement. The jvstm-outplace vari-

ant needs to store the version lists in a shared external table which also consumes memory, and

the garbage collection of these version lists is done manually using weak references and reference

queues which may originate a greater memory footprint.

Figure 5.14 depicts the relative maximum consumed memory for each pair of algorithms. The

result of tl2-overhead variant is relative to tl2, and the result of jvstm-inplace is relative

to jvstm-outplace. The results correspond to how much more or much less memory is con-

sumed by each algorithm relative to its counter part. We measured the average and standard

deviation of the maximum consumed memory for each benchmark, which were executed in the

110

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.4. Implementation Assessment

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

LinkedList 0%
LinkedList 10%

LinkedList 50%

LinkedList 90%

R
B
Tree 0%

R
B
Tree 10%

R
B
Tree 50%

R
B
Tree 90%

S
kipList 0%

S
kipList 10%

S
kipList 50%

S
kipList 90%

S
TM

B
ench7

V
acation-low

+

V
acation-high+

K
M

eans-low
+

K
M

eans-high+

G
enom

e+
Intruder+
Labyrinth+
S
S
C
A
2A

v
e
ra

g
e
 M

a
x
im

u
m

 M
e
m

o
ry

 (
x
 m

o
re

) Relative Memory Consumption

tl2-overhead
jvstm-inplace

1.0 1.0 1.0 1.0 0.9

2.1
1.8 1.7

1.2

2.9

4.2
4.2

3.2

5.2 5.2

2.0 2.0

1.1

1.3

1.6 1.8

0.5 0.5
0.6 0.7

0.03

0.6

1.2

1.5

0.03

0.8

1.4

1.7

1.1

7.1

6.5

0.8
0.8

0.7
0.5

0.4

2.0

Figure 5.14: Relative memory consumption of TL2-Overhead and JVSTM-Inplace

same environment and configuration as in the previous evaluations. We will first discuss the

comparison of the tl2 variants and then the jvstm variants.

TL2 The use of in-place metadata in TL2 adds an extra object for each existing field of an object,

and in the case of the arrays it more than duplicates the number of objects. The tl2-overhead

results depicted in Figure 5.14 show this behavior. In the LinkedList example the consumed

memory is roughly the same, as each node of the list only has one non-final field, the next

field. In the case of the Red-Black Tree, each node has five non-final fields, and for this case

the tl2-overhead variant consumes in average 1.6× more memory. The Skip List benchmark,

uses arrays to store forward pointers. Each node has an array of objects, and in this case the

tl2-overhead consumes in average almost 3× more memory. These micro-benchmarks results

show that the additional cost in memory usage introduced by the in-place strategy is small when

compared with the performance benefits as reported in the previous section.

In the STMBench7 benchmark, which performs very long operations, on a very big data struc-

ture, the use of in-place metadata objects only duplicates the memory consumption.

The STAMP benchmarks, use a mix of objects and array objects workload. Nevertheless, the

average of memory consumption is about 2.5× more than the tl2 variant. The Vacation bench-

mark reports a higher amount of consumed memory. This is due to the use of several red-black

trees and also the use of arrays.

JVSTM Opposed to the jvstm-outplace variant, the jvstm-inplace variant does not need

an external table to store the vboxes. Instead, each vbox is made into a metadata object and is

stored near to its respective object’s field. Moreover, the vboxes are garbage collected automat-

ically by the JVM when the objects are no longer reachable. These differences to the jvstm-

-outplace variant are sufficient to get in general a lower memory footprint than the jvstm-

-outplace as shown by the results in Figure 5.14. The exception is the Vacation benchmark

where jvstm-inplace consumes between 6 and 7× more memory. This strange result is ex-

plained by the way the vboxes are initialized in each variant. The Vacation benchmark creates

111

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.5. Use Case: Multi-version Algorithm Implementation

several red-black trees with a large number of nodes in the beginning of the execution. In the

jvstm-inplace variant, the vboxes are instantiated when the node is created, and hence, when

the transactional work starts all vboxes associated with the data structures are already instanti-

ated. Contrarily, the jvstm-outplace only creates the vbox when the node is accessed, and

thus, if some nodes are never accessed then the respective vboxes are not created as well, saving

some memory. This is what happens in the Vacation benchmark. The jvstm-outplace variant

does not create all the vboxes that are created by the jvstm-inplace variant, and therefore, the

jvstm-inplace variant gets a higher memory footprint than the jvstm-outplace variant.

5.5 Use Case: Multi-version Algorithm Implementation

Our main purpose for extending Deuce with support for in-place metadata was to allow the

efficient implementation of a class of STM algorithms that require a one-to-one relation between

memory locations and their metadata. Multi-version based algorithms fit into that class, as they

associate a list of versions (holding past values) with each memory location. With the support for

in-place metadata we can implement and compare the state-of-the-art multi-version algorithms,

both between themselves and with single-version algorithms.

To support this fact, we implemented two state-of-the-art multi-version algorithms: SMV

[PBLK11] and JVSTM-LockFree [FC11]. These algorithms are significantly different, although

both are MV-permissive [PFK10]. They differ on the progress guarantees, e.g., JVSTM-LockFree

implements a commit algorithm that is lock-free, while SMV uses write-set locking, and also dif-

fer on the technique used to garbage collect unnecessary versions, where JVSTM-LockFree uses

a custom parallel garbage collector, while SMV resorts to the JVM garbage collector by using

weak-references.

We also implemented a new multi-version algorithm, based in TL2 (referred to as mvstm),

which has a bounded number of versions for each memory location and, at commit time, it locks

each memory location of the write-set to preform the write-back tentative values. This algorithm

is not MV-permissive as read-only transactions may abort due to an unavailable version or even

because the respective memory location is locked by other transaction that is committing.

In the following sections we describe the implementation details of each of the above algo-

rithms.

5.5.1 SMV – Selective Multi-versioning STM

The SMV algorithm described in [PBLK11] is an MV-permissive multi-version algorithm, which

uses the JVM garbage collector to automatically collect unreachable versions. The implementation

of this algorithm in our extension of Deuce was based on the original source code released by the

authors5. The original algorithm is object-based, opposite to Deuce, and our extension, which

only supports word-based STMs, and hence we adapted the SMV algorithm to work as a word-

base STM.

The transactional metadata required by SMV can be depicted in Figure 5.15. This is a direct

adaptation of the SMVAdapterLight class provided by the original source code. Also, we used

the same source code that implements the behavior of read- and update-transactions with min-

imal changes. We did this by implementing our extension’s interface ContextMetadata as an

5http://tx.technion.ac.il/~dima39/sourcecode/SMVLib-29-06-11.zip

112

http://tx.technion.ac.il/~dima39/sourcecode/SMVLib-29-06-11.zip

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.5. Use Case: Multi-version Algorithm Implementation

1 public class SMVObjAdapter extends TxField {

2 public volatile Object latest;

3 public int creatorTxnId;

4 public final AtomicInteger version = new AtomicInteger(1);

5 public volatile WeakReference<VersionHolder> prev =

6 new WeakReference<VersionHolder>(null);

7

8 // ... public methods

9 }

Figure 5.15: SMV transactional metadata class.

1 public class VBoxAdapter extends TxField {

2 protected VBox<Object> vbox;

3

4 // ... public methods

5 }

Figure 5.16: JVSTM-LockFree transactional metadata class.

adapter of the original source code, each transactional operation (read, write, commit, abort) is

forward to the original implementation.

The change from an object-based to a word-based approach only required minimal changes

on the read and write procedures. In the case of a read operation, instead of returning an object,

is returned a field’s value. And in the case of a write operation, instead of cloning the object to

be written and storing in the transaction’s write-set, the tentative value of a field is stored in the

write-set.

The overall adaptation of the original source code to our framework was very easy and fast,

which proves the flexibility of our support for implementing different STM algorithms.

5.5.2 JVSTM Lock Free

The JVSTM-LockFree [FC11] is an adaptation of the original JVSTM algorithm [CRS06], which

enhances the commit procedure using a lock-free algorithm, instead of using a global lock, and

also improves the garbage collector algorithm by the use of a parallel collecting approach. Once

again, we based our implementation in the original source code6.

We created a metadata object containing a reference to a vbox, as implemented originally by

the JVSTM-LockFree algorithm. We show the object metadata implementation in Figure 5.16.

The context class was implemented as an adapter to the original implementation of the read-

only and update transactions. Actually, we used the JVSTM-LockFree implementation as an ex-

ternal library (JAR file), and the Deuce context class only forwards the transactional calls to the

external library. This approach was possible because there was no need to make any changes to

the JVSTM-LockFree algorithm, for it to work in our framework extension.

6https://github.com/inesc-id-esw/jvstm

113

https://github.com/inesc-id-esw/jvstm

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

5.5.3 MVSTM – A New Multi-Version Algorithm

We developed and implemented a new multi-version algorithm (MVSTM) using the in-place

metadata support and inspired in TL2. It defines a maximum size for the list of versions, im-

posing a bound in the number of versions for each memory location. At commit time, MVSTM

uses a lock per memory location listed in the write-set.

The structure for each version is the same as in JVSTM. Each version is composed by a times-

tamp, which corresponds to the timestamp of the transaction that committed the version, and

the data value. Each metadata object has a pointer to the head of a version list with a fixed

size. Whenever a transaction commits a new version, and the maximum size of the version list

is reached, we discard half of the older versions. This decision allows to limit the memory used

by the algorithm and avoid complex garbage collection algorithms to remove old versions. The

drawback of this approach is that read-only operations can now abort because they may try to

read a version that was already removed. Moreover, read-only transactions will also abort when

trying to read an object’s field that is being currently updated by a concurrent commit operation.

Thus, this multi-version STM algorithm is not MV-permissive.

The commit operation is similar to the TL2 algorithm. Read-only transactions may commit

without any additional validation procedure, whilst read-write transactions need to lock the

write-set entries and then validate their read-set. In the case of a successful validation of the read-

set, the transaction applies the write-set by creating a new version for each entry in the write-set,

and finally unlocks the write-set locks. This locking scheme allows two transactions to commit

concurrently if their write-sets are disjoint.

Although the algorithm does not guarantee MV-permissiveness, it has a very simple implemen-

tation which may benefit the performance of short and medium sized transactions, and reduce

the abort rate when compared to other algorithms such as TL2.

MVSTM-SI – Snapshot Isolation Version The efficient support for multi-version algorithms

introduced by our extension to Deuce framework allows to efficiently implement snapshot isola-

tion based STM algorithms. We decided to implement a snapshot isolation algorithm based on

the implementation of the MVSTM algorithm. The main benefits of using snapshot isolation in a

transactional memory implementation is that we do not need to track any read accesses, i.e., we

do not need to store a read-set nor to verify the read-set validity at commit time.

The implementation of the MVSTM-SI algorithm required a minimal set of changes to the

implementation of MVSTM algorithm. The MVSTM algorithm was changed to keep only the

write-set, and at commit time, instead of validating the read-set, it now validates the write-set to

check for write-write conflicts. Moreover, as in snapshot isolation transactions must always read

from the snapshot valid at the start of the transaction, read-write transactions always read from

the version list, as the read-only transactions.

5.6 Supporting the Weak Atomicity Model

Multi-version algorithms read and write the data values from and into the list of versions. This

implies that all accesses to fields in shared objects must be done inside a memory transaction, and

thus multi-version algorithms require a strong atomicity model [BLM05].

114

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

Deuce does not provide a strong atomicity model as memory accesses done outside of trans-

actions are not instrumented, and hence it is possible to have non-transactional accesses to fields

of objects that were also accessed inside memory transactions. This hinders the usage of multi-

version algorithms in Deuce. One approach to address this problem is to rewrite the existing

benchmarks to wrap all accesses to shared objects inside an atomic method, but such code changes

are always a cumbersome and error prone process. We addressed this problem by adapting the

multi-version algorithms to support the weak atomicity model.

When using a weak atomicity model with a multi-version scheme, updates made by non-

transactional code to object fields are not seen by transactional code and, on the other way around,

updates made by transactional code are not seen by non-transactional code. The key idea for our

solution is to store the value of the latest version in the object’s field instead of in the node at

the head of the version list. When a transaction needs to read a field of an object, it requests the

version corresponding to the transaction timestamp. If it receives the head version, then it reads

the value directly from the object’s field, otherwise it reads the value from the version node.

The problem with this approach is how to guarantee the atomicity of the commit of a new

version, because now we have two steps: adding a new version node to the head of the list and

updating the field’s value. These two steps must be atomic with respect to the other concurrent

transactions. Our solution is to create a temporary new version with an infinite timestamp, mak-

ing it unreachable for other concurrent transactions, until we update the value and then change

the timestamp to its proper value.

The algorithmic adaptation that we propose is not intended to support a workload of inter-

twined non-transactional and transactional accesses, but rather a phased workload where non-

transactional code does not execute concurrently with transactional code. Many of the trans-

actional benchmarks we used exhibit such a phased workload, because the data structures are

initialized in the program startup using non-transactional code. After this initialization, the trans-

actional code can now operate over the data previously installed by non-transactional code. After

the transactional processing, non-transactional code may also post-process the data, such as in a

case of a validation procedure.

5.6.1 Read Access Adaptation

In a multi-version scheme, read-only transactions always search for a correct version to return its

value. Each version container holds the timestamp (or version number) and the respective value.

When the transaction finds the correct version, it returns the value contained in the version.

To support non-transactional accesses mixed with a multi-version scheme, the latest value

of an object’s field is stored in-place, and therefore the head version might not have the correct

value because of a previous non-transactional update. The read procedure of a multi-version

transaction must be adapted to reflect the new location of the latest value. When a transaction

queries for a version, and receives the head version, corresponding to the latest value, it has to

return the value directly from the object’s field. The pseudo-code of this adaptation is presented

below, where the additional operations are denoted in underline.

1. val := read()

2. ver := find_version()

115

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

3. return

val if is_head_version(ver)

ver .val otherwise

The read() function returns the value from the object’s field, the find_version function retrieves

the corresponding version according to the transaction timestamp, and the is_head_version func-

tion asserts if version ver is the head version. This small change introduces the additional shared

memory access performed in step 1. The correctness of this adaptation can only be assessed with

the explanation of the commit adaptation, which guarantees that whenever the is_head_version

function returns true the value val is correct.

5.6.2 Commit Adaptation

The commit operation is typical composed by a validation phase and write-back phase. In the

write-back phase, for each new value present in the write-set, a new version is created and is

stored as the head version. The write-back phase must be atomic, and this can be achieved using

a global lock (JVSTM), a write-set entry locking (SMV, MVSTM), or even a lock-free algorithm

(JVSTM-LockFree).

Our adaptation only makes changes to the write-back phase. In each iteration of the write-

back phase, a new version is installed as the head version of the version list associated with

the object’s field being written. The version contains the commit timestamp, which defines the

commit ordering, and the new value. Additionally, to support the weak-atomicity model, we

also need to write the new value directly to the object’s field. The problem that arises with this

additional operation is that concurrent transactions need to see the update on the version list, and

the update of the object’s value as a single operation. The key idea to solve this problem is to

create a version with a temporary infinite timestamp, which will prevent concurrent transactions

from accessing the head version, and consequently the object’s field value.

Below we present the pseudo-code of the adaptation to the commit of a new version, where tc

is the timestamp of the transaction that is performing the commit, t∞ is the highest timestamp, val

is the value to be written, and verh is the pointer to the head version. For the sake of simplicity,

we assume that these steps execute in mutual exclusion with respect to other concurrent commits

(in Section 5.6.3.3 we explain how to apply these steps to a lock-free context as in the JVSTM-

LockFree algorithm).

1. verh.value := read()

2. vern := create_version(new_val , t∞, verh)

3. verh := vern

4. write(new_val)

5. verh.timestamp := tc

Once again, the additional changes are denoted in underline. The first step is to update the

value of the head version with the current value of the object’s field. This update is safe because

until this point transactions that retrieve the head version read the value directly from the object’s

field, as described in the previous section. Then we create a new version with an infinite times-

tamp and the new value to be written in the object’s field, and the pointer to the current head

version. In the third step, we make the new version vern the current head version and it becomes

116

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

visible to all concurrent transactions. This version will never be accessed by any concurrent trans-

action because of the infinite timestamp. Then we can safely update the object’s field value in the

fourth step because no concurrent transaction gets the head version (the head version still has an

infinite timestamp up to this point). In the last step we change the timestamp of the current head

version to its proper value making accessible to concurrent transactions.

The adaptation of the commit operation introduces three new shared memory accesses, where

two of them are write accesses. Thus, this adaptation is expected to slightly lower the throughput

of the multi-version algorithm. We applied this adaptation to the multi-version algorithms that

we described previously, and compared the performance of both versions of each. In the next

section we report the experience of adapting each algorithm.

5.6.3 MV-Algorithms Adaptation

We use the algorithmic changes described in the previous section to adapt the four multi-version

algorithms under study (JVSTM, SMV, JVSTM-LockFree and MVSTM), enabling the execution

of all benchmarks available in the Deuce framework with no modification. In this section, we

present the adaptation details as well as the performance comparison with the original algorithm.

To evaluate the original STM algorithms (without the weak-atomicity adaptation) we had to

modify some benchmarks so that all accesses to shared memory are done inside of memory trans-

actions. These modifications include mainly wrapping the initialization of data structures, and

verification procedures, inside of memory transactions. We modified the Linked List, Red-Black

Tree, and Skip List micro-benchmarks, and also the STMBench7 macro-benchmark. In the case

of the STMBench7 we had to disable the invariant checks because otherwise it would take hours

to perform the checks. No modifications to the benchmarks were necessary when testing the al-

gorithms adapted to support weak-atomicity. When executing the non-modified version of STM-

Bench7 with the adapted versions of the STM algorithm, the invariant checks take less than one

minute to execute.

5.6.3.1 JVSTM and MVSTM

The JVSTM and MVSTM algorithms preform the commit operation in mutual exclusion with

other concurrent committing transactions. The adaptation of these algorithms to support a weak-

atomicity model is straightforward. The changes that we presented in the previous section to

modify the read and commit operation can be applied directly to both implementations. More-

over, the Deuce framework already provides the memory value when a read access is issued (see

Figure 5.4 in page 100), which simplifies the first step of the read procedure described in Sec-

tion 5.6.1.

Figures 5.17 and 5.18 depict the performance comparison between the original and adapted

versions of JVSTM and MVSTM respectively. The comparison is done by showing the relative

performance of the adapted version over the original version.

Both adapted versions of JVSTM and MVSTM show a performance very similar to the original

versions. Sometimes, the adapted version can even outperform the original version. This is due

to the specificity of the Deuce framework that already provides the memory value for each read

access callback. In the case of the adapted version, most of the times that value is used, opposed

to the original version where the value is always obtained by dereferencing a version container.

117

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=50%

jvstm-inplace-adapted

1.0x

0.9x 0.9x

1.0x

1.2x

1.3x

1.7x

1.5x

0.9x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=50%

jvstm-inplace-adapted

1.0x 1.0x
1.0x

1.1x
1.1x

0.8x

0.6x

0.7x
0.7x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=50%

jvstm-inplace-adapted

1.1x
1.0x 1.0x

1.4x

1.6x

1.0x

0.9x

0.8x

0.7x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

STMBench7 Read-Dom. w/ SMS w/o Long Trav.

jvstm-inplace-adapted

0.9x 0.9x
0.9x

1.0x
1.0x

0.8x
0.8x

0.8x

1.0x

Figure 5.17: Performance comparison between original JVSTM and adapted JVSTM.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=50%

mvstm-inplace-adapted

1.3x

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

0.9x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=50%

mvstm-inplace-adapted

1.0x
1.0x 1.0x 1.0x 1.0x

1.0x

0.8x

1.2x

0.9x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=50%

mvstm-inplace-adapted

1.1x
1.1x

1.1x
1.1x

1.0x
1.1x

0.9x

1.0x

1.1x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

STMBench7 Read-Dom. w/ SMS w/o Long Trav.

mvstm-inplace-adapted

1.0x

0.9x 0.9x

0.7x

0.9x

1.0x

1.1x

0.9x

0.8x

Figure 5.18: Performance comparison between original MVSTM and adapted MVSTM.

118

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=50%

smv-inplace-adapted

1.0x 1.0x 1.0x
1.0x

1.0x 1.0x 1.0x 1.0x 1.0x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=50%

smv-inplace-adapted

1.0x 1.0x 1.0x 1.0x 1.0x
1.0x

1.0x
1.0x

0.8x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=50%

smv-inplace-adapted

1.0x 1.0x

0.9x

1.0x 1.0x 1.0x
1.0x 1.0x

0.9x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

STMBench7 Read-Dom. w/ SMS w/o Long Trav.

smv-inplace-adapted

1.1x 1.1x

0.9x

1.1x 1.1x

1.0x 1.0x
1.0x

1.1x

Figure 5.19: Performance comparison between original SMV and adapted SMV.

5.6.3.2 SMV

The SMV algorithm defines a different memory layout for the version list. In SMV, the value of

the latest version is stored outside of the version list, which reassembles our adaptation proposal

of storing the latest value directly on the memory location. To apply the support for a weak-

atomicity model, we simply moved the value of the latest version from an auxiliary variable

(used in SMV original implementation) directly to the associated memory location.

This modification has consequences in the commit operation, which must also be adapted to

atomically update the latest version information and the memory location value. The first step in

the SMV commit operation is to move the latest value and timestamp to a newly created version

container and add it to the head of the version list. We change this step by using the latest value

stored in memory. In the last step of the SMV commit operation the variable containing the latest

value is updated with the new tentative value. We changed this step by writing the tentative

value directly to memory.

The changes made to the SMV algorithm are minimal and thus we expect that the performance

differences between the two versions to be also minimal. The results depicted in Figure 5.19

confirm our expectations, showing minimal differences between the original version and adapted

version.

5.6.3.3 JVSTM-LockFree

The JVSTM-LockFree implements a lock free commit operation. The assumption to apply the

adaptation for the commit procedure, presented in Section 5.6.2, is that the commit should be

119

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.6. Supporting the Weak Atomicity Model

1 public void commit(Object newValue, int txNumber) {

2 Version currHead = this.head;

3 Version existingVersion = currHead.getVersion(txNumber);

4

5 if (existingBody.version < txNumber) {

6 Version newVer = new Version(newValue, txNumber, currHead);

7 compare_and_swap(this.head, currHead, newVer);

8 }

9 }

Figure 5.20: JVSTM-LockFree original commit operation.

done in mutual exclusion. This assumption is true for the previous algorithms but not for the

JVSTM-LockFree. In this algorithm, the commit of a single version can be done by more than one

thread at the same time by resorting to atomic primitives such as compare-and-swap.

The adaptation of the read procedure is straightforward as in the JVSTM algorithm. The adap-

tation of the commit procedure is rather complex and requires additional atomic operations to

ensure the correctness of the algorithm. Figure 5.20 depicts a simplified version of the original

commit. The method commit preforms a compare-and-swap to install the new version. Other

threads may be executing the same method for the same vbox, but only one of them will install

the new version. Further details on how the JVSTM-LockFree commit algorithm works can be

found in [FC11].

Figure 5.21 depicts the adapted version of the JVSTM-LockFree commit algorithm to support a

weak-atomicity model. The algorithm has roughly three times more operations than the original

version. We explain this adapted version by describing how each step of the adaptation described

in Section 5.6.2 related to the code listed in the Figure.

The first step verh.value := read() is preformed by lines 5 and 7-9. The update of the head

version’s value (line 8) is done inside a conditional statement because other concurrent thread

may had already preformed the same update. The creation of a new version in the second step

vern := create_version(new_val , t∞, verh) is preformed in line 10. The publication of the new

version in the third step verh := vern is preformed in lines 11-19. In this step we preform a

compare-and-swap, as in the original algorithm, to publicize the new version, but if other concur-

rent thread already publicize the new version, then we need to get a pointer to the new version.

This is done in lines 14 to 18. Using this pointer we can preform the final fourth and fifth steps

write(new_val) and verh.timestamp := tc, which are done in lines 20-23. The writing of the new

value directly to memory (line 21) is done using a compare-and-swap atomic operation to prevent

lost updates. The update of the version number (line 23) is safe because we always have a pointer

to the correct version container. These last two steps are also preformed in lines 28-31, in the case

when a thread attempting to commit finds out, in line 6, that other concurrent thread already pub-

licized the new version, and therefore it helps finishing the commit. Another source of overhead

is caused by a limitation of the compare-and-swap operation, which can only be preformed for

reference and integer types. Thus, for other primitive type such as float, or byte, the compare-

and-swap operations preformed in lines 21 and 29, must be substituted by some mutual exclusion

block. Fortunately the use of compare-and-swap non-supported types in the benchmarks is rare.

The introduced complexity in the commit algorithm will impose a strong performance penalty

in workloads that generate a high rate of commits, typical in small-sized transactions, and also

in transactions that generate large write-sets. Figure 5.22 presents the results of comparing the

120

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.7. Performance Comparison of STM Algorithms

1 public void commit(Object newValue, int txNumber) {

2 Version currHead = this.head;

3 Version existingVersion = currHead.getVersion(txNumber);

4

5 Object latest = read(memory_location);

6 if (existingVersion == currHead && existingVersion.version < txNumber) {

7 if (this.head == existingVersion) {

8 currHead.value = latest;

9 }

10 Version newVer = new Version(newValue, Integer.MAX_VALUE, currHead);

11 if (compare_and_swap(this.head, currHead, newVer)) {

12 existingVersion = newVer

13 } else {

14 existingVersion = this.head;

15 Version tmpVer = existingVersion.getVersion(txNumber);

16 if (tmpVer.version == txNumber) {

17 existingVersion = tmpVer;

18 }

19 }

20 if (existingVersion.version == Integer.MAX_VALUE) {

21 compare_and_swap(memory_location, latest, newValue);

22 }

23 existingVersion.version = txNumber;

24 }

25 else {

26 if (existingVersion.version < txNumber) {

27 existingVersion = currHead;

28 if (existingVersion.version == Integer.MAX_VALUE) {

29 compare_and_swap(memory_location, latest, newValue);

30 }

31 existingVersion.version = txNumber;

32 }

33 }

34 }

Figure 5.21: JVSTM-LockFree adapted commit operation.

adapted version over the original version of JVSTM-LockFree.

In the case of the LinkedList micro-benchmark, the transactions generate small write-sets (the

add and remove operations only write to a single object), and typically the commit rate is low due

to the long duration of the lookup of a node, which is linear with the size of the list. As so, the

adapted version outperforms the original version, due to the read accesses that use value directly

from memory and are immediately provided by the Deuce framework.

In the case of the SkipList and RBTree micro-benchmarks, the adapted commit overhead is

more notorious when the contention increases with the number of threads. These benchmarks

generate a high rate of commit operations, although still with small write-sets per transaction.

In the STMBench7 benchmark, known to generate very large read- and write-sets, the adapted

version can only achieve half the performance of the original version. The results confirm our

performance expectations, and also confirm that the overhead introduced by adapting a multi-

version algorithm to support a weak-atomicity model is almost nil for algorithms that preform

the commit of versions in mutual exclusion, and has a considerable cost otherwise.

5.7 Performance Comparison of STM Algorithms

In this chapter we presented an extension of the Deuce framework to support the efficient imple-

mentation of STM algorithms that require a one-to-one relation between memory locations and

121

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.7. Performance Comparison of STM Algorithms

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=50%

jvstmlf-inplace-adapted

1.5x

1.4x
1.3x

1.2x 1.3x
1.3x

1.3x 1.3x

1.1x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=50%

jvstmlf-inplace-adapted

0.9x
0.9x

0.6x

0.4x
0.4x 0.4x 0.4x 0.4x 0.4x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=50%

jvstmlf-inplace-adapted

1.1x

1.0x

0.6x

0.2x

0.3x
0.3x 0.3x

0.3x

0.2x

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

STMBench7 Read-Dom. w/ SMS w/o Long Trav.

jvstmlf-inplace-adapted

0.9x

0.7x

0.4x 0.4x 0.5x

0.6x

0.7x

0.5x

0.6x

Figure 5.22: Performance comparison between original JVSTM-LockFree and adapted JVSTM-
LockFree.

transactional metadata, being multi-version algorithms an instance of this class of algorithms.

We evaluated the extension considering the implications in both performance and memory con-

sumption. The results were very satisfactory and thus we implemented two state-of-the-art

multi-version algorithms (SMV and JVSTM-LockFree), and implemented a new multi-version

algorithm (MVSTM) with a very simple design.

Given this support for very different classes of STM algorithms, we may now aiming at a fair

comparison of their performance, i.e., compare the algorithms implemented in the same frame-

work and with the same benchmarks. In this section we show the direct comparison between

several out-place and in-place STM algorithms. The list of STM algorithms chosen for comparison

are TL2, JVSTM, JVSTM-LockFree, SMV, and MVSTM. In the case of TL2 we use two versions: the

out-place version (TL2-Outplace) which is distributed with Deuce, and an in-place version (TL2-

Inplace) which we implemented in our extension. The in-place version moves the locks from

the external lock table to the transactional metadata, and completely avoids the false-sharing on

locks.

In the case of multi-version algorithms our measurements were conducted under two settings.

The first setup consisted on executing the (unmodified) benchmarks combined with the weak-

atomicity-adapted multi-version algorithms. In the second setup, we executed a modified version

of the micro-benchmarks and STMBench7 combined with the original multi-version algorithms

that do not support weak-atomicity. In the comparison results, we will only use the best of the

results of the original and the adapted versions of each multi-version algorithm.

We also compare the snapshot isolation algorithm MVSTM-SI against other opaque algorithms

122

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.7. Performance Comparison of STM Algorithms

tl2-outplace
tl2-inplace

jvstm-inplace

smv-inplace
jvstm-lf-inplace
mvstm-inplace

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

3
)

Threads

IntSet LinkedList size=16384 update=10%

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

2
)

Threads

IntSet LinkedList size=16384 update=50%

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

6
)

Threads

IntSet RBTree size=16384 update=10%

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet RBTree size=16384 update=50%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

 x
1
0

5
)

Threads

IntSet SkipList size=16384 update=10%

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet SkipList size=16384 update=50%

Figure 5.23: Micro-benchmarks comparison.

whenever we know that the benchmarks execute safely under snapshot isolation, which is the

case of the Linked List and Skip List benchmarks.

As in the extension evaluation, the benchmarks were executed on a computer with four AMD

Opteron 6272 16-Core processors @ 2.1 GHz with 8×2 MB of L2 cache, 16 MB of L3 cache, and

64 GB of RAM, running Debian Linux 3.2.41 x86_64, and Java 1.7.0_21.

Figure 5.23 shows the results of the execution of the micro-benchmarks Linked List, Red-Black

Tree, and Skip List. The Linked List benchmark is characterized by transactions with large read-

sets and by a high abort rate. In this benchmark the algorithms do not scale well with the in-

crease in the number of threads. The single-version algorithms TL2-Outplace and TL2-Inplace

exhibit better performance. These algorithms have very efficient implementations and the read

123

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.7. Performance Comparison of STM Algorithms

accesses are very lightweight. Additionally, in the case of read-only transactions, each read access

is checked for consistency but the transaction can safely commit without further verification. To

support multiple versions per memory location, the multi-version algorithms add a high number

of extra computations when reading a value from a memory location, with the benefit of avoid-

ing spurious transaction aborts and hence avoid the re-execution of transactions. Although, in

the micro-benchmarks this possible benefit is not observed.

In the Red-Black Tree and Skip List benchmarks, transactions are very small and fast, and have

a low conflict probability, except in the Red-Black Tree when tree rotations are preformed. These

benchmarks hide even more the advantages of multi-version algorithms when compared with

single-version algorithms. A surprising result of these benchmarks is the performance achieved

by the MVSTM algorithm which can compete with the TL2 versions. The MVSTM algorithm

has a very lightweight implementation trading permissiveness properties by performance, which

works well in these kinds of workloads.

Another unexpected result is the poor performance of SMV algorithm when compared with

other multi-version algorithms. We investigated the causes for this behavior, and the problem

resides on the mechanism for garbage collection of unnecessary versions. SMV implements a

mechanism for storing the list of versions using Java weak-references that allows the JVM garbage

collection to collect the unnecessary versions, instead of using an additional component to pre-

form this version cleaning. While in theory this appears to be an efficient design choice, in practice

it does not work as expected. In the micro-benchmarks where the workload generates millions

of transactions per second, the read-write transactions are also creating a very large number of

versions per second, and since SMV uses weak-references to store versions, the JVM garbage col-

lector has trouble to keep up the cleaning of so many versions. What happens in reality is that

during the benchmark execution the garbage collector is always working and is hindering the real

performance of the SMV algorithm, and also it consumes more memory than other multi-version

algorithms.

The comparison results for the STAMP benchmarking suite are depicted in Figure 5.24. In

these results the y-axis represents execution time and therefore lower values are better. The

benchmarks in this suite exhibit very different workloads, some of them even generate such high

contention that hinders the scaling for all of the tested algorithms. The benchmarks KMeans,

Genome, and Intruder, exposes the corner cases of the adapted JVSTM-LockFree algorithm, which

must execute some updates to the memory location inside of a mutual exclusion block as de-

scribed in Section 5.6.3.3, and hence its performance is strongly penalized. We believe that the

original JVSTM-LockFree algorithm would perform much better than the adapted version in these

particular benchmarks.

The TL2 based algorithms overall exhibit a very good performance, as well as MVSTM, which

in most cases can compete with the TL2 algorithms. In the Labyrinth benchmark the multi-version

algorithm JVSTM-LockFree presents a very good result. This algorithm has a low abort rate when

compared with the other algorithms, which allows it to not waist so much work in transaction

restarts. In the SSCA2 benchmark all the in-place algorithms suffer from the high overhead of

transactional metadata management shown in Figure 5.10 of Section 5.4.1.

In Figure 5.25 we show the results for the STMBench7 benchmarks. This benchmark generate

CPU-intensive transactions with large read-sets and write-sets. This benchmarks allows to exploit

the benefits of multi-version algorithms which can avoid spurious aborts and thus achieve better

performance than single-version algorithms. The JVSTM-Lockfree algorithm achieves a good

124

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.7. Performance Comparison of STM Algorithms

tl2-outplace
tl2-inplace

jvstm-inplace

smv-inplace
jvstm-lf-inplace
mvstm-inplace

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
 x

1
0

-1
)

Threads

Vacation-low+ (-q90 -u98 -r1048576 -t4096 -n2)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
 x

1
0

-1
)

Threads

KMeans-low+ (-m40 -n40 -t0.05 -irandom-n16384-d24-c16)

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
 x

1
0

-1
)

Threads

Genome+ (-g512 -s32 -n32768)

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
 x

1
0

-1
)

Threads

Intruder+ (-a10 -l16 -n4096 -s1)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
 x

1
0

-1
)

Threads

Labyrinth+ (-irandom-x48-y48-z3-n64)

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
 x

1
0

-1
)

Threads

SSCA2+ (-s14 -i1 -u1 -l9 -p9)

Figure 5.24: STAMP benchmarks comparison.

performance, higher than the remaining algorithms, confirming the advantages of using an MV-

permissive algorithm in this kind of workload.

In this benchmark, there is a significant performance difference between the out-place and in-

place versions of TL2 algorithm. The out-place version does not even scale with the number of

threads. The reason of this behavior may be due to cache locality issues. The in-place version is

much more cache-friendly than the out-place version. The in-place version has a high probability

of having the metadata in the same cache line as the memory location. This does not happen in

the out-place version, and in the special case of STMBench7, where transactions perform a large

number of reads and writes, the out-place version must read many entries from the external lock

table, which may not fit in the cache and requiring much more page transfers from main memory

125

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.8. Concluding Remarks

tl2-outplace
tl2-inplace

jvstm-inplace

smv-inplace
jvstm-lf-inplace
mvstm-inplace

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

)

Threads

STMBench7 Read-Dom. w/ SMS w/o Long Trav.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

)

Threads

STMBench7 Write-Dom. w/ SMS w/o Long Trav.

Figure 5.25: STMBench7 comparison.

to the cache.

In the write-dominated workload of STMBench7, all algorithms have similar performance

with the exception of TL2-Outplace. Although almost all transactions are read-write, the multi-

version algorithms can still compete with the single-version TL2-Inplace algorithm, and JVSTM-

LockFree almost always exhibit the best performance.

We evaluated the snapshot isolation algorithm MVSTM-SI with the two benchmarks known

to be safe under snapshot isolation, and the results are depicted in Figure 5.26. In the Linked List

benchmark, opposed to all opaque algorithms, the snapshot isolation based algorithm can scale

with the number of threads. The Linked List benchmark is the extreme case where the avoidance

of read-write conflicts is more effective. For the Skip List benchmark, the MVSTM-SI algorithm

preforms similarly with its dual opaque version. In this benchmark, the opaque versions have low

abort rates, and therefore, the snapshot isolation based algorithm does not have space to perform

better than the other algorithms. Also, it is important to note that the MVSTM-SI algorithm does

not preform worse than the opaque version, which can induce us to believe that using snapshot

isolation will always benefit performance and never degrade it.

5.8 Concluding Remarks

To the best of our knowledge, the extension of Deuce as described in this chapter creates the

first Java STM framework providing a performance-wise balanced support of both in-place and

out-place strategies. This is achieved by a transformation process of the program bytecode that

adds new metadata objects for each class field, and that includes a customized solution for N-

dimensional arrays that is fully backwards compatible with primitive type arrays.

We evaluated our system by measuring the overhead introduced by our new in-place strategy

with respect to the original Deuce implementation. Although we can observe a light slowdown in

our new implementation of arrays, we would like to reinforce that our solution has no limitations

whatsoever concerning the type of the array elements, the number of its dimensions, fits equally

to algorithms biased towards in-place or out-place strategies, and all bytecode transformations

are done automatically requiring no changes to the source code.

126

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.8. Concluding Remarks

tl2-outplace
tl2-inplace

jvstm-inplace
smv-inplace

jvstm-lf-inplace
mvstm-inplace

mvstm-si-inplace

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet LinkedList size=16384 update=10%

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet LinkedList size=16384 update=50%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

 x
1
0

5
)

Threads

IntSet SkipList size=16384 update=10%

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

 x
1
0

5
)

Threads

IntSet SkipList size=16384 update=50%

Figure 5.26: Snapshot Isolation algorithms comparison.

We also evaluated the effectiveness of the new in-place interface by comparing the perfor-

mance of a well known multi-version STM algorithm implemented using the original out-place

interface, resorting to an external mapping table, and implemented using the in-place interface.

The results show that, by using the in-place strategy, multi-version algorithms can now be fairly

compared with other STM algorithms such as TL2, which was not possible when using the origi-

nal Deuce framework.

Using this new infrastructure we implemented two state-of-the-art multi-version algorithms

SMV and JVSTM-LockFree and made the first performance comparison between the two. Also,

we were able to efficiently implement snapshot isolation based algorithms on top of existing

multi-version algorithms.

Finally, we proposed an algorithmic adaptation for multi-version algorithms to support the

weak-atomicity model as provided in the Deuce framework. We reported the experience of adapt-

ing several state-of-the-art multi-version algorithms and evaluate their performance. In general,

multi-version algorithms can be adapted to support the weak-atomicity model without a perfor-

mance penalty, except the case of the algorithms that implement a lock-free commit operation.

127

5. SUPPORT OF IN-PLACE METADATA IN TRANSACTIONAL MEMORY 5.8. Concluding Remarks

Publications The contents of this chapter were partially published in:

• [DVL12] Efficient support for in-place metadata in transactional memory. Ricardo J. Dias,

Tiago M. Vale, and João M. Lourenço. In proceedings of Euro-Par 2012, August 2012.

• [DVL13] Efficient support for in-place metadata in java software transactional memory.

Ricardo J. Dias, Tiago M. Vale, and João M. Lourenço. Concurrency and Computation: Prac-

tice and Experience, 2013.

128

6
Conclusions and Future Work

Although optimization techniques such as structuring a program using finer-grain transactions

or using relaxed isolation runtimes have the potential to increase the parallelism of transactional

memory programs, these techniques also introduce serious correctness problems, which may hin-

der the application functionality and manifest themselves as incorrect results or runtime errors.

To prove our thesis, presented in the first chapter of this dissertation, we developed two static

analysis techniques that allow to maintain the correctness of transactional memory programs

despite the employment of finer-grain transactions, and a transactional memory runtime based

on snapshot isolation to increase parallelism.

In particular we proposed a scalable and precise static analysis to detect atomicity violations

caused by the use of finer-grain transactions. We developed a novel approach to detect high-level

data races and stale-value errors that relies on the notion of causal dependencies to improve the

precision over previous detection techniques. Moreover, we were able to unify the detection of

both high-level data races and stale-value errors within the same theoretical framework, using the

graph of causal dependencies. These static analysis algorithms were implemented in a tool called

MoTH, which identifies atomicity violations in Java bytecode programs. Our detection analysis

still remains unsound. Nevertheless, as our experimental results confirm, the design decisions

that we made allowed to maintain the scalability of our approach while maintaining a very good

precision level. The next challenge of this work will be to develop a sound static analysis with-

out losing scalability and precision with respect to false positives. Also, the integration of this

tool with existing IDEs, to detect misplacements of atomic blocks, would allow the increase of

productivity in the software development cycle of concurrent programs.

The use of a relaxed isolation level, such as snapshot isolation, has the potential to increase

parallelism of transactional systems at the cost of losing opacity. Snapshot isolation allows the

occurrence of serialization anomalies known as write-skews. To solve this problem, we proposed

a static verification procedure to certify that transactional memory programs, executing under

snapshot isolation, are free from write-skew anomalies. This verification procedure grounds on a

129

6. CONCLUSIONS AND FUTURE WORK

state-of-the-art shape analysis technique based on separation logic and extend it with heap path

expressions, which represent abstract memory locations. Our analysis technique can compute

an approximation of the read- and write-sets of each transaction, which then can be applied to

detect the possibility of the occurrence of write-skews at execution time. Our algorithm is sound

and hence suffers from over-reporting but not from under-reporting, i.e., all the write skews in

the program are detected but some false warnings may also be generated. We implemented the

verification algorithm in a tool called StarTM which can be applied to Java bytecode programs.

The proposed verification procedure, although being the first published approach to statically

detect write-skews in transactional memory programs, has still many limitations in the nature of

the programs to be analyzed, such as dealing with large-sized programs, with arrays and with

cyclic data structures. Our approach is a first step towards a new research topic of detecting seri-

alization anomalies in transactional memory programs and much more can be done. For instance,

more efficient abstract memory representations could limit the impact of the state explosion and

improve the scalability of the analysis, and a modular static analysis algorithm can also be devel-

oped enabling the verification of large-sized programs. Another research direction would be to

employ sound dynamic analysis techniques to solve the same problem.

This work also contributed to the development of a generic and extensible STM framework

to support the efficient implementation of several STM algorithms. In particular, our framework

supports the efficient implementation of both single- and multi-version algorithms. We extended

the Deuce framework to support in-place metadata, i.e., the co-location of transactional metadata

near the object fields instead of in a shared external mapping table. The extension provided a

successfully runtime infrastructure to the efficient implementation of multi-version algorithms,

allowing for the first time a fair comparison of single- and multi-version algorithms in the same

framework and using exactly the same benchmarking programs.

The technique that we developed to co-locate metadata near object fields is very effective for

class fields, but has a non-negligible time and space overhead for array elements. The support

for in-place metadata in array objects, using only bytecode instrumentation, is a difficult task

because of the restricted memory structure of the arrays. It would be interesting to evaluate

an implementation of our approach of in-place metadata at the virtual machine level, which we

believe would allow a more efficient implementation for array objects at the cost of portability.

Our proposed extension can also be enhanced to transparently support distributed STM al-

gorithms. This goal would probably require the generalization of the STM algorithms interface

to include additional callbacks to support inter-node synchronization. Moreover, it is required a

modular architecture to specify a global algorithm to coordinate the different nodes of the sys-

tem, and a centralized algorithm to coordinate the threads within each node. Another research

direction following this work is the development of static analysis techniques to reduce the over-

instrumentation inherent to these extensible and transparent frameworks, narrowing the gap be-

tween a programmer tailored source-code program and and automatically instrumented version.

Finally, all the developed techniques presented in this dissertation can be assembled into a

single framework, providing compile-time and runtime support in the form of a software trans-

actional memory stack, to Java applications.

130

Bibliography

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting Equality of Variables

in Programs”. In: Proc. of the 15th ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages. POPL ’88. San Diego, California, United States: ACM,

1988, pp. 1–11. ISBN: 0-89791-252-7. DOI: http://doi.acm.org/10.1145/

73560.73561.

[AHB03] C. Artho, K. Havelund, and A. Biere. “High-level data races”. In: Software Test-

ing, Verification and Reliability 13.4 (Dec. 2003), pp. 207–227. ISSN: 0960-0833.

DOI: 10.1002/stvr.281.

[AHB04] C. Artho, K. Havelund, and A. Biere. “Using block-local atomicity to detect

stale-value concurrency errors”. In: Automated Technology for Verification and

Analysis (2004), pp. 150–164.

[BT07] C. Barrett and C. Tinelli. “CVC3”. In: Proceedings of the 19th International Con-

ference on Computer Aided Verification (CAV ’07). Ed. by W. Damm and H. Her-

manns. Vol. 4590. LNCS. Springer-Verlag, 2007, pp. 298–302.

[BBA08] N. E. Beckman, K. Bierhoff, and J. Aldrich. “Verifying Correct Usage of Atomic

Blocks and Typestate”. In: SIGPLAN Not. 43.10 (2008), pp. 227–244. ISSN: 0362-

1340. DOI: http://doi.acm.org/10.1145/1449955.1449783.

[BCCDOWY07] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and H.

Yang. “Shape analysis for composite data structures”. In: Proceedings of the 19th

international conference on Computer aided verification. CAV’07. Berlin, Germany:

Springer-Verlag, 2007, pp. 178–192. ISBN: 978-3-540-73367-6.

[BCO05] J. Berdine, C. Calcagno, and P. W. O’Hearn. “Symbolic execution with sepa-

ration logic”. In: Proceedings of the Third Asian conference on Programming Lan-

guages and Systems. APLAS’05. Tsukuba, Japan: Springer-Verlag, 2005, pp. 52–

68. ISBN: 3-540-29735-9, 978-3-540-29735-2. DOI: 10.1007/11575467_5. URL:

http://dx.doi.org/10.1007/11575467_5.

[BBGMOO95] H. Berenson, P. Bernstein, J. N. Gray, J. Melton, E. O’Neil, and P. O’Neil. “A

critique of ANSI SQL isolation levels”. In: SIGMOD ’95: Proceedings of the 1995

131

http://dx.doi.org/http://doi.acm.org/10.1145/73560.73561
http://dx.doi.org/http://doi.acm.org/10.1145/73560.73561
http://dx.doi.org/10.1002/stvr.281
http://dx.doi.org/http://doi.acm.org/10.1145/1449955.1449783
http://dx.doi.org/10.1007/11575467_5
http://dx.doi.org/10.1007/11575467_5

BIBLIOGRAPHY

ACM SIGMOD international conference on Management of data. San Jose, Califor-

nia, United States: ACM, 1995, pp. 1–10. ISBN: 0-89791-731-6. DOI: 10.1145/

223784.223785.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recov-

ery in database systems. Boston, MA, USA: Addison-Wesley Longman Publish-

ing Co., Inc., 1987. ISBN: 0-201-10715-5.

[BHM07] W. Binder, J. Hulaas, and P. Moret. “Advanced Java bytecode instrumenta-

tion”. In: Proceedings of the International Symposium on Principles and Practice of

Programming in Java (PPPJ). 2007, pp. 135–144.

[Blo08] J. Bloch. Effective Java (2nd Edition). Addison-Wesley, 2008.

[BLM05] C. Blundell, E. C. Lewis, and M. M. K. Martin. “Deconstructing Transactions:

The Subtleties of Atomicity”. In: Fourth Annual Workshop on Duplicating, De-

constructing, and Debunking. Publisher unkownn, 2005.

[BBC08] J. Brotherston, R. Bornat, and C. Calcagno. “Cyclic proofs of program termi-

nation in separation logic”. In: Proc. of the 35th annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’08. San Francisco,

California, USA: ACM, 2008, pp. 101–112. ISBN: 978-1-59593-689-9. DOI: 10.

1145/1328438.1328453.

[BK10] J. Brotherston and M. Kanovich. “Undecidability of Propositional Separation

Logic and Its Neighbours”. In: Proceedings of the 2010 25th Annual IEEE Sym-

posium on Logic in Computer Science. LICS ’10. Washington, DC, USA: IEEE

Computer Society, 2010, pp. 130–139. ISBN: 978-0-7695-4114-3. DOI: 10.1109/

LICS.2010.24.

[BL04] M. Burrows and K. Leino. “Finding stale-value errors in concurrent programs”.

In: Concurrency and Computation: Practice and Experience 16.12 (2004), pp. 1161–

1172.

[CRS06] J. Cachopo and A. Rito-Silva. “Versioned boxes as the basis for memory trans-

actions”. In: Sci. Comput. Program. 63.2 (2006), pp. 172–185. ISSN: 0167-6423.

DOI: http://dx.doi.org/10.1016/j.scico.2006.05.009.

[CD11] C. Calcagno and D. Distefano. “Infer: an automatic program verifier for mem-

ory safety of C programs”. In: Proceedings of the Third international conference on

NASA Formal methods. NFM’11. Pasadena, CA: Springer-Verlag, 2011, pp. 459–

465. ISBN: 978-3-642-20397-8.

[CDOY09] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. “Compositional shape

analysis by means of bi-abduction”. In: Proc. of the 36th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. POPL ’09. Savan-

nah, GA, USA: ACM, 2009, pp. 289–300. ISBN: 978-1-60558-379-2.

[CDOY07] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. “Footprint Analysis: A

Shape Analysis That Discovers Preconditions”. In: Static Analysis. Ed. by H.

Nielson and G. Filé. Vol. 4634. Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2007, pp. 402–418. ISBN: 978-3-540-74060-5.

132

http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1109/LICS.2010.24
http://dx.doi.org/10.1109/LICS.2010.24
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2006.05.009

BIBLIOGRAPHY

[CMCKO08] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. “STAMP: Stanford

Transactional Applications for Multi-Processing”. In: IISWC ’08: Proc. IEEE Int.

Symp. on Workload Characterization. 2008.

[CLLOSS02] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. “Ef-

ficient and precise datarace detection for multithreaded object-oriented pro-

grams”. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming

language design and implementation. PLDI ’02. Berlin, Germany: ACM, 2002,

pp. 258–269. ISBN: 1-58113-463-0. DOI: 10 . 1145 / 512529 . 512560. URL:

http://doi.acm.org/10.1145/512529.512560.

[Cor08] A. Cortesi. “Widening Operators for Abstract Interpretation”. In: Software En-

gineering and Formal Methods. 2008, pp. 31–40. DOI: http://dx.doi.org/

10.1109/SEFM.2008.20.

[Cou01] P. Cousot. “Abstract Interpretation Based Formal Methods and Future Chal-

lenges”. In: Informatics. 2001, pp. 138–156. DOI: http://dx.doi.org/10.

1007/3-540-44577-3_10.

[CC77] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints”. In:

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-

gramming languages. POPL ’77. Los Angeles, California: ACM, 1977, pp. 238–

252. DOI: 10.1145/512950.512973. URL: http://doi.acm.org/10.

1145/512950.512973.

[DV12] R. Demeyer and W. Vanhoof. “A Framework for Verifying the Application-

Level Race-Freeness of Concurrent Programs”. In: 22nd Workshop on Logic-

based Programming Environments (WLPE 2012). 2012, p. 10.

[DDSL12] R. J. Dias, D. Distefano, J. C. Seco, and J. M. Lourenço. “Verification of Snap-

shot Isolation in Transactional Memory Java Programs”. In: ECOOP 2012 –

Object-Oriented Programming. Ed. by J. Noble. Vol. 7313. Lecture Notes in Com-

puter Science. Springer Berlin / Heidelberg, 2012, pp. 640–664. ISBN: 978-3-

642-31056-0. URL: http://dx.doi.org/10.1007/978-3-642-31057-

7_28.

[DLP11] R. J. Dias, J. M. Lourenço, and N. M. Preguiça. “Efficient and Correct Transac-

tional Memory Programs Combining Snapshot Isolation and Static Analysis”.

In: Proceedings of the 3rd USENIX conference on Hot topics in parallelism (Hot-

Par’11). HotPar’11. http://asc.di.fct.unl.pt/~nmp/pubs/hotpar-

2011.pdf. Usenix Association, May 2011.

[DPL12] R. J. Dias, V. Pessanha, and J. M. Lourenço. “Precise Detection of Atomicity

Violations”. In: Haifa Verification Conference (HVC 2012). Lecture Notes in Com-

puter Science. Springer-Verlag, Nov. 2012.

[DVL12] R. J. Dias, T. M. Vale, and J. M. Lourenço. “Efficient Support for In-Place Meta-

data in Transactional Memory”. In: Euro-Par 2012 Parallel Processing. Ed. by

C. Kaklamanis, T. Papatheodorou, and P. Spirakis. Vol. 7484. Lecture Notes in

133

http://dx.doi.org/10.1145/512529.512560
http://doi.acm.org/10.1145/512529.512560
http://dx.doi.org/http://dx.doi.org/10.1109/SEFM.2008.20
http://dx.doi.org/http://dx.doi.org/10.1109/SEFM.2008.20
http://dx.doi.org/http://dx.doi.org/10.1007/3-540-44577-3_10
http://dx.doi.org/http://dx.doi.org/10.1007/3-540-44577-3_10
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-642-31057-7_28
http://dx.doi.org/10.1007/978-3-642-31057-7_28
http://asc.di.fct.unl.pt/~nmp/pubs/hotpar-2011.pdf
http://asc.di.fct.unl.pt/~nmp/pubs/hotpar-2011.pdf

BIBLIOGRAPHY

Computer Science. Springer Berlin / Heidelberg, 2012, pp. 589–600. ISBN: 978-

3-642-32819-0. URL: http://dx.doi.org/10.1007/978-3-642-32820-

6_59.

[DVL13] R. J. Dias, T. M. Vale, and J. M. Lourenço. “Efficient support for in-place meta-

data in Java software transactional memory (submitted)”. In: Concurrency and

Computation: Practice and Experience (2013).

[DSS06] D. Dice, O. Shalev, and N. Shavit. “Transactional Locking II”. In: Distributed

Computing. Vol. 4167. Stockholm, Sweden: Springer Berlin / Heidelberg, 2006,

pp. 194–208.

[DOY06] D. Distefano, P. W. O’Hearn, and H. Yang. “A Local Shape Analysis Based

on Separation Logic”. In: Tools and Algorithms for the Construction and Analy-

sis of 12th International Conference (TACAS 2006). Lecture Notes in Computer

Science. Springer, 2006, pp. 287–302.

[DPJ08] D. Distefano and M. J. Parkinson J. “jStar: towards practical verification for

java”. In: Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented pro-

gramming systems languages and applications. OOPSLA ’08. Nashville, TN, USA:

ACM, 2008, pp. 213–226. ISBN: 978-1-60558-215-3. DOI: 10.1145/1449764.

1449782.

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. “The notions of con-

sistency and predicate locks in a database system”. In: Commun. ACM 19.11

(1976), pp. 624–633. ISSN: 0001-0782. DOI: http://doi.acm.org/10.

1145/360363.360369.

[FLOOS05] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. “Making snap-

shot isolation serializable”. In: ACM Trans. Database Syst. 30.2 (2005), pp. 492–

528. ISSN: 0362-5915. DOI: 10.1145/1071610.1071615.

[FC11] S. M. Fernandes and J. a. Cachopo. “Lock-free and scalable multi-version soft-

ware transactional memory”. In: Proceedings of the 16th ACM symposium on

Principles and practice of parallel programming. PPoPP ’11. San Antonio, TX, USA:

ACM, 2011, pp. 179–188. ISBN: 978-1-4503-0119-0. DOI: 10.1145/1941553.

1941579.

[FF04] C. Flanagan and S. N. Freund. “Atomizer: a dynamic atomicity checker for

multithreaded programs”. In: SIGPLAN Not. 39.1 (Jan. 2004), pp. 256–267. ISSN:

0362-1340. DOI: 10.1145/982962.964023.

[FF10] C. Flanagan and S. N. Freund. “FastTrack: efficient and precise dynamic race

detection”. In: Commun. ACM 53.11 (Nov. 2010), pp. 93–101. ISSN: 0001-0782.

DOI: 10.1145/1839676.1839699.

[FFY08] C. Flanagan, S. N. Freund, and J. Yi. “Velodrome: a sound and complete dy-

namic atomicity checker for multithreaded programs”. In: SIGPLAN Not. 43.6

(June 2008), pp. 293–303. ISSN: 0362-1340. DOI: 10.1145/1379022.1375618.

[FQ03] C. Flanagan and S. Qadeer. “Types for atomicity”. In: TLDI ’03: Proceedings

of the 2003 ACM SIGPLAN international workshop on Types in languages design

and implementation. New Orleans, Louisiana, USA: ACM, 2003, pp. 1–12. ISBN:

1-58113-649-8. DOI: http://doi.acm.org/10.1145/604174.604176.

134

http://dx.doi.org/10.1007/978-3-642-32820-6_59
http://dx.doi.org/10.1007/978-3-642-32820-6_59
http://dx.doi.org/10.1145/1449764.1449782
http://dx.doi.org/10.1145/1449764.1449782
http://dx.doi.org/http://doi.acm.org/10.1145/360363.360369
http://dx.doi.org/http://doi.acm.org/10.1145/360363.360369
http://dx.doi.org/10.1145/1071610.1071615
http://dx.doi.org/10.1145/1941553.1941579
http://dx.doi.org/10.1145/1941553.1941579
http://dx.doi.org/10.1145/982962.964023
http://dx.doi.org/10.1145/1839676.1839699
http://dx.doi.org/10.1145/1379022.1375618
http://dx.doi.org/http://doi.acm.org/10.1145/604174.604176

BIBLIOGRAPHY

[FH07] K. Fraser and T. Harris. “Concurrent programming without locks”. In: ACM

Trans. Comput. Syst. 25.2 (2007), p. 5. ISSN: 0734-2071. DOI: http://doi.acm.

org/10.1145/1233307.1233309.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional, 1994, p. 416.

ISBN: 0201633612.

[GBC06] A. Gotsman, J. Berdine, and B. Cook. “Interprocedural shape analysis with

separated heap abstractions”. In: Proceedings of the 13th international conference

on Static Analysis. SAS’06. Seoul, Korea: Springer-Verlag, 2006, pp. 240–260.

ISBN: 3-540-37756-5, 978-3-540-37756-6. DOI: 10.1007/11823230_16.

[GR92] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992. ISBN: 1558601902.

[GK08] R. Guerraoui and M. Kapalka. “On the correctness of transactional memory”.

In: PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Princi-

ples and practice of parallel programming. Salt Lake City, UT, USA: ACM, 2008,

pp. 175–184. ISBN: 978-1-59593-795-7. DOI: http://doi.acm.org/10.

1145/1345206.1345233.

[GKV07] R. Guerraoui, M. Kapalka, and J. Vitek. “STMBench7: a benchmark for soft-

ware transactional memory”. In: Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007. EuroSys ’07. Lisbon, Portugal:

ACM, 2007, pp. 315–324. ISBN: 978-1-59593-636-3. DOI: 10.1145/1272996.

1273029.

[HLM06] M. Herlihy, V. Luchangco, and M. Moir. “A Flexible Framework for Imple-

menting Software Transactional Memory”. In: Proc. 21st conference on Object-

Oriented Programming Systems, Languages, and Applications. Portland, Oregon,

USA: ACM, 2006, pp. 253–262. ISBN: 1-59593-348-4. DOI: http://doi.acm.

org/10.1145/1167473.1167495.

[HLMWNS03] M. Herlihy, V. Luchangco, M. Moir, and I. William N. Scherer. “Software trans-

actional memory for dynamic-sized data structures”. In: PODC ’03: Proceed-

ings of the twenty-second annual symposium on Principles of distributed comput-

ing. Boston, Massachusetts: ACM, 2003, pp. 92–101. ISBN: 1-58113-708-7. DOI:

http://doi.acm.org/10.1145/872035.872048.

[HM93] M. Herlihy and J. E. B. Moss. “Transactional memory: architectural support

for lock-free data structures”. In: ISCA ’93: Proceedings of the 20th annual in-

ternational symposium on Computer architecture. San Diego, California, United

States: ACM, 1993, pp. 289–300. ISBN: 0-8186-3810-9. DOI: http://doi.acm.

org/10.1145/165123.165164.

[HW90] M. P. Herlihy and J. M. Wing. “Linearizability: a correctness condition for con-

current objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990), pp. 463–492.

ISSN: 0164-0925. DOI: http://doi.acm.org/10.1145/78969.78972.

[Hoa69] C. A. R. Hoare. “An axiomatic basis for computer programming”. In: Commun.

ACM 12.10 (Oct. 1969), pp. 576–580. ISSN: 0001-0782. DOI: 10.1145/363235.

363259. URL: http://doi.acm.org/10.1145/363235.363259.

135

http://dx.doi.org/http://doi.acm.org/10.1145/1233307.1233309
http://dx.doi.org/http://doi.acm.org/10.1145/1233307.1233309
http://dx.doi.org/10.1007/11823230_16
http://dx.doi.org/http://doi.acm.org/10.1145/1345206.1345233
http://dx.doi.org/http://doi.acm.org/10.1145/1345206.1345233
http://dx.doi.org/10.1145/1272996.1273029
http://dx.doi.org/10.1145/1272996.1273029
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167495
http://dx.doi.org/http://doi.acm.org/10.1145/1167473.1167495
http://dx.doi.org/http://doi.acm.org/10.1145/872035.872048
http://dx.doi.org/http://doi.acm.org/10.1145/165123.165164
http://dx.doi.org/http://doi.acm.org/10.1145/165123.165164
http://dx.doi.org/http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259

BIBLIOGRAPHY

[Ibm] IBM HRL — Concurrency Testing Repository.

[JFRS07] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan. “Automating the

detection of snapshot isolation anomalies”. In: VLDB ’07: Proceedings of the 33rd

international conference on Very large data bases. Vienna, Austria: VLDB Endow-

ment, 2007, pp. 1263–1274.

[KSF10] G. Korland, N. Shavit, and P. Felber. “Noninvasive Concurrency with Java

STM”. In: Proc. MultiProg 2010: Programmability Issues for Heterogeneous Mul-

ticores. 2010.

[Lip75] R. J. Lipton. “Reduction: a method of proving properties of parallel programs”.

In: Commun. ACM 18.12 (Dec. 1975), pp. 717–721. ISSN: 0001-0782. DOI: 10.

1145/361227.361234.

[Lom77] D. B. Lomet. “Process structuring, synchronization, and recovery using atomic

actions”. In: SIGPLAN Not. 12.3 (1977), pp. 128–137. ISSN: 0362-1340. DOI: http:

//doi.acm.org/10.1145/390017.808319.

[LSTD11] J. Lourenço, D. Sousa, B. Teixeira, and R. Dias. “Detecting concurrency anoma-

lies in transactional memory programs”. In: Computer Science and Information

Systems/ComSIS 8.2 (2011), pp. 533–548.

[LPSZ08] S. Lu, S. Park, E. Seo, and Y. Zhou. “Learning from mistakes: a comprehensive

study on real world concurrency bug characteristics”. In: Proceedings of the 13th

international conference on Architectural support for programming languages and

operating systems. ASPLOS XIII. Seattle, WA, USA: ACM, 2008, pp. 329–339.

ISBN: 978-1-59593-958-6. DOI: 10.1145/1346281.1346323. URL: http:

//doi.acm.org/10.1145/1346281.1346323.

[MBSATHSW08] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L. Hudson, B.

Saha, and A. Welc. “Single global lock semantics in a weakly atomic STM”.

In: SIGPLAN Not. 43.5 (2008), pp. 15–26. ISSN: 0362-1340. DOI: http://doi.

acm.org/10.1145/1402227.1402235.

[MHFA13] J. Mund, R. Huuck, A. Fehnker, and C. Artho. “The Quest for Precision: A Lay-

ered Approach for Data Race Detection in Static Analysis”. In: Automated Tech-

nology for Verification and Analysis. Ed. by D. Hung and M. Ogawa. Vol. 8172.

Lecture Notes in Computer Science. Springer International Publishing, 2013,

pp. 516–525. ISBN: 978-3-319-02443-1. DOI: 10.1007/978-3-319-02444-

8_45. URL: http://dx.doi.org/10.1007/978-3-319-02444-8_45.

[Ora12] Oracle. java.lang.instrument.Instrument. http://docs.oracle.com/javase/

7/docs/api/java/lang/instrument/Instrumentation.html. 2012.

[PBLK11] D. Perelman, A. Byshevsky, O. Litmanovich, and I. Keidar. “SMV: selective

multi-versioning STM”. In: Proceedings of the 25th international conference on

Distributed computing. DISC’11. Rome, Italy: Springer-Verlag, 2011, pp. 125–

140. ISBN: 978-3-642-24099-7. URL: http://dl.acm.org/citation.cfm?

id=2075029.2075041.

136

http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/http://doi.acm.org/10.1145/390017.808319
http://dx.doi.org/http://doi.acm.org/10.1145/390017.808319
http://dx.doi.org/10.1145/1346281.1346323
http://doi.acm.org/10.1145/1346281.1346323
http://doi.acm.org/10.1145/1346281.1346323
http://dx.doi.org/http://doi.acm.org/10.1145/1402227.1402235
http://dx.doi.org/http://doi.acm.org/10.1145/1402227.1402235
http://dx.doi.org/10.1007/978-3-319-02444-8_45
http://dx.doi.org/10.1007/978-3-319-02444-8_45
http://dx.doi.org/10.1007/978-3-319-02444-8_45
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://dl.acm.org/citation.cfm?id=2075029.2075041
http://dl.acm.org/citation.cfm?id=2075029.2075041

BIBLIOGRAPHY

[PFK10] D. Perelman, R. Fan, and I. Keidar. “On maintaining multiple versions in STM”.

In: Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of

distributed computing. PODC ’10. Zurich, Switzerland: ACM, 2010, pp. 16–25.

ISBN: 978-1-60558-888-9. DOI: 10.1145/1835698.1835704. URL: http:

//doi.acm.org/10.1145/1835698.1835704.

[Pes11] V. Pessanha. “Verificação Prática de Anomalias em Programas de Memória

Transaccional”. MA thesis. Lisbon, Portugal: Universidade Nova de Lisboa,

2011.

[PDLFS11] V. Pessanha, R. J. Dias, J. M. Lourenço, E. Farchi, and D. Sousa. “Practical Veri-

fication of Transactional Memory Programs”. In: Proceedings of PADTAD 2011:

Workshop on Parallel and Distributed Testing, Analysis and Debugging. ACM Elec-

tronic Library, July 2011.

[PRV10] P. Prabhu, G. Ramalingam, and K. Vaswani. “Safe programmable speculative

parallelism”. In: Proceedings of the 2010 ACM SIGPLAN conference on Program-

ming language design and implementation. PLDI ’10. Toronto, Ontario, Canada:

ACM, 2010, pp. 50–61. ISBN: 978-1-4503-0019-3. DOI: 10.1145/1806596.

1806603. URL: http://doi.acm.org/10.1145/1806596.1806603.

[PMPM11] D. Prountzos, R. Manevich, K. Pingali, and K. S. McKinley. “A shape analysis

for optimizing parallel graph programs”. In: Proceedings of the 38th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. POPL ’11.

Austin, Texas, USA: ACM, 2011, pp. 159–172. ISBN: 978-1-4503-0490-0. DOI:

10.1145/1926385.1926405. URL: http://doi.acm.org/10.1145/

1926385.1926405.

[RHSLGC99] Raja Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co.

“Soot - a Java Optimization Framework”. In: Proceedings of CASCON 1999.

1999, pp. 125–135. URL: http://www.sable.mcgill.ca/publications.

[RCG09] M. Raza, C. Calcagno, and P. Gardner. “Automatic Parallelization with Sepa-

ration Logic”. In: Proceedings of the 18th European Symposium on Programming

Languages and Systems: Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2009. ESOP ’09. York, UK: Springer-Verlag, 2009,

pp. 348–362. ISBN: 978-3-642-00589-3. DOI: 10.1007/978-3-642-00590-

9_25. URL: http://dx.doi.org/10.1007/978-3-642-00590-9_25.

[Rey02] J. C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Struc-

tures”. In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer

Science. LICS ’02. Washington, DC, USA: IEEE Computer Society, 2002, pp. 55–

74. ISBN: 0-7695-1483-9. URL: http://portal.acm.org/citation.cfm?

id=645683.664578.

[RB08] T. Riegel and D. B. D. Brum. “Making Object-Based STM Practical in Unman-

aged Environments”. In: Proc. of the 3rd Workshop on Transactional Computing.

2008.

137

http://dx.doi.org/10.1145/1835698.1835704
http://doi.acm.org/10.1145/1835698.1835704
http://doi.acm.org/10.1145/1835698.1835704
http://dx.doi.org/10.1145/1806596.1806603
http://dx.doi.org/10.1145/1806596.1806603
http://doi.acm.org/10.1145/1806596.1806603
http://dx.doi.org/10.1145/1926385.1926405
http://doi.acm.org/10.1145/1926385.1926405
http://doi.acm.org/10.1145/1926385.1926405
http://www.sable.mcgill.ca/publications
http://dx.doi.org/10.1007/978-3-642-00590-9_25
http://dx.doi.org/10.1007/978-3-642-00590-9_25
http://dx.doi.org/10.1007/978-3-642-00590-9_25
http://portal.acm.org/citation.cfm?id=645683.664578
http://portal.acm.org/citation.cfm?id=645683.664578

BIBLIOGRAPHY

[RFF06] T. Riegel, C. Fetzer, and P. Felber. “Snapshot Isolation for Software Transac-

tional Memory”. In: TRANSACT’06: First ACM SIGPLAN Workshop on Lan-

guages, Compilers, and Hardware Support for Transactional Computing. Ottawa,

Canada, June 2006.

[SRW96] M. Sagiv, T. Reps, and R. Wilhelm. “Solving shape-analysis problems in lan-

guages with destructive updating”. In: POPL ’96: Proceedings of the 23rd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. St. Peters-

burg Beach, Florida, United States: ACM, 1996, pp. 16–31. ISBN: 0-89791-769-3.

DOI: 10.1145/237721.237725.

[SRW98] M. Sagiv, T. Reps, and R. Wilhelm. “Solving shape-analysis problems in lan-

guages with destructive updating”. In: ACM Trans. Program. Lang. Syst. 20.1

(1998), pp. 1–50. ISSN: 0164-0925. DOI: 10.1145/271510.271517.

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric shape analysis via 3-valued

logic”. In: POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages. San Antonio, Texas, United States:

ACM, 1999, pp. 105–118. ISBN: 1-58113-095-3. DOI: 10.1145/292540.292552.

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric shape analysis via 3-valued

logic”. In: ACM Trans. Program. Lang. Syst. 24.3 (2002), pp. 217–298. ISSN: 0164-

0925. DOI: 10.1145/514188.514190.

[SBNSA97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. “Eraser: a

dynamic data race detector for multithreaded programs”. In: ACM Trans. Com-

put. Syst. 15.4 (1997), pp. 391–411. ISSN: 0734-2071. DOI: 10.1145/265924.

265927. URL: http://doi.acm.org/10.1145/265924.265927.

[Sco06] M. L. Scott. “Sequential Specification of Transactional Memory Semantics”. In:

Workshop on Languages, Compilers, and Hardware Support for Transactional Com-

puting (TRANSACT). 2006.

[SBASVY11] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev, and E. Yahav. “Testing

atomicity of composed concurrent operations”. In: SIGPLAN Not. 46.10 (Oct.

2011), pp. 51–64. ISSN: 0362-1340. DOI: 10.1145/2076021.2048073.

[ST95] N. Shavit and D. Touitou. “Software transactional memory”. In: PODC ’95:

Proceedings of the fourteenth annual ACM symposium on Principles of distributed

computing. Ottowa, Ontario, Canada: ACM, 1995, pp. 204–213. ISBN: 0-89791-

710-3. DOI: http://doi.acm.org/10.1145/224964.224987.

[SR05] A. Sălcianu and M. Rinard. “Purity and side effect analysis for java programs”.

In: Proceedings of the 6th international conference on Verification, Model Check-

ing, and Abstract Interpretation. VMCAI’05. Paris, France: Springer-Verlag, 2005,

pp. 199–215. ISBN: 3-540-24297-X, 978-3-540-24297-0. DOI: 10.1007/978-3-

540-30579-8_14. URL: http://dx.doi.org/10.1007/978-3-540-

30579-8_14.

138

http://dx.doi.org/10.1145/237721.237725
http://dx.doi.org/10.1145/271510.271517
http://dx.doi.org/10.1145/292540.292552
http://dx.doi.org/10.1145/514188.514190
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/265924.265927
http://doi.acm.org/10.1145/265924.265927
http://dx.doi.org/10.1145/2076021.2048073
http://dx.doi.org/http://doi.acm.org/10.1145/224964.224987
http://dx.doi.org/10.1007/978-3-540-30579-8_14
http://dx.doi.org/10.1007/978-3-540-30579-8_14
http://dx.doi.org/10.1007/978-3-540-30579-8_14
http://dx.doi.org/10.1007/978-3-540-30579-8_14

BIBLIOGRAPHY

[TLFDS10] B. C. Teixeira, J. M. Lourenço, E. Farchi, R. J. Dias, and D. Sousa. “Detection of

Transactional Memory Anomalies using Static Analysis”. In: Proceedings of the

International Workshop on Parallel and Distributed Systems: Testing, Analysis, and

Debugging. Ed. by S. U. João Lourenço Eitan Farchi. ACM Electronic Library,

July 2010, pp. 26–36.

[Tra10] Transaction Processing Performance Council. TPC-C Benchmark, Revision 5.11.

2010.

[VRCGHLS99] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. “Soot

- a Java bytecode optimization framework”. In: Proc. of the 1999 conference of the

Centre for Advanced Studies on Collaborative research. CASCON ’99. Mississauga,

Ontario, Canada: IBM Press, 1999, pp. 13–.

[VTD06] M. Vaziri, F. Tip, and J. Dolby. “Associating synchronization constraints with

data in an object-oriented language”. In: Conference record of the 33rd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages. POPL ’06.

Charleston, South Carolina, USA: ACM, 2006, pp. 334–345. ISBN: 1-59593-027-

2. DOI: 10.1145/1111037.1111067. URL: http://doi.acm.org/10.

1145/1111037.1111067.

[VPG04] C. Von Praun and T. Gross. “Static detection of atomicity violations in object-

oriented programs”. In: Journal of Object Technology 3.6 (2004), pp. 103–122.

[vG03] C. von Praun and T. R. Gross. “Static Detection of Atomicity Violations in

Object-Oriented Programs”. In: Journal of Object Technology. 2003, p. 2004.

[WS03] L. Wang and S. D. Stoller. “Run-Time Analysis for Atomicity”. In: Electronic

Notes in Theoretical Computer Science 89.2 (2003), pp. 191–209. ISSN: 15710661.

DOI: 10.1016/S1571-0661(04)81049-1.

[YLBCCDO08] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.

“Scalable Shape Analysis for Systems Code”. In: Proceedings of the 20th interna-

tional conference on Computer Aided Verification. CAV ’08. Princeton, NJ, USA:

Springer-Verlag, 2008, pp. 385–398. ISBN: 978-3-540-70543-7. DOI: 10.1007/

978-3-540-70545-1_36.

139

http://dx.doi.org/10.1145/1111037.1111067
http://doi.acm.org/10.1145/1111037.1111067
http://doi.acm.org/10.1145/1111037.1111067
http://dx.doi.org/10.1016/S1571-0661(04)81049-1
http://dx.doi.org/10.1007/978-3-540-70545-1_36
http://dx.doi.org/10.1007/978-3-540-70545-1_36

BIBLIOGRAPHY

140

A
Detailed Execution Results

A.1 In-place Metadata Overhead

In this appendix we present the detailed results of Section 5.4.1 from comparing the TL2 algo-

rithm, as implemented in the original Deuce framework, and the exact same TL2 algorithm but

implemented using the in-place extension.

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet LinkedList update=0%

tl2-overhead

40%

38% 39% 39%
37%

38%
39%

35%

37%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet LinkedList update=0%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet LinkedList update=10%

tl2-overhead

39% 38%

37%

35% 34%
33%

35% 34%

26%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

3
)

Threads

IntSet LinkedList update=10%

tl2-outplace
tl2-overhead

141

A. DETAILED EXECUTION RESULTS

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet LinkedList update=50%

tl2-overhead

36%

34% 34% 34%

32%
33% 33%

34%

22%

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

2
)

Threads

IntSet LinkedList update=50%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet LinkedList update=90%

tl2-overhead

34%
33% 33%

33%
32%

33% 33% 33%

29%

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

2
)

Threads

IntSet LinkedList update=90%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet RBTree update=0%

tl2-overhead

23%

20% 19%
18%

19%

17%

12%

7%

-4%

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet RBTree update=0%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet RBTree update=10%

tl2-overhead

23%

20%

16%

24%

34%

8%
9%

5%

20%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet RBTree update=10%

tl2-outplace
tl2-overhead

142

A. DETAILED EXECUTION RESULTS

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet RBTree update=50%

tl2-overhead

20%

17%

20%

29%

18%

12%

9%

6%

9%

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet RBTree update=50%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet RBTree update=90%

tl2-overhead

20%

17%

27%

24%

11%

10%
8%

3%

5%

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet RBTree update=90%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet SkipList update=0%

tl2-overhead

17%

21%
19%

17% 18%
19% 20%

54%

9%

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet SkipList update=0%

tl2-outplace
tl2-overhead

-20

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet SkipList update=10%

tl2-overhead

16%

35%
33%

25%

-2%

-10%

-15%

12%

3%

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet SkipList update=10%

tl2-outplace
tl2-overhead

143

A. DETAILED EXECUTION RESULTS

-40

-20

 0

 20

 40

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet SkipList update=50%

tl2-overhead

22%
20% 20%

18%

-1%

14%

-40%

6%
5%

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet SkipList update=50%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

IntSet SkipList update=90%

tl2-overhead

23%

27%

19%

11%

-1%

7% 7%

5%

19%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet SkipList update=90%

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

STMBench7 Read-Dominant w/o Long Traversals

tl2-overhead

7%
6%

15%

11%

3%

9% 10%

2% 3%

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

)

Threads

IntSet STMBench7 Read-Dom. w/ SMS w/o Long Trav.

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

Vacation-low+ (-q90 -u98 -r1048576 -t4096 -n2)

tl2-overhead

8%

5%
4%

-3%
-4% -4%

0%

7%

2%

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Vacation-low+ (-q90 -u98 -r1048576 -t4096 -n2)

tl2-outplace
tl2-overhead

144

A. DETAILED EXECUTION RESULTS

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

Vacation-high+ (-q60 -u90 -r1048576 -t4096 -n4)

tl2-overhead

9% 9%

3%
2%

-3%

1% 2%
3%

4%

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Vacation-high+ (-q60 -u90 -r1048576 -t4096 -n4)

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

KMeans-low+ (-m40 -n40 -t0.05 -irandom-n16384-d24-c16)

tl2-overhead

23%

20%

13%

15%

9%

3%

-5%

17%

15%

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

KMeans-low+ (-m40 -n40 -t0.05 -irandom-n16384-d24-c16)

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

KMeans-high+ (-m15 -n15 -t0.05 -irandom-n16384-d24-c16)

tl2-overhead

12% 11%

6%

10%

4%

-2%

3%

5%

12%

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

KMeans-high+ (-m15 -n15 -t0.05 -irandom-n16384-d24-c16)

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

Genome+ (-g512 -s32 -n32768)

tl2-overhead

2% 2%

13%

28%

14%

22%

9%

13%

-1%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Genome+ (-g512 -s32 -n32768)

tl2-outplace
tl2-overhead

145

A. DETAILED EXECUTION RESULTS

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

Intruder+ (-a10 -l16 -n4096 -s1)

tl2-overhead

5%

9%
7%

-1%

-4%

1%

-4%

5%

-4%

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Intruder+ (-a10 -l16 -n4096 -s1)

tl2-outplace
tl2-overhead

-10

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

O
v
e
rh

e
a
d
 (

%
)

Threads

Labyrinth+ (-irandom-x48-y48-z3-n64)

tl2-overhead

5%

8%

11%

14%

43%

33%

21%
22%

20%

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Labyrinth+ (-irandom-x48-y48-z3-n64)

tl2-outplace
tl2-overhead

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64

O
v
e
rh

e
a
d
 (

%
)

Threads

SSCA2+ (-s14 -i1 -u1 -l9 -p9)

tl2-overhead
128%

125%

98%
95%

72%

86%

73%

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

SSCA2+ (-s14 -i1 -u1 -l9 -p9)

tl2-outplace
tl2-overhead

A.2 JVSTM-Inplace Speedup

In this appendix we present the detailed results of Section 5.4.3 from comparing the JVSTM algo-

rithm, as implemented in the original Deuce framework, and the JVSTM algorithm implemented

using the in-place extension.

146

A. DETAILED EXECUTION RESULTS

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=0%

jvstm-inplace

10x

13x

15x

13x

15x

16x

17x

21x

24x

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet LinkedList update=0%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=10%

jvstm-inplace

9x

7x

6x

5x 5x

6x

7x

10x

9x

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

3
)

Threads

IntSet LinkedList update=10%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=50%

jvstm-inplace

5x

4x 4x

5x

6x

8x

11x

12x 12x

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

2
)

Threads

IntSet LinkedList update=50%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet LinkedList update=90%

jvstm-inplace

4x 4x 4x

5x

6x

8x

13x

18x

13x

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

2
)

Threads

IntSet LinkedList update=90%

jvstm-outplace
jvstm-inplace

147

A. DETAILED EXECUTION RESULTS

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=0%

jvstm-inplace

6x

5x

4x

3x

1x 1x 1x 1x 1x

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet RBTree update=0%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=10%

jvstm-inplace

5x

3x 3x

2x

6x 6x

5x 5x

4x

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet RBTree update=10%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=50%

jvstm-inplace

3x

2x 2x 2x

9x

7x

5x 5x

4x

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet RBTree update=50%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet RBTree update=90%

jvstm-inplace

2x 2x

3x 3x

9x

7x

5x 5x 5x

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet RBTree update=90%

jvstm-outplace
jvstm-inplace

148

A. DETAILED EXECUTION RESULTS

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=0%

jvstm-inplace

4x

3x 3x

2x

1x 1x 1x 1x 1x

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet SkipList update=0%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=10%

jvstm-inplace

4x

3x

2x 2x

7x 7x

5x

4x 4x

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

5
)

Threads

IntSet SkipList update=10%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=50%

jvstm-inplace

3x

2x 2x

3x

9x

6x

5x 5x

4x

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet SkipList update=50%

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

IntSet SkipList update=90%

jvstm-inplace

2x 2x

3x 3x

9x

6x

5x 5x 5x

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

x
1
0

4
)

Threads

IntSet SkipList update=90%

jvstm-outplace
jvstm-inplace

149

A. DETAILED EXECUTION RESULTS

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

STMBench7 Read-Dominant w/o Long Traversals

jvstm-inplace

4x 4x

8x

7x 7x

5x 5x 5x

6x

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8 16 24 32 48 64

T
h
ro

u
g
h
p
u
t
(t

ra
n
s
a
c
ti
o
n
s
/s

)

Threads

IntSet STMBench7 Read-Dom. w/ SMS w/o Long Trav.

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

Vacation-low+ (-q90 -u98 -r1048576 -t4096 -n2)

jvstm-inplace

2.0x 2.0x 2.0x 2.0x

3.0x 3.0x 3.0x 3.0x 3.0x

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Vacation-low+ (-q90 -u98 -r1048576 -t4096 -n2)

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

Vacation-high+ (-q60 -u90 -r1048576 -t4096 -n4)

jvstm-inplace

2.0x 2.0x 2.0x 2.0x

3.0x 3.0x 3.0x 3.0x 3.0x

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Vacation-high+ (-q60 -u90 -r1048576 -t4096 -n4)

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

KMeans-low+ (-m40 -n40 -t0.05 -irandom-n16384-d24-c16)

jvstm-inplace

2.0x 2.0x
3.0x

4.0x

31.0x

28.0x

30.0x

27.0x

33.0x

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

KMeans-low+ (-m40 -n40 -t0.05 -irandom-n16384-d24-c16)

jvstm-outplace
jvstm-inplace

150

A. DETAILED EXECUTION RESULTS

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

KMeans-high+ (-m15 -n15 -t0.05 -irandom-n16384-d24-c16)

jvstm-inplace

2.0x 2.0x

3.0x

4.0x

25.0x

26.0x

24.0x 24.0x

23.0x

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

KMeans-high+ (-m15 -n15 -t0.05 -irandom-n16384-d24-c16)

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

Genome+ (-g512 -s32 -n32768)

jvstm-inplace

2.0x 2.0x 2.0x 2.0x

4.0x 4.0x 4.0x 4.0x 4.0x

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Genome+ (-g512 -s32 -n32768)

jvstm-outplace
jvstm-inplace

 0

 10

 20

 30

 40

 50

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

Intruder+ (-a10 -l16 -n4096 -s1)

jvstm-inplace

2.0x 2.0x
3.0x

5.0x

27.0x

37.0x

42.0x

45.0x
44.0x

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Intruder+ (-a10 -l16 -n4096 -s1)

jvstm-outplace
jvstm-inplace

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32 48 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

Labyrinth+ (-irandom-x48-y48-z3-n64)

jvstm-inplace

2.0x 2.0x

3.0x 3.0x 3.0x

4.0x 4.0x

7.0x 7.0x

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16 24 32 48 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

Labyrinth+ (-irandom-x48-y48-z3-n64)

jvstm-outplace
jvstm-inplace

151

A. DETAILED EXECUTION RESULTS

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64

S
p
e
e
d
u
p
 (

x
 f
a
s
te

r)

Threads

SSCA2+ (-s14 -i1 -u1 -l9 -p9)

jvstm-inplace

1.0x 1.0x 1.0x 1.0x

3.0x 3.0x

2.0x

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

SSCA2+ (-s14 -i1 -u1 -l9 -p9)

jvstm-outplace
jvstm-inplace

152

	Introduction
	Problem Statement
	Contributions and Results
	Outline of the Dissertation

	Fundamental Concepts and State of the Art
	Transactional Memory
	Semantics
	Algorithms Implementation
	STM Extensible Frameworks

	Atomicity Violations
	High-Level Data Races and Stale-Value Errors
	Access Patterns Based Approaches
	Invariant Based Approaches
	Dynamic Analysis Based Approaches

	Snapshot Isolation
	Transaction Histories
	Transaction Dependencies
	Dependency Serialization Graph
	Snapshot Isolation Anomalies
	Static Dependency Graph
	Detection of Anomalies in a SDG
	Static Analysis of Snapshot Isolation
	Snapshot Isolation in Transactional Memory

	Static Analysis
	Abstract Interpretation
	Shape Analysis
	Shape Analysis based on Separation Logic
	Shape Analysis to Detect Memory Accesses

	Detection of Atomicity Violations
	Introduction
	Core Language
	Causal Dependencies
	Dependency Analysis

	Atomicity Violations
	High Level data races
	Stale-Value Error

	The MoTH Prototype
	Process Analysis
	Instance Type Analysis
	Native Methods

	Evaluation
	Related Work
	Concluding Remarks

	Verification of Snapshot Isolation Anomalies
	Introduction
	Motivation
	Verification of Snapshot Isolation Anomalies

	Snapshot Isolation
	Abstract Write-Skew
	Soundness

	StarTM by Example
	Core Language
	Syntax
	Operational Semantics

	Abstract States
	Symbolic Heaps
	Heap Paths
	Abstract Read- and Write-Sets
	From Symbolic Heaps to Heap Paths

	Abstract Semantics
	Past Symbolic Heap
	Symbolic Execution Rules
	Rearrangement Rules
	Fixed Point Computation and Abstraction
	Write-Skew Detection

	Experimental Results
	Related Work
	Concluding Remarks

	Support of In-Place Metadata in Transactional Memory
	Introduction
	Deuce and the Out-Place Strategy
	Supporting the In-Place Strategy
	Implementation
	Instrumentation Limitations

	Implementation Assessment
	Overhead Evaluation
	Implementing a Multi-Versioning Algorithm: JVSTM
	Speedup Evaluation
	Memory Consumption Evaluation

	Use Case: Multi-version Algorithm Implementation
	SMV – Selective Multi-versioning STM
	JVSTM Lock Free
	MVSTM – A New Multi-Version Algorithm

	Supporting the Weak Atomicity Model
	Read Access Adaptation
	Commit Adaptation
	MV-Algorithms Adaptation

	Performance Comparison of STM Algorithms
	Concluding Remarks

	Conclusions and Future Work
	Detailed Execution Results
	In-place Metadata Overhead
	JVSTM-Inplace Speedup

