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FOREWORD 

This paper proposes an algorithm for minimizing a function f on lRn in the 

presence of m equality constraints c that locally is a reduced secant method. The 

local met hod is globalized using a nondifferen tiable augmented Lagrangian whose 

decrease is obtained by both a longitudinal search that decreases mainly f and a 

transversal search that decreases mainly I ( c 1 1 .  
The main objective of the paper is to show that the longitudinal path can be 

designed in order to maintain the positive definiteness of the reduced matrices by 

means of the positivity of ?:bk, where 7, is the change in the reduced gradient 

and bk is the reduced longitudinal displacement. 
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1. I n t r o d u c t i o n  

We consider here the problem of minimizing a real-valued function f defined 

on an open convex set w in lRn subject to m nonlinear equality constraints 

c (m < n): 

min { f ( z )  : z E w , ~ ( z )  = O ) . (1.1) 

We shall suppose that the m x n Jacobian matrix of the constraints a t  a point z 

in w, namely A (z) ,  is surjective, i.e. has full rank m. Then, if z, is a local solution 

of (1.1), there exists a unique Lagrange multiplier A, in lRm, such that  the follow- 

ing first order optimality conditions are satisfied (see Fletcher (1981), for exam- 

ple) : 

where V f(z,) denotes the gradient vector of f a t  I,, an n x 1 matrix, and A (z,) 

is the transposed matrix of A (z,). 

Locally, the faster methods for solving (1.1) amount to  finding solutions of 

(1.2), which correspond to stationary solutions of the original problem. Two 

classes of local methods may be distinguished. The first class is formed of those 

algorithms whose step is an approximation of the Newton step for solving (1.2). 

Among them are the quasi-Newton methods, which may be introduced as follows. 

The Jacobian matrix of (1.2) a t  (z,,X,) writes 

where L, is the Hessian according to  z of the Lagrangian l(z,A) := f ( z )  + ATc(z) 

evaluated a t  (z,,X,). If J, is approximated by 

where Lk is a symmetric matrix of order n and if we denote by VZl (zk,Ak) the gra- 

dient according to  z of the Lagrangian, quasi-Newton methods write 



Note that if Lk is positive definite, or only positive definite in Ker A(zk), the ker- 

nel of A (q), i.e. tT Lk [ > 0 for all non zero ( in Ker A (zk), then Jk is non singu- 

lar and the previous iteration is well defined. This method is called the Successive 

Quadratic Programming (SQP) method because q+l = 3 + dfQP where dtQP is 

obtained by solving successivel;~ in d the following quadratic programs: 

I 
1 T min ~ j ( q . ) ~  d + - d Lk d ,  
2 

s.t. d E l R n ,  c(zk) + A(zk) d = 0 (I-3)  

and = A:?;, the associated multiplier. In this algorithm, Lk is updated a t  

each iteration. This method has been extensively studied since the papers by Wil- 

son (1963), Han (1976) and Powell (1978) and we refer to Powell (1986) for a state 

of the art on the subject. 

The second class of methods is based on the fact that the dimension of prob- 

lem (1.1) is not n but is equal to the dimension n-m of the manifold 

M(z,) := cpl(0) on which j is minimized. Therefore, one may expect to find 

secant methods in which the updated matrices are of order n-m. This is certainly 

a realistic expectation if we impose the iterates zk to belong to the manifold 

M(z,), i.e. c(zk) = 0 for all k. Indeed, in this case, c being a submersion, M(z,) is 

a submanifold of lRn (see e.g. Leborgne (1982)) and there exists a smooth 

parametric representation ( of M(z,) in a neighborhood V of z,, i.e. a function 

( : U -+ M(z,) n V such that c(((u)) = 0 for all u in the open set U of lRn-m. 

Therefore, working on the set U to minimize j(((u)) will give the expected algo- 

rithm. But it is usually unrealistic to impose c(zk) = 0 and fortunately, this is not 

necessary. As far as we know, the first reduced secant methods (reduced because, 

for example, the order of the updated matrices in n-m rather than n in the SQP 

method) without the feasibility condition ( c ( q )  = 0) are due to Gabay (1982,b) 

and Coleman and Conn (1982,a,b). Theoretically, the method proposed by Cole- 

man and Conn seems better than the method studied by Gabay. The convergence 

of the latter is, indeed, only superlinear in two steps in general (see Coleman and 

Conn (1982,a and 1984), Byrd (1985) and Yuan (1985)), that is to say: 

while the convergence of the former h a .  been proved to be superlinear (in one 

step) (see Byrd (1984) and Gilbert (1986,a,c)), that is to say: 

This is a better rate of convergence than the rate (1.4). Note that this rate of con- 

vergence can also be obtained by using the SQP method but with the necessity of 

updating a matrix of order n. Therefore, reduced secant methods become competi- 

tive and sometimes the only one usable when the number m of constraints is large 

while the number n-m of parameters remains reasonable. 



In this work, we shall focus on some aspects of the method proposed by Cole- 

man and Conn. But first, what is this method? One way to introduce the algo- 

rithm is to  say that  it tries to solve the system of optimality (1.2) by considering 

both equations separately and successively. So, starting from an estimate (zk,Xk) 

of (z,,X,), the next iterate ( T ~ + ~ , X ~ + ~ )  is calculated in two steps (see Gilbert 

(1987)) : 

In (1.6), Rk is a restoration operator, an n x m injective matrix asymptotically 

close to  A(z,)-, a right inverse of A (2,). Here, we shall take Rk := A(& a right 

inverse of A(zk), although Rk := A ( Y ~ - ~ ) - ,  which avoids the linearization of the 

constraints a t  zk, is also possible without destroying the superlinear convergence 

but is more tricky to  handle. In (1.7), Z(yk)- is an n x (n-m)  matrix whose 

columns form a basis of Ker A(yk), which is the tangent space to  

M(yk) := cpl(c(yk)) a t  yk. Later, we shall say that Z ( y )  is a basis of Ker A(y),  

shortly. Hence 

for all y in w and Z(y)-  is injective. In (1.7) again, Hk is a symmetric matrix of 

order n-m that will be updated so as to  remain positive definite (the main con- 

cern of this paper) and so as to  have 

where Z (  y)  is the unique (n- m) x n matrix satisfying 

Gk := H c l  and G, is the reduced Hessian of the Lagrangian defined by 

In (1.7), a t  last, g(yk) is the reduced gradient of f a t  yk and is defined by 

Finally, in (1.8), Lk is an approximation of L,. For more details on this formalism, 

and for examples of choices for A ( y ) -  and Z(y)-, we refer to  Gabay (1982,a). 

The algorithm (1.6)-(1.8) calls for some comments. First, note that  X k  does 

not intervene in the calculation of zk+l and X k + l .  Therefore, from the superlinear 

convergence of the sequence (zk,Xk) (together), we can deduce the superlinear 



convergence of (q), while for ( A k )  we get 

We also see that  the sequence (zk) can be generated by (1.6)-(1.7) independently 

of the sequence ( A k ) .  We shall see, indeed, that  the update of Hk does not require 

the knowledge of (Ak). In any case, the sequence (zk) can be obtained (see Gilbert 

(1986,~))  by solving the system 

whose second equation is obtained by projecting the second equation of (1.2) on 

the tangent space Ker A(z*),  i.e. by multiplying it to the left by ~ ( z , ) - ~ .  There- 

fore, the algorithm (1.6)-(1.7) is a reduced method for (zk) because the only 

matrix to update is Hk which is of order n - m .  But, this is not true any more if we 

want to  calculate ( A k ) ,  because Lk is present in (1.8). We have seen that ,  locally, 

this calculation is not necessary. However, in a global framework, some estimate 

of A, is useful. Therefore, we shall avoid the need of generating Lk by taking the 

following estimate: 

whose value a t  y = z, is A,. 

The local algorithm (1.6)-(1.7) is usually globalized by using a penalty func- 

tion Q of the form: 

where p : lRm - El+ is generally convex. If this is the case, one may calculate 

Qt(z ; t ) ,  the directional derivative of 0 a t  z is a direction t and, in particular, one 

finds 

because tk E Ker A ( yk). This shows that it is interesting to maintain Hk positive 

definite in order that  tk will be a decent direction of 0 a t  yk. 

Our main objective in this paper is to  design a globally and superlinearly con- 

vergent algorithm that locally reduces to  the method (1.6)-(1.7) and that  main- 

tains the matrices Hk positive definite, updating them by the inverse BFGS for- 

mula (see e.g. Dennis and Morb (1977)): 



which we shall refer to  by Hk+l = BFGS(Hk yk,bk). In this formula, yk will be the 

change in the reduced gradient (a vector in' IRn-m) when making a certain dis- 

placement and bk is the corresponding "reduced" displacement (also a vector in 
m n - m  ). Then, it is well known that Hk transmits its positive definiteness to Hk+l 

if and only if 

We shall aim to  satisfy this condition a t  each iteration in our algorithm. 

Before outlining hereafter the solutions developed further, which are valid in 

the framework of reduced methods, let us recall briefly how the positive 

definiteness of the updated matrices is maintained both in the SQP method and in 

reduced methods. 

A similar situation occurs when the SQP method is globalized using a penalty 

function of the form (1.16). According to Han (1977), the displacement dfQP is a 

descent direction of the l1 penalty function (p(e)  = I Ie I I , the l1 norm, in (1.16)) 

if Lk in (1.3) is positive definite together with other conditions. Therefore, when 

Lk is updated by the direct BFGS formula: 

Lk+l will be positive definite if Lk is positive definite and if ?[& is positive. 

Because Lk has to approximate L,, yk is the change in the gradient of the Lagran- 

gian and we take usually 

where pk is some step-size given by a line search on the 1 penalty function. Unfor- 

tunately, it may happen that  the positivity of y[& cannot be realized for some 

zS,QP, that is to  say for some value of the step-size (dfQP is supposed to  be fixed 

and given by the quadratic subprogram), because the Lagrangian is not necessary 

bounded from below and may have a negative curvature in the direction dtQP, 

even locally. This has led Powell (1978,a,b,c) to propose to  change yk in (1.20) by 

some convex combination Tk of 7 k  and Lkbk in order to  have 9Tbk positive. How- 

ever, this strategy does not seem to give always good results, in particular, Lk may 

become ill-conditioned (see Powell (1984)). This leaves the field open to  other 

suggestions. 

The papers analyzing the update of matrices in reduced methods are due to  

Coleman and Conn (1984), Nocedal and Overton (1985) and Gilbert (1986,a). In 

the first paper the analysis is local and, as we shall see, (1.19) is automatically 

satisfied close t o  optimal points satisfying the usual second order optimality condi- 

tions. The analysis of Nocedal and Overton is devoted to the algorithm studied by 



Gabay (1982,b) and is also local. At last, the analysis in Gilbert (1986,a) is global 

but the reduced matrix is not updated if condition (1.19) is not satisfied. This 

does not prevent superlinear convergence from occurring because asymptotically 

(1.19) is satisfied. However, even far from the solution it may be interesting to  

update the matrix in order t o  improve the convergence. So one possibility is t o  use 

Powell's modification of -yk, another one is proposed in this paper. 

The paper is organized as follows. In Section 2, we specify the notations and 

state the hypotheses. In Section 9, we discuss the solutions adopted to  realize 

condition (1.19) along the longitudinal displacement governed by the tangent step 

tk. On the one hand, it is detailed how a step-size selection procedure attributed to  

Wolfe (1969) can be used t o  obtain (1.19) when the displacement is done on the 

manifold M(yk). On the other hand, a counter-example will show that  a simple 

search along the direction tk cannot assure Wolfe's criteria t o  be satisfied in gen- 

eral. However, a median solution can be obtained by using the algorithm of 

LemarCchal (1981) for Wolfe's criteria in unconstrained optimization. Here, a 

change in the direction of search is made each time an unfruitful attempt to real- 

ize (1.19) is done. Therefore, the longitudinal path of search becomes piecewise 

linear, approximating roughly an "ideal" path on the manifold M(yk). The analysis 

in Section 3 is done using a penalty function having the general form (1.16). In 

Section 4, however, we insert the longitudinal search of Section 3 in a globally 

convergent algorithm by using tools that  are now well developed in the specific 

literature. In particular, we motivate our choice of a nondifferentiable augmented 

Lagrangian 

where 1 1 ( I is a norm on Wm, as a merit function by the necessity to  have a unit 

longitudinal step-size asymptotically, being inspired in that direction by the work 

of Bonnans (1984). We shall also be more specific about the transversal displace- 

ment which consists of a simple linear search from zk in the direction rk, using 

Armijo's technique on the same penalty function (1.21). Finally, we give a 

theorem showing the global convergence of the algorithm. 

2. Hypotheses and notations 

We shall suppose that  w is a convex open set of Wn. The convexity of w is 

not essential but it is assumed to  discard technical problems when Taylor's 

theorem is used. On the other hand, assuming w open is essential because we do 

not consider here a problem with general constraints or inequality constraints. w 

will be the set where nice properties of f and c are encountered. Usually, it will 

not be possible to  take w = lRn. 



We shall suppose that on w, j and c are sufficiently smooth, three times con- 

tinuously differentiable will be enough, and that their derivatives are bounded, 

which can be satisfied if w is bounded and small enough. Later, we shall suppose 

that the sequences (xk) and (yk)  remain in w, so, this supposes implicitly, more or 

less, the boundedness of these sequences. We shall also suppose that c is a sub- 

mersion on w, i.e. that  A(x) is surjective for all x in w. This is a rather strong 

hypothesis but a useful one because it allows to make a decomposition of the space 

lRn a t  each point x of w in Ker A (x) = R (Z(x)-) (see (1.9)) and Ker Z(x) = 

R (A (x)-) (see (1.12)), which are complementary subspaces. Using (1.9), (1.11) 

and (1.12), we get 

We shall also suppose that  this decomposition is made in a smooth way. More 

precisely, the function 

will be supposed twice continuously differentiable on w and, as well as its deriva- 

tives, bounded on w. Because Z(x) = [0 In-,]  [ A ( x )  z ( x ) - I - ' ,  the function 

x + Z(x) will also have the same property. This may also appear as a strong 

hypothesis if w is large, but it can be satisfied in a neighborhood of a solution z, if 

some qualification hypothesis (A, surjective) is satisfied. On this question, we 

refer to Byrd and Schnabel (1986). 

We shall denote by x, a solution 01 problem (1.1), i.e. a local minimizer satis- 

fying the standard second order sufficient conditions of optimality (see Fletcher 

(1981), for instance). Therefore we shall suppose the existence of a Lagrange mul- 

tiplier A, in l R m  such that (1.2) is satisfied and such that the Hessian of the 

Lagrangian a t  (x,,X,) is positive definite in the tangent space Ker A (x,). In other 

words, G ,  given in (1.13) will be supposed positive definite. 

We shall denote by 1 ( e  ( I any norm on Rn or l R m  (and not necessary the 

same norms on both spaces) and by I I l 1 I D  the dual norm for the Euclidian scalar 
T product, i.e. ( I v 1 I D  := sup { v u : 1 1 u 1 I 5 1 ) . Matrix norms will be supposed 

subordinated to the vector norms, i.e. I I A I ( := sup { I 1 Au 1 I : 1 ( u 1 ( 5 1 ) . If 
(uk) is a sequence of vectors and (ak) and (pk) are two sequences of positive 

numbers, we shall note uk = O(ak)  when ( 1  1 ukl l/ak) is bounded, uk = o ( a k )  

when ( 1  I uk I I /ak) converges to  zero and a k  - pk when ak = O(pk) and 

pk = O(ak)  . The i-th component of a vector u will be denoted by u(,) . The unit 

open (resp. closed) ball centered a t  0 will be denoted by B ( resp. B). If A and B 

are two square symmetric matrices of the same order, we shall write A < B (resp. 

A 5 B) to mean that  B -A is positive definite (resp. positive semi-definite). 



3. The longitudinal displacement 

In unconstrained optimization (min $(u)),  quasi-Newton methods locally aim 

to approximate the Hessian of $ at a solution u,. Therefore, the change in the 

gradient of $ between two successive iterates uk and uk+l gives some information 

on this Hessian and the vectors -yk and bk used in the update formula are usually 

taken as follows: 

where rk is some step-size in the descent direction uk of $ at  uk. Wolfe's step-size 

selection procedure consists in finding a step-size r = rk such that  both following 

inequalities are satisfied: 

where 0 < crl < cr2 < 1 . A step-size r satisfying both inequalities will be called 

serious. Condition (3.1) assures a sufficient decrease of $, while condition (3.2) 

impedes the step-size r to  be too small. A global convergence result can be 

obtained with these conditions, see Wolfe (1969). An important advantage of this 

way to select the step-size in the framework of quasi-Newton methods is that  con- 

dition (3.2) automatically assures the positivity of -y:bk and as a result the posi- 

tive definiteness of the updated matrices. 

In reduced methods for constrained optimization, an approximation Gk of 

G,, the projected Hessian of the Lagrangian, is updated. Here, it is the change in 

the reduced gradient that  gives information on G,, as suggested by the following 

formula (see Stoer (1984)): 

where we used (1.9) and the second optimality condition in (1.2). Comparing 

(1.13) and (3.3), we see that  G, is a part of gf(z,). This is essentially due to  the 

unfeasibility because in this case, any function with value in lRn-m used to  obtain 

information on G, is defined in lRn and not on a particular manifold of dimension 

n-m; hence, its Jacobian is a matrix of dimension (n-m) x n and not of order 

n-m. Therefore an accurate information is obtained on G, if asymptotically the 

change in the reduced gradient is given for a displacement along the tangent space 

R(Z(z,)-).  This is the basic idea of an update scheme proposed by Coleman and 

Conn (1984) whose superlinear convergence has been proved by Byrd (1984) and 

Gilbert (1986,a and 1987). Note that  another choice is possible but needs the use 

of an update criterion: see Nocedal and Overton (1985) for the algorithm of Gabay 

and Gilbert (1986,a and 1987) for the algorithm of Coleman and Conn. Here we 



adopt the first strategy: when the unit step-size is accepted (and it will be asymp- 

totically) we take for algorithm (1.6)-(1.7): 

The step 6; is called the reduced longitudinal displacement. Note that  the condi- 

tion (7:) 6: > 0 is always satisfied asymptotically because, using (3.3) and sup- 

posing that  the sequence (yk) converges to  a solution z, of (1.1) with tk + 0, we 

have (we use tk = Z(yk)- 6;): 

Hence, (7:)T 6: is positive for k large if G, is positive definite. However, this con- 

dition (1.19) is not necessarily satisfied when yk is far from z,, even if a step-size r 

is introduced to  scale the tangent step tk: 

The following counter-example confirms this claim. 

2 Suppose that  n = 2 , m = l ,  f ( y ) : = y ( 2 ) , c ( y ) : = ( l l y l 1 2 - l ) / 2 ( l * I l z  is 

the l2 norm) and take w = wp := p ~ \ p - l B  with ,B > 1. For this data,  the unique 

solution of problem (1.1) is Y , ( ~ )  = 0 and = -1. We have A(y) = yl'. At any 

point in wp, we may use the following orthogonal decomposition of R 2 :  

where J(l) := y(2) and t j (2)  := - y ( l )  . To these choices corresponds a unique 

matrix Z(y)  satisfying (1.11) and (1.12): it writes Z(y) = cT/1 y l  1;. The 

hypothesis of Section 2 are satisfied on wp for any p > 1. We have g(y) = - y(]), 

t (y)  = H Y ( ~ )  6 and g(y+r t (y))  = - y(I ) ( l+~Hy(2)) .  AS 6 = T H ~ ( ~ 1 ,  if  we sup- 

pose y ( l )  and H positive, the positivity of (73T 6 is equivalent t o  g ( y + d ( y ) )  > 
g(y) , i.e. - r H Y ( ~ )  y(2)  > 0 , which is never satisfied for any positive step-size r 

when y(2) is also positive. 

On the other hand, if we choose a search path yr(r) on the manifold 

M(yk) := c-I (c(yk))  through y f ( ~ )  := y t  (this submanifold of Rn exists because 

c is a submersion), by seeing the problem of minimizing f on M(yk) as the one of 

minimizing II, = f o E on Rn-m , where E is a parametric representation of M(yk) 

around yk, it is possible to satisfy both Wolfe's conditions (3.1) and (3.2). More 

precisely, we define a path on M(yk) by yp(r) := E(uk+ruk) ( E  : uk + Rn is 

locally defined on the neighborhood Uk of uk in lRn-m, and uk is such that  

yk = E(uk)) with uk := Z(yk) tk and we take Z ( ~ ~ ( T ) ) -  := E1(uk+ruk) as the basis 
M of the tangent space to  ~ ( y k )  a t  ~ f ( r ) .  Then, V+(uk+ruk) = g(yk (r)) and uk is a 



descent direction of $ a t  uk, since v$(uk) t,k = g(yk) Z(yk) tk = 

- g(yk) Hk g(yk) is negative. Hence, a step-size rk such that  (3.1)-(3.2) are 

satisfied a t  T = rk exists if the Uk is sufficiently large and if, for instance, f is 

bounded from below on M(yk) (See Wolfe (1969)). Rewriting condition (3.2) a t  

T T in terms of the reduced gradient (i.e. g ( y P ( ~ ~ ) ) ~ Z ( y ~ )  t k t  
T 

az g(yk) Z(yk) tk) shows that condition (1.19) is satisfied with = 7Y and dk 

given by 

Without any reference to a parametric representation of M(yk), the search 

trajectory yF(r)  may be defined by an ordinary differential equation (where the 

dot stands for a derivative according to T) : 

while Wolfe's conditions can be rewritten as follows: 

where Q is defined in (1.16) with a supposed convex function cp. In (3.5), we have 

used the function Q instead of the function f and this is licit because p ( e ( y ~ ( ~ ) ) )  

does not vary with T. This small change, however, is important for the sequel 

because it is indeed the penalty function Q that has to be decreased and not f .  

In view of the counter-example and the success of the path yP(r),  one possi- 

ble direction of investigation could be to try to build an approximation of the path 

using an approximation scheme for the differential equation (3.4). But,  on 

the one hand, this is usually too expansive and, on the other hand, for any T for 

which (3.6) would not be satisfied the question of the sharpness of the approxima- 

tion would arise as a leitmotiv: as shown by the counter-example, the linear 

approximation (yk+rtk) is sometimes inadequate, so, what about the current one? 

Fortunately, the situation can be sorted out by trying to satisfy both inequal- 

ities (3.5) and (3.6) in the following way. 

Let us remark first that inequality (3.5) is satisfied for T small along the linear 

path y;(r) := yk+rtk (T > 0) instead of yF(r):  

Q(Y;(T)) 5 Q ( ~ k )  + O l  v / ( Y ~ )  tk - (3.7) 



Indeed, as in (1.17), the right derivative of the left hand side of (3.7) at 7 = 0 is 

then V /(R) Ttk, which is negative (we suppose tk different from zero and Hk posi- 

tive definite, as usual) and al is less than 1. On the other hand, by continuity 

and because a2 is less than 1, the inequality corresponding to (3.6): 

is not satisfied for small step T along yf(7). Then, we may define 7: := 

sup { 7' > 0 : for all 7 in [O , 7'1 , yf(7) is in w, (3.7) is satisfied and (3.8) is not 
0 1 satisfied } . If y: := yk ( T ~ )  is not in w ,  we shall consider that the algorithm has 

failed. Otherwise, (3.7) is satisfied at y: (by continuity). Then, if (3.8) is satisfied 
1 at  yk (which is the only possibility in the unconstrained case), 7: is a serious step. 

Otherwise, this means, by continuity, that (3.7) is not satisfied for r > 7; in a 

neighborhood of 7:. In this last case, ~(y:) = B(yk) + a ,  7: tk and the 

search to satisfy (3.7) and (3.8) may be pursued from y: in the direction 

~ ( y : )  Z(yk) tk. TO see this, it is enough to remark that ,  if y:(~) is defined by 

yi(7) := yg(7) for 0 5 T 5 7: and yi(7) := y: + (7-7;) Z(y:)- Z(yk) tk for 7 > T:, 

the following inequality holds 

for r > 7: in a neighborhood of 7:. And, this is true because on the contrary we 

would have a sequence of 7 > r;, converging to 7: with 

Dividing by (r-7:) and taking the limit as T tends to 7: would give: 

But 

because of (1.9). So g(y2) Z(W)  tk > a2 g(yk) Z(yk) tk. A contradiction, 

because (3.8) was supposed to  be unsatisfied at y: = yf(7:). NOW, we can continue 

and define 7: := sup { 7' > 7: : for all T in 17: , T'[ , y:(~) is in w, Q(~:(T)) 5 
1 2  

'(w) + a l  V I ( Y ~ ) ~  tk  3 g ( ~ : ( ~ ) ) ~  Z ( ~ k )  > a2 ~ ( y k ) ~  Z ( ~ k )  } 9 Y: := yk(rk) 
and so on. Therefore, the search can be pursued along piecewise linear path, as 

long as a serious step-size is not met. 

T o  obtain an implementable version of this algorithm, two questions, which 

constitute our program up to  the end of this section, have to be clarified: 

(1) the values 7; of the step-length a t  which the search is reoriented is not 

attainable by calculation and should be redefined, 



(2) the algorithm should be shown to terminate in a finite number of itera- 

tions. 

The last question will be the subject of Theorem 3.3, while for the first ques- 

tion, we may refer to what is done in unconstrained optimization to find a serious 

step-size in the sense of Wo!fe. Indeed, in this case as well, if the step-size 

corresponding to our 7: solves the problem, it is never calculated but only approx- 

imated and this is possible because it must exist a left neighborhood of it consti- 

tuted of serious step-sizes. For example, Lemarkchal (1981) has proposed an algo- 

rithm to find a serious step-size in unconstrained optimization. Let us recall it 

here in terms of the function $ introduced a t  the beginning of the Section. 

Lemarbchal's algorithm: (3.9) 

1. set ~ : = 0 , 7 : = o o ; c h o o s e r > O  

2. repeat: 

2.1. i f  (3.1) is not satisfied 

2.2. then { T:= r ; r := INTERPOL ( I ,  q ) 
2.3. else if (3.2) is satisfied 

2.4. then go out / /  r is serious 

2.5. else { 1 := r ; 

2.6. if T =  oo 

2.7 then r := EXTRAPOL (I) 

2.8 else r := INTERPOL ( I ,  q ) 

So, the algorithm tries to trap a step-size like r: in an interval 12, 71. The 

step-size 7 is said to be too large because it does not satisfy (3.1), hence some 

step-size like r: must exist in [0 , 71. The step-size 1 is said to be too small because 

it is less than Tand satisfies (3.1) but not (3.2), hence some step-size like r i  must 

exist in [z , fl. The algorithm uses two functions: INTERPOL gives a step-size r 

between the two finite values 1 and Tand EXTRAPOL gives a step-size r greater 

than 1. Some conditions on these functions are required in order to assure the glo- 

bal convergence of the algorithm. 

We shall adapt this algorithm to our situation by modifying the direction of 

search each time a step-size is recognized as too small. These step-sizes will consti- 

tute our new 7;'s. Note that this change in the direction of search a t  a point y; is 

free of charge because an inequality like (3.6) or (3.8) has to be tested a t  y l  and 

therefore the new basis Z(y;)- is available and the new search direction 

z(~;)- Z(yk) tk, as well. 

Before stating our algorithm we need to define precisely the search path and 

to give the properties required for the interpolation and extrapolation functions. 



Being given 1 positive numbers: 

0 1 I O = : r k < r k <  . . .  < T k ,  

we define by induction the points yL and the piecewise linear trajectories 

y;(r), r > Ofor o < i < I :  

0 .- 
!/k .- !/k 7 

y f ( r )  := yk + r tk = yk + r Z ( y k ) -  Z ( y k )  tk for r > 0 (3.11) 

andfor 1 < i 5 I ,  

y i  := y i -  ( r i )  , 
f 

y l ( )  for o < r < ri  , 

Y ;  + (7-7;) Z ( y i ) -  Z ( y k )  tk for r > ri . 

Therefore, if the dot stands for a right derivative, we have 

yL(r;) = Z(y; ) -  Z ( y k )  tk , 0 5 i < 1 . (3.14) 

So, the path y:(r) may be seen as an Euler approximation of the solution yP(r)  of 

(3.4) on 10 , r:] for the discretization (3.10) in r. 

Lemma 3.1. If ( T L ) ~ ? ~  is an increasing sequence of positive numbers that 

converges to  some Tk and if defined in  (3.12)-(3.13) remains i n  w, then 
- 

( y i ) i > l  converges in  Rn. 

Proof. We have 

Because a E w, ( ~ ( y ~ ) ) - ) ~ ~ ~  is bounded. Therefore, the sum in the right hand 

side is absolutely convergent, hence converges. And so does ( y i )  . IJ 

The generalization of Wolfe's criteria then writes: find 1 positive numbers 

(T ; )  15i51 verifying (3.10) and a r > r: such that 

Q ( Y : ( ~ ) )  < Q ( Y ~ )  + a l  ~ f ( Y k )  tk 7 (3.15) 

~ ( Y L ( T ) ) ~  Z ( ~ k )  tk a~ g ( ~ k ) ~  Z ( ~ k )  tk 7 (3.16) 

where 0 < crl < a2 < 1 are given. We shall need an interpolation function 

J : w x fR+ + R+ := [O , oo[ such that: 



( y , ~ )  - J ( Y , T )  is continuous on w x R+ , (3.17) 

J ( y , r )  E 10 , r[ for a11 y in w and all r > 0 , (3.18) 

JyP(r) := ( J  o .. ( p  times) .. o J y ) ( r )  - 0  as p - m ,  
Y (3.19) 

where J y ( r )  := J ( y , r )  . From (3.17) and (3.18), we deduce that  for y in w and r 

non negative, J ( y , r )  = 0 if and only if r = 0 .  We shall also need an extrapolation 

function E : w - R+ such that: 

y - E ( y )  is continuous on w , (3.20) 

E ( y )  > 0 for all y in w . (3.21) 

Lemma 3.2. If ( y j )  is a converging sequence i n  w ,  ( r j )  is a bounded sequence 

of positive numbers such that ( J ( y j , r j ) )  converges t o  zero, then ( r j )  converges t o  

zero. 

Proof. Let y in w be the limit point of ( y j )  and ( r j , )  be a subsequence of ( r j )  

that  converges to  some r. Then, by (3.17),  J (y j , , r j , )  - J (y , r )  = 0 ,  hence r = 0 

and all the sequence ( r j )  converges to  zero. 

We can now state the 

Longitudinal search algorithm: 

1. if tk = 0 then go out 

2. set 1 := 0 ,  r: := 0 ;  choose r >  0 

3. repeat: 

3.1. if yL(r) is not in w or (3.15) is not satisfied 

1 1 3.2. then r := rk + J ( ~ ~ , T - T ; )  

3.3. else { if (3.16) is satisfied 

3.4. then { rk := r ; go to  statement 4 } / /  r is serious 

3.5. 1 1 else { 1 := l+l ; rk := r ; r := rk + E ( ~ : )  } } 

4. lk := 1 

In statement 2 ,  the choice r = 1 is recommended if the algorithm is used 

within the context of secant methods because in this case the unit step-size is 

essential to obtain the superlinear convergence. 

We have added in statement 3.1 another reason to decrease r: the points yi 
must belong to  w. Therefore a serious step-size may not be found because w is too 

small and the algorithm may loop in statement 3. This is one of both reasons for 



looping (see the theorem below). 

Let us remark that the algorithm will not cycle between statment 3.1 and 3.2 

because otherwise T would decrease to T: by hypothesis (3.19); but, y: := y:(i:) is 

in w by construction so y:(r) is also in w for T close to T: and , on the other hand, 

inequality (3.15) is satisfied for T close to T:. Therefore the test 3.1 is always 

rejected after a finite number of loops 3.1-3.2. Consequently, if the algorithm 
1 loops in statment 3,  a sequence (yk)l>o is built in w. 

- 

We now give the main result of this section, which shows that ,  apart from 

some pathological situations, a serious step-size is found in a finite number of 

iterations. 

Theorem 3.3. Let 13 be the function defined on  w by (1.16) with p convex 

and continuous on  a neighborhood of c (w) .  Let yk be a point i n  w such that 

g ( y k )  # 0.  Let Hk be a symmetric positive definite matrix of order n - m .  Then, if 

the longitudinal search algorithm (3.22) with the definitions (3.10)-(3.13) and the 

hypotheses (3.1 7)-(3.21) is applied from yk,  one of the following situations occurs: 

(i) the algorithm terminates in  a finite number lk of loops 3.1-3.5, with a point 

xk+l := y f ( r k )  satisfying both inequalities (3.15) and (3.16) with 1 = lk and 

7 = Tk,  

(ii) the algorithm builds a sequence (y:)l>o in  w and either ( ~ ( y ~ ) ) ~ > ~  tends to 

- cm or (Y:)l>o converges to  a point on the  boundary of the open se tw.  
- 

Proof. Clearly, by the remark preceding the theorem, if a finite number lk of 

points y: are calculated, this means that a step-size rk has been found in state- 

ment 3.4 and that y t ( i k )  satisfies both (3.15) and (3.16). So let us suppose the 
1 contrary, i.e. that a sequence (yk)l>O is built in W .  Let US suppose also that the 

sequence ( ~ ( y : ) ) ~ > ~  is bounded frombelow and that (y:)l>o does not converge to a 
- 

point on the boundary of w. We have to prove that these suppositions yield to a 

contradiction. 

For all I ,  we have by construction: 

Because ~ f ( y k ) ~  tk = - g ( y k )  Hk g ( y k )  is negative and ( ~ ( y : ) ) ~ ~ ~  is 

bounded from below, (3.23) shows that ( T : ) ( > ~  is bounded. As T; increases with I ,  
1 the sequence converges to some Tk and by   em ma 3.1, (yk)l>o converges to some 

ijk in Rn. According to the suppositions, ijk is in w. Let us show that 



In view of (3.23) and by continuity, it is enough t o  prove tha t  the left hand side of 

(3.25) is not less than  the right hand side. For this, let us remark tha t  there exists 

an integer lo such tha t  for 1 > lo, we have for some 4 > r:+': 

1 Indeed, on the contrary, we would have r:+' = 7; + E(yk) for some subsequence of 

1's and a t  the limit on those l's, we would have, by (3.20), E(ijk) = 0,  which is in 

contradiction with hypothesis (3.21). Now, by construction, 4 5 7; + ~ ( y : ) .  So 
-I (4)ltP is also bounded. Then, the limit in (3.26) and Lemma 3.2 show tha t  7k 

converges t o  Tk. The  equality (3.26) also means tha t  (3.15) is not satisfied a t  

y;(d), i.e. 

Q ( Y ; ( ~ ) )  > Q ( ~ k )  + crl 4 V I ( Y ~ ) ~  tk - 

Because y:(d) = y; + (4-7:) Z(y;)- Z(yk) tk converges t o  ijk, the equality (3.25) 

is proved by taking the limit on 1 in this last inequity. 

Taking the limit on 1 in (3.24) and noting tha t  0 < crl < cr2, we see tha t  there 

will be a contradiction (and therefore we shall have proved the theorem) if we 

show tha t  

For this, we build a sequence of points (zf)pZO in w of the form 

and verifying 

Q(z[) > Q ( Y ~ )  + a l  (Tk+flP) g(yklT Z ( ~ k )  tk , 

where (qP)p20 is a sequence of positive numbers converging to  zero. Therefore, 

using (3.25), we get 

Hence, inequality (3.27), by taking the limit on p in this inequality. 

The  sequence ( z [ ) ~ > ~  is built by induction and we begin with 2:. We have 

already seen in getting (3.26) tha t  we may find a positive integer lo such tha t  for 

1 2 lo, (3.15) is not satisfied a t  y;(r;+~(y;)). Therefore, for 1 2 lo, 

If we set 



and v0 := E(gk), we obtain (3.28) and (3.29) for p = 0. Similarly, for p 2 1, we 

may find a positive integer lp 2 lp-I (defined by induction) such that for all 

1 2 IP, (3.15) is not satisfied a t  

where 

rl'J' := JPI (~ (y : ) ) .  
Yk 

Indeed, otherwise, lp being greater than lp-l, we would have for a subsequence of 

1 's: 

and the limit on I, would give 

( JFk 
o .. (p  times) .. o JFk)(E(i&.)) = 0 

Which would imply E(gk) = 0, in contradiction with (3.21). Therefore, for 1 > lp, 

we have 

Q(z:'P) > Q ( ~ k )  + (r:+~l'p) g(yklT Z ( ~ k )  tk . 

As ( Z ~ P ) ~ > ~  converges to  z[ given by (3.28) with 
- 

vp := J;k(E(gk)) , 

the limit in the last inequality gives (3.29). Moreover, (qP)p20 converges to zero 

because of property (3.19). 

So, being given a point yk satisfying the hypotheses of Theorem 3.3, the longi- 

tudinal search will usually give a point 

satisfying both inequalities (3.15) and (3.16). We shall need further, the following 

inequality. 

Proposition 3.4. With the hypotheses of Theorem 3.3, if starting from a 

point yk in w, the longitudinal search algorithm gives a point zk+l in w and a step- 

size rk, we have 

112k+~-~klI  Crk I l t k l l  7 (3.32) 

where C is a positive constant that only depends on c ( . ) ,  Z(.) and A'(.)- on w .  



Proof. We have 

from which (3.32) follows. 

4. The algorithm 

In secant methods, it is commonly considered that a globalizing technique is 

successful if the unit step-size is asymptotically accepted by the search algorithm 

because then, the superlinear convergence of the local method is not prevented 

from occurring. In the case of the longitudinal search algorithm (3.22), th' 1s means 

that lk = 0 and rk = 1 should be accepted after a finite number of iterations. In 

fact, this depends on three factors: the search direction tk, i.e. the matrix Hk, the 

penalty function 0 and the constants al and a2 in (3.15)-(3.16). 

Because Gk is updated to be a good approximation of the projected Hessian 

of the Lagrangian, which is a condition imposed by the local analysis, the point 

( y k + t k )  will be asymptotically a good approximation of a minimizer of the Lagran- 

gian in the tangent plan Y ~ + R ( Z ( ~ ~ ) - ) .  Note, indeed, that  if Gk = 

z ( Y ~ ) - ~  L(yk,A) Z(yk)- , we have tk := arg min { l(yk,A) + v , ~ ( ~ ~ , A )  Tt + 
t T ~ ( y k , A ) t / 2  : t E R(Z(yk)-) }, for any A .  Therefore, the unit step-size has some 

chance to  be accepted if 0 is close to the Lagrangian. Finally, the condition on the 

o;'s will be simply, al < 112 because then conditions (3.15) and (3.16) accept the 

minimum of a quadratic function. 

We choose as penalty function the nondi fferentiable augmented Lagrangian: 

where I I l I 1 is a norm on Rm. This penalty function is exact, i.e. that  a solution 

x, of problem (1.1) is a local minimizer (here strict) of lp(e,p), if p > 1 1 p- A, I / 
where A, is the multiplier associated to x, and ( ( l I I is the dual norm of I I l I I on 

Em.  This result may be derived as a variant of a result of Han and Mangasarian 

(1979) by considering the problem min { i ( x )  + pT c (x) : x E w , c (x) = 0 }, 
which is equivalent to problem (1.1.) or it may be directly obtained like in Bon- 

nans (1984) where the penalty function (4.1) has been used in connection with the 

SQP method to obtain the admissibility of the unit step-size. 

Another possibility could have been to  use the differentiable augmented 

Lagrangian obtained by replacing in (4. I ) ,  p 1 I c (x) ( 1 by ( ~ 1 2 )  1 ( c (x) 1 1: (where 

I Ie 1 l 2  is the l2 norm), which is exact if p is greater than some positive threshold 

p. The advantage of lp in (4.1) is that the threshold of p is easy to calculate. This - 
is important, because, as we have seen, we shall need to make lp close to the 



Lagrangian function so that the unit step-size will be accepted. With the penalty 

function (4.1), this will be done simply by improving the estimate p of A, as the 

iterates progress to a solution z, and by decreasing p if necessary and if the 

requirement p > I (p-A, ( I D  allows it. 

The path from yk to zktl, given in (3.31), may be obtained by using lp(a,p) 

as penalty function in algorithm (3.22). So, it remains to bring out conditions for 

the feasibility of a linear search on lp starting a t  in the direction rktl, or a t  

q in the direction rk. The directional derivation in z of $(a+) a t  zk in the direc- 

tion rk := - A(zk)- c(zk) writes: 

where we used the multiplier estimate X(z) given in (1.15). Therefore, rk is a des- 

cent direction of l,,(o,p) a t  y, if p > I IX(zk)-a( I D .  This shows that p will have to 

be adapted sometimes in order to preserve this inequality before doing the 

transversal step. We shall denote by pk the value of the penalty parameter a t  

iteration k. In the same way, we shall see that p will have to be modified a t  some 

iteration and we shall denote by pk its value a t  iteration k. Therefore, a condition 

to satisfy a t  each iteration (from zk to q+J is: 

where - pk is some positive number. 

Let pk denote the step-size along the transversal displacement rk: 

We shall determine pk by Armijo's procedure (see Armijo (1966)). We choose P in 

10 , 1[ and we take pk in the form 

where bk is the smallest non negative integer such that 

and 

where cr is a given constant in 10 , I.[ . So, if (4.3) is satisfied and zk is in w (an 

open set),  such a bk always exists. 

We can now outline our reduced secant algorithm. 



Algori thm RSA: (4.7) 

1. Let be given the constants: 0 < cw < 1 , 0 < p < 1 , 0 < cwl < 112,  

al < a2 < 1 , 0 <  r ,  1 < ai ( i =  1,2,3). 

2. Let zo be a point in w and Ho be a symmetric positive definite matrix of 

order n-m. 

3. Calculate X(zo) by (1.15), choose - po > 0, set pO := A(xO) and po := SCpo) 

and set the indices k := 0 (iterations), i := 0 (adaptation of - pk), j := 0 

(adaptation of pk and pk). 

4. Select a transversal step-length pk by Armijo's procedure (4.5)-(4.6) and 

set yk := xk + pk rk. 

5. Execute the longitudinal search algorithm (3.22), starting with T = 1 and 

using the penalty function lpk(a,pk) instead of 8 ( a )  in (3.15) to determine 

a step-length ~k and the point zk+l given by (3.31), if possible. 

6. Calculate rk  := I I g(yk) I I + I I C ( X ~ + ~ )  j 1 .  If rk < E then stop. 

8- pk -+ p k + 1  - 
9. Adapt Pk - Pk+ 1 and Pk --+ Pk+ 1 

10. Set k := k + l  and go to statement 4.  

The algorithm calls for some comments. In statement 1, E is a positive con- 

vergence threshold and is used in statement 6. The positive constants a l ,  a2 and 

a3 will be used in the adaptation rules of - pk, pk and pk (statement 8 and 9) given 

further. In statement 2, Ho can be chosen as the identity matrix but this does not 

take into account the scaling of the problem. Therefore, a possible choice is to 

take Ho = I in the first longitudinal search (statement 5) and to calculate H I  by 

updating ho I rather than I, where 

is the scalar minimizer of 1 lhyo-&/ 1: (see Shanno and Phua (1978)). In state- 

ment 3, - po should be taken large enough and the function S : 10 , oo[ - 10 , oo[ is 

supposed to satisfy the following properties: 

S is non decreasing on 10 , oo[ and S(a)  > a for a in 10 , oo[ , (4.8) 

for all _a 5 ii in 10 , oo[ , S([a , ti]) is finite , (4.9) 



This function S will be used again in the adaptation rules of - pk, pk and pk and 

these properties will be useful to prove the global convergence of the algorithm. 

For example, we may follow Bonnans (1984) by taking S ( a )  := min { 10Q : 

a 5 10q, q integer ). Statement 4 will always succeed because inequality (4.3) will 

be guaranteed by the adaptation rule of - pk ,  pk and pk (statements 8 and 9) and 

because if statement 5 succeeds, the point q is in w. Note that if rk = 0, pk = 1 is 

always accepted in statement 4! On the other hand, statement 5 may not succeed 

because one of the situations of ( i i )  in Theorem 3.3 occurs. In order not to prevent 

the superlinear convergence from occurring we suppose that the initial r in the 

longitudinal search algorithm is chosen equal to I .  In statement 7 ,  the inverse 
T BFGS formula (1.18) is always well defined because, by construction, yk bk is 

positive. 

Before stating the adaptation rules for - pk, pk and pk in statements 8 and 9 ,  

we need to examine in what conditions the unit step-sizes pk and rk are accepted 

in both the transversal and longitudinal displacements. These are the contents of 

the following two propositions. 

Proposition 4.1. Suppose that algorithm R S A  (4.7) produces bounded 

sequences ( p k )  and ( p k )  and a sequence ( z k )  i n  w that converges i n  w to  a solution 

2, of problem (1.1). Then, with ek := (A ( zk ) -pk )  c ( z k )  - pk I 1 c ( z k )  / 1 , we have 

for k large 

Proof. For k large and 8 in [0 , I ] ,  zk+8rk is in w. Then, Taylor's expansions 

give 

and c ( zk+ rk) = o ( 1 1 rk ( 1 ) . Consequently, (pk )  and ( p k )  being bounded, we get 

( 4 . 1 )  

Proposition 4.2. Suppose that algorithm R S A  (4.7) produces a bounded 

sequence ( p k ) ,  a sequence ( z k )  i n  w that converges i n  w to  a solution 2, of problem 

(1.1), a sequence ( p k )  that converges to the associated multiplier A, and a sequence 

of non singular reduced matrices ( G k )  such that (GL')  is bounded and 

( G k - G * )  Z ( ~ k )  tk = 0 ( 1  ItkI 0 - 
Then, with Ak := V f ( yk )  * tk , we have for k large 



Proof. The sequence ( y k )  converges to  z* and because ( H k )  is bounded, 

yk+Qtk is in w for k large and Q in [0 , 11. Then Taylor's expansions give: 

Hence, using pk - A *  and the boundedness of ( p k ) ,  we get 

But tk = Z ( y k ) -  Z ( Y ~ )  tk = Z ( Z * ) -  Z ( y k )  tk + o(I I t k (  1 )  and Ak = 

- g ( y k )  Hk g ( y k )  = - t: Z ( y k )  Gk Z ( y k )  tk . So, the last inequality becomes 

l P k ( y k + t k , ~ k )  - l p k ( ~ k . ~ t )  - al  AI 

From this inequality and from (4.12),  we deduce (4.13).  On the other hand, by a 

Taylor's expansion and (3 .3 ) ,  we get 

g ( ~ k + ~ k )  = g(yk)  + z ( z * ) - T  L* t k  + o( 1 1 0 

= g ( ~ k )  + G* ' ( ~ k )  tk + O (  1 1 t k l  1 )  . 

Hence, using again At = - 1: Z ( y k )  Gk Z ( y k )  tk and (4.12),  we obtain 

a2  g ( y k )  Z ( ~ k )  tk - g(yk+lk) Z ( ~ k )  t k  

= ' k  - ' k -  ': ' ( y k )  G* Z ( ~ k )  tk + O (  I 1 tk / 1 ' )  

= a2  ' k  + tL?z(yk)T ( G k G * )  ' ( y k )  lk + o( 1 1 t k l  1 2 )  

= Ak + o ( l I t k 1 1 2 )  7 

which is (4.14).  

Propositions 4.1 and 4.2 give conditions to have the admissibility of the unit 

step-sizes pk and 7 k ,  i.e. to have the left hand side of (4.11),  (4.13) and (4 .14)  non 

positive. This will guide us in the design of the adaptation rules for - pk, pk and pk.  



Inequality (4.11) shows that  0 < a < 1, inequality (4.3) with kk) bounded 

away from zero is sufficient to guarantee pk = 1 asymptotically. Indeed, in this 

case, Qk < - pk 1 )  c(xk) I I < - C I (rkI I , where C is a positive constant, and the 

left hand side of (4.11) becomes negative eventually. 

By proposition 4.2, we see that pk  has to be adapted infinitely often so that  

pk  4 A * .  Condition (4.12) is a sufficient (but not necessary) condition of super- 

linear convergence for (zk) (see Byrd (1984), Gilbert (1986,a,c)) and is usually 

satisfied in practice (see Coleman and Conn (1984) and Gilbert (1987)). Because 

At  = - t: Z(yk)T Gk Z(yk) tk, the left hand side of (4.14) will be negative asymp- 

totically if (Gk) is positive definite, (GL') is bounded and a2 > 0, while the left 

hand side of (4.13) will be negative asymptotically if (Gk) is positive definite, 

(GF') is bounded, al < 112 and pk is sufficiently small. But, because pk has to  

satisfy the inequality (4.3), this means that - pk must be small enough, although 

non zero as we have just seen. 

On the other hand, by modifying pk and pk, we change the merit function a t  

each iteration, which can prevent convergence. So, we have to  proceed with cau- 

tion, and like in Bonnans (1984) we shall not change pk and pk if convergence does 

not seem to occur. We actually think that here lies Achille's tendon of the algo- 

rithm and that  some improvement could be brought. For the test of convergence 

we shall use 

We can now precise statements 8 and 9 of algorithm RSA. 

Adaptation of - pk (statement 8 of algorithm RSA) 

if tg  5 €:/a1 and (lk # 0 or T~ # 1) 

then { i := k ; pk+l := pk /a2  ) 

. - 
else _Pk+ 1 a- _Pk 

Adaptation of pk and pk (statement 9 of algorithm RSA): (4.19) 

We recall that  the properties of function S have been given in (4.8)-(4.10). We 

now prove the global convergence of algorithm RSA. 



Theorem 4.3. Suppose that algorithm RSA (4.7) with the adaptation rules 

(4.16) and (4.19) produces sequences (zk) and (yk) in w and a bounded sequence of 

matrices (Hk) with bounded inverses. Then, one of the following situations occurs: 

(1 lim ( I I c ( ~ k )  I I + I 1 s ( Y ~ )  1 I ) = 

(11) pk = p for k large, (pk) is unbounded and I JX(zk) 1 1 - oo when k - oo 
l n {  k : ~ k > P k - l )  

(iii) pk = p for k large, pk = p for k large and either 1 (zk,p) - - 00 or for 
P 

some subsequence dist(zk,wc) - 0 . 

Remarks. Because sequences (zk) and (yk) are generated by the algorithm, 

it is implicitly supposed that the longitudinal search algorithm succeeds at each 

iteration k, which will usually occur (see Theorem 3.3). Statement (i) is 

equivalent to lim c: = 0, so lim in j  has not the same sense as in topology. The 

fact that only lim i n j  is obtained in ( i )  (instead of lim) does not come from the 

hypotheses of the theorem that are rather strong (the boundedness of (Hk) and of 

(HL') are usually enough to imply the convergence of all the sequence c k  to zero, 

as this may be observed in unconstrained optimization, see Wolfe (1969, Theorem 

I ) ) ,  but from the way the convergence is checked by the use of c p  in statement 8 

and 9 of the algorithm. This may be difficult to improve because, it is impossible 

to design an algorithm that builds a decreasing sequence (Ck) from the sequence 

( tk)  such that (Ck) depends only on { c ,  : 0 5 i 5 k ) and such that Ck - 0 if and 

only if ck - 0 (the reason of this is that ck may be built by observing Ck like in 

{ i := 1 ; co := 0 ; for k > 0 do { compute Ck ; if Ck > l / i  then c k + l  := 0 else 

- -  1 ; i := i + l  ) ) )). The situation ( i i )  of the theorem means that either { €k+l .- 
{ zk : pk > pk-l) is unbounded or has accumulation points 3 on the boundary of w 

at  which X ( 3 )  is not well defined by (1.15), for instance, because A ( E )  has not full 

rank. In ( i i i ) ,  dist(zk,wc) is the distance from zk to the complementary set of w. 

Proof of Theorem 4.3. Let us suppose that situation ( i )  does not occur. 
0 Then, lim inf c k  := t, > 0 and, by (4.18) and (4.21), - pk = p' for k large, pk = p 

for k large and (pk) is an increasing sequence for k large. Then, either (pk) is 

unbounded or (pk) is bounded! In the first case, this means by (4.21) and (4.8) 

that ( ( I X(zk) I 1 D) is unbounded, and more precisely, 

which is the conclusion ( i i )  of the theorem. On the other hand, if (pk) is bounded, 

(4.21) and (4.9) show that  pk changes finitely often. So, pk = p for k large. We 

prove the rest of ( i i i )  by contradiction, supposing that lp(y ,p)  is bounded from 

below and that (zk) remains away from wC. We have 



Therefore, the sequences (lp(zk,p)) and (lP(yk,p)) decrease to the same value. 

According to the longitudinal displacement, i.e. to  inequalities (3.15) and 

(3.16), we have 

where we have used the fact that,  (HL') being bounded, there exists a positive 

constant h such tha t  Hk > h I in R ( " ~ ) ~ ( " - ~ ) .  From (4.22) and the conver- 

gence of (lp(yk,p)) and (lp(zk,p)) to the same value, we deduce that  

rkI lg(yk) 1  l 2  - 0. From (4.23), the boundedness of (HI), the Lipschitz continuity 

of g and proposition 3.4, we get 

Hence, g(yk) - 0 . 

Now, from the transversal search (see (4.6)), we have 

Hence, pk I I c(zk) I / - 0 . We are going to show that  (pk) is bounded away from 

zero, which will prove ( i i i )  since then c(zk) - 0 and, with g(yk) - 0, this gives 

the expected contradiction with the initial assumption, according to  which 
0 0 ek 2 t, > 0. Again, we set about it by contradiction. So, let us suppose pk < 1 

and pk - 0 for k in a subsequence H. We may consider tha t  pk/P is not 

accepted by the line search because Armijo's criterion (4.6) is not satisfied. 

Indeed, otherwise it would mean that for a subsequence H of 

K ,  fk := zk + (pk/P) rk would not be in w. But pk I I  c (zk) I  I - 0 implies that  

(pk/P) rk - 0 and therefore ( q ) k E  K, would go closer and closer to  a point Zk not 

in w, a situation tha t  has been discarded by hypothesis. So, for k in H, we have 

pk 
Expanding lp(zk+--rk,p) about y gives 

P 



where C is a positive constant that does not depend on k. Therefore, with (4.24) 

and (4.3), this leads to  

Therefore pk I I c(xk) I I is positive for k in lK and dividing by this factor in this ine- 

quality, we obtain a contradiction with the fact that pk I I c(zk) I ( 0 . 17 

The next theorem shows that our way to adapt - pk, pk and pk will guarantee 

the acceptance of the unit transversal and longitudinal step-sizes. 

Theorem 4.4. Suppose that algorithm RSA (4.7) wdth the adaptation rules 

(4.16) and (4.19) produces a sequence (xk) in w converging in w to a solution x, of 

problem (1.1) and a bounded sequence of positive definite matrices (Ilk) with 

bounded inverses. Suppose, as  well, that condition (4.12) is satisfied. Then, we have 

pk = 1, lk = 0 and T~ = 1 for k large enough. 

Proof. As xk - x,, we have c(xk) - 0, hence yk - x*, g(yk) - 0, 

ck - 0 and, by (4.20), pk -+ A,. 

We begin with the longitudinal displacement. Suppose that lk # 0 or rk # 1 

infinitely often. Then, by (4.17), we would have - pk - 0 and by (4.20), (4.21) and 

(4.10), pk -+ 0. Therefore, using proposition 4.2 (and the comments after its 

proof), we see that  the left hand side of (4.13) and (4.14) becomes negative for k 

large, then lk = 0 and rk = 1 for k large: a contradiction. 

Hence, lk = 0 and T~ = 1 for k large and from (4.18) we see that  - pk = p > 0 

for k large. By using proposition 4.1 (and the comments after the proof of proposi- 

tion 4.2), we see that the left hand side of (4.11) becomes negative for k large, 

hence pk = 1. o 



5. Conclusion 

We have presented an algorithm for equality constrained optimization of the 

reduced type in which the projected Hessian of the Lagrangian is approximated by 

updating at each iteration a matrix Gk using the BFGS formula and two vectors 

7k, the change in the reduced gradient, and bk, the corresponding reduced dis- 

placement. 

The main purpose of the paper is to show the possibility of obtaining the 

positivity of 7z 4, which is essential to guarantee the positive definiteness of the 

reduced matrices Gk. This feature is due to a particular design of the longitudinal 

displacement which minimizes the objective function f while roughly maintains 

constant the value of the constraint function c .  For this, we introduce a step-size 

rk scaling the reduced displacement in ZRn-m while the longitudinal displacement 

in Rn becomes piecewise linear. Wolfe's criteria are used to determine the step- 

size rk. 

The algorithm is made globally convergent by using a nondifferentiable aug- 

mented Lagrangian function. Another feature of the algorithm is to separate com- 

pletely the longitudinal and transversal displacements. Indeed, the step-size of 

both displacements are determined by two different searches on the penalty func- 

tion. 

The technique used here to maintain the positive definiteness of the matrices 

Gk may be seen as a generalization to equality constrained optimization of Wolfe's 

step-size selection procedure in unconstrained optimization. It is well known that  

this technique cannot be used in the framework of quasi-Newton or SQP methods. 

As the technique works well in unconstrained optimization, this may be seen as an 

advantage of the reduced framework over the SQP methods. However, the algo- 

rithm proposed here always requires at least two (and exactly two, asymptoti- 

cally) linearizations of the constraints for each superlinear step, which can be an 

important overcost in some applications. Therefore, the developed technique 

should be extended to those reduced methods that require only one linearization 

of the constraints per iteration. 

As mentioned in the text, a weak point of the algorithm lies in the way the 

multipliers and the penalty parameters are adapted to improve the penalty func- 

tion. Indeed, it requires from the algorithm to feel the closeness of a solution and 

therefore impoverishes the global convergence result (see the remarks after 

Theorem 4.3). We think that  some progress might be obtained on this topic as 

well. 
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