
Discrete Comput Geom 7:415431 (1992)
Discrete & Computational

Geometry
'~ 1992 Springer-Verlag New York Inc.

Maintaining the Minimal Distance of a Point Set in

Polylogarithmic Time*

Michiel Smid

Max-Planck-lnstitut fiir Informatik, W-6600 Saarbriicken, Federal Republic of Germany

Abstract. A dynamic data structure is given that maintains the minimal distance in

a set of n points in k-dimensional space in O((log n) k log log n) amortized time per

update. The size of the data structure is bounded by O(n(log n)k). Distances are

measured in the Minkowski Lt-metric, where 1 < t < ~ . This is the first dynamic

data structure that maintains the minimal distance in polylogarithmic time for fully

on-line updates.

1. Introduction

One of the fundamental type of problems in computat ional geometry are proximity

problems, where we are given a set of points and we want to compute the minimal

distance among these points, or we want for each point its nearest neighbor.

Such problems have been studied extensively, and many results are known. The

earliest results were only concerned with planar point sets. For example, it is well

known that the minimal euclidean distance between n points in the plane can be

found in O(n log n) time, and this is optimal. Given a set of n planar points, a

euclidean nearest neighbor can be computed for each point in the set, in O(n log n)

time, which is also optimal. These results have been extended to optimal O(n log n)

algorithms for both problems in arbitrary, but fixed, dimension, using an arbitrary

Lt-metric. (See Preparata and Shamos [10] and Vaidya [15].)

In the Lt-metric, for 1 < t < ~ , the distance d,(p, q) between two k-dimensional

points p = (Pl Pk) and q = (ql qk) is defined by

dt(p, q):= (i=~ lPi- qilt) i#,

* This work was supported by the ESPRIT If Basic Research Actions Program, under Contract
No. 3075 (project ALCOM).

416 M, Staid

if 1 < t < ~ , and for t = oo it is defined by

d~(p, q):= max IPi - qil.
l <~i~k

Important examples are the Ll-metric also known as the Manhattan-metric, the

L2-metric which is the "usual" euclidean metric, and the L~o-metric which is also

known as the maximum-norm.

In this paper, we consider the problem of maintaining the minimal distance

when points are inserted and deleted. Dobkin and Suri [5] considered the case

where the updates are semi-on-line. A sequence of updates is called semi-on-line

when the insertions arrive on-line, but with each inserted point we get an integer

l indicating that the inserted point will be deleted l updates after the moment of

insertion. They showed that in the plane, such updates can be performed at an

amortized cost of O((log n) z) time per semi-on-line update. This result was made

worst-case by the author in [12].

Supowit [14] gives an algorithm that maintains the minimal distance in a set

of k-dimensional points in O((log n) k) amortized time per deletion. His method uses

O(n(log n) k- 1) space. This data structure does not support insertions of points.

For arbitrary updates on the minimal euclidean distance of a set of planar

points, the first nontrivial result was by Overmars I'8] and 1'9], who gave an O(n)

time update algorithm. His method uses O(n log log n) space. Aggarwal et al. [1]

showed that in a two-dimensional Voronoi diagram, points can be inserted and

deleted in O(n) time. This also leads to an update time of O(n) for the minimal

distance, using only O(n) space.

In [13], the author gives an O(n log n) time algorithm that computes the O(n 2/3)

smallest distances defined by a set of n points in k-dimensional space. This result

is used to give a dynamic data structure of size O(n), that maintains the minimal

distance of a set of n points in k-space at a cost O(rt 2/3 log n) time per update.

Using results of Dickerson and Drysdale [4] and Salowe [11], the update time

can be improved to O(n 1/2 log n).

In this paper, we give a data structure of size O(n(log n) k) that maintains the

minimal distance in O((log n) k log log n) amortized time per update. The data

structure is composed of a number of structures that solve similar--but simpler--

problems. More precisely, we define so-called structures of type i that estimate the

distance between two sets A and B, whose points have coordinates of opposite

sign in a fixed set of k - i positions. These structures are defined recursively for

i = 0, 1 , k. For i = k, we get the final data structure that maintains the minimal

distance.

The result gives the first fully dynamic data structure that maintains the minimal

distance in polylogarithmic amortized time.

In Section 2, we define two versions of the structure of type 0. This structure

stores two sets A and B that lie in two opposite k-dimensional quadrants, and it

maintains a variable 6 that gives a lower bound on the minimal distance between

the sets A and B. If the minimal distance in A w B is equal to the distance between

A and B, then the value of 6 is equal to this distance. The first version of this

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 417

structure is presented for reasons of clarity. Then we give the second version, which

makes it possible to speed up the building algorithm of the structure of type t. In

Section 3, we define similar structures of type i. Now the structure stores sets A

and B that lie in spaces that intersect in some/-dimensional space. These structures

are defined inductively, taking the structure of type 0 as the basis of the

construction. The variable 6 that is maintained by the structure of type i satisfies

the same constraints as that for the structure of type 0. If i = k, the variable 6 will

be equal to the minimal distance in the entire point set.

In Section 4, we apply dynamic fractional cascading (see Chazelle and Guibas

[3] and Mehlhorn and N~iher [7]) to speed up the update algorithm of the

structure of type 1. As a result, this also improves the update time of the complete

structure. We finish the paper in Section 5 with some concluding remarks.

2. The Type 0 Data Structure

Before we define the data structure of type 0, we prove a lemma that will be used

in the correctness proof of this structure. If C is a k-dimensional cube and V is a

set of points in k-space, then all points of V that are on the boundary or in the

interior of C are said to be contained in C.

Lemma 1. Let V be a set of points in k-space. Consider a k-dimensional cube with

sides of length s that contains more than (k + 1) k points of V. Then the minimal

Lcdistance between points in V is less than s.

Proof. Assume without loss of generality that the k-cube is equal to [0: s] x ...

× [0:s] . Parti t ion this cube into (k + 1) k subcubes

[i~s/(k + 1):(il + 1)s/(k + 1)] × "" × [ikS/(k + 1):(i k + 1)s/(k + 1)],

where the ij are integers such that 0 < ij < k and 1 _< j _< k. Since the cube contains

at least (k + 1) k + 1 points of V, there is one subcube that contains at least two

points of V. Hence, there are two points in V that have a distance which is at most

the L~-diameter of this subcube. Since the L~-diameter of the subcube is at most

k x s/(k + 1) < s, the minimal Lt-distance among all pairs of distinct points in V

is less than s. []

In the final data structure that maintains the minimal distance we need several

data structures that solve s imilar--but simpler--problems. In this section, we give

the first of these structures.

Throughout this paper we fix 1 < t < oo, and we measure all distances in the

L,-metric. For point sets P and Q we define

d(P, Q) '= min{d(p, q)lpe P, q~Q, p ~ q}.

(We define d(P, ~) : = d (~ , Q):= c~.) We also fix the constant Ck:= 1 + (k + 1) k.

418 M. Smid

Next we fix a constant ~, such that 0 < ~ < ½. Recall that a binary search tree

is called a BB[0t]-tree if • < nw/nv < 1 - 0t for all nodes v and w such that v is the

father of w. Here n, is the number of leaves in the subtree of u. (See [2] and [6]

for details about BB[0t]-trees.) We use BB[ct]-trees as leaf-search trees. That is,

elements are stored in sorted order in the leaves. These leaves are linked by

pointers, from left to right and from right to left. Furthermore, there are pointers

to the left and rightmost elements. Hence we can access the c smallest or largest

elements in O(c) time.

Let A and B be two sets of points in k-space. We assume that the points of A

and B lie in opposite k-dimensional quadrants. Therefore, we may assume with-

out loss of generality that A _ ~ - := (- oo" 01 k - 1 X (- - 00" p'] and B ___ ~ :=

[0 : oo) k- 1 x [p : co) for some real number p. (If the point (0 0, p) belongs to

A u B, then it belongs to A.) We want to maintain the minimal distance between

points in A and points in B, when updates of the following type are performed.

Only points that lie in ~ u ~ are inserted and deleted. If a point of ~ 7 is in-

serted or deleted, we say that the update "occurs" in set A. Otherwise, the

update "occurs" in set B.

The data structure does not always have to give the minimal distance between

A and B. It only has to if the minimal distance in the set A u B is equal to the

distance between A and B. The reason for this is the following: Later this data

structure will be part of the data structure that maintains the minimal distance

between all points. The part of the structure of the present section takes care of

the distance between two subsets A and B. Another part of the data structure will

take care of the distances between points in A, and yet another part considers

distances in the set B. If the distance between A and B is "large," then the structure

of this section is not relevant; other parts of the final structure will give the minimal

distance in the complete set. If, however, the distance between A and B is equal

to the minimal distance in the complete set, then the structure of this section

delivers this minimal distance.

So A and B are sets of points in k-space such thaf A ~_ ~ and B ___ ~p+. Let

a = Ihl , b = IBI, and n = Ihl + Inl. It may be possible that a = 0 or b = 0 but

n = a + b > 0. Let r be the point (0 0, p) in k-space.

We give a dynamic data structure that maintains a variable 6 • ~ u { ~ } such

that:

(1) i fA or B is empty, then 6 = oo;

(2) if A and B are both nonempty, then 6 = d(p, q) for some p • A and q • B,

P # q ;
(3) if d(A, B) = d(A ~ B, A u B), then 5 = d(A, B).

We say that the structure stores the pair (A, B) and we call the structure of

type 0, because the regions in which the sets A and B lie intersect in one point.

The Data Structure of Type 0 with Reference Point r

1. We maintain two BB[0t]-trees TA and T B that store the points of A and B,

sorted by their L~o-distances from the reference point r. Points with equal

L®-distances are stored in increasing lexicographic order.

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 419

2. If A or B is empty, the value of the variable ~ is equal to ~ .

3. If A and B are both nonempty, let Ao (resp. Bo) be the set of min(ck, IAI)

(resp. min(e k, tBI)) smallest--i.e., lef tmost--points of T A (resp. Tn). In this

case, the value of 3 is equal to d(Ao, Bo).

First, we prove that the value of 6 that is maintained by this data structure is

correct.

Lemma 2. The value of 3 satisfies (1), (2), and (3).

Proof If A or B is empty, then 6 = ~ . Hence, (1) holds in this case. If A is empty

and B consists of exactly one element, then d(A, B) = d(A w B, A u B) = oo and,

hence, (3) holds. If A is empty and B contains more than one element, then

d(A, B) # d(A w B, A u B). Therefore, (3) also holds.

Now assume that A and B are both nonempty. It is clear that (2) holds. Let

ao = IAol and bo = IBol.

If ao < Ck and bo <- Ck, then Ao = A and Bo = B and, hence, 6 = d(A, B). Thus,

(3) holds in this case.

Assume that ao and bo are both greater than Ck and assume that d(A, B)=

d(A u B, A u B). We have to show that 6 = d(A, B).

Let SA (resp. ss) be the maximum of the L~-distances of the points in Ao (resp.

Bo) to the reference point r. Let s be the minimum of s a and sB. Assume without

loss of generality that s = SA.

Consider the k-cube [- s : 0] k- 1 x [p - s : p]. All points of A o are contained in

this cube. Since IAoi > Ck > (k + 1) k, it follows from Lemma 1 that d(A, A) < s.

Therefore, d(A u B, A u B) < s. But then, by our assumption, we have d(A, B) < s.

Since points in A and B\Bo are "separated" by a k-cube of side lengths sn > s we

have d(A, B\Bo) >>_ s. Similarly, d(A\Ao, B) >_ s. Therefore,

d(A, B) = min(d(Ao, Bo), d(A\Ao, B), d(A, B\Bo)) = d(Ao, Bo).

But, by the definition of the data structure, 6 = d(Ao, Bo). It follows that

6 = d(A, B) and, hence, ~ satisfies (3).

We are left with the case that a o > c k and bo <- ck. (The case ao <_ Ck and b o > c k

can be handled symmetrically.) Note that then Bo = B. Assume that d(A, B) =

d(A u B, A u B). We have to show that 6 = d(A, B).

Define sA as above. Then we get in the same way as before that d(A, B) < sa.

We also get

d(A, B) = min(d(Ao, B), d(A\Ao, B)) = d(Ao, B).

Therefore, 6 = d(A o, Bo) = d(Ao, B) = d(A, B). This proves that 6 satisfies (3). []

The Update Algorithm

To insert or delete a point p in a structure of type 0 for the pair (A, B) we do the

following: Insert or delete the point in the tree Ta or TB, depending on whether

420 M. Smid

the update occurs in A or B. Then compare each of the min(ck, I A l) smallest points

in TA with each of the min(c k, [BI) smallest points in T8 and set 6 to the minimal

distance between these pairs of points.

Theorem 1. The data structure of type O for the pair (A, B) has size O(n) and can

be built in O(n log n) time. In this data structure, points can be inserted and deleted

at a cost of O(log n) time per update.

Proof The bounds on the size and the building time are clear. It is also clear

that the update algorithm correctly maintains the data structure of type 0 and

that it uses O(log n) time per update. []

We now change the data structure of type 0, The reason for doing this is twofold.

Using the alternative structure of type 0 we are able to improve the building time

of the structure of type 1. It will also allow us to use dynamic fractiona! cascading

in a relatively straightforward manner,

The Alternative Data Structure o f Type 0

Let A _ _ _ (- ~ : 0] k-1 x (- ~ : p] and B ~ [0 : ~) k - 1 × [p : ~) be two sets of

points of sizes a > 0 and b _>_ 0 such that n = a + b > 0. Let r be the point

(0 0, p) in k-space. The alternative data structure of type 0 for the pair (A, B)

with reference point r consists of the following:

1. Two BB[ct]-trees T k and T k that store the points of A and B sorted by their

kth coordinates. Points with equal kth coordinates are stored in increasing

lexicographic order.
r , o o "' ~ and Ts, k- 1 that store the points of A and B sorted 2. Two BB[~]-trees T a, k- t

by their L~-distances from the reference point r, where we take in the

distance computations only the k - 1 first coordinates into account. Points

with equal L~-distances to r - - for the k - 1 first coordinates--are stored in

increasing lexicographical order,

3, Let A' be the set of points p = (pl Pk) in A such that do~(p, r) = IPk -- Pl.

Then there are BB[~]-trees TA, and TA\A, that store the points of A' and

A \ A ' sorted by their L~-distances from the reference point r. Points with

equal Loo-distances are stored in increasing lexicographic order.

4. There are BB[~]-trees T B, and TB\ 8, that are defined similarly.

5. If A or B is empty, then 6 = ~ .

6. If A and B are both nonempty, let A o (resp. Bo) be the subset of A

(resp. B), consisting of the min(ck, I A I) (resp. min(ck, I B I)) smallest points with

respect to the L~-distance to the reference point r. Then 6 = d(A o, Bo).

Note that the point set A o can be obtained from the trees TA, and Ta\ A,: Take

the min(ck, [A'I) smallest points in TA, and the min(ck, [A\A'I) smallest points in

TA\a,. Then Ao consists of the min(ck, IAI) smallest of these points.

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 421

Therefore L e m m a 2 and Theorem 1 remain valid for the al ternative data

s tructure of type 0.

In the rest of this section, we p rove a l emma tha t will be used later. An ordered

sequence S is called a subsequence of an ordered sequence T if the following holds

for all p and q: If p and q are elements in S such that p is to the left of q, then p

is also to the left of q in the sequence T.

We introduce the following notat ions. Let X be a set of points in k-space and

let r be a point in k-space. Then S~ denotes the sequence consisting of the points

of X sorted by their kth coordinates, and S~?.7 denotes the sequence consisting of

the points of X sorted by their L~-dis tances to point r. By S~.~_ 1 we denote the

sequence consisting of the points of X 'sorted by their L~-dis tances to point r,

where we take in the distance computa t ions only the k - 1 first coordinates into

account.

L e m m a 3. Let B be a set of points in k-space, a a real number, and s the point

(0 O, a) in k-space. Partition B into sets C and D such that C ~_ {p e B : Pk ~ tT}

and D~_ {peB:pk >_ a} where Pk is the kth coordinate of p. Let C ' : = { p ~ C :

d~(p,s) =]Pk -- al} and D ' : = {peD:d~(p,s) =]Pk -- a]}. Then:

1. S~,~ is a subsequence of the inverted sequence S~;

2. SD" k is a subsequence of S~;

3. S~,,~,,k is a subsequence of S°:~_ 1 where 0 stands for the zero vector in k-space;
x , c£,

qf So.k-1. 4. SD,,D',k is a subsequence o,~

Proof We only give the p roof for the C-sequences. To prove the first claim, let
S, OO p and q be elements of Sc,.k such that p is to the left of q in this sequence. Then

d~(p, s) <_ d~(q, s). Since p and q are both in C', it follows that IPk -- a[_.< Iqk -- ~rl.

Then, using that Pk, qk < a, it follows that qk --< Pk" Hence, p is to the right of q in

the sequence S~.

If x = (x 1 Xk) is a point in k-space, then x' will denote the point

(x~ x~_ 1) in (k - t)-space. To p rove the third claim, let p and q be elements

of S~\~. k such that p is to the left of q in this sequence. Then d~(p, s) <_ d~(q, s).

Since p, q ~ C', we have do(p, s) = d~,(p', s') and d~(q, s) = d~(q', s'). Since 0' = s',

it follows that d~(p', 0') = d~(p, s) <_ d~(q, s) = d~(q', 0'). Thus, p is to the left of q

in the sequence o, Sc.k- 1. []

3. The Type i Data Structure

In this section we recursively define the s tructure of type i that main ta ins the

"d is tance" between two point sets, whose points have coordinates of oppos i te sign

in k - i positions. The variable that is main ta ined by this s t ructure satisfies the

same requirements as in (1), (2), and (3). The s t ructure of type i uses the s tructure

of type (i - 1) as a building block.

Let i be an integer such that 0 < i _< k. Let A and B be two sets of points in

k-dimensional space such that a = IA] >_>_ 0, b = [B[> 0, and n = a + b > 0. We

422 M, Smid

assume that the points of A and B have coordinates of opposite sign in a fixed

set of k - i positions. Therefore, we may assume without loss of generality that

the points of A lie in the space ~ 7 := (- oo : 0] k- i x ~i, and the points of B lie

in ~ + := [0: oo) k-~ x ~ .

If 0 < i < k, the sets A and B are supposed to be disjoint, whereas for i = k

these sets must be equal.

We want to maintain the "minimal distance" between points in A and points

in B when updates of the following type are performed. Only points that lie in

~ - u ~ + are inserted and deleted. If a point in ~ is inserted or deleted, then

the update "occurs" in set A. Otherwise, the update "occurs" in set B.

We give a dynamic data structure of type i that maintains a variable 6 =

6~(A, B) e ~ w { oo } such that:

(4) if A or B is empty or if IA w BI < 1, then 6 = oo;

(5) if A and B are both non empty and I A w B I > 2, then 6 = d(p, q) for some

p e A and qeB, p # q;

(6) if d(A, B) = d(A u B, A w B), then 6 = d(A, B).

We say that the structure stores the pair (A, B). In the rest of this section we use

the same constant Ck = (k + 1) k + 1 as before.

The Data Structure of Type i

If i = 0, we take the alternative structure of type 0 that was defined in the previous

section. So let 1 < i < k and assume that the structure of type (i - 1) is defined

already. The structure of type i consists of the following.

1. An augmented BB[~]-tree T that contains the points of A w B in its leaves,

sorted by their (k - i + 1)th coordinates. (Points with equal (k - i + 1)th

coordinates are stored in increasing lexicographic order.) In each node u we

store a hyperplane H,: Xk-i+ 1 = G, where a, is the maximal (k - i + 1)th

coordinate of all points in the left subtree of u. Let A~ (resp. B~) denote the

subset of A (resp. B) that is stored in the subtree of u.

Any node u in T contains the following additional information.

2. If u is a leaf, then it contains the value 6t(A,, B~) = oo.

3. If u is not a leaf let v (resp. w) be the left (resp. right) son of u. Note that

& ~ (- ~ : 0 3 ~-i x (- ~ :,r.] x . ~ -1 ,

a . ~_ (- ~ : 0 3 k-~ x [cr.: oo) x ,~ - ~,

By c r0: oo) k-~ x (--oo : G] x ~i -1 ,

B,, _~ [-0: oo) k- ~ x [tr, : oo) x ~ i - 1.

Therefore, the points in the

sign in the first k - i + l

coordinates have opposite

Similarly for the sets Aw and

sets A v and Bw have coordinates of "opposite"

positions. (In the (k - i + 1)th position, the

sign with respect to their difference to G.)

By, Moreover, A~, Aw -~ ~ - and By, Bw - ~+ .

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 423

(a) Node u contains two (pointers to) structures of type (i - 1), one structure

for the pair (A~, B~) and the other structure for the pair (Aw, By). These

structures maintain variables 6 i_ 1(A~, Bw) and 5i- ~(Aw, B~).
(b) The sons of u contain variables 6i(Ao, By) and 61(A~, B~). The value of

6~(A., B.) corresponding to node u satisfies

5~(Au, Bu) = min(5,(A~, B,), 5,(A~, Bw), 6~_ ,(A~, Bw), 5~_ t(A~, By)).

Remark. If i = k, the sets A and B are equal. In this case, each point in A w B

is stored exactly once in the BB[~]-tree T. Each node u needs only one (pointer

to a) structure of type (k - 1), because the pairs (A~, B~) and (Aw, Bv) are equal

in this case.

Lemma 4. For any node u of T, the value of Ji(A., B~) satisfies (4), (5), and (6).

Proof First note that the sets A and B are disjoint if 0 < i < k. Therefore,

IA u BI > 2 if A and B are both nonempty. That is, the conditions about IA w BI

in (4) and (5) do not play a role if 0 < i < k,

We saw in Lemma 2 that the claim holds for i = 0. So let 1 < i < k, and assume

that the claim is true for the structure of type (i - 1).

Consider the BB[ctJ-tree T. Let u be a leaf of T. Note that IA. u B.I = 1 and

6i(A u, B.) = oo. If one of A. and B. is empty, then (4) and (6) hold. Otherwise, if

A. and Bu are both nonempty, these two sets must be equal and have size one.

In this case, (4) holds and (5) does not apply. Also (6) holds because d(A., B.) = oo.
It follows that the lemma holds for all leaves in T.

Let u be a nonleaf node in T, and let v and w be the left and right sons of u.

Assume inductively that the values of 61(Av, Bo) and 51(A~, B~) are correct. By the

induction hypothesis, the values of 6i_ I(A~, Bw) and 6i-l(Aw, Bv) are correct. By

definition,

(7) 6,(A., B,) = min(f,(Av, Bo), (~(A w, Bw), 5~_ ~(A:, Bw), 5~_ ~(A~, B:)).

If A~ is empty, then Av and Aw are also empty. Therefore, all terms on the

righthand side of (7) are infinite. If follows that in that case 5i(A~, B.) = oo. Hence,

in this case, (4) holds for node u. Since u is not a leaf and since each point in

A~ u B. is stored only once we have]A. u B.I > 2 and, hence,

d(A u u B u, A. u B.) < oo = d(Au, Bu).

Therefore, (6) does not apply in this case. The same holds if B u is empty.

So assume that Au and B. are both nonempty. Note that (4) does not apply,

because I A. u B.I > 2. At least one of the terms on the right-hand side of (7) is

finite. Using the induction hypothesis, it follows easily that (5) holds.

Now suppose that d(A~, B .)= d(A. u B~, A~ u B.). In order to prove (6), we

have to show that 5i:= 5~(A., B.) = d(A., B.). It follows from (5) that 5~ > d(Au, B.).

424 M. Smid

So it remains to be shown that 6~ <_ d(Au, B.). Clearly,

d(Au, Bu) = min(d(A~, B~), d(A~, Bw), d(Av, Bw), d(A~, B~)).

Take r and s from {v, w} such that d(A,, B,) = d(A,, B~). We have

d(A, u B u, Au u B,) < d(A, u Bs, Ar u Bs)

< d(A,, B,)

= d(A,, B:)

= d(A~ u Bu, A~ LJ B~).

Hence, all inequalities above are in fact equalities. Therefore, d(A,, Bs) = d(A r u B s,

A r u Bs). Using the induction hypothesis, it follows from (6) that 6j(Ar, B ,)=

d(A r,B`) where j = i if r = s and j = i - 1 otherwise. Thus, 6i<6j(Ar, B ,)=

d(Ar, B~) = d(A,,, B,,). This finishes the proof. []

The definition of the structure of type i immediately leads to a recursive building

algorithm. Let Ti(n) denote the building time for sets A and B of total size n. Then

by Theorem 1, To(n) = O(n log n) and for i > 0,

(8) Ti(n) = 2T,~n/2) + 2T/_l(n) + O(n).

The O(n) term is the time needed to find the median of the (k - i +)th coordinates

and for splitting the set according to this median. This recurrence solves to
T/(n) = O(n(log n) i+ i).

We now show how Lemma 3 can be used to improve the building time for the

structure of type 1 to O(n log n).

Building the Structure o f Type 1

Let A ~ (- ~ : 0] k- 1 × ~ and B ___ [0 : oo) k- 1 >(~.

Before we start building the data structure, we do a kind of presorting: First,

we sort the points of A by their kth coordinates and store them in the doubly-linked

list S k. Similarly, we construct the doubly-linked list S~ for the set B. Next, we sort

the points of A by their L®-distances from the origin 0, where we take in the

distance computations only the k - 1 first coordinates into account. We store the

resulting sorted set in the linked list o. o~ SA.k-1" Similarly, we construct the linked list
0.~o for B. SB, k - 1

Now the actual building of the data structure of type 1 begins. We find the

median a of the kth coordinates of the points in A w B. Let s denote the point

(0 0, tr) in k-space. We partition A into equal-sized sets A 1 := {P ~ A : Pk < a}

and A 2 .= {p e A : Pk > tr}. Similarly, we partition B into B 1 and B2.

We walk through the list S k and make two sorted doubly-linked lists ska, and

Sk2 out of them. In the same way, we make two doubly-linked lists S k, and Sk2.

Similarly, we walk through SA. kO' ~o_ 1 and make two sorted linked lists S °'A,,k°° _ !

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 425

O,~3
S,,. k- 1 and and SA2,k_ 1 out of them. In the same way, we make two linked lists 0, do

S °' ~ out of S°:ff_ B 2 , k - 1 1"

Let r be the root of the final data structure of type 1. We store in r the

hyperplane Hr: Xk = ~.
In the root, we have to store data structures of type 0 for the pairs (A 1, B2)

and (A2, B1). These two structures have reference point s = (0, . . . , 0, a). We only

describe how the first structure is built.

We store the points of S~ in a perfectly balanced binary search tree TkA. In

the same way, we build the perfectly balanced binary search tree T k using the list B2
sk .

Next we store the points o r¢o. do and S O, ~ in the perfectly balanced binary A ~ ' A I , k - 1 B2, k - 1

s,~ and T ~' ~ (Note that the ordering only depends on the search t r e e s Ta , ,k . . 1 B2.k- 1.

k - 1 first coordinates. Therefore, the points in these trees are indeed correctly

sorted.)

Let A'l := {p¢AI :d~(p, s)= [Pk - al}. We make a linear scan through the

reversed sequence SkA~ to obtain the sequence S~i. (See Lemma 3.) Then we store

the points of this sorted list S~i in the perfectly balanced binary search tree TAI.
Similarly, we make a scan through the list S o, ~ select the points of At, and A l , k - l~

store them in the perfectly balanced binary search tree TA,\AI. (See Lemma 3.)

In the same way, we build perfectly balanced binary search trees T.~ and T.~\.~

where B~ := (pe B2:doo(p , s) = lPk - - trt}"

To complete the data structure of type 0 for the pair (A 1, B2) we compute the

value of 6o(A 1, B2) according to its definition in Section 2. It is clear how to do

this in constant time, since we can find the min([A 1 P, CR) smallest elements in the

appropriate trees in constant time.

We are almost finished in the root r. We only need the value of JI(A, B). This

value will be computed in the final stage of the algorithm.

We build data structures of type 1--without the ~l-values--for the pairs

(A1, B1) and (A2, B2) using the same algorithm recursively. Note that at the start

of these recursive calls we have the sorted sequences sk , S~, SO; o~ 1, and S°'.~_ 1

for j = 1, 2. These structures form the left and right subtree of tiae root r.

At this moment we have constructed the skeleton tree of the data structure of

type 1 and all structures of type 0 that are stored with the nodes of this skeleton

tree. We walk through this tree in postorder and compute the values of 31 for the

nodes by setting 6i(Au, 13,) := do for each leaf u, and

5i(A., B.):= min(fi(A v, Bv), 5i(A w, Bw), 6i- t(A., B.,), 5i- I(A~, Bo))

for each node u with sons v and w.

This completes the building algorithm for the data structure of type 1. We

analyze its running time. It takes O(n log n) time to do the presorting. Let P(n)

denote the building time after the presorting step. Then it follows from the above

algorithm that P(n) = O(n) + 2P(n/2) and, hence, P(n) = O(n log n). The final walk

through the tree in postorder takes an additional amount of O(n) time.

This proves that the complete building time Tl(n) is bounded by O(n log n).

Using (8), it follows that T,~n) = O(n(log n) i) for I < i < k.

426 M. Smid

Lemma 5. Let 1 <_ i < k. The data structure of type i f or the pair (A, B) can be

built in O(n(log n) i) time and has size O(n(log n)i).

Proof. The proof of the building time follows from the above discussion. The

size of the data structure satisfies the same recurrence relation as the building

time. []

The Update Aloorithm

Suppose we want to insert or delete a point p in a structure of type i for the pair

(A, B). Assume that the update occurs in B. If i = 0, we use the algorithm of

Section 2.

Otherwise, 1 < i < k. We search with the kth coordinate of p in the BB[~]-tree

T t o find the leafx where the update takes place. For each node u that we encounter

during this walk we do the following: Let v and w be its two sons and assume

that the walk proceeds to v. Then we insert or delete point p in the structure of

type (i - 1) for the pair (Aw, By) using the same algorithm recursively. Note that

this will lead to a new value of 5 i_ l(Aw, B~).

Assume that we have to insert p. Then we give the leaf x two new sons y and

z which are data structures of type i for the appropriate pairs. In node x itself we

build two data structures of type (i - 1) for the appropriate pairs. The case where

p has to be deleted can be handled similarly.

Next we walk back to the root, starting at the leaf where the update has taken

place. At each node u we encounter we set

5i(A,, B,):= min(tii(Av, B~), 5i(A~, Bw), 6i-I(Av, Bw), 3~_ l(Aw, B~)),

where v and w are the sons of u.

Finally, we again walk along this path back to the root and rebalance the

BB[aJ-tree by means of rotations, as described in' [2] and [6]. Note that if a

rotation is done at a node, we have to rebuild a constant number of type (i - 1)

data structures. The algorithm for rebuilding structures of type 0 makes use of

Lemma 3.

Remark. If i = k, then the sets A and B are equal. Although the update occurs

in both sets, we insert or delete the point only once.

Lemma 6. In the data structure of type i f or the pair (A, B), points can be inserted

and deleted at a cost of O((log n) i+ l) amortized time per update.

Proof. Let U~n) denote the amortized update time for a data structure of type i

for the pair (A, B) where n = IA! + IBI. It follows from Theorem 1 that Uo(n) =

O(log n), even in the worst case.

Let 1 < i < k. If we do not count the rebuilding costs that are caused by the

rotations at the nodes on the search path, then we spend an amount of time that

is bounded by O(Ui- l(n) log n).

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 427

Let v be a node that causes a rotation and let m be the number of points that

are stored in the subtree rooted at v. During the rotation we rebuild a constant

number of structures of type (i - 1). For i = 1, a structure of type 0 can be rebuilt

in O(m) time by using Lemma 3. By this observation, and by Lemma 5, we conclude

that the constant number of rebuildings---due to the rotation at v---can be done

in O(m(log m) i- 1) time.

Note that during one update there may be many nodes that cause rotations.

In Mehlhorn [6, page 198], however, it is shown that if a single rotation takes

O(m(log m) i- 1) time, then the amortized cost for all rebalancing operations in one

single update is bounded by O((log n)i).

Thus, the update time satisfies the following recurrence relation:

Ui(n) = O(U i_ l(n) log n) + O((log n)i).

This recurrence solves to U/(n) = O((tog n) i÷ 1) which proves the lemma. []

This concludes the description of the data structures and algorithms. We

summarize the results of this section in the following theorem.

Theorem 2. Let i be an integer such that 1 <_ i <_ k. Let A and B be sets of points

in k-space. Assume that the points of A and B have coordinates of opposite sign in

a fixed set of k - i positions. Let a = IA[and b = IBI where a > O, b > O, and

n = a + b > O .

The data structure of type i f or the pair (A, B) maintains a variable Ji(A, B) that

satisfies requirements (4), (5), and (6). The structure has size O(n(log n) i) and can be

built in O(n(log n) i) time. In this structure points can be inserted and deleted at a

cost of O((log n) i+ 1) amortized time per update.

Now let V be a set of n points in k-dimensional space and consider the

data structure of type k for the pair (A,B) where A = B = V. This data

structure maintains a variable ~ .'= ~k(V, V) such that (6) holds. Note that d(A, B) =

d(A w B, A u B). Hence, fi = d(A, B) = d(V, V). It follows that this data structure

maintains the minimal distance in the set V. We have proved the following theorem.

Theorem 3. There exists a data structure that maintains the minimal Lt-distance

of a set of n points in k-dimensional space, at a cost of O((log n) k+ l) amortized time

per update. The data structure has size O(n(log n) k) and can be built in O(n(log n) k)

time.

4. Applying Dynamic Fractional Cascading

Now we show how the update algorithm can be improved using dynamic fractional

cascading. We assume that the reader is familiar with this data structuring

technique. See Chazelle and Guibas [3] and Mehlhorn and N/iher [7].

Consider a data structure of type 1. It consists of a BB[~]-tree T in which the

428 M. Smid

nodes contain structures of type 0. Assume that an update occurs in set A. During

this update we walk down the tree, and in each node u we visit we update one

data structure of type 0. In each such update we do basically the same: Suppose

that the walk proceeds to the son v of u. Then we insert or delete the same point

in the BB[~]-trees Tka,, TA~,k_r., ~ 1, Ta',o and Ta~\a;. Here ru = (0 0, a,) is the

reference point of the type 0 structure stored at node u. Note that by Lemma 3

the third tree is a "subsequence" of the first one (or its inverse), and that the fourth

is a "subsequence" of the second. Furthermore, the trees T ~ , if we vary u, are all
ru, ~t~

sorted with respect to the same ordering. The same holds for all t rees TA, .k 1"

These observations make it possible to use fractional cascading in the data

structure of type 1. More precisely, we change the data structure of type 1 as

follows:

1. Let u range over the nodes of Tand let v be any son ofu. We apply fractional

cascading to the trees T k That is, instead of these trees, we store augmented
AI •

catalogues in the nodes u of the BB[~]-tree T, and we store bridges between

the augmented catalogues of adjacent nodes, as described in [7]. Similarly,

we apply fractional cascading to the trees T k B~"

"" ~' where 2. In the same way, we apply fractional cascading to the t rees TA,,k_ 1

U ranges over the nodes of T. We do the same for the trees TB,,k_ ~.

3. Let u be a node in T and let v be any of its sons. We link the trees Ta; and
T k ao as follows: For each p e A~ we put a pointer from p in Tk a~, to p in Ta,.

We do the same for B.

4. Let u be a node in T and let v be any of its sons. We link the trees TA,,\A;
p r u , of)

"" °0 For each p ~ A~\A~ we put a pointer from p in Tao,, k_ 1 to p in and TA, ,k_ ~:

Tao\a;. We do the same for B.

The update algorithm for the data structure of type i does not change if i > 2.

For i = 1, however, it is replaced by the following one.

The Update Aloorithm for the Data Structure o f Type 1

Suppose we want to insert or delete point p in a data structure of type 1 for the

pair (A, B). Assume without loss of generality that the update occurs in set A.

First, we search with the kth coordinate of p in the BB[~]-tree T to find the

leaf x where the update takes place. This gives a path in T.

Let u be the root of T and let v be the son of u that is on the path. Then we
r u , ao do binary searches in the trees Tkao and Ta, " k-1 and we insert or delete p in these

trees. If p ~ A'v, we follow the pointer from T k to Ta; and insert or delete p in this A~

tree. Otherwise, if p c Av\A', we follow the pointer from T~;,~_ 1 to TAv\a; and

perform the update there. Then we recompute the value of 6o(A~, Bw) where w is

the other son of u.

In the other nodes u on the search path we update the binary search trees T k A~

ru, oo and Ta,.k_ 1, by following bridges between the corresponding trees that are stored

with the father of u. The trees TA; and Tao\a; are updated as above. Afterwards,

we reeompute the value of 6o(A,, Bw) where w is the other son of u.

Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time 429

If we have reached the leaf x, then we insert or delete p as usual. Then we walk

back to the root and we recompute the 61-values by setting

6~(A., B.):= min(f~(A~, B~), ~l(Aw, B~), 6o(A., Bw), 5o(A~, B.))

at each node u.

The rebalancing algorithm is similar as before. That is, we walk along the path

to the root and rebalance the BB[ct]-tree by means of rotations. If a rotation is

done at a node, we rebuild a constant number of type 0 data structures. The

algorithm for rebuilding such structures uses Lemma 3. Note that this rebalancing

algorithm is basically the same as that for segment trees in [7]. Therefore, the

reader is referred to that paper for the details. The reader can also find there the

details how the fractional cascading information is maintained.

In the data structure of type i, where i > 2, we replace the substructures of type

1 by structures that use dynamic fractional cascading. The complexity of the

resulting data structure--and the main result of this paper--is given in the

following theorem.

Theorem 4. There exists a data structure that maintains the minimal L,-distance

of a set of n points in k-dimensional space, at a cost of O((log n) k log log n) amortized

time per update. The data structure has size O(n(log n) k) and can be built in

O(n(log n) k log log n) time.

Proof In [7] it is shown that dynamic fractional cascading does not increase the

space complexity and that it increases the building-ime by a O(log log n) factor.

To prove the bound on the update time we analyze the update algorithm for

the data structure of type 1. In the root of T we spend O(log n) time to update

the appropriate binary search trees. Once we have located p in the binary trees

that are stored with a node u, we need O(log log n) time to locate p in the binary

search trees that are stored with its son v. (Using the bridges, we can locate p in

an augmented catalogue in constant time. Then we use a U N I O N - S P L I T - F I N D

structure to locate p in the actual catalogue. This takes O(log log n) time. See [7].)

It follows that the time for an update-- i f we do not count the rebalancing

costs--is bounded by O(log n log log n).

If a node v causes a rotation, then we rebuild a constant number of structures

of types 0. Let m be the number of points that are stored in the subtree of v. In

the algorithm without fractional cascading we needed O(m) time to rebuild these

structures. In [7] it is shown that dynamic fractional cascading adds only a log

log n factor to this rebuilding time. Hence, a rotation takes O(m log log n)

time. Then it follows--using the result in Mehlhorn [6, page 198]--that the

amortized cost for all rebalancing operations in one single update is bounded

by O(log n log log n).

Hence, the amortized update time for the data structure of type 1 is bounded

by O(log n log log n).

Let Us(n) denote the amortized update time for the data structure of type i.

Then, in the same way as in the proof of Lemma 6, we obtain the following

430 M. Smid

recurrence relation: Ul(n) = O(log n log log n) and

Ui(n) = O(Ui- l (n) log n) + O((log n) i log log n)

for i > 2. This recurrence solves to Ui(n) = O((log n) ~ log log n). This completes

the proof, because Uk(n) is the amortized update time for the complete data

structure. []

5. Concluding Remarks

We have given a data structure that maintains the minimal Lt-distance of a set of

points in polylogarithmic time when arbitrary updates are performed. This is the

first structure that achieves a polylogarithmic update time. In the k-dimensional

case, the structure has size O(n(log n) k) and an update takes O((log n) k log log n)

amortized time.

The best linear size data structure that is known at present is based on results

in [4], [11] and [13]. This structure maintains the minimal Lt-distance in a

k-dimensional point set in O(n 1/2 log n) time, even in the worst case.

The basic open problem is, of course, to improve the above results. In particular,

it would be interesting to have a data structure of linear size that maintains the

minimal distance in polylogarithmic time.

Another open problem is to investigate whether the technique of this paper can

be applied to related problems where the maximum or minimum of a two-variable

function has to be maintained when objects are inserted and deleted. (See [5] and

[12] for a general approach to such problems for a special type of updates.)

Acknowledgment

The author would like to thank an anonymous referee for the many suggestions

that made it possible to improve the update time in the first version of this paper.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for computing the
Voronoi diagram of a convex polygon, Discrete Comput. Geom. 4 (1989), 591-604.

2. N. Blum and K. Mehlhorn, On the average number of rebalancing operations in weight-balanced
trees, Theoret. Comput. Sci. II (t980), 303-320.

3. B. Chazelle and L. J. Guibas, Fractional cascading I: A data structuring technique, Algorithmica

! (1986),. 133-162.
4. M. T. Dickerson and R. S. Drysdale, Enumerating k distances for n points in the plane, Proc. 7th

ACM Syrup. on Comp. Geom., 1991 (to appear).
5. D. Dobkin and S. Suri, Dynamically computing the maxima of decomposable functions, with

applications, Proc. 30th Annual IEEE Syrup. on Foundations of Computer Science, 1989,
pp. 488-493.

Maintaining the Minimal Distance of a Point Set in Polytogarithmic Time 431

6. K. Mehlhorn, Data Structures and Algorithms, Volume 1 : Sorting and Searching, Springer-Verlag,

Berlin, 1984.

7. K. Mehlhorn and S. Niiher, Dynamic fractional cascading, Algorithmica 5 (1990), 2t5-241.

8. M. H. Overmars. Dynamization of order decomposable set problems. J. Algorithms 2 (1981),

245-260.

9. M. H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer Science,

Vol. 156, Springer-Verlag, Berlin, 1983.

10. F. P. Preparata and M. I. Shamos, Computational Geometry, an Introduction, Springer-Verlag,

New York, 1985.

t 1. J. S. Salowe, Shallow interdistance selection and interdistance enumeration, Manuscript, 1991.

12. M. Smid, A worst-case algorithm for semi-online updates on decomposable problems, Report A

03/90, Fachbereich Informatik, Universit~it des Saarlandes, 1990.

13. M. Smid, Maintaining the minimal distance of a point set in less than linear time, Report A 06/90,

Fachbereich Informatik, Universit~it des Saarlandes, 1990.

14. K. J. Supowit, New techniques for some dynamic closest-point and farthest-point problems, Proc.

1st Annual ACM-SIAM Syrup. on Discrete Algorithms, 1990, pp. 84-90.

15. P. M. Vaidya, An O(n log n) algorithm for the all-nearest-neighbors problem, Discrete Comput.

Geom. 4 (1989), 101-115.

Received July 10, 1990, and in revised form April 24, 1991.

