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The swarm paradigm of multirobot cooperation relies on a distributed architecture, where each robot makes its own decisions
based on locally available knowledge. But occasionally the swarm members may need to share information about their
environment or actions through some type of ad hoc communication channel, such as a radio modem, infrared communication, or
an optical connection. In all of these cases robust operation is best attained when the transmitter/receiver robot pair is (1) separated
by less than some maximum distance (range constraint); and (2) not obstructed by large dense objects (line-of-sight constraint).
Therefore to maintain a wireless link between two robots, it is desirable to simultaneously comply with these two spatial constraints.
Given a swarm of point robots with specified initial and final configurations and a set of desired communication links consistent
with the above criteria, we explore the problem of designing inputs to achieve the final configuration while preserving the desired
links for the duration of the motion. Some interesting conclusions about the feasibility of the problem are offered. A potential field-
based optimization algorithm is provided, along with a novel composition scheme, and its operation is demonstrated through both
simulation and experimentation on a group of small robots.

1. Introduction

Large teams of mobile robots, referred to as swarms can be
more effective in accomplishing certain tasks, as compared
with a single, possibly more sophisticated, robot. The advan-
tages of the swarm are especially apparent in applications
that benefit from spatially distributed sensing, such as
environmental sampling [1], coordinated map making [2],
and search [3]. Manipulating and transporting large objects
is an application which can benefit from spatially distributed
actuation [4–7]. In contrast to centralized control methods,
the swarm paradigm of multirobot cooperation relies on a
distributed architecture, where each robot makes its own
decisions based on locally available knowledge. Advantages
of such an approach include improved scalability with res-
pect to swarm size, robustness with respect to the failure
of a single swarm member, and the possibility of a human
operator controlling swarm wide behavior through a low-di-
mensional set of input parameters [8, 9].

However, in many applications, it is impossible or inef-
ficient to employ truly independent control algorithms on

each agent. In order to complete their task the swarm mem-
bers may need to share information about their intentions or
their environment. Indeed, many proposed control laws in
the literature require that each member of the swarm is con-
nected to the group through some type of ad hoc, low-power,
wireless communication channel, such as a radio or optical
links. Power limitations and phenomena such as secondary
reflections and shadow effects create a variety constraints
on the relative positions of the transmitter and receiver. We
abstract these more complex electromagnetic phenomena
and work with a simpler two-component communication
constraint. The first is a limitation on the maximum distance
between the transmitter and receiver, referred to here,
and in other works, as the Range Constraint. Considerably
less attention has been given to Line-of-Sight Constraints—
necessitated by the difficulty of reliably transmitting wireless
messages through large dense obstacles. Together we term
these two spatial constraints Communication Constraints. If
a pair of robots meet these constraints, we assume they can
establish a wireless link. While this treatment is idealized, it is
a significant improvement over the “range only” constraints



2 Journal of Robotics

considered in most of the connectivity control literature. Of
course in addition to these constraints the robots may have
some overall motion objectives (either individually or as a
group), such as moving toward a goal and avoiding obstacles.

In this paper we address the problem of navigating
the swarm, in the plane, from an initial configuration to
a specified final configuration, while maintaining a pre-
specified list of wireless links between certain robots (range
plus line-of-sight). After a review of related work below,
we provide a formal problem statement in Section 3. We
consider existence of solutions in Section 4 and necessary
properties of solution trajectories. In Section 5 we introduce
potential fields for the goal/obstacle avoidance, range and
line-of-sight objectives. Section 6 discusses how to compose
these sometimes disparate objectives and provides a com-
putational algorithm for assigning motion directions. Sim-
ulation and hardware-based experimental demonstrations of
the algorithm’s operation are included in Section 7 followed
by concluding remarks in Section 8.

2. Related Work

In this section we review some common notions of robot
swarm connectivity and their role in flocking behavior
and formation control. We then narrow the scope of the
discussion to related work on explicit control of swarm
connectivity, and the relationship to the approach presented
here. We end with a discussion of the line-of-sight constraint.

2.1. Notions of Connectivity. Most discussions on connectiv-
ity within robot swarms employ a neighbor or proximity
graph modeling paradigm [10], where each vertex in the
graph represents a robot and each graph edge represents
a wireless communication link. The criteria to establish a
link is almost always based on the physical distance (i.e.,
range) between the robots [11, 12]. We adopt both the graph
theoretic modeling paradigm and the range constraint in
this paper. As an extension, some works [13, 14] consider
multihop connectivity, still using interrobot range as the
underlying criteria. If an edge joins two vertices, the cor-
responding robots are considered locally connected. The
swarm as a whole is considered globally connected if an edge-
path of finite length exists between any two vertices in the
graph. Global connectivity can be verified algebraically by
determining if the second smallest Eigenvalue of the graph’s
LaPlacian matrix is greater than zero. Larger values indicate
a more strongly connected configuration.

2.2. Role of Connectivity in Consensus and Stability. All works
on flocking and formation control rely on some underly-
ing notion of swarm connectivity to prove stability and
convergence. In general the primary objective of flocking
can be thought of as establishing a consensus on individual
robot velocity vectors [15]. The work by Reynolds [16] is
considered to be the inspiration for many works on flocking.
While that work did not formally describe the notion of
global connectivity in terms of graphs, the control law sti-
pulated certain informational dependencies—namely, that

each robot should know the position and velocity of the
other agents in its neighborhood. These assumption are now
considered standard, and we make similar ones in this paper.
Efforts to formally prove that the swarm reaches a consen-
sus regarding their velocity vectors ultimately employed a
neighbor graph to reflect these dependencies, showed that
global connectivity is a necessary condition for consensus,
and proved that the convergence rate is determined by the
second smallest Eigenvalue of the graph’s LaPlacian matrix
[10–12]. In these works the relative pose of the robots is not
specified and the connection topology is entirely range based,
and therefore dynamic, so the control laws must include a
potential function that maintains interrobot ranges within a
certain tolerance, similar to [17].

Formation control involves moving a group of robots
while maintaining a fixed relative pose between them. In
these works some type of graph theoretic framework is
also used [18]. Typically the connection topology is static,
where certain robots are designated as leaders, and others
follow maintaining specific edges in the graph. Here the con-
nectivity properties of the graph can be used to prove stability
[19–23]. In both formation and flocking works, while there
is a acknowledged relationship between stable flocking and

connectivity, the primary objective is the former and the later
is a necessary condition.

2.3. Connectivity as a Primary Control Objective. There are
several works that explicitly treat connectivity as the pri-
mary control objective. They can be loosely divided into
optimization-based (or open loop) approaches and feedback

approaches. In [24] the authors synthesize configurations
and paths that maximize swarm’s global connectivity, as
measured by the second smallest Eigenvalue of the graph’s
LaPlacian matrix using a Semidefinite Programming formu-
lation. The work in [13] more closely resembles the problem
considered here. A desired graph is specified and must be
maintained for all time. Two hop, range-based edges are
considered, and they show the set of all such connected
configurations is a star-shaped set. As a result, the initial
path supplied to the receding horizon optimizer consists of
contracting the swarm to a point, following a straight line
trajectory to the goal, and expanding the swarm again. An
optimization criteria called connectivity robustness is used to
refine the result. In both cases numerical techniques are used
off-line to compute an open loop path. In our work, numeri-
cal methods are employed in real time as part of a closed loop
feedback control law.

An example of a feedback-based method is in [25]. The
problem of maintaining specific edges in the neighbor graph
is phrased as controlling the dynamics of the adjacency ma-
trix through a set of inequalities [14]. A potential field-based
controller is used in [26]. A potential function is de-fined on
the Cartesian product of swarm member poses, and loss of
global connectivity is modeled as a virtual obstacle in that
space. Locally optimal configurations are achieved. Unlike
[13] or [27], this approach does not specify individual edges
to be maintained.
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Like the works discussed above, the work presented here

and our earlier work [27] explicitly treat connectivity as a

control objective.

2.4. Line of Sight. Several authors in the wireless networking
community have studied the adverse impact of transmit-
ter/receiver occlusions from an electromagnetic field strength
perspective and the modeling implications of this for mobile
robotics have been discussed in detail [28]. Practitioners
have long observed the effect. Applications in multirobot
coverage [29] and map making [30], for example, assume
that information exchanges only occur when line of sight is
established. Also, the pervasive use of computer vision for
robotics tasks such as cooperative localization [31], or search
and pursuit [32] has also necessitated the consideration of
line-of-sight constraints.

In some of these cases, loss of line of sight is considered
an unfortunate “fact of life” [30]; in other cases it is exploited
to determine the connectivity properties of the environment
[29, 31]. But none of these works explicitly includes a motion
controller that actively prevents such losses from occurring.

The principle difference between the connectivity work
discussed in the previous section and the work presented
in this paper, is that we modify the local connection/edge
formation criteria to explicitly maintain line-of-sight con-
straints as well as the widely used single-hop, range con-
straint. To our knowledge this issue has only been considered
in a few previous works. A behavior-based approach is des-
cribed in [33]; while the performance cannot be proven it
was illustrated through simulation. In [34] a planetary rover
application was considered and six heuristics for maintaining
line of sight were introduced. The approach was largely suc-
cessful but could not solve all the presented test scenarios.
The authors speculated that some of the unsolved scenarios
were simply infeasible.

3. Problem Statement

Given n point robots, let qi ∈ R2 be the state vector of robot
i. The robots operate in a subset of the plane C ⊂ R2 which
is populated with obstacles defined by compact sets O j , j =
1, . . . ,m. Motion is generated according to the dynamics

q̇i = ui, (1)

where the velocity input is ui ∈ U ⊂ R
2; qi is only per-

mitted to evolve in the free space Cfree = C −
⋃m

j=1 O j .

Occasionally we will use q ∈ R
2n to denote the swarm

state—the concatenation of states q1 · · · qn; u to represent
the concatenation of the input vectors; q̇ = u to represent the
collective swarm dynamics.

Any given swarm state q induces a communication
graph G(q) = (V ,E). Each vertex in the graph, vi ∈ V
represents a robot and each edge ei j ∈ E represents a wireless
communication link between robots i and j. The edge ei j is
added to the graph if both of the following conditions are
met.

(1) Range: d(qi, q j) ≤ ρmax where ρmax is some positive
constant indicating the maximum effective range of
the transmitter.

(2) Line of Sight: ∃x(s) ∈ Cfree, for all s ∈ [0, 1], such that
x(s) = sqi + (1− s)q j .

Note that d indicates distance as measured by the Euclidian
metric. Both constraints model the power limitations of
small wireless transmitters discussed in Section 1. A configu-
ration q is said to be connected if the induced communication
graph G is connected (i.e., if for any node pair i, j there exists
an edge path of arbitrary length between them).

We are concerned with the following problem (see
Figure 1), which requires the entire swarm to move to a
desired position while maintaining certain communication
links, G∗.

Problem 1. Given an initial connected configuration qo =
q(to), a desired final connected configuration q f and a graph
G∗ such that G(qo) ⊇ G∗ and G(q f ) ⊇ G∗, determine a
function U : [to, t f ] → U such that

(1) q(t f ) = q f (i.e., Goal-directed motion);

(2) G(q(t)) ⊇ G∗, for all t ∈ [to, t f ] (Line of Sight and
Range).

4. Existence of Solutions

Clearly there are certain combinations of the free space Cfree

and the desired connectivity graph G∗ for which the problem
may not have a solution. Furthermore, even when a solution
exists, there are certain classes of algorithms incapable of
solving the problem. The concept of homotopy [35] is inti-
mately related to these existence questions.

4.1. Homotopy Definitions. If q1, q2 : [to, t f ] → Cfree are
continuous maps (paths), we say that q1(t) and q2(t) are
homotopic if there exists a continuous map T : [to, t f ] ×
[0, 1] → Cfree such that

T(t, 0) = q1(t),

T(t, 1) = q2(t), ∀t.
(2)

If such a function exists, we say T is a homotopy. This homo-
topy defines an equivalence relation on paths. Note that un-
like path homotopy [35], the endpoints of q1 and q2 do not
coincide.

Of particular interest in this paper is the straight-line
homotopy, illustrated in Figure 3 (right),

T(t, s) = (1− s)q1(t) + sq2(t), (3)

due to its obvious connection to the line-of-sight constraint.
If two paths q1(t), q2(t) have a straight line homotopy then
the line-of-sight constraint is preserved for all t. If the range
constraint is violated at any point on the trajectory, the
straight-line homotopy can be used to correct the condition.
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Figure 1: The basic problem considered in this paper. Design
a control law to guide the swarm from the initial position, qo,
to the desired final position, q f , while maintaining desired com-
munication links (range plus line of sight).

4.2. Intrinsic Lack of Solution. Obviously, when Cfree is not
path connected, and q0 and q f lie in different connected
components, there is no solution to the motion planning
problem.

Furthermore, if Cfree is multiply connected and G∗

contains cycles, solutions do not exist for all choices of qo

or q f . To capture this we apply the concept of loop homotopy.
A path q, is considered a loop, λ, if q(to) = q(t f ). Note

that the trivial loop is the constant loop λ(t) = λ(to), for
all t. We can apply the homotopy equivalence relation to
loops as well. Similar to general homotopy, if one loop can
be continuously deformed into a second loop, the two loops
are loop-homotopic equivalent.

For a given cycle Gc
⊆ G∗, one can connect the points qoi

corresponding to the vertices in the cycle to form a loop λo

using straight-line segments; likewise a corresponding loop
λ f , using q f , can be constructed using the same vertices. See
Figure 2 for an example. If these two loops are not in the same
homotopic equivalence class, it implies that the loops wrap
around the obstacles in such a way that is impossible to go
from q0 to q f without disconnecting some edges, then no
solution to the problem exists.

Remark 1. To ensure the existence of solutions in this paper
we only consider path-connected free spaces; and q0, q f such
that loops corresponding to any cycles of G∗ are homotopic
to the constant loop.

4.3. Attribute of Complete Solution Algorithms. As remarked
earlier, in order to maintain an edge ei j , for all t ∈ [to, t f ],
there must exist a straight-line homotopy between qi(t) and
q j(t). Intuitively a necessary (not sufficient) condition for
such a solution is that paths qi(t) and q j(t) must pass around
the same “side” of an obstacle. See Figure 3. Therefore, if G∗

is connected, all robots, in some loose sense, must collectively
pass around the same “side” of every obstacle—that is, the
swarm cannot “split”.

This notion is difficult to formalize however. The
traditional path-homotopy equivalence relation does not
apply because the endpoints of qi(t) and q j(t) do not
coincide. Also, general homotopy does not preserve the line-
of-sight constraint; and the straight-line homotopy does not
induce an equivalence relation (it lacks transitivity). Instead
we introduce the following definition which formalizes

qo q f

Figure 2: Geometry of the line-of-sight problem, required to
compute φlos

i j .

the concept of the paths “passing around the same side of
the obstacle”.

Definition 2 (Path-Loop Homotopic Equivalence). Given
two paths qi(t) and q j(t), consider the loop resulting from

the concatenation λi j = [qi(t)]·[qi(t f ) → q j(t f )]·[q j(t)]−1
·

[q j(to) → qi(to)] (see Figure 3). We call qi(t) and q j(t) path
loop homotopic if and only if λi j is homotopic to the constant
loop.

Remark 3. Later we will explore some connections between
the definitions in this section and our control laws. Namely,

(1) our range potential produces motions equivilent to
the straight line homotopy;

(2) the line-of-sight potential preserves path-loop homo-
topic equivalence;

(3) the pathloop homotopic equivalence condition sug-
gests that a truly distributed controller is incapable of
solving the problem for arbitrary initial conditions—
either some “lead” robot must select a path class for
the entire swarm or some type of bidirectional mes-
saging must be used to reach a dynamic consensus on
path-class selection.

5. Potential Functions

5.1. Range. The range constraint dictates that if ei j ∈ G∗

then d(qi, q j) ≤ ρmax. This is enforced by a potential

φ
range
i j

(
qi, q j

)
=

⎧⎪⎨
⎪⎩

0, d
(
qi, q j

)
< ρmax,

(
d
(
qi, q j

)
− ρmax

)2
, d

(
qi, q j

)
≥ ρmax.

(4)

We point out several observations.

(1) The potential only possesses minima at configura-
tions where the range constraint is satisfied.

(2) The partial derivatives are antisymmetric: ∂φ
range
i j /∂qi

= −∂φ
range
i j /∂q j .

(3) φrange is smooth and the partial derivatives are defined
everywhere.
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q j(to) q j(to)

qi(t f )
qi(t f )

q j(t f ) q j(t f )

Figure 3: Frames depict an example of a combination of G∗, qo,
and q f which are not feasible. Loops in left and right frames are not
in the same homotopic equivalence class.

(4) The motion induced by q̇i = −∂φ
range
i j /∂qi is essen-

tially the straight-line homotopy and therefore pre-
serves line of sight.

5.2. Line of Sight. If two robots qi, q j such that ei j ∈ E,
are in danger of losing line of sight, it means one of them
is occluded from the other’s view by an obstacle as seen in
Figure 4. Consider the straight line connecting them. We call
the closest parallel that does not intersect the obstacle, the
occlusion line, OL. The line-of-sight constraint is enforced by
a potential:

φlos
i j

(
qi, q j

)
=

⎧⎨
⎩

0 if L.O.S.

d2
(
qi, OL

)
else,

(5)

where d(q j ,OL) denotes the distance from qi to the occlusion
line defined in the usual way.

We point out several observations.

(1) The potential only possesses minima at configura-
tions where the line-of-sight constraint is satisfied.

(2) The partial derivatives are symmetric ∂φlos
i j /∂qi =

∂φlos
i j /∂q j .

(3) The motion induced by ui = u j = −∂φlos
i j /∂qi pre-

serves path-loop homotopic equivalence.

(4) φlos is continuous and its partial derivatives are
defined almost everywhere (see Figure 4).

(5) The set of measure zero, along which φlos is non-
smooth, is not in the basin of attraction of the
induced motion.

To see why the third property holds, consider two paths that
possess path-loop equivalence, such as in Figure 3 (right).
Deforming the path-loop in such a way as to make it no
longer equivalent to the constant loop requires forcing one
of the lines connecting qi and q j to cross through the center
of the obstacle (Figure 4) which requires increasing φlos.

5.3. Goal Attainment and Obstacle Avoidance. In this paper
we use Navigation Functions as the basis for ensuring
the goal completion portion of the problem (q → q f ).
Navigation Functions are artificial potential fields that simul-
taneously provide obstacle avoidance and almost everywhere
convergence to a goal configuration [36].

OL
i

j

Distance
from center

Obstacle

φ

Figure 4: The left frame illustrates a situation where line of sight is
not maintained (no straight-line homotopy between paths; loop is
not homotopic to constant loop). The right frame shows two paths
that maintain line of sight (straight-line homotopy between paths;
loop is homotopic to the constant loop).

Definition 4 (Navigation Function). For robot i, a scalar map

φ
goal
i : Cfree → [0, 1] is a Navigation Function if it is

(1) polar at q
f
i (i.e., has a unique minimum on the path

connected component of Cfree containing q
f
i );

(2) admissible on Cfree (i.e., it is uniformly maximal on
the boundary of Cfree);

(3) a Morse function (i.e., its Hessian is nonsingular at
the critical points);

(4) smooth on Cfree (i.e., at least C2).

As an example consider that in the simplest case of cir-
cular obstacles in a circular workspace, a navigation function
for robot i can be defined as

φ
goal
i

(
qi
)
=

d2
(
qi, q

f
i

)

[
dk
(
qi, q

f
i

)
+
∏M

j=0d
(
qi,O j

)]1/k
, (6)

where O j is obstacle j, O0 is the boundary of the workspace,
and the parameter k must be selected high enough that all

local minima, except at q
f
i , disappear.

Remark 5. A fundamental result from topology (the Morse
Index Theorem [35]) states that it is impossible to derive a
smooth potential function that has only one critical point
(at the goal) when the workspace is multiply connected.
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Therefore, any potential defined on a workspace with M
obstacles will inevitably possess M saddle points. Emerging
from each saddle point is a stable manifold connecting the
saddle to other extrema. Initial positions on different sides
of these manifolds evolve in different path loop homotopic
equivalence classes around the obstacle associated with the
saddle point. Therefore, if ei j ∈ G(q0) but the line segment
connecting qi(t0) and q j(t0) crosses the stable manifold, the
necessary condition in Section 4 will not hold.

6. Parallel Composition

At any time, robot i must select a direction to move, which
goes toward its goal position and avoid obstacles (ideally,

q̇i = −∂φ
goal
i /∂qi), and for each corresponding edge ei j in

G∗, it must maintain range (ideally q̇i = −∂φ
range
i j /∂qi) and

line of sight (ideally q̇i = −∂φlos
i j /∂qi). Simply adding the

three underlying potential functions does not guarantee that
their underlying behavior is retained and may introduce
local minima. In this section we explain how this disparate
objectives are composed in parallel.

6.1. Theory. Consider a single robot i and a single associated

scalar navigation function φ
goal
i . Typically, goal attainment

and obstacle collision avoidance is achieved by the unique

choice of input u = −∇∂φ
goal
i . However, we will see that there

are an uncountable set of possible inputs that meet these
objectives.

Theorem 6. Given a Navigation function φ
goal
i , define a vector

field [∇φ
goal
i ]

⊥

such that ∇φi · [∇φ
goal
i ]

⊥

= 0, for all q, with

[∇φ
goal
i ]

⊥

= 0 where∇φ
goal
i = 0. Then the control law

uαi = −α1(t)∇φ
goal
i + α2(t)

[
∇φ

goal
i

]⊥
, (7)

also results in goal attainment and obstacle avoidance, for any
function α : R+

→ R
+
×R.

The proof [37] proceeds in two parts. First we address
goal attainment.

Proof. Observe that φ
goal
i satisfies all the criteria of a candi-

date Lyapunov function since it is continuous and positive
definite. Next note that any given constant value of α can be

used to define a dynamic system that for which φ
goal
i is a Lya-

punov function and q f is an equilibrium, since it is strictly
decreasing along system trajectories except at q f

φ̇
goal
i = ∇φ

goal
i · uαi

= ∇φ
goal
i ·

(
−α1(t)∇φ

goal
i + α2(t)

[
∇φ

goal
i

]⊥)

= ∇φ
goal
i ·

(
−α1∇φ

goal
i

)
≤ 0.

(8)

Therefore, the equilibrium point, q f must be asymptotically
stable. This family of differential equations, parameterized

by α, shares φ
goal
i as a common Lyapunov Function. It is

known (see [38] or [39]) that a dynamic system whose
derivative switches between such a family will be stabilized
to the common equilibrium, regardless of the nature of the
switching sequence.

Next we show the obstacle avoidance property is pre-
served.

Proof. For any point on the boundary of the free space q ∈
∂O let n̂(q) be the unit normal pointing toward the interior
of the free space. Then proving that the robot does not hit
the obstacles is equivalent to proving q̇i · n̂(qi) ≥ 0, for all
qi ∈ ∂O. Using q̇i = uαi we have

(
−α1∇φ

goal
i + α2

[
∇φ

goal
i

]⊥)
· n̂. (9)

Recall that navigation functions are uniformly maximal on

the boundary of the free space, so −∇φ
goal
i (q) is parallel

to n̂(q) for all q ∈ ∂O, so −∇φ
goal
i (q) · n̂(q) > 0 and

[∇φ
goal
i (q)]

⊥

· n̂(q) = 0. Therefore (9) reduces to

(
−α1∇φ

goal
· n̂
)
≥ 0. (10)

This proof suggests that we are able to select values of α
online to satisfy other objectives, in a possibly discontinuous
fashion, without destroying the goal attainment or obstacle
avoidance behavior of the navigation function.

Remark 7. This fact that many vector fields can decrease
the value of the potential was observed in [40, 41]; the set
of all input vectors which decrease some cost-to-go fun-
ction is termed the “cone of progress”. However in both of
these contexts the fact is used passively to address sensor
uncertainty—rather than to explicitly construct a motion
control law.

We now turn our attention to φ
range
i j and φlos

i j .

Theorem 8. Assume at time t = 0, that φ
range
i j = 0 and φlos

i j =

0. Any control law ui which satisfies both

∂

∂qi
φ

range
i j ·

(
ui − u j

)
≤ 0, (11)

∂

∂qi
φlos
i j ·

(
ui + u j

)
≤ 0, (12)

preserves the range and line of sight constraints for all t.

Proof. Thus

φ̇
range
i j =

∂

∂qi
φ

range
i j · q̇i +

∂

∂q j
φ

range
i j · q̇ j . (13)

However, q̇i = ui and the partial derivatives are antisymmet-
ric, leading to the result above. The derivation of the second
equation is analogous—except that the partial derivatives of
the line-of-sight constraint are symmetric.
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6.2. Algorithm

Problem 2. Assume robot i knows ∂φ
goal
i /∂qi, ∂φlos

i j /∂qi,

∂φ
range
i j /∂qi, and u j . Compute α to

min
(
−(α1)2 + (α2)2

)
, (14)

such that

∂

∂qi
φ

range
i j ·

(
uαi − u j

)
≤ 0,

∂

∂qi
φlos
i j ·

(
uαi + u j

)
≤ 0,

(15)

with 0 ≤ α1 ≤ αmax
1 and −αmax

2 ≤ α2 ≤ αmax
2 .

We call such a uαi , if it exists, a feasible direction. The
concept of a feasible direction bears some relation to, and is
named after, a numerical optimization method [42]; it is also
loosely related to so-called null-space control methods [9].

Consider Figure 5. Geometric insight into the problem
can be gained from recognizing that the range and line-of-
sight constraints each define a cone in the velocity space.
While the set of all uαi defines a half plane of possible velocity
vectors.

If the intersection of the two cones and half plane is
empty, no solution exists; and one of the constraints must
be relaxed. If the intersection is not empty the formulation
of the objective function reflects a preference toward rapid
goal attainment (large α1 and small α2).

Computationally, this is a essentially a semidefinite
programming problem, which can be solved in polynomial-
time [43]. We use the CVX package, implemented in Matlab
[44].

One attractive feature of the semidefinite programming
approach used in CVX is that if the set of feasible direction,
depicted in Figure 5 is not empty, the algorithm is guaranteed
to find a solution in polynomial time. Because the problem is
very small (2 dimensions and 2 constraints) numerical solu-
tion can be computed extremely rapidly.

In cases where the set of feasible directions is empty,
simultaneously satisfying the three objectives is impossible.
CVX will recognize this and report failure.

This approach is summarized in Algorithm 1.

6.3. Problem Structure and Completeness. So far we have
show that all uα satisfy the goal objective; and at each time
step, if there is exists a value of α that meets the constraints,
the numerical optimization algorithm is guaranteed to find
it. Still the question remains: are there situations in which
there is no value of α that will solve the problem? The answer
is yes. As discussed in Remark 5, given any ei j ∈ G∗ if

the line connecting qoi and qoj , or q
f
i and q

f
j intersects a

stable manifold of the Navigation Function’s saddle points
the problem is infeasible. Figure 6 graphically illustrates one
such scenario, both robots are selecting infeasible directions
as the Navigation function tries to force them into different
path classes around the obstacle. When this occurs we drop

Goal

LOS

Level set of
goal potential

Set of
feasible
velocity
vectors

Range

j

Figure 5: An illustration of the velocity selection problem for robot

i. uα is the set of all vectors in the same half plane as −∂φ
goal
i /∂qi

(labeled as Goal). Similarly, the range and line of sight constraints
define cones in the tangent space. The set of feasible directions lies
at the intersection of these sets.

Range i
i

Range j

j

LOS i

LOS j

Infeasible
goal j

Infeasible
goal i

Obstacle

Figure 6: A generic pair of robots, with active line of sight and range
constraints. Figure indicates possible directions of−(∂/∂q)φgoal that
could result in no feasible direction for simultaneously satisfying
three objectives.

one of the constraints until a feasible solution exists. This is
discussed more in Section 7.

7. Experiments

The method is tested both in simulation and on a group of
mobile robots.

7.1. Simulation. First, the method was simulated using
Matlab (version 2010A) on a desktop PC. We created a 300
by 300 unit workspace, populated with random triangular
obstacles, as seen in Figure 8. Red circles represent robots;
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Let t = 0.

while qi /= q
f
i do

for j such that there exists ei j ∈ G∗do

Determine q j and u j

Compute ∂φlos
i j /∂qi and ∂φ

range
i j /∂qi

end for

Compute ∂φ
goal
i /∂qi

Compute uα via numerical optimization
if Feasible then

Move. t = t + ∆t
else

Infeasible. Drop a constraint or terminate.
end if

end while

Algorithm 1: Algorithm for generating a feasible motion direction
for Robot i, using time steps ∆t.

n =
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Figure 7: Simulation results for connectivity algorithm.

green lines indicate wireless links; and blue stars are goal
configurations.

For the first set of experiments 5 robots are required to
maintain a “P-” shaped connectivity graph. For example see
the configuration labeled “frame 1” in the lower left quadrant
of Figure 8. The P shape was chosen because it includes both
leaf vertices as well as a cycle. The maximum acceptable range
ρmax was chosen to be 50 units.

The robots are placed in randomly generated initial
scenarios using a uniform distribution. In order to generate
acceptable scenarios, each initial condition was tested for two
criteria.

(1) Is the desired P-shaped connectivity graph a subset of
the connectivity graph induced by the range and line
of sight conditions?

(2) Are all of the robots inside the free space?

If the answer to either of these questions was “no”, the
condition was rejected and a new set of random positions
was generated. This methodology is identical to the one used
to generate samples for Monte-Carlo integration over non-
rectangular domains.

Even though the simulation is done on a single PC, we try
to replicate the typical information dependencies that would
arise on a distributed multirobot system. Specifically, robot i
was assumed to know:

(1) its own position qi;

(2) the geometry of the obstacles and the workspace;

300
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0
300250200150100500

Frame 1

Frame 2

Frame 3

Frame 4

Goal

Figure 8: A swarm of 5 robots maintaining a specified communi-
cation graph, beginning in the lower left corner and moving toward
the upper right corner.
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Figure 9: A swarm of 12 robots maintaining a specified commu-
nication graph. Beginning in the upper right corner and moving
toward the lower left corner.

(3) the position and velocity, q j and u j , of any robots for
which the range and line-of-sight criteria are met.

Regarding the first two assumptions, they are difficult to
guarantee for physical implementation, but are none the less
standard simulation assumptions in the literature. Regarding
the third, recall that the motivation for designing this motion
controller is to maintain communication links. Therefore, it
is reasonable that those links could be used for peer-to-peer
communication that is helpful for that purpose. Finally, we
point out that the robots do not require all-to-all information
exchanges of their position and velocity—the only global
variable is time.

In the context of the simulation, the robots exchange
the required information as permitted and recompute their
velocities via numerical optimization every time step (0.1
second). Their top speed is 10 units/sec. Because there are
no higher order dynamics, we use a forward Euler numerical
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integration method. To numerically solve the velocity selec-
tion problem at each time step, we used CVX Version 1.21,
with the default SeDuMi solver and the precision option set
to “low” (machine precision1/4). The computation time for
the optimization method was on average 0.032 sec per robot
per time step, with a standard deviation of 0.008 sec. The
computer we used ran Windows XP (32-bit), 1 GB RAM, and
an AMD Athlon64 processor running at 2.2 GHz.

We selected one typical example scenario for illustration
shown in Figure 8. As the robots move from frame 1 to frame
2, the leaf vertex’s range to its neighbor is ρmax and the range
constraint is active. There is also an extra link that forms
dynamically as two of the robots come with range. Between
frames 2 and 3 and again from 3-4 the leaf node’s line of sight
constraint becomes active to prevent it from being occluded
by the obstacle vertices. After frame 4, the robots proceed
straight to the goal configuration at t ≈ 39 sec. The goal
configuration was selected to comply with the range and
line-of-sight constraints dictated by the desired connectivity
graph.

A second scenario illustrates this with a larger group of
12 robots and 15 desired links and is shown in Figure 9.
Beginning in the upper right corner, the swarm constricts
to fit through the gap between the two obstacles. The con-
figuration snapshot in the middle of the figure shows an
example of the many line-of-sight constraints that were acti-
vated as the robots negotiated the lower vertex of the left
obstacle.

The table in Figure 7 summarizes the experiments. For
each swarm size (n = 5, 12, and 20) we randomly generated
50 initial scenarios. The third column lists the number of
scenarios that had active range or line-of-sight constraints.
Many random scenarios do not exercise the constraints. For
example, initial conditions that are very close to the goal
may not require negotiating any obstacles. In other cases,
the natural behavior of the navigation function generates
motions that respect the range constraint.

The next column lists how many scenarios resulted in
a minor constraint violation. We define a minor violation
as a short duration (2 or fewer time steps), small mag-
nitude <(0.1 sec× 10 m/s)2 violations of (12) or (11). An
illustration of a minor violation is included in Figure 10. The
leaf vertex briefly violated the line-of-sight constraint. The
primary reason this occurs is that velocity sharing effectively
induces a delay, meaning that robot i uses robot j’s velocity
from the previous time step to compute its new velocity. This
can lead to small violations of the constraints. As the time
step gets smaller, or the maximum velocity decreases, the
magnitude of these violations decreases. In practice, such a
small constraint violation is unlikely to cause a wireless link
to fail. However, the effect can be mitigated by including a
small constant “buffer” in (12) or (11).

The final column lists the number of scenarios deemed
infeasible by CVX. An illustration of an infeasible situation
is included in Figure 11. One can see that robots 1, 4, and 5
start on the opposite side of the saddle point emanating from
the left obstacle (depicted as the dotted red line) as compared
with robots 2 and 3. Such scenarios, eventually lead to a
situation in which the optimization routine determines the
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Figure 10: An illustration of a minor constraint violation.
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Figure 11: An illustration of an infeasible problem.

problem is infeasible. In such cases, we drop the offending
constraints until a solution exists. They are later added back
once the problem becomes feasible again and the robots are
no longer separated by a saddle point. This is an unfortunate
limitation of the approach proposed here.

The algorithm was implemented on 6 iRobot Creates,
shown in Figure 12. Each robot is controlled with an onboard
netbook, using the Matlab Tool Box for the iRobot Create
(MTIC) [45]. Their forward speed is limited to 0.2 meter/sec
and use a time step of 0.5 seconds. They are given a manually
made metric map of the environment, which is a 3 by 5
meter carpeted region. The obstacles are a 0.38 by 0.39 meter
chair and a 0.6 by 0.6 meter cardboard box. We exploit their
zero turn radius and use a backstepping controller (see our
previous work [37] for details) to simulate the holonomic
motions produced by the algorithm. The Minkowski sum of
the robot’s footprint and the obstacles is used to account for
the size of the robots [36]. The robots were tagged with retro-
reflective fiducials and each robot obtained their positions
from a 6 camera Vicon Motion Capture System, set up to
broadcast simulated GPS NMEA messages. Each robot is also



10 Journal of Robotics

(1) (2) (3)

Figure 12: Three sequential snapshots of the 6 iRobot Creates executing the motion planner presented in this paper. The first frame show
the connectivity ring and the goal positions.

(4) (5) (6)

Figure 13: Three sequential snapshots of the 6 iRobot Creates executing the motion planner presented in this paper. Frame 6 is the goal
position.

equipped with a Xbee radio modem to allow it to receive
simulated GPS information as well as to exchange position
and velocity with other robots. Due to the high power of the
Xbee modules, and the small spatial scale of the experiment,
signal strength tends to be high regardless of range or line of
sight. Therefore, each robot’s communication program is set
to simulate these constraints, by only passing the exchanged
information to the main program if they are met. Figures 12
and 13 show six snap shots of a feasible scenario where the
range and line-of-sight constraints are active.

8. Conclusion

Motivated by the use of wireless communication among
swarm members, in this paper we consider the problem of
steering n robots to n goals, while maintaining some range
and line-of-sight constraints in the presence of obstacles.
Range and line of sight are two conditions which improve
the reliability of wireless transmission. To the author’s
knowledge this is the first work to consider the effect of
line-of-sight constraints for swarms. After establishing some
basic conditions on the existence of solutions, we show that
one rather profound condition is that all robots must pass
on the same side of an obstacle (same path-class) for the
swarm to remain connected. An implication of this is that,
in order to remain connected, the swarm must either have
a leader or some online method for achieving consensus
on the path class. A further consequence of this is that
navigation functions do not offer a global solution to this

problem because the existence of saddle points makes it
impossible to guarantee all robots select the same path
class for arbitrary initial conditions. Basic potentials for
Range and Line-of-Sight Constraints were introduced and a
method for composing multiple potential functions into a
single feasible motion direction was presented. An efficient
computational algorithm to compute this direction is pro-
posed. Simulations and hardware-based demonstrations of
the algorithm’s operation are provided and show promising
results.
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