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Abstract. A dynamic data structure is given that maintains the minimal distance in 

a set of n points in k-dimensional space in O((log n) k log log n) amortized time per 

update. The size of the data structure is bounded by O(n(log n)k). Distances are 

measured in the Minkowski Lt-metric, where 1 < t < ~ .  This is the first dynamic 

data structure that maintains the minimal distance in polylogarithmic time for fully 

on-line updates. 

1. Introduction 

One of the fundamental type of problems in computat ional  geometry are proximity 

problems, where we are given a set of points and we want to compute the minimal 

distance among these points, or we want for each point its nearest neighbor. 

Such problems have been studied extensively, and many results are known. The 

earliest results were only concerned with planar point sets. For  example, it is well 

known that the minimal euclidean distance between n points in the plane can be 

found in O(n log n) time, and this is optimal. Given a set of n planar points, a 

euclidean nearest neighbor can be computed for each point in the set, in O(n log n) 

time, which is also optimal. These results have been extended to optimal O(n log n) 

algorithms for both problems in arbitrary, but fixed, dimension, using an arbitrary 

Lt-metric. (See Preparata  and Shamos [10] and Vaidya [15].) 

In the Lt-metric, for 1 < t < ~ ,  the distance d,(p, q) between two k-dimensional 

points p = (Pl . . . . .  Pk) and q = (ql ..... qk) is defined by 

dt(p, q):= (i=~ lPi- qilt) i#, 

* This work was supported by the ESPRIT If Basic Research Actions Program, under Contract 
No. 3075 (project ALCOM). 
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if 1 < t < ~ ,  and for t = oo it is defined by 

d~(p, q):= max IPi - qil. 
l <~i~k 

Important  examples are the Ll-metric also known as the Manhattan-metric, the 

L2-metric which is the "usual" euclidean metric, and the L~o-metric which is also 

known as the maximum-norm. 

In this paper, we consider the problem of maintaining the minimal distance 

when points are inserted and deleted. Dobkin and Suri [5] considered the case 

where the updates are semi-on-line. A sequence of updates is called semi-on-line 

when the insertions arrive on-line, but with each inserted point we get an integer 

l indicating that the inserted point will be deleted l updates after the moment of 

insertion. They showed that in the plane, such updates can be performed at an 

amortized cost of O((log n) z) time per semi-on-line update. This result was made 

worst-case by the author in [12]. 

Supowit [14] gives an algorithm that maintains the minimal distance in a set 

of k-dimensional points in O((log n) k) amortized time per deletion. His method uses 

O(n(log n) k- 1) space. This data structure does not support insertions of points. 

For arbitrary updates on the minimal euclidean distance of a set of planar 

points, the first nontrivial result was by Overmars I'8] and 1'9], who gave an O(n) 

time update algorithm. His method uses O(n log log n) space. Aggarwal et al. [1] 

showed that in a two-dimensional Voronoi diagram, points can be inserted and 

deleted in O(n) time. This also leads to an update time of O(n) for the minimal 

distance, using only O(n) space. 

In [13], the author gives an O(n log n) time algorithm that computes the O(n 2/3) 

smallest distances defined by a set of n points in k-dimensional space. This result 

is used to give a dynamic data structure of size O(n), that maintains the minimal 

distance of a set of n points in k-space at a cost O(rt 2/3 log n) time per update. 

Using results of Dickerson and Drysdale [4] and Salowe [11], the update time 

can be improved to O(n 1/2 log n). 

In this paper, we give a data structure of size O(n(log n) k) that maintains the 

minimal distance in O((log n) k log log n) amortized time per update. The data 

structure is composed of a number of structures that solve similar--but simpler--  

problems. More precisely, we define so-called structures of type i that estimate the 

distance between two sets A and B, whose points have coordinates of opposite 

sign in a fixed set of k - i positions. These structures are defined recursively for 

i = 0, 1 . . . .  , k. For  i = k, we get the final data structure that maintains the minimal 

distance. 

The result gives the first fully dynamic data structure that maintains the minimal 

distance in polylogarithmic amortized time. 

In Section 2, we define two versions of the structure of type 0. This structure 

stores two sets A and B that lie in two opposite k-dimensional quadrants, and it 

maintains a variable 6 that gives a lower bound on the minimal distance between 

the sets A and B. If the minimal distance in A w B is equal to the distance between 

A and B, then the value of 6 is equal to this distance. The first version of this 
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structure is presented for reasons of clarity. Then we give the second version, which 

makes it possible to speed up the building algorithm of the structure of type t. In 

Section 3, we define similar structures of type i. Now the structure stores sets A 

and B that lie in spaces that intersect in some/-dimensional space. These structures 

are defined inductively, taking the structure of type 0 as the basis of the 

construction. The variable 6 that is maintained by the structure of type i satisfies 

the same constraints as that for the structure of type 0. If i = k, the variable 6 will 

be equal to the minimal distance in the entire point set. 

In Section 4, we apply dynamic fractional cascading (see Chazelle and Guibas 

[3] and Mehlhorn and N~iher [7]) to speed up the update algorithm of the 

structure of type 1. As a result, this also improves the update time of the complete 

structure. We finish the paper in Section 5 with some concluding remarks. 

2. The Type 0 Data Structure 

Before we define the data structure of type 0, we prove a lemma that will be used 

in the correctness proof  of this structure. If C is a k-dimensional cube and V is a 

set of points in k-space, then all points of V that are on the boundary or in the 

interior of C are said to be contained in C. 

Lemma 1. Let V be a set of points in k-space. Consider a k-dimensional cube with 

sides of length s that contains more than (k + 1) k points of V. Then the minimal 

Lcdistance between points in V is less than s. 

Proof. Assume without loss of generality that the k-cube is equal to [0: s] x ... 

× [0:s] .  Parti t ion this cube into (k + 1) k subcubes 

[i~s/(k + 1):(il + 1)s/(k + 1)] × "" × [ikS/(k + 1):(i k + 1)s/(k + 1)], 

where the ij are integers such that 0 < ij < k and 1 _< j _< k. Since the cube contains 

at least (k + 1) k + 1 points of V, there is one subcube that contains at least two 

points of V. Hence, there are two points in V that have a distance which is at most  

the L~-diameter of this subcube. Since the L~-diameter of the subcube is at most  

k x s/(k + 1) < s, the minimal Lt-distance among all pairs of distinct points in V 

is less than s. [ ]  

In the final data structure that maintains the minimal distance we need several 

data structures that solve s imilar--but  simpler--problems. In this section, we give 

the first of these structures. 

Throughout  this paper we fix 1 < t < oo, and we measure all distances in the 

L,-metric. For  point sets P and Q we define 

d(P, Q) '=  min{d(p, q)lpe P, q~Q, p ~ q}. 

(We define d(P, ~ ) : =  d (~ ,  Q):= c~.) We also fix the constant Ck:= 1 + (k + 1) k. 
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Next we fix a constant ~, such that 0 < ~ < ½. Recall that a binary search tree 

is called a BB[0t]-tree if • < nw/nv < 1 - 0t for all nodes v and w such that v is the 

father of w. Here n, is the number of leaves in the subtree of u. (See [2] and [6] 

for details about BB[0t]-trees.) We use BB[ct]-trees as leaf-search trees. That  is, 

elements are stored in sorted order in the leaves. These leaves are linked by 

pointers, from left to right and from right to left. Furthermore, there are pointers 

to the left and rightmost elements. Hence we can access the c smallest or largest 

elements in O(c) time. 

Let A and B be two sets of points in k-space. We assume that the points of A 

and B lie in opposite k-dimensional quadrants. Therefore, we may assume with- 

out loss of generality that A _ ~ -  := ( -  oo" 01 k -  1 X ( - -  00" p'] and B ___ ~ := 

[0 : oo) k- 1 x [p : co) for some real number  p. (If the point (0 . . . . .  0, p) belongs to 

A u B, then it belongs to A.) We want to maintain the minimal distance between 

points in A and points in B, when updates of the following type are performed. 

Only points that lie in ~ u ~ are inserted and deleted. If a point of ~ 7  is in- 

serted or deleted, we say that the update "occurs" in set A. Otherwise, the 

update "occurs" in set B. 

The data structure does not always have to give the minimal distance between 

A and B. It only has to if the minimal distance in the set A u B is equal to the 

distance between A and B. The reason for this is the following: Later this data 

structure will be part  of the data structure that maintains the minimal distance 

between all points. The part  of the structure of the present section takes care of 

the distance between two subsets A and B. Another part  of the data structure will 

take care of the distances between points in A, and yet another part  considers 

distances in the set B. If the distance between A and B is "large," then the structure 

of this section is not relevant; other parts of the final structure will give the minimal 

distance in the complete set. If, however, the distance between A and B is equal 

to the minimal distance in the complete set, then the structure of this section 

delivers this minimal distance. 

So A and B are sets of points in k-space such thaf A ~_ ~ and B ___ ~p+. Let 

a = Ihl ,  b = IBI, and n = Ihl + Inl. It may be possible that a = 0 or b = 0 but 

n = a + b > 0. Let r be the point (0 . . . . .  0, p) in k-space. 

We give a dynamic data structure that maintains a variable 6 • ~ u { ~ } such 

that: 

(1) i fA  or B is empty, then 6 = oo; 

(2) if A and B are both nonempty, then 6 = d(p, q) for some p • A and q • B, 

P # q ;  
(3) if d(A, B) = d(A ~ B, A u B), then 5 = d(A, B). 

We say that the structure stores the pair (A, B) and we call the structure of 

type 0, because the regions in which the sets A and B lie intersect in one point. 

The Data Structure of Type 0 with Reference Point r 

1. We maintain two BB[0t]-trees TA and T B that store the points of A and B, 

sorted by their L~o-distances from the reference point r. Points with equal 

L®-distances are stored in increasing lexicographic order. 
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2. If A or B is empty, the value of the variable ~ is equal to ~ .  

3. If A and B are both nonempty, let Ao (resp. Bo) be the set of min(ck, IAI) 

(resp. min(e k, tBI)) smallest--i.e., lef tmost--points  of T A (resp. Tn). In this 

case, the value of 3 is equal to d(Ao, Bo). 

First, we prove that the value of 6 that is maintained by this data structure is 

correct. 

Lemma 2. The value of 3 satisfies (1), (2), and (3). 

Proof If  A or B is empty, then 6 = ~ .  Hence, (1) holds in this case. If A is empty 

and B consists of exactly one element, then d(A, B) = d(A w B, A u B) = oo and, 

hence, (3) holds. If A is empty and B contains more than one element, then 

d(A, B) # d(A w B, A u B). Therefore, (3) also holds. 

Now assume that A and B are both nonempty. It is clear that (2) holds. Let 

ao = IAol and bo = IBol. 

If ao < Ck and bo <- Ck, then Ao = A and Bo = B and, hence, 6 = d(A, B). Thus, 

(3) holds in this case. 

Assume that ao and bo are both greater than Ck and assume that d(A, B)= 

d(A u B, A u B). We have to show that 6 = d(A, B). 

Let SA (resp. ss) be the maximum of the L~-distances of the points in Ao (resp. 

Bo) to the reference point r. Let s be the minimum of s a and sB. Assume without 

loss of generality that s = SA. 

Consider the k-cube [ -  s : 0] k- 1 x [p - s : p]. All points of A o are contained in 

this cube. Since IAoi > Ck > (k + 1) k, it follows from Lemma 1 that d(A, A) < s. 

Therefore, d(A u B, A u B) < s. But then, by our assumption, we have d(A, B) < s. 

Since points in A and B\Bo are "separated"  by a k-cube of side lengths sn > s we 

have d(A, B\Bo) >>_ s. Similarly, d(A\Ao, B) >_ s. Therefore, 

d(A, B) = min(d(Ao, Bo), d(A\Ao, B), d(A, B\Bo)) = d(Ao, Bo). 

But, by the definition of the data structure, 6 = d(Ao, Bo). It follows that 

6 = d(A, B) and, hence, ~ satisfies (3). 

We are left with the case that a o > c k and bo <- ck. (The case ao <_ Ck and b o > c k 

can be handled symmetrically.) Note  that then Bo = B. Assume that d(A, B) = 

d(A u B, A u B). We have to show that 6 = d(A, B). 

Define sA as above. Then we get in the same way as before that d(A, B) < sa. 

We also get 

d(A, B) = min(d(Ao, B), d(A\Ao, B)) = d(Ao, B). 

Therefore, 6 = d(A o, Bo) = d(Ao, B) = d(A, B). This proves that 6 satisfies (3). []  

The Update Algorithm 

To insert or delete a point p in a structure of type 0 for the pair (A, B) we do the 

following: Insert or delete the point in the tree Ta or TB, depending on whether 
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the update occurs in A or B. Then compare each of the min(ck, I A l) smallest points 

in TA with each of the min(c k, [BI) smallest points in T8 and set 6 to the minimal 

distance between these pairs of points. 

Theorem 1. The data structure of  type O for the pair (A, B) has size O(n) and can 

be built in O(n log n) time. In this data structure, points can be inserted and deleted 

at a cost of  O(log n) time per update. 

Proof The bounds on the size and the building time are clear. It is also clear 

that the update algorithm correctly maintains the data structure of type 0 and 

that it uses O(log n) time per update. []  

We now change the data structure of type 0, The reason for doing this is twofold. 

Using the alternative structure of type 0 we are able to improve the building time 

of the structure of type 1. It will also allow us to use dynamic fractiona! cascading 

in a relatively straightforward manner, 

The Alternative Data Structure o f  Type 0 

Let A _ _ _ ( - ~ : 0 ]  k-1 x ( - ~ : p ]  and B ~ [ 0 : ~ ) k - 1  × [ p : ~ )  be two sets of 

points of sizes a > 0 and b _>_ 0 such that n = a + b > 0. Let r be the point 

(0 . . . . .  0, p) in k-space. The alternative data structure of type 0 for the pair (A, B) 

with reference point r consists of the following: 

1. Two BB[ct]-trees T k and T k that store the points of A and B sorted by their 

kth coordinates. Points with equal kth coordinates are stored in increasing 

lexicographic order. 
r ,  o o  "' ~ and Ts, k- 1 that store the points of A and B sorted 2. Two BB[~]-trees T a, k- t 

by their L~-distances from the reference point r, where we take in the 

distance computations only the k - 1 first coordinates into account. Points 

with equal L~-distances to r - - for  the k - 1 first coordinates--are stored in 

increasing lexicographical order, 

3, Let A' be the set of points p = (pl . . . . .  Pk) in A such that do~(p, r) = IPk -- Pl. 

Then there are BB[~]-trees TA, and TA\A, that store the points of A' and 

A \ A '  sorted by their L~-distances from the reference point r. Points with 

equal Loo-distances are stored in increasing lexicographic order. 

4. There are BB[~]-trees T B, and TB\ 8, that are defined similarly. 

5. If A or B is empty, then 6 = ~ .  

6. If A and B are both nonempty, let A o (resp. Bo) be the subset of A 

(resp. B), consisting of the min(ck, I A I) (resp. min(ck, I B I)) smallest points with 

respect to the L~-distance to the reference point r. Then 6 = d(A o, Bo). 

Note that the point set A o can be obtained from the trees TA, and Ta\ A,: Take 

the min(ck, [A'I) smallest points in TA, and the min(ck, [A\A'I) smallest points in 

TA\a,. Then Ao consists of the min(ck, IAI) smallest of these points. 
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Therefore  L e m m a  2 and Theorem 1 remain valid for the al ternative data  

s tructure of type 0. 

In the rest of  this section, we p rove  a l emma tha t  will be used later. An ordered 

sequence S is called a subsequence of an ordered sequence T if the following holds 

for all p and q: If  p and q are elements  in S such that  p is to the left of  q, then p 

is also to the left of q in the sequence T. 

We introduce the following notat ions.  Let X be a set of points  in k-space and 

let r be a point  in k-space. Then S~ denotes  the sequence consisting of the points  

of  X sorted by their kth coordinates,  and  S~?.7 denotes the sequence consisting of 

the points  of X sorted by their L~-dis tances  to point  r. By S~.~_ 1 we denote the 

sequence consisting of the points  of  X 'sorted by their L~-dis tances  to point  r, 

where we take in the distance computa t ions  only the k - 1 first coordinates  into 

account.  

L e m m a  3. Let B be a set of points in k-space, a a real number, and s the point 

(0 . . . . .  O, a) in k-space. Partition B into sets C and D such that C ~_ {p e B : Pk ~ tT} 

and D~_ {peB:pk >_ a} where Pk is the kth coordinate of p. Let C ' : =  { p ~ C :  

d~(p,s) = ]Pk -- al} and D ' : =  {peD:d~(p,s)  = ]Pk -- a]}. Then: 

1. S~,~ is a subsequence of the inverted sequence S~; 

2. SD" k is a subsequence of S~; 

3. S~,,~,,k is a subsequence of S°:~_ 1 where 0 stands for the zero vector in k-space; 
x ,  c£, 

qf So.k-1. 4. SD,,D',k is a subsequence o,~ 

Proof We only give the p roof  for the C-sequences. To  prove  the first claim, let 
S, OO p and q be elements of  Sc,.k such that  p is to the left of q in this sequence. Then  

d~(p, s) <_ d~(q, s). Since p and q are both  in C', it follows that  IPk -- a[ _.< Iqk -- ~rl. 

Then, using that  Pk, qk < a, it follows that  qk --< Pk" Hence, p is to the right of  q in 

the sequence S~. 

If  x = ( x  1 . . . . .  Xk) is a point  in k-space, then x' will denote  the point  

(x~ . . . . .  x~_ 1) in (k - t)-space. To  p rove  the third claim, let p and q be elements 

of  S~\~. k such that  p is to the left of  q in this sequence. Then d~(p, s) <_ d~(q, s). 

Since p, q ~ C', we have do(p, s) = d~,(p', s') and d~(q, s) = d~(q', s'). Since 0' = s', 

it follows that  d~(p', 0') = d~(p, s) <_ d~(q, s) = d~(q', 0'). Thus,  p is to the left of  q 

in the sequence o, Sc.k- 1. [] 

3. The Type i Data Structure 

In  this section we recursively define the s tructure of  type i that  main ta ins  the 

"d is tance"  between two point  sets, whose points  have coordinates  of  oppos i te  sign 

in k - i positions. The  variable that  is main ta ined  by this s t ructure  satisfies the 

same requirements  as in (1), (2), and  (3). The  s t ructure  of  type i uses the s tructure 

of  type (i - 1) as a building block. 

Let i be an integer such that  0 < i _< k. Let A and B be two sets of  points  in 

k-dimensional  space such that  a = IA] >_>_ 0, b = [B[ > 0, and n = a + b > 0. We 
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assume that the points of A and B have coordinates of opposite sign in a fixed 

set of k - i positions. Therefore, we may assume without loss of generality that 

the points of A lie in the space ~ 7  := ( -  oo : 0] k- i x ~i, and the points of B lie 

in ~ +  := [0: oo) k-~ x ~ .  

If 0 < i < k, the sets A and B are supposed to be disjoint, whereas for i = k 

these sets must be equal. 

We want to maintain the "minimal distance" between points in A and points 

in B when updates of the following type are performed. Only points that lie in 

~ -  u ~ +  are inserted and deleted. If a point in ~ is inserted or deleted, then 

the update "occurs" in set A. Otherwise, the update "occurs" in set B. 

We give a dynamic data structure of type i that maintains a variable 6 = 

6~(A, B) e ~ w { oo } such that: 

(4) if A or B is empty or if IA w BI < 1, then 6 = oo; 

(5) if A and B are both non empty and I A w B I > 2, then 6 = d(p, q) for some 

p e A  and qeB,  p # q; 

(6) if d(A, B) = d(A u B, A w B), then 6 = d(A, B). 

We say that the structure stores the pair (A, B). In the rest of this section we use 

the same constant Ck = (k + 1) k + 1 as before. 

The Data Structure of  Type i 

If i = 0, we take the alternative structure of type 0 that was defined in the previous 

section. So let 1 < i < k and assume that the structure of type (i - 1) is defined 

already. The structure of type i consists of the following. 

1. An augmented BB[~]-tree T that contains the points of A w B in its leaves, 

sorted by their (k - i + 1)th coordinates. (Points with equal (k - i + 1)th 

coordinates are stored in increasing lexicographic order.) In each node u we 

store a hyperplane H,: Xk-i+ 1 = G,  where a, is the maximal (k - i + 1)th 

coordinate of all points in the left subtree of u. Let A~ (resp. B~) denote the 

subset of A (resp. B) that is stored in the subtree of u. 

Any node u in T contains the following additional information. 

2. If u is a leaf, then it contains the value 6t(A,, B~) = oo. 

3. If u is not a leaf let v (resp. w) be the left (resp. right) son of u. Note that 

& ~ ( - ~ : 0 3  ~-i x ( - ~  :,r.] x . ~ -1 ,  

a .  ~_ ( - ~ : 0 3  k-~ x [cr.: oo) x ,~ -  ~, 

By c r0: oo) k-~ x (--oo : G ]  x ~i -1 ,  

B,, _~ [-0: oo) k- ~ x [tr, : oo) x ~ i -  1. 

Therefore, the points in the 

sign in the first k - i + l  

coordinates have opposite 

Similarly for the sets Aw and 

sets A v and Bw have coordinates of "opposite" 

positions. (In the ( k -  i +  1)th position, the 

sign with respect to their difference to G.) 

By, Moreover, A~, Aw -~ ~ -  and By, Bw - ~+ .  
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(a) Node u contains two (pointers to) structures of type (i - 1), one structure 

for the pair (A~, B~) and the other structure for the pair (Aw, By). These 

structures maintain variables 6 i_ 1(A~, Bw) and 5i- ~(Aw, B~). 
(b) The sons of u contain variables 6i(Ao, By) and 61(A~, B~). The value of 

6~(A., B.) corresponding to node u satisfies 

5~(Au, Bu) = min(5,(A~, B,), 5,(A~, Bw), 6~_ ,(A~, Bw), 5~_ t(A~, By) ). 

Remark. If i = k, the sets A and B are equal. In this case, each point in A w B 

is stored exactly once in the BB[~]-tree T. Each node u needs only one (pointer 

to a) structure of type (k - 1), because the pairs (A~, B~) and (Aw, Bv) are equal 

in this case. 

Lemma 4. For any node u of T, the value of  Ji(A., B~) satisfies (4), (5), and (6). 

Proof First note that the sets A and B are disjoint if 0 < i <  k. Therefore, 

IA u BI > 2 if A and B are both nonempty. That  is, the conditions about  IA w BI 

in (4) and (5) do not play a role if 0 < i < k, 

We saw in Lemma 2 that the claim holds for i = 0. So let 1 < i < k, and assume 

that the claim is true for the structure of type (i - 1). 

Consider the BB[ctJ-tree T. Let u be a leaf of T. Note that IA. u B.I = 1 and 

6i(A u, B.) = oo. If one of A. and B. is empty, then (4) and (6) hold. Otherwise, if 

A. and Bu are both nonempty, these two sets must be equal and have size one. 

In this case, (4) holds and (5) does not apply. Also (6) holds because d(A., B.) = oo. 
It  follows that the lemma holds for all leaves in T. 

Let u be a nonleaf node in T, and let v and w be the left and right sons of u. 

Assume inductively that the values of 61(Av, Bo) and 51(A~, B~) are correct. By the 

induction hypothesis, the values of 6i_ I(A~, Bw) and 6i-l(Aw, Bv) are correct. By 

definition, 

(7) 6,(A., B,) = min(f,(Av, Bo), (~(A w, Bw), 5~_ ~(A:, Bw), 5~_ ~(A~, B:)). 

If A~ is empty, then Av and Aw are also empty. Therefore, all terms on the 

righthand side of (7) are infinite. If follows that in that case 5i(A~, B.) = oo. Hence, 

in this case, (4) holds for node u. Since u is not a leaf and since each point in 

A~ u B. is stored only once we have ]A. u B.I > 2 and, hence, 

d(A u u B u, A.  u B.) < oo = d(Au, Bu). 

Therefore, (6) does not apply in this case. The same holds if B u is empty. 

So assume that Au and B. are both nonempty. Note  that (4) does not apply, 

because I A. u B.I > 2. At least one of the terms on the right-hand side of (7) is 

finite. Using the induction hypothesis, it follows easily that (5) holds. 

Now suppose that d(A~, B . )=  d(A. u B~, A~ u B.). In order to prove (6), we 

have to show that 5i:= 5~(A., B.) = d(A., B.). It follows from (5) that 5~ > d(Au, B.). 
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So it remains to be shown that 6~ <_ d(Au, B.). Clearly, 

d(Au, Bu) = min(d(A~, B~), d(A~, Bw), d(Av, Bw), d(A~, B~)). 

Take r and s from {v, w} such that d(A,, B,) = d(A,, B~). We have 

d(A, u B u, Au u B,) < d(A, u Bs, Ar u Bs) 

< d(A,, B,) 

= d(A,, B:) 

= d(A~ u Bu, A~ LJ B~). 

Hence, all inequalities above are in fact equalities. Therefore, d(A,, Bs) = d(A r u B s, 

A r u Bs). Using the induction hypothesis, it follows from (6) that 6j(Ar, B , )=  

d(A r,B`) where j = i  if r = s  and j = i - 1  otherwise. Thus, 6i<6j(Ar,  B , )= 

d(Ar, B~) = d(A,,, B,,). This finishes the proof. [] 

The definition of the structure of type i immediately leads to a recursive building 

algorithm. Let Ti(n ) denote the building time for sets A and B of total size n. Then 

by Theorem 1, To(n) = O(n log n) and for i > 0, 

(8) Ti(n ) = 2T,~n/2) + 2T/_l(n ) + O(n). 

The O(n) term is the time needed to find the median of the (k - i + )th coordinates 

and for splitting the set according to this median. This recurrence solves to 
T/(n) = O(n(log n) i+ i). 

We now show how Lemma 3 can be used to improve the building time for the 

structure of type 1 to O(n log n). 

Building the Structure o f  Type 1 

Let A ~ ( - ~ : 0] k- 1 × ~ and B ___ [0 : oo) k- 1 >( ~.  

Before we start building the data structure, we do a kind of presorting: First, 

we sort the points of A by their kth coordinates and store them in the doubly-linked 

list S k. Similarly, we construct the doubly-linked list S~ for the set B. Next, we sort 

the points of A by their L®-distances from the origin 0, where we take in the 

distance computations only the k - 1 first coordinates into account. We store the 

resulting sorted set in the linked list o. o~ SA.k-1" Similarly, we construct the linked list 
0.~o for B. SB, k -  1 

Now the actual building of the data structure of type 1 begins. We find the 

median a of the kth coordinates of the points in A w B. Let s denote the point 

(0 . . . . .  0, tr) in k-space. We partition A into equal-sized sets A 1 := {P ~ A : Pk < a} 

and A 2 .= {p e A : Pk > tr}. Similarly, we partition B into B 1 and B2. 

We walk through the list S k and make two sorted doubly-linked lists ska, and 

Sk2 out of them. In the same way, we make two doubly-linked lists S k, and Sk2. 

Similarly, we walk through SA. kO' ~o_ 1 and make two sorted linked lists S °'A,,k°° _ ! 
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O,~3 
S,,. k- 1 and and SA2,k_ 1 out of them. In the same way, we make two linked lists 0, do 

S °' ~ out of S°:ff_ B 2 , k -  1 1" 

Let r be the root of the final data structure of type 1. We store in r the 

hyperplane Hr: Xk = ~. 
In the root, we have to store data structures of type 0 for the pairs (A 1, B2) 

and (A2, B1). These two structures have reference point s = (0, . . . ,  0, a). We only 

describe how the first structure is built. 

We store the points of S~ in a perfectly balanced binary search tree TkA. In 

the same way, we build the perfectly balanced binary search tree T k using the list B2 
sk .  

Next we store the points o r¢o. do and S O, ~ in the perfectly balanced binary A ~ ' A I , k - 1  B2, k - 1  

s,~ and T ~' ~ (Note that the ordering only depends on the search t r e e s  Ta , ,k . .  1 B2.k- 1. 

k -  1 first coordinates. Therefore, the points in these trees are indeed correctly 

sorted.) 

Let A'l := {p¢AI  :d~(p, s )=  [Pk -  al}. We make a linear scan through the 

reversed sequence SkA~ to obtain the sequence S~i. (See Lemma 3.) Then we store 

the points of this sorted list S~i in the perfectly balanced binary search tree TAI. 
Similarly, we make a scan through the list S o, ~ select the points of At, and A l , k -  l~ 

store them in the perfectly balanced binary search tree TA,\AI. (See Lemma 3.) 

In the same way, we build perfectly balanced binary search trees T.~ and T.~\.~ 

where B~ := (pe  B2:doo(p ,  s) = lPk - -  trt}" 

To complete the data structure of type 0 for the pair (A 1, B2) we compute the 

value of 6o(A 1, B2) according to its definition in Section 2. It is clear how to do 

this in constant time, since we can find the min([ A 1 P, CR) smallest elements in the 

appropriate trees in constant time. 

We are almost finished in the root r. We only need the value of JI(A, B). This 

value will be computed in the final stage of the algorithm. 

We build data structures of type 1--without the ~l-values--for the pairs 

(A1, B1) and (A2, B2) using the same algorithm recursively. Note that at the start 

of these recursive calls we have the sorted sequences sk ,  S~, SO; o~ 1, and S°'.~_ 1 

for j = 1, 2. These structures form the left and right subtree of tiae root r. 

At this moment we have constructed the skeleton tree of the data structure of 

type 1 and all structures of type 0 that are stored with the nodes of this skeleton 

tree. We walk through this tree in postorder and compute the values of 31 for the 

nodes by setting 6i(Au, 13,) := do for each leaf u, and 

5i(A., B.):= min(fi(A v, Bv), 5i(A w, Bw), 6i- t(A., B.,), 5i- I(A~, Bo)) 

for each node u with sons v and w. 

This completes the building algorithm for the data structure of type 1. We 

analyze its running time. It takes O(n log n) time to do the presorting. Let P(n) 

denote the building time after the presorting step. Then it follows from the above 

algorithm that P(n) = O(n) + 2P(n/2) and, hence, P(n) = O(n log n). The final walk 

through the tree in postorder takes an additional amount of O(n) time. 

This proves that the complete building time Tl(n ) is bounded by O(n log n). 

Using (8), it follows that T,~n) = O(n(log n) i) for I < i < k. 
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Lemma 5. Let 1 <_ i < k. The data structure of type i f  or the pair (A, B) can be 

built in O(n(log n) i) time and has size O(n(log n)i). 

Proof. The proof  of the building time follows from the above discussion. The 

size of the data structure satisfies the same recurrence relation as the building 

time. [ ]  

The Update Aloorithm 

Suppose we want to insert or delete a point p in a structure of type i for the pair 

(A, B). Assume that the update occurs in B. If i =  0, we use the algorithm of 

Section 2. 

Otherwise, 1 < i < k. We search with the kth coordinate of p in the BB[~]-tree 

T t o  find the leafx where the update takes place. For  each node u that we encounter 

during this walk we do the following: Let v and w be its two sons and assume 

that the walk proceeds to v. Then we insert or delete point p in the structure of 

type (i - 1) for the pair (Aw, By) using the same algorithm recursively. Note that 

this will lead to a new value of 5 i_ l(Aw, B~). 

Assume that we have to insert p. Then we give the leaf x two new sons y and 

z which are data structures of type i for the appropriate  pairs. In node x itself we 

build two data structures of type (i - 1) for the appropriate  pairs. The case where 

p has to be deleted can be handled similarly. 

Next we walk back to the root, starting at the leaf where the update has taken 

place. At each node u we encounter we set 

5i(A,, B,):= min(tii(Av, B~), 5i(A~, Bw), 6i-I(Av, Bw), 3~_ l(Aw, B~)), 

where v and w are the sons of u. 

Finally, we again walk along this path back to the root and rebalance the 

BB[aJ-tree by means of rotations, as described in'  [2] and [6]. Note that if a 

rotation is done at a node, we have to rebuild a constant number  of type (i - 1) 

data structures. The algorithm for rebuilding structures of type 0 makes use of 

Lemma 3. 

Remark. If i = k, then the sets A and B are equal. Although the update occurs 

in both sets, we insert or delete the point only once. 

Lemma 6. In the data structure of type i f  or the pair (A, B), points can be inserted 

and deleted at a cost of O((log n) i+ l) amortized time per update. 

Proof. Let U~n) denote the amortized update time for a data structure of type i 

for the pair (A, B) where n = IA! + IBI. It  follows from Theorem 1 that Uo(n) = 

O(log n), even in the worst case. 

Let 1 < i < k. If we do not count the rebuilding costs that are caused by the 

rotations at the nodes on the search path, then we spend an amount  of time that 

is bounded by O(Ui- l(n) log n). 
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Let v be a node that causes a rotation and let m be the number of points that 

are stored in the subtree rooted at v. During the rotation we rebuild a constant 

number of structures of type (i - 1). For  i = 1, a structure of type 0 can be rebuilt 

in O(m) time by using Lemma 3. By this observation, and by Lemma 5, we conclude 

that the constant number of rebuildings---due to the rotation at v---can be done 

in O(m(log m) i- 1) time. 

Note that during one update there may be many nodes that cause rotations. 

In Mehlhorn [6, page 198], however, it is shown that if a single rotation takes 

O(m(log m) i- 1) time, then the amortized cost for all rebalancing operations in one 

single update is bounded by O((log n)i). 

Thus, the update time satisfies the following recurrence relation: 

Ui(n) = O(U i_ l(n) log n) + O((log n)i). 

This recurrence solves to U/(n) = O((tog n) i÷ 1) which proves the lemma. []  

This concludes the description of the data structures and algorithms. We 

summarize the results of this section in the following theorem. 

Theorem 2. Let i be an integer such that 1 <_ i <_ k. Let A and B be sets of points 

in k-space. Assume that the points of A and B have coordinates of opposite sign in 

a fixed set of k - i positions. Let a = IA[ and b = IBI where a > O, b > O, and 

n = a + b > O .  

The data structure of type i f  or the pair (A, B) maintains a variable Ji(A, B) that 

satisfies requirements (4), (5), and (6). The structure has size O(n(log n) i) and can be 

built in O(n(log n) i) time. In this structure points can be inserted and deleted at a 

cost of O((log n) i+ 1) amortized time per update. 

Now let V be a set of n points in k-dimensional space and consider the 

data structure of type k for the pair (A,B) where A = B = V. This data 

structure maintains a variable ~ .'= ~k(V, V) such that (6) holds. Note that d(A, B) = 

d(A w B, A u B). Hence, fi = d(A, B) = d(V, V). It follows that this data structure 

maintains the minimal distance in the set V. We have proved the following theorem. 

Theorem 3. There exists a data structure that maintains the minimal Lt-distance 

of a set of n points in k-dimensional space, at a cost of O((log n) k+ l) amortized time 

per update. The data structure has size O(n(log n) k) and can be built in O(n(log n) k) 

time. 

4. Applying Dynamic Fractional Cascading 

Now we show how the update algorithm can be improved using dynamic fractional 

cascading. We assume that the reader is familiar with this data structuring 

technique. See Chazelle and Guibas [3] and Mehlhorn and N/iher [7]. 

Consider a data structure of type 1. It consists of a BB[~]-tree T in which the 
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nodes contain structures of type 0. Assume that an update occurs in set A. During 

this update we walk down the tree, and in each node u we visit we update one 

data structure of type 0. In each such update we do basically the same: Suppose 

that the walk proceeds to the son v of u. Then we insert or delete the same point 

in the BB[~]-trees Tka,, TA~,k_r., ~ 1, Ta',o and Ta~\a;. Here ru = (0 . . . . .  0, a,) is the 

reference point of the type 0 structure stored at node u. Note that by Lemma 3 

the third tree is a "subsequence" of the first one (or its inverse), and that the fourth 

is a "subsequence" of the second. Furthermore,  the trees T ~ ,  if we vary u, are all 
ru, ~t~ 

sorted with respect to the same ordering. The same holds for all t rees  TA, .k 1" 

These observations make it possible to use fractional cascading in the data 

structure of type 1. More precisely, we change the data structure of type 1 as 

follows: 

1. Let u range over the nodes of Tand  let v be any son ofu. We apply fractional 

cascading to the trees T k That is, instead of these trees, we store augmented 
AI • 

catalogues in the nodes u of the BB[~]-tree T, and we store bridges between 

the augmented catalogues of adjacent nodes, as described in [7]. Similarly, 

we apply fractional cascading to the trees T k B~" 

"" ~' where 2. In the same way, we apply fractional cascading to the t rees  TA,,k_ 1 

U ranges over the nodes of T. We do the same for the trees TB,,k_ ~. 

3. Let u be a node in T and let v be any of its sons. We link the trees Ta; and 
T k ao as follows: For  each p e A~ we put a pointer from p in Tk a~, to p in Ta,. 

We do the same for B. 

4. Let u be a node in T and let v be any of its sons. We link the trees TA,,\A; 
p r u ,  of) 

"" °0 For  each p ~ A~\A~ we put a pointer from p in Tao,, k_ 1 to p in and TA, ,k_ ~: 

Tao\a;. We do the same for B. 

The update algorithm for the data structure of type i does not change if i > 2. 

For  i = 1, however, it is replaced by the following one. 

The Update Aloorithm for  the Data Structure o f  Type 1 

Suppose we want to insert or delete point p in a data structure of type 1 for the 

pair (A, B). Assume without loss of generality that the update occurs in set A. 

First, we search with the kth coordinate of p in the BB[~]-tree T to find the 

leaf x where the update takes place. This gives a path in T. 

Let u be the root  of T and let v be the son of u that is on the path. Then we 
r u ,  ao do binary searches in the trees Tkao and Ta, " k-1 and we insert or delete p in these 

trees. If p ~ A'v, we follow the pointer from T k to Ta; and insert or delete p in this A~ 

tree. Otherwise, if p c  Av\A', we follow the pointer from T~;,~_ 1 to TAv\a; and 

perform the update there. Then we recompute the value of 6o(A~, Bw) where w is 

the other son of u. 

In the other nodes u on the search path we update the binary search trees T k A~ 

ru,  oo and Ta,.k_ 1, by following bridges between the corresponding trees that are stored 

with the father of u. The trees TA; and Tao\a; are updated as above. Afterwards, 

we reeompute the value of 6o(A,, Bw) where w is the other son of u. 
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If we have reached the leaf x, then we insert or delete p as usual. Then we walk 

back to the root and we recompute the 61-values by setting 

6~(A., B.):= min(f~(A~, B~), ~l(Aw, B~), 6o(A., Bw), 5o(A~, B.)) 

at each node u. 

The rebalancing algorithm is similar as before. That is, we walk along the path 

to the root and rebalance the BB[ct]-tree by means of rotations. If a rotation is 

done at a node, we rebuild a constant number of type 0 data structures. The 

algorithm for rebuilding such structures uses Lemma 3. Note that this rebalancing 

algorithm is basically the same as that for segment trees in [7]. Therefore, the 

reader is referred to that paper for the details. The reader can also find there the 

details how the fractional cascading information is maintained. 

In the data structure of type i, where i > 2, we replace the substructures of type 

1 by structures that use dynamic fractional cascading. The complexity of the 

resulting data structure--and the main result of this paper--is  given in the 

following theorem. 

Theorem 4. There exists a data structure that maintains the minimal L,-distance 

of a set of n points in k-dimensional space, at a cost of O((log n) k log log n) amortized 

time per update. The data structure has size O(n(log n) k) and can be built in 

O(n(log n) k log log n) time. 

Proof In [7] it is shown that dynamic fractional cascading does not increase the 

space complexity and that it increases the building-ime by a O(log log n) factor. 

To prove the bound on the update time we analyze the update algorithm for 

the data structure of type 1. In the root of T we spend O(log n) time to update 

the appropriate binary search trees. Once we have located p in the binary trees 

that are stored with a node u, we need O(log log n) time to locate p in the binary 

search trees that are stored with its son v. (Using the bridges, we can locate p in 

an augmented catalogue in constant time. Then we use a U N I O N - S P L I T - F I N D  

structure to locate p in the actual catalogue. This takes O(log log n) time. See [7].) 

It follows that the time for an update-- i f  we do not count the rebalancing 

costs--is bounded by O(log n log log n). 

If a node v causes a rotation, then we rebuild a constant number of structures 

of types 0. Let m be the number of points that are stored in the subtree of v. In 

the algorithm without fractional cascading we needed O(m) time to rebuild these 

structures. In [7] it is shown that dynamic fractional cascading adds only a log 

log n factor to this rebuilding time. Hence, a rotation takes O(m log log n) 

time. Then it follows--using the result in Mehlhorn [6, page 198]--that the 

amortized cost for all rebalancing operations in one single update is bounded 

by O(log n log log n). 

Hence, the amortized update time for the data structure of type 1 is bounded 

by O(log n log log n). 

Let Us(n) denote the amortized update time for the data structure of type i. 

Then, in the same way as in the proof of Lemma 6, we obtain the following 
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recurrence relation: Ul(n) = O(log n log log n) and 

Ui(n) = O(Ui- l (n)  log n) + O((log n) i log log n) 

for i > 2. This recurrence solves to Ui(n) = O((log n) ~ log log n). This completes 

the proof, because Uk(n ) is the amortized update time for the complete data 

structure. [ ]  

5. Concluding Remarks 

We have given a data structure that maintains the minimal Lt-distance of a set of 

points in polylogarithmic time when arbitrary updates are performed. This is the 

first structure that achieves a polylogarithmic update time. In the k-dimensional 

case, the structure has size O(n(log n) k) and an update takes O((log n) k log log n) 

amortized time. 

The best linear size data structure that is known at present is based on results 

in [4], [11] and [13]. This structure maintains the minimal Lt-distance in a 

k-dimensional point set in O(n 1/2 log n) time, even in the worst case. 

The basic open problem is, of course, to improve the above results. In particular, 

it would be interesting to have a data structure of linear size that maintains the 

minimal distance in polylogarithmic time. 

Another open problem is to investigate whether the technique of this paper can 

be applied to related problems where the maximum or minimum of a two-variable 

function has to be maintained when objects are inserted and deleted. (See [5] and 

[12] for a general approach to such problems for a special type of updates.) 
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