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Abstract. An approach to extend sampling-based

path planning algorithms to include visual restrictions is

presented. This approach deals with visual constraints

during the sampling and optimization processes. Four

visual constraints are imposed during sampling: 1)

keep the landmark within the sensor field of view, 2)

avoid landmark occlusions, 3) maintaining landmark

features near the image center, and 4) limit changes

in landmark view orientation. These last two are

imposed during path optimization. The robot task is

to maintain these constraints, in an environment with

obstacles, while the robot changes configurations. The

sampling-based motion planning algorithm imposes and

maintains both physical and visual restrictions. The

process uses a collision checker to detect self- and

obstacle-collisions, or landmark occlusions. To infer

the landmark visibility, the algorithm dynamically builds

a 3D model of camera field of view as seen from the

moving robot. To maintaining the landmark features

close to the image center, a distance parameter from

the field of view boundary to the landmark is used

and optimized. The camera roll angle was included as

another element to be optimized, limiting changes in

orientation. The algorithm has been implemented, and

both results in simulation and experiments using a real

robot manipulator are presented.

Keywords. Path planning, industrial robot, occlusion-

free path, visual path.

1 Introduction

Maintaining fixed landmark visibility has been

used in robotics to improve localization, navi-

gation, object recognition, object manipulation,

3D reconstruction, quality inspection, etc. This

task has been performed using motion plan-

ning, optimization, and visual-servoing techniques.

Roboticists have recently focused on integrating

these techniques [6, 7]. In our approach the

motion planning, with visual constraints, maintains

landmark visibility and provides good landmark

visual acuity.

1.1 Related Work

This approach is related to techniques that search

the robot state space to develop collision-free

and occlusion-free paths for eye-in-hand robots.

In [6] the authors call these techniques path

planning for visual-servoing. They also divide

these techniques into four groups: (1) Image space

path planning, (2) Optimization based planning,

(3) Potential Field-based path planning, and (4)

Global path planning. The approach is related to

motion planning algorithms that impose physical

and visual constraints to build a collision- and

occlusion-free path.

Image space motion planning creates a path

for the camera and then verifies path feasibility in

robot configuration space. In [7], for example, the

authors present an approach that partitioned the

visual-servoing problem into one employing several

sub-targets, to simplify the control task, when the

main target is far from the camera.

The algorithm developed is based on the

Rapidly Exploring Random Tree (RRT) approach.

They first sample the image space and project

visual features in the image. If the image

space restrictions are satisfied then the tree is
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extended. The final camera trajectory is evaluated

for configuration feasibility.

The principal disadvantage of image space

motion planning is that suggested paths are not

always feasible requiring re-planning until feasibility

is obtained. To overcome this, some approaches

have focused on planning in both image space and

robot configuration space [11, 1] simultaneously.

In [11] the authors presented a motion planning

algorithm for visual-servoing based on the RRT

approach. The algorithm built an exploration

tree, to encode robot configurations and visual

features and obtain useful paths preventing

target visual occlusion during the visual-servoing

process. While, simultaneously, satisfying joints

limitations and field of view restrictions. In [1]

the authors present an algorithm to build an

exploration tree searching in both image space and

configuration spaces.

This algorithm plans the robot movements

allowing no robot base positional alterations.

Approaches like those presented in [11] and [1]

are limited to generate feasible robot trajectories

without attempting to find optimal trajectories.

Additionally, these approaches were computa-

tionally expensive as they detect targets in an

image. Their sampling-based planning algorithms

must search a virtual environment, requiring

virtual camera images to perform image space

searches adding significant computational time to

first build and then analyze and process these

images. The approach presented in this work

could be potentially combined with robot navigation

methods like the one presented in [10] to maintain

visibility of an object while the robot navigates in

the environment.

Optimization techniques have been attempted

to obtain optimal trajectories with respect to

cost. In one example, optimization is done by

‘cost minimization’ considering the error between

the length of a certain “feasible” path and the

length of the straight-line path between any

impose restrictions.

The optimization required two steps: first the

translation vector and then the rotation matrix were

optimized [2]. The principal disadvantage of this

type of approach is that it is limited to simple

(sub-four jointed) robot systems and environments

with limited numbers of obstacles [6].

Our approach can be used in complex envi-

ronments and with robots having many degrees

of freedom. The algorithm has been tested

in a six degree of freedom (DOF) manipulator,

equipped with a camera having a limited field of

view. This robot/camera machine was mounted

in an environment populated with obstacles.

Any of these obstacles could produce a robot

collision or could occlude the landmark. The

algorithm computes a collision- and occlusion-free

path between two configurations. The landmark

must remain visible during the execution of the

entire robot path. Furthermore, the algorithm

is able to optimize feasible robot paths by

iteratively re-planning paths during the overall path

planning process.

1.2 Main Contributions

The main contributions of this work are the

following: We extend the RRT* to maintaining land-

mark visibility in an environment with obstacles,

considering both motion and visibility constraints.

We model this problem to either (1) respect some

constraints, or (2) reach optimization, and compare

the results. Visual features are inferred using a

collision detector to determine whether an object is

in the camera field-of-view and is occluded or not.

We develop a technique that infers object visual

features using a collision detector for any robot

configuration. Camera roll angle (γi) was restricted

to angles that limit changes in the landmark view

orientation. Metrics for the RRT* algorithm include

to minimize robot trajectory length, maximize the

distance between the landmark features and the

image boundary, and to minimize camera roll angle

changes. Each of these algorithmic improvements

have been implemented in both simulation and

experiments with a 6 DOF ABB robot.

2 Problem Formulation

The robot is equipped with a camera with a limited

field of view considering width, height and range. It

is assumed that this camera is placed on the robot

end-effector. It is assumed that the workspace
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is populated with obstacles and has a unique

landmark (see Figure 1 (a)).

2.1 Landmark Visibility Problem

The main problem addressed here is to maintain

consistent landmark visibility while computing a

collision- and occlusion-free path between an

initial and final robot configuration (see Figure 1

(b)). Requiring that the landmark remains in the

camera field-of-view as the robot moves, remains

un-occluded by objects, and motion occurs without

physical robot-object or self-collisions, limits the

number of paths that the robot could use as it

moves in the environment.

Let C denote the robot configuration space for

moving in a 3D world and V be a space that

indicates whether the landmark is/isn’t contained

in the camera field-of-view v ∈ V as it moves. For

each robot configuration q ∈ C there is a scalar

that indicates whether the landmark is fully visible

in the camera’s view. Let Cobs be the obstacle

region where the robot will collide with obstacles

or itself, and let Cocl be a subset of C where the

landmark is partially, or not, seen by the camera.

Let Cfree be free configuration space where the

robot is collision-free, and the landmark occlusion

free (C \ (Cobs ∪ Cocl)). To build a planned solution,

the algorithm searching for a path within Cfree
space is required. The planning problem is to find

this feasible path such that:

— A path is a continuous function, τ : [0, 1]→ C.

— A free path is a path in the free space τ →
Cfree.

— A feasible path is a free path that starts at qinit
and ends at qend ∈ Cgoal

Robot configurations on the feasible path are

subject to physical and visual constraints: the

robot is not in self- or obstacle-collision and the

landmark is completely un-occluded in the camera

field-of-view.

qqgoal

Camera direction

Landmark

Obstacle

init

Image boundary
projection

Camera

(a)

q
q

init
goal

q
i

Camera path

Landmark

Camera direction

Image boundary projection

(b)

Fig. 1. (a)Robot and environment, (b)This figure shows

the concept of maintaining visibility of a landmark. The

initial robot configuration qinit is represented with a blue

robot (left) and the camera visibility at that configuration

is represented with a blue frame (the image boundary

projection). This frame is a slice of the camera field of

view and the arrows represents the camera direction.

The final robot configuration qgoal is represented with a

red robot (right). An intermediate robot configuration is

presented in green (middle). The desired camera path

is shown as the black arc and every robot configuration

to achieve this path has the landmark in the camera field

of view
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2.2 Landmark Visibility Constraint

A procedure was developed to assure no landmark

occlusion that interfers landmark visibility. This

procedure uses 3D models and a collision checker

to infer whether the landmark is fully visible at

a given robot configuration. Let O be a set

of 3D models that represent all objects in the

environment (including the robot itself at a given

configuration – qi). In order to determine the

landmark visibility the procedure builds a 3D

frustum model, that represents the limits of the

camera field-of-view, and a Ray-casting model, that

represents rays from the camera center to the

landmark in the environment ol ∈ O.

2.2.1 Detecting Objects inside the Camera
Field of View

Let µi be a 3D model of a frustum that represents

the camera field of view region. The frustum height

is the perpendicular distance between the planes

indicating near focal length and far focal length

of the camera. The other four planar surfaces

represent the camera’s imaging limits. This model

is attached to the robot end effector (see Figure

2). Thus, an object ol fully inside this frustum

meets the visibility constraint if it is not occluded

by another object oh. Let M be the space

that indicates whether the landmark is or is not

contained in the frustum as the robot moves. A

scalar mi ∈ M is used to indicate this at a specific

robot configuration qi. To map a configuration qi to

a scalar mi, a map is defined as M : C → M or in

functional notation mi = M(qi). Here M is based

on the collision checker that detects any “collisions”

between a solid 3D model of µi and the landmark

model ol.

2.2.2 Detecting Landmark Occlusions

Let κl be a 3D model that represents rays from

the camera center to the landmark ol ∈ O (see

Figure 2). If the ray-casting model κl collides

with an object model oh (for any h 6= l) then

the object oh is in between the camera center

and the landmark, ol indicates landmark occlusion,

regardless of whether ol is in the camera’s field

view or not.

Let K be the space that indicates whether the

ray-casting model collided with objects models for

each qi ∈ C. To map a configuration to a scalar

ki that indicates whether the ray-casting model κl

collides with any object model oh (for h 6= l) at that

configuration, a map is defined as K : C → K. K
uses a collision checker to detect occlusions.

This ray-casting model κl is dynamically modi-

fied while the robot moves, since the camera center

pose changes with different robot configurations.

The ray-casting model κl is constructed using the

landmark model ol and the camera center p. The

landmark model ol uses a triangle language (STL

file format) for the 3D model representation, having

j triangles. Each triangle has three line segments:

ab, bc and ca. The ray-casting model κl is build by

adding the camera center p to each line segment

(in a triangle in ol) to build three new triangles:

∆abp, ∆bcp and ∆cap.

2.2.3 Detecting Full Landmark Visibility

To infer landmark visibility at a given configuration

qi the procedure searches in M and K. The

landmark ol is fully visible at a given robot

configuration qi if ol is completely inside the

frustum and ol is not occluded.

Let V be a space that indicates whether the

landmark ol ∈ O is fully visible as the robot moves.

vi is a scalar that indicates landmark visibility, we

define V : C → M×K → V in functional notation

vi = V(M(qi),K(qi)). The map V determines

whether the landmark ol is completely inside the

frustum, and whether an object ol is visible by the

camera. Each vi is a scalar that represents the

landmark visibility. If the landmark ol ∈ O is not

fully visible vi is zero.

In a feasible path τf , each qi ∈ τf has a vi
equaling one, indicating that the landmark is fully

(camera) visible.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1357–1373
doi: 10.13053/CyS-23-4-2983

Rigoberto Lopez-Padilla, Rafael Murrieta-Cid1360

ISSN 2007-9737



(a) Not visible

(b) Visible

(c) Occluded

Fig. 2. Frustum model: camera frustum attached to the

robot end effector. Ray-casting model: rays from the

camera center to an object. (a) Landmark not visible

by the camera: the Ray-casting model is not within the

frustum model, (b) landmark visible by the camera: the

Ray-casting model is within the frustum model, and (c)

landmark occluded inside the camera field of view: the

Ray-casting model collides with an object model

2.3 Modeling Landmark Visibility

Sampling-Based Path planning in the Joint-Image

Space (as in [5]) could be computationally

expensive, since the workspace-image projection

process would be done many times in the sampling

and other primitives of the planning algorithm.

In contrast we present a planning approach in

the joint space with visual constraints built into

the algorithm. These visual landmark feature

(position/orientation) constraints, in the algorithm,

are inferred using only workspace information

without an image. How these visual constraints are

included is explained below.

2.4 Landmark Visual Features Constraints

There are two main constraints to be respected.

One wants to keep the landmark ‘far’ from

the image boundaries and one wants that the

orientation angle of the image (camera roll angle),

γi) to be close to a specific value. Landmark

distance to the image boundaries dsl is constrained

to be greater than a threshold distance dst and

landmark orientation angle θsl to be within a range

of angles [θsa, θ
s
b ]. Since absolute image space

information is not available, workspace information

is used to limit dsl and θsl .

To limit dsl , the distance dl from the landmark

model ol to the frustum model, a ‘nonsolid’ frustum

(denoted µi) is used. For computing the distance

between a pair of 3D models, a library for proximity

query was used (the Proximity Query Package,

PQP [8]). Let D be a space that indicates the

distance between the landmark model ol ∈ O and

the frustum model µi at a given robot configuration

qi. To map a configuration to a scalar di that

indicates the distance, we define D : C → D. Here

D is based on a function of the proximity query

package and di is the computed distance between

a nonsolid frustum and the landmark model ol.
In Figure 3 (a) distance di is presented as a

line segment (in green). Note that the landmark

is inside the frustum and that the distance is

computed between the closest faces of the two

models. In Figure 3 (b) this distance is projected

in the camera image.

To limit θsl , the rotation angles over the camera

pitch, roll axes and 3D Rigid-body transformations
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[9] are used. We assume that the camera

X-axis is pointing at the landmark in a given

robot configuration qi, changes in the roll angle

γi (rotation about the camera x-axis) causes the

landmark feature image to rotate. The camera roll

angle (γi ) then must be held to limited range of

angles [γa, γb]. Angle γi for a given configuration qi
is calculated using the rotation matrix of the robot

camera model (Equation 1). We define R : C → Γ
to map a configuration to a scalar γi that indicating

roll angle, R is given by Equation 1 and γ is given

by Equation 2 and γi ∈ Γ.

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 , (1)

γ = |atan2(r32, r33)|. (2)

3 Path Planning to Maintain Landmark
Visibility

Sampling-based path planning algorithms can

be extended to consider visual constraints by

including them in the path planning algorithm. Here

these visual constraints are used to extend the

RRT* algorithm [3, 4]. The problem of constraining

the position and orientation of the landmark visual

features in the image space can be modeled as

either a problem of respecting some constraints or

an optimization problem. Below, we present both

formulations and compare the solution results.

In this path planning problem the RRT* algorithm

searches in Cfree and uses information from V
space, D space and Γ space in the algorithm

primitives. In the original RRT* algorithm [3,

4] an exploration tree of robot trajectories is

incrementally built. The algorithm starts from a root

that represents the initial robot state.

At each iteration, a random sample from

the free-state space is chosen and the tree is

expanded by adding a new node to the tree for this

random sample. Besides, a process can change

the structure of the tree to reduce the length of the

trajectories from the root to the leaves by choosing

paths with closer nodes (using this strategy the

authors proved asymptotic convergence to global

optimality [3]).

(a)

(b)

Fig. 3. (a) Distance between landmark model and

the frustum model di, (b) distance between landmark

features and image boudaries dsl

To deal with the planning problem, some prim-

itives were modified to include visual constraints,

they are described below. We consider that the

configuration space is equal to the state space, that

is X = C.
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3.1 Primitive Procedures

In the list, unmodified primitives procedures, from

[3, 4], are summarized while modified primitives

include more details.

— CollisionFree(xi) returns true (1) if the robot

is not in collision with the environment (nor in

auto-collision).

— LandmarkVisibility(xi) returns true (1) if the

landmark is fully visible or false (0) otherwise.

The visibility is computed using the map vi =
V(xi) (see Section 2.2).

— SuitableFeatures(xi) returns true (1) if the

landmark visual features fulfill the visual

constraint (see Section 2.4) or false (0)

otherwise. The function is based on the maps

di = D(xi) and γi = R(xi) (see Section 2.2).

— StateValityCheker(xi) returns true if xi

satisfy the physical and visual constraints, i.e.,

the following sentence is true:

CollisionFree(xi) ∧ LandmarkVisible(xi)

∧SuitableFeatures(xi)

For implementation purposes we established

a state validity checker function to be used

with the OMPL [12]. OMPL itself does

not include code for this checking, it was

intentional, since defining validity depends

on the type of problems to be solved

[12]. Here we define a state validity

check considering collision checking between

loaded CAD models, landmark visibility, and

feature suitability.

— Sampling: SampleFreei is a map, from

random variables, to points in the free state

space Xfree. Here a random state xrand
is determined to be in Xfree using the

StateValidityCheker(xrand) function.

if xrand is not in (X)free a new random

configuration is evaluated until xrand is in

Xfree.

— Distance: Given two states: x, y ∈ X , the

Distance function returns distance between

the two states. The distance function is the

L2 norm used for a State Space in OMPL.

— Nearest Neighbor: The function Nearest :
(G,x) → v ∈ V returns the vertex in V that

is “closest” to x in terms of the given distance

function [3, 4].

— Near Vertices: The function Near : (G,x, r)→
V ′ ⊆ V returns the vertices in V that are

contained in a sphere of radius r centered at

x [3, 4].

— Steering: The function Steer : (x, y) → z
returns a point z ∈ X such that z is “closer”

to y than x is [3, 4].

— Line(x1,x2) : [0, s] → X denote the straight-

line path from x1 to x2 [3, 4].

— c(σ) is called the cost function, which assigns

a strictly positive cost to all nontrivial collision-

free paths [3, 4]. Using this approach the cost

function is:

c(Line(xcurrent,xnew)) =

Distance(xcurrent,xnew) + αccc(xnew),

where αc is a scaling factor, cc could be

considered a clearance function imposing

visibility constraints, cc(xnew) = 1
D(qnew) +

R(qnew), the distance inverse from landmark

boundary to the frustum model boundary

plus the γi. Using this cost function we

look for maximizing the distance between the

landmark boundary to the frustum boundary

and minimize the (change in) γi.

— Cost : V → R≥0 is a function that maps

a vertex v ∈ V to the cost of the unique

path from the root of the tree to v. It is

an additive cost function, so that Cost(v) =
Cost(Parent(v)) + c(Line(Parent(v), v)). If

v0 ∈ V is the root vertex of G, then Cost(v0) =
0 [3, 4].
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— Parent : V → V is a function that maps a

vertex v ∈ V to the unique vertex u ∈ V such

that (u, v) ∈ E. If v0 ∈ V is the root vertex of

G, Parent(v0) = v0 [3, 4].

3.2 Algorithm 1: RRT* with a Landmark
Visibility Constraints

We extended the algorithm RRT* from [3],

to include visual constraints by modifying the

SampleFree, ObstacleFree, CollisionFree, Cost

and c primitives. The extended algorithm builds an

exploration tree using the following steps ([3]):

3.2.1 Initialization (line 1, Algorithm 1)

The algorithm begins a search of the State Space

by extending the tree starting at the root. The

root depicts the initial robot state xinit and it is the

first state of the path, e.i., τ(0) = xinit. We have

assumed that the initial and final robot states are in

Xfree.

3.2.2 Sampling (line 3, Algorithm 1)

The sampling process rejects every state x that

is not in Xfree. In our approach we use the

SampleFree function not only to check for collision

free states but to check visual feature requirements

directly associated to the states. The SampleFree
function uses the StateValidityCheck function

that was defined in OMPL by us.

3.2.3 Nearest Vertex (line 4, Algorithm 1)

The Nearest : (G = (V ,E),x) function returns the

vertex in V that is “closest” to x in terms a L2 norm

(Distance) over the angles of two configurations.

The distance function does not take into account

the visibility features properties because the state

space is the configuration space X = C. Since

a configuration qi maps to vi, di and γi the state

space X , here, is a subset of {C × V × D × Γ}.

V ← {xinit}; E ← ∅ ;

for i = 1, . . . ,n do
xrand ← SampleFreei ;

xnearest ← Nearest(G = (V ,E),xrand);

xnew ← Steer(xnearest, xrand);

if
Obstacle Visual Free(xnearest,xnew)
then

Xnear ← Near(G =
(V ,E),xnew, min{γRRT ∗
(log(card(V ))/card(V ))1/d, η});
V ← V ∪ {xnew};
xmin ← xnearest;

cmin ← Cost(xnearest) +

c(Line(xnearest,xnew)) ;

foreach xnear ∈ Xnear do
if
Collision Occlusion Free(xnear,xnew)∧
Cost(xnear) +
c(Line(xnear,xnew)) < cmin
then

xmin ← xnear;

cmin ← Cost(xnear) +

c(Line(xnear,xnew)) ;

end

end

E ← E ∪ {(xmin,xnew)} ;

foreach xnear ∈ Xnear do
if
Collision Occlusion Free(xnear,xnew)∧
Cost(xnew) +
c(Line(xnew,xnear)) <
Cost(xnear) then

xparent ← Parent(xnear);

E ← (E\{(xparent,xnear)})∪

{(xnew,xnear)};

end

end

end

end
return G = (V ,E)

Algorithm 1: RRT* with a landmark visibility

constraints
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3.2.4 Steering (line 5-6, Algorithm 1)

The function Steer returns a new state xnew,

“closer” to xrand, from xnearest. The state xnew

is an attempt to make a movement towards xrand.

The state xnearest and every node vi ∈ V fulfill the

visual constraints, then xnew is also an attempt to

maintain the visual constraints. To achieve this our

Obstacle Visual Free function has extended the

original ObstacleFree function in [3] and checks

for both physical and visual constraints. If the

landmark is fully visible and the landmark features

are acceptable then an attempt to extend the tree

towards xnew is made.

3.2.5 Extending the Tree (line 8-13,
Algorithm 1)

Tests are performed to qualify the new vertex. A

search for vertices near xnew is done to connect

it along a minimum-cost path to G. The ratio r
for the nearby vertices is defined as follows: r =
min{γRRT ∗ (log(card(V ))/card(V ))1/d, η} [3].

The Collision Occlusion Free function is an

extension of the original CollisionFree function

in [3]. This function evaluates the validity

of motions between two specified states. In

our implementation, we perform a discrete

motion validation.

The Collision Occlusion Free function uses

the StateValidityChecker function to check

intermediate states along the path between any

two states. The disadvantage of this discrete

motion validation is that the motion is discretized to

some resolution and states are checked for validity

only at that resolution. If the resolution is too

large, there may be invalid states along the motion

path that escape detection. If the resolution is too

fine, many states must be checked, significantly

reducing planner performance [12].

The state xmin is chosen between nearby

vertices XNear having the minimum-cost path to

xnew and the edge (xmin,xnew) is added to E.

3.2.6 Rewiring the Tree (line 14-17, Algorithm 1)

The algorithm modifies the tree structure looking

for optimal trajectories between the root and the

leaves as it rewires the branches of the tree. This

part of the algorithm is also modified by including

the Collision Occlusion Free function.

Using the c cost function, landmark features

properties can be optimized in terms of the visibility

constraints imposed, that is cc(xnew) = 1
D(qnew)+

R(qnew) which considers the ‘closeness’ of the

visual features to the center of the field of view.

The cc cost can be set to zero if the user wishes

to optimize the path length only, however the

landmark most remain fully visible in any event.

3.2.7 Stopping Conditions

The path search can stop when the algorithm

reaches n iterations or if a timed termination

condition is reached. A feasible path is obtained

if one or more vertices in T reach the goal

region Xgoal. Here, any x ∈ Xgoal fulfills the

visual constraints.

4 Results

We have tested our method using robot simulations

and during experiments with a physical robot.

OpenGL is used for visualization where all the

objects in the environment are imported as 3D

models using a triangle language. The PQP

library is used to perform collision checking (and

proximity query) and the Open Motion Planning

Library (OMPL version 1.3.2) [12] is used to grow

the exploration tree. Three different simulation

experiments were performed to study some

behavior differences in the RRT* algorithm with or

without visual constraints. Physical experiments

used a 6 DOF ABB IRB 120 industrial robot,

which mounted a camera in its end effector, were

also performed.
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4.1 Simulations

The initial and final robot configurations are the

same for the three simulation studies. The

environment includes several colored objects (the

robot arm, miscellaneous workspace objects and

the target landmark). To enhance visualization, dif-

ferent colors are used for each robot configuration,

blue represents the initial robot configuration, red

represents the final robot configuration, and other

colors represent intermediate robot configurations

along the planned trajectory. The landmark can

be any of the objects on the table, but for

these simulations the rabbit (yellow) is the target

landmark.

Once an acceptable path is found, a representa-

tion of the exploration tree and the planned path

were displayed. The number of iterations n is

not constant, and a time termination condition to

the building process was employed. The following

settings were used in the algorithm: a) k = 310
neighbors, b) r = 3.460682 for the near function, c)

the range of allowed roll angle γi is [±1.2] radians,

and d) the minimum allowed distance d is 0.125
decimeters.

The 3D models used in the algorithm are

different from those used in the visualization.

In order to reduce the computational time, the

number of triangles was reduced, without losing

their spacial properties, having the same (or more)

space in the environment. The number of triangles

for all models in O is 1422. Each simulation was

run 10 times using an dual-core PC processor,

equipped with 12 GB of RAM, while running

Linux. Table 1 presents data obtained from the

three simulations.

4.1.1 Simulation 1: RRT* without Visual
Constraints

The robot’s task was to move the camera from the

table’s right to left side while avoiding collisions.

This simulation was performed 10 times with a

60 seconds time limit. All ten simulation replays

reached a solution within the time, see Table

1. Figure 4 shows the results of one simulation

execution using the RRT* algorithm without visual

restrictions. Figure 4 (a) displays a representation

of the exploration tree were every node in the graph

(a) Exploration tree (b) Planned path

(c) Landmark
occluded (state)

(d) Landmark
occluded (image)

(e) Landmark not
completely the camera
field of view (state)

(f) Landmark not
completely the camera
field of view (image)

Fig. 4. Simulation 1 with a RRT* without landmark

visibility constraints

(in white) is the camera position at any state in

the tree. Figure 4 (b) presents the planned path,

each node in the path represents the robot camera

and a segment line (in black) indicated the chosen

camera positional transition between states.
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In this simulation, at times, the landmark is

fully or partially occluded by an obstacle so is

not completely visible by the camera. Figure 4

(c) shows a robot state where the landmark is

occluded while Figure 4 (e) shows a robot state

where the landmark is not completely inside the

cameras field-of-view. This was anticipated since

during this simulation the algorithm searches only

for a path without obstacle collisions regardless of

landmark visual quality.

4.1.2 Simulation 2: RRT* with Visual
Constraints and Only Path Length
Pptimization

In the initial and final robot configurations, the

physical and visual constraints are satisfied. In

this simulation the robot’s task was to avoid

collision with the obstacles and to maintain the

complete landmark camera visibility while the robot

traverses the table’s right side to its left side.

The environment includes a ‘lamp’ that could

easily occlude the landmark from many robot

configurations (see Figure 5). This obstacle limits

the occlusion-free robot motions since it is in

between the landmark and the robot. Figure 5 (a)

presents the exploration tree.

In this experiment there are fewer nodes than

in the previous experiment (See Figure 4 (a) of

the Simulation 1) since fewer configurations will

meet the imposed visual constraints. To maintain

landmark visibility, the algorithm found a feasible

path, but the camera had to be rerouted below the

bottom edges of the lamp to avoid collision and

landmark occlusion (see Figure 5 (b)). As required,

the landmark was always completely visible over

the planned path. Additionally, landmark features

are never too close to the image boundary and

the landmark orientation is within the acceptable

range. Figure 5 (d) shows a camera image, with

the landmark close to the image boundary, as the

robot moved over the path.

Note here, landmark features could be close to

the image boundary since the visual constraints

only guaranteed that a minimal distance from the

boundary of the camera field-of-view frustum is

assured. Figure 5 (f) shows a camera image

indicating the maximum roll angle found over the

(a) Exploration tree (b) Planned path

(c) Minimum d dis-
tance (state)

(d) Minimum d dis-
tance (image)

(e) Maximum roll an-
gle (state)

(f) Maximum roll angle
(image)

Fig. 5. Simulation 2: (a) Exploration tree built using

Algorithm 1, (b) the solution path to keep the landmark

visible (only the camera path is displayed but the solution

is a set of robot states where the landmark is always

visible), (c) - (f) a robot configuration and its camera

image in the solution path.

planned path, which is within a range of valid

angles. For this simulation, 10 replays were

performed with a time limit of 300 seconds. A
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complete trajectory solution was found in 8 of 10

executions. Table 1 includes data obtained from

the 10 simulation experiments.

4.1.3 Simulation 3: RRT* including Visual cost
Optimization, the Landmark is as far as
Possible from the Image Boundary and
the Camera Roll Angle Close to Zero

In this simulation, a landmark visualization

optimization process was added. The optimization

was designed to assure that the landmark features

remained as far as possible from the image

boundary and the landmark γi change was

minimized. Thus, Here robot’s task is avoid

collision with the obstacles, avoid occlusion and

keep the landmark (nearly) centered and ‘upright’

in the camera field-of-view while the robot moves

from table’s right to left side.

While Simulation 1 and 2 are included for

comparison, this third simulation was wholly based

on the newly developed optimal path planning

approach we suggest. Figure 6 (a) presents the

exploration tree. Since Cfree is the same for the

Simulation 2 and 3, the exploration tree can be

seen to be similar to Simulation 2.

Figure 6 (b) presents the planned path.

However, since the optimization process metrics

had changed, the landmark features are closer to

the center of the field-of-view and orientation is

closer to the desired γi (zero) when compared to

Simulation 2. Figure 6 (d) shows a close up image

of the landmark as it would be seen across the

planned path. The landmark is nearly centered (as

required for optimality) in the image.

Figure 6 (f) shows the image at the maximum γi
over the planned path, again, as required by the

optimality constraints, it is nearly zero radians. For

this simulation, 10 executions were performed with

a time limit of 300 seconds. A complete trajectory

solution was found in 10 of 10 executions. Table

1 includes data obtained from the 10 simulation

experiments. We include a video of simulations 2

and 3 in the multimedia materials of this paper.

A video showing simulations 2 and 3 is also in
the following link:
Link to the video:https://figshare.com/s/44616081306de618023d

(a) Exploration tree (b) Planned path

(c) Minimum d dis-
tance (state)

(d) Minimum d dis-
tance (image)

(e) Maximum roll an-
gle (state)

(f) Maximum roll angle
(image)

Fig. 6. Simulation 3: (a) Exploration tree built using

Algorithm 1, (b) the solution path to keep the landmark

visible and away from the image boundaries), (c) - (d)

the initial robot configuration and its camera image in the

solution path

4.1.4 Analysis

In this section, an analysis of the simulation

experiments is presented. We call the simulation

runs an experimental set, thus 10 trajectories,

to connect the initial configuration with the goal

configuration, were developed, note that some

runs may fail to reach the goal, so all run

results can be averaged. In simulation 1, only

controlled by collision avoidance, in simulation

2 both collision avoidance and visual constraints

are maintained, with path length optimization. In

simulation 3, the visual features cost is added to

the optimization process.
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(a) Sim. 1 d distance (b) Sim. 2 d distance

(c) Sim. 3 d distance (d) Sim. 1 roll angle

(e) Sim. 2 roll angle (f) Sim. 3 roll angle

Fig. 7. Histograms of the simulation replays.(a)-(c) d

distance, (d)-(f) roll angle

In our simulation notation, the distance d is the

distance from the landmark to the field-of-view

boundary. We consider an iteration one attempt

to connect a new configuration to the tree. To

obtain planned paths, we let the RRT* algorithm

run for some prescribed time. In the case of

Simulation experiment 1 we let the algorithm run for

1 minute, in the cases in which we satisfied visual

constraints or optimize visual acuity (simulations 2

and 3), we let the algorithm run for 5 minutes, since

many fewer potential configurations could satisfy

the requirements.

We call first solution to the first path obtained

by the algorithm that connects the initial and

final configuration obtained within the time interval.

Note that since the RRT* algorithm asymptotically

optimizes the cost, the fist solution shall typically

have a less good cost compared with the one

obtained at the end of the time interval.

Table 1 (A. Simulation 1, B. Simulation 2,

C. Simulation 3) contain data obtained from the

simulations. Columns a) and b) shows the overall

path length and path cost obtained after the

RRT* was run over the entire time interval (60

seconds or 300 seconds for simulations 1, or

2 and 3, respectively). Column c) shows the

number of vertices in the tree after the respective

construction times, the number of vertices is

smaller in simulations 2 and 3 since there are

significantly fewer states that meet the visual

constraints. Columns d) and e) shows the average

of the d distance and the γi angle computed

over the path configurations. Distances are larger

and γi are smaller in simulation 3 because the

optimization procedure maximizes the d distances

(remembering this is the distance away from

field-of-view boundary) and minimizes γi.

Columns g) to i) shows data for the first solution

found at each simulation replay. Column g) shows

first path cost, as expected it is greater than the

path cost obtained at the end of the prescribed

time reported in column b). Column i) shows the

number of vertices of the tree, it is smaller than

the number in column c). This is because the first

solution is further optimized by the RRT* in the

remaining time. Column h) shows the number of

iterations; the number of iterations to find a first

solution path increases in simulations 2 and 3 due

to the visual constraints. However, the first and final

solutions are found within the 300 seconds.

For each solution path, the d distance and

γi were each used to create histograms for

the simulations (see Figure 7). We compared

the simulations histograms and noticed important

behavior differences between them. Figure 7

(a), the histogram of d distance for simulation 1,

displays many zeros since every time the landmark

is not completely visible the d distance is set to

zero. The distance trend, as expected, closes

on zero appears since no attempt to force full

visibility was enforced. Figure 7 (b), the d distance

histogram of simulation 2 shows a tendency for

keeping d above zero value, meaning that the

landmark is always inside the frustum the same but

higher d distances are observed in Figure 7 (c) for
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simulation 3 since the optimization employed drove

solutions with the landmark near the center of the

frustum slice boundaries.

Figures 7 (d) and (e) shows the histograms for

γi during simulation 1 and 2, notice the similarities.

The histogram of γi, in Figure 7 (f) for simulation

3, clearly shows that γi is forced to be nearly

zero. Thus, including a visibility (penalty) cost in

the optimization procedure leads to a significant

reduction in γi.

4.2 Real Environment

Our approach was tested is a real environment

using an ABB IRB120 robot. The following settings

were used in the algorithm: a) k = 310 neighbors,

b) r = 3.460682 for the near function, c) the range

of allowed roll angle γi is [±0.3] radians, and d) the

minimum allowed distance d is 0.5 decimeters. The

sum of triangles for all models inO was 408. Figure

8 (a) shows the simulated environment. We ran the

planner 10 times and chose a solution path, this

path is shown in Figure 8 (a).

Table 2 contains data obtained from the planner.

In this table, the number of iterations in 300

seconds is greater than in Simulation 3; this is

due to the smaller number of triangles used in this

experiment. Figure 8 (b) shows the environment

simulated in ABB’s RobotStudio software; the

planned path was successfully implemented and

no collision was detected. Figure 8 (c) shows

our laboratory, the computed path was executed

in this lab using the ABB robot. Figures 8

(d)-(f) show eye-in-hand images captured during

robot execution.

The paper multimedia material presents

a video sequence captured by the camera

mounted in the robot end effector, while the robot

executed the planned path. These experiments

demonstrate that our approach can be successfully

implemented to obtain an optimal path using a real

robot, provided that 3D models of the obstacles

are available. A video showing the experiments in

the real robot is also in the following link:

Link to the video:https://figshare.com/s/44616081306de618023d

(a) Planner
environment

(b) RobotStudio simu-
lation

(c) Real environment

(d) Landmark (e) Landmark

(f) Landmark

Fig. 8. Real environment test
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Table 1. *Average for successful simulation replay (data was rounded to fit with the column format). + No solution found

within 300 seconds

Legend: a) path length, b) path cost, c) number of vertices in the graph, d) average of the roll angle, e) average d distance (decimeters),
f) number of iterations, g) initial solution path length, h) initial solution number of iterations, i) initial solution number of vertices in the
graph.

No. Data simulation 1. Tree construction time: 60 seconds

a) b) c) d) e) f) g) h) i)

1 7.5477 7.5477 22219 0.0902 0.3258 31454 15.61 16 8

2 7.1509 7.1509 22764 0.7290 0.5707 32124 15.56 74 42

3 7.3974 7.3974 23186 0.4697 0.2615 32724 13.23 35 24

4 7.3567 7.3567 22278 0.1482 0.5772 31453 14.37 20 14

5 7.2825 7.2825 22023 0.1729 0.2971 30973 19.07 61 44

6 7.5688 7.5688 22735 1.3700 0.4162 32063 13.56 13 10

7 7.6581 7.6581 22477 0.1594 0.5461 31559 9.8 212 127

8 7.4410 7.4410 22704 0.2378 0.2431 31989 16.21 39 22

9 7.3737 7.3737 22617 0.2542 0.4674 32029 23.11 46 26

10 7.4715 7.4715 22616 0.1726 0.2193 31772 18.19 43 22

Avg. * 7.4248 7.4248 22562 0.3804 0.3924 31814 15.87 56 34

No. Data simulation 2. Tree construction time: 300 seconds

a) b) c) d) e) f) g) h) i)

1 10.6524 10.6524 732 0.7674 0.6635 182692 17.24 35581 62

2 11.5656 11.5656 667 1.2543 0.8583 192597 16.39 62806 89

3 10.7644 10.7644 663 0.7720 0.4064 184880 12.7 90750 219

4 10.6349 10.6349 546 1.0164 0.6379 166472 11.09 114531 319

5+ —– —– 585 —– —– 173070 —– —– —–

6+ —– —– 483 —– —– 189391 —– —– —–

7 11.0985 11.0985 664 0.9479 1.2133 195412 12.77 158143 475

8 11.0551 11.0551 691 0.8394 0.9365 221721 13.18 131034 298

9 10.3645 10.3645 654 0.8748 0.4753 207046 10.65 140441 350

10 10.5552 10.5552 646 0.7832 0.5133 198166 14.25 87829 151

Avg. * 10.8363 10.8363 658 0.9069 0.7131 193623 13.5338 102639 245

No. Data simulation 3. Tree construction time: 300 seconds

a) b) c) d) e) f) g) h) i)

1 13.3081 136.6444 177 1.5365 0.2233 464135 175.43 273083 50

2 12.1779 97.7025 207 1.6387 0.0590 382945 176.62 103776 25

3 12.5840 121.5798 118 1.6573 0.1802 377586 190.55 258968 60

4 11.1268 113.9140 193 1.3177 0.1373 386441 179.45 142352 33

5 13.1672 119.3063 208 1.6610 0.1579 808397 216.11 568303 74

6 12.1210 107.3488 213 1.6865 0.1153 421746 226.45 82143 11

7 11.2181 107.9794 219 1.3503 0.0864 577084 171.97 198520 25

8 13.6679 113.0791 227 1.7191 0.0800 454258 190.07 113753 16

9 10.8290 95.9823 185 1.4427 0.0747 447962 102.27 297352 82

10 11.2491 107.5465 219 1.4734 0.1512 426150 176.65 126305 32

Avg. * 12.1449 112.1083 197 1.5483 0.1265 474670 180.56 216456 41
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Table 2. *Average for successful planner replay (data was rounded to fit with the column format)

Legend: Real environment. Data are obtained from the planner replays: a) path length, b) path cost, c) number of vertices in the
graph, d) average of the roll angle, e) average d distance (decimeters), f) number of iterations, g) initial solution path length, h) initial
solution number of iterations, i) initial solution number of vertices in the graph.

No. Data experiment. Tree construction time: 300 seconds

a) b) c) d) e) f) g) h) i)

1 5.4281 43.7794 469 0.0614 1.6668 6430283 71.37 608875 11

2 5.6538 42.3186 479 0.0516 1.8007 5857054 62.78 523254 18

3 5.6362 44.5623 474 0.0534 1.7392 6342627 76.3 185366 6

4 6.4968 43.7135 472 0.0664 2.1811 4964429 107.69 49948 4

5 6.1990 44.9021 526 0.0466 1.8027 6258154 87.74 234877 3

6 5.9428 47.1370 479 0.0617 1.7480 5445362 70.7 515437 5

7 5.8550 44.6246 481 0.0506 1.7358 4908820 73.4 203507 5

8 5.9621 42.9004 567 0.0659 2.0306 7509052 63.35 166999 4

9 5.8253 44.0943 508 0.0652 1.7688 6578829 54.07 245903 5

10 5.3815 43.8238 493 0.0320 1.6382 5927889 67.89 259264 7

Avg. * 5.838 44.1856 495 0.0555 1.8112 6022250 73.53 299343 7

5 Conclusions

We propose and implemented a variant of

the RRT* algorithm to include landmark feature

constraints (see Section 4.1.2). We further

developed a RRT* variant that further constrained

landmark features to be inside the camera field

of view but closer to the image center. This

was accomplished by including a distance metric

optimization routine (see Section 4.1.3).

Finally, we built a roll angle γi optimizer to limit

its range forcing the visual features orientation to

remain as undisturbed as possible during path

execution. The presence of obstacles increases

the computational difficulty for robot moves in clut-

tered environments but we were able to solve the

problem in reasonable time. We successful built

planned trajectories that avoided obstacle- and

self-collisions, optimized landmark observation

(non-occluded and field-of-view centric), finding

desired trajectories in reasonable processing time

(in the order of some minutes using a standard

desktop PC).

We presented solutions for environments repre-

sented with 1422 triangles (used in the algorithm

for all models in O) determined in under 300

seconds. We also present experiments that

proved that our approach can be successfully

implemented in a real robot, provided that the 3D

environment models are known.

Only a few approaches had focused on motion

planning for an eye-in-hand robot using visual

constraints. Most of these approaches used visual

features from an image to infer occlusion or to

impose visual restrictions. In our approach, a

collision checker is used to infer object visibility

using workspace information. This is crucial

for any efficient search algorithm in X . In this

work we proposed to use a collision checker

to infer the objects visibility, a proximity query

package to compute landmark distance from a

field-of-view frustum boundary, and homogeneous

transformations to computes the roll angle γi.

Like most motion planning approaches, the

algorithm depends on the availability of 3D

environmental models and it can be used in real

robot applications when a reliable representation

of the expected environment had been prepared.

During future studies, we propose to develop

an algorithm to maintain visibility of several

visual landmarks for operation of mobile-based

manipulator robots.
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