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Featured Application: This article is focused on a literature review to provide a valuable resource
for understanding the latest developments in the Maintenance 4.0 approach. The conducted
research will be helpful for many people, including maintenance managers, maintenance en-
gineers, and researchers, who are interested in the issues of maintenance performance in the
context of Industry 4.0 technologies implementation. The conducted literature review intends
to introduce the readers to the major up-to-date theory and practice in Maintenance 4.0 main
research directions. The presented study makes it possible to identify the thematic structure re-
lated to maintenance performance. In addition, it shows which topics from the studied scientific
area are the most investigated in a given country/region. At the same time, the conducted analy-
sis allowed the development of future research directions in the areas identified as research and
knowledge gaps.

Abstract: Recently, there has been a growing interest in issues related to maintenance performance
management, which is confirmed by a significant number of publications and reports devoted to
these problems. However, theoretical and application studies indicate a lack of research on the
systematic literature reviews and surveys of studies that would focus on the evolution of Industry
4.0 technologies used in the maintenance area in a cross-sectional manner. Therefore, the paper
reviews the existing literature to present an up-to-date and content-relevant analysis in this field. The
proposed methodology includes bibliometric performance analysis and a review of the systematic
literature. First, the general bibliometric analysis was conducted based on the literature in Scopus and
Web of Science databases. Later, the systematic search was performed using the Primo multi-search
tool following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. The main inclusion criteria included the publication dates (studies published from
2012–2022), studies published in English, and studies found in the selected databases. In addition,
the authors focused on research work within the scope of the Maintenance 4.0 study. Therefore,
papers within the following research fields were selected: (a) augmented reality, (b) virtual reality,
(c) system architecture, (d) data-driven decision, (e) Operator 4.0, and (f) cybersecurity. This resulted
in the selection of the 214 most relevant papers in the investigated area. Finally, the selected articles in
this review were categorized into five groups: (1) Data-driven decision-making in Maintenance 4.0,
(2) Operator 4.0, (3) Virtual and Augmented reality in maintenance, (4) Maintenance system architec-
ture, and (5) Cybersecurity in maintenance. The obtained results have led the authors to specify the
main research problems and trends related to the analyzed area and to identify the main research
gaps for future investigation from academic and engineering perspectives.

Keywords: maintenance; Maintenance 4.0; Industry 4.0; data-driven decision making; Operator 4.0;
virtual reality; augmented reality; cyber–physical system; cybersecurity; systematic review
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1. Introduction

One of the most important issues in ensuring the high availability and reliability of
technical facilities and systems is maintaining them in operational conditions [1]. Main-
tenance has recently been an important area of interest and research for engineers and
managers, as improperly maintained equipment can lead to more frequent failures of
facilities and their components, low operational efficiency, or delays in meeting operational
schedules [2,3]. A poorly chosen or planned maintenance strategy for any equipment
can result in, among other things, obtaining products of questionable quality, decreasing
energy efficiency in some areas, or under/over utilization of maintenance personnel [4,5].
Following this, more and more companies are taking steps to improve the efficiency of
the maintenance function of their physical assets [1,6,7]. In addition, the problem of
maintenance cost modeling and optimization is gaining attention [8].

Recently, there has been a lot of research and publications in the field of maintenance
models and decision-making techniques aimed at improving the efficiency of the mainte-
nance process (for an overview, see, for example, [1,9]). Known solutions have evolved
from Maintenance 1.0 to Maintenance 4.0 [9]. On the other hand, organizations strive to
improve their maturity in implementing maintenance strategies. According to the authors
of a report [10] that surveyed the implementation of maintenance strategies in companies
in Belgium, Germany, and the Netherlands, only 11% of respondents (a total of 280 people)
indicated that their companies had reached Level 4.0. Following the report [11], the global
predictive maintenance market size was valued at USD 3.18 billion in 2018. In addition,
according to the consulting group Next Move Strategy Consulting [12], the global predic-
tive maintenance market is expected to register a CAGR (Compound Annual Growth Rate)
of 30.47% between 2020 and 2030. Therefore, it is imperative to examine the main trends
occurring in the maintenance area in the context of Maintenance 4.0.

A preliminary analysis of the resources from such databases as Web of Science and
Scopus allows us to state that more than 50 review papers on predictive maintenance
(PdM)/Maintenance 4.0 have been published in the last decade (Note: The main search
procedure was performed for the key term: “Maintenance 4.0 review”, and the results
were limited to the relevant time period and research field). On the one hand, the growing
number of publications focused on reviewing recent developments for Maintenance 4.0
confirms the relevance of the issue and the potential for its development. On the other hand,
it shows how much the subject has developed in one decade in many aspects of industry
sectors. A short summary of recent papers focused on the Maintenance 4.0 literature
reviews is presented in Table 1.

Table 1. A summary of the recent papers focused on the literature overview in the area of Maintenance 4.0.

Ref. Publication Year Research Objectives Methodology Used Databases Analyzed Papers Analyzed Focused on

[13] 2021

Overview of the
academic research on the
condition monitoring of

rail transport systems

Bibliometric analysis
based on

content-based
analysis, systematic

literature review (SLR)

Web of Science, Scopus 316 papers from
1980–2020

Monitoring of railway
transport systems as

complex systems
composed of various

facilities and subsystems,
discussing both rail

tracks and rail vehicles

[14] 2022

Summary of monitoring,
operation, and

maintenance of offshore
wind farms

Literature review n/a n/a
Offshore wind power

engineering and
biological and environment

[15] 2019

A comprehensive
literature review on

PdM with emphasis on
system architectures,

purposes, and approaches

Literature review n/a Papers from
2015–2019

Mainly ML-based and
DL-based approaches
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Table 1. Cont.

Ref. Publication Year Research Objectives Methodology Used Databases Analyzed Papers Analyzed Focused on

[16] 2019

Presentation of the
literature review of

ML methods applied to
PdM with a particular

focus on their main
results, challenges,
and opportunities

Systematic literature
review (SLR)

IEEE Xplore,
ScienceDirect

28 papers from
2009–2018

Current state-of-the-art
for solutions of PdM
techniques based on

machine learning methods

[17] 2021

Review of the current
literature concerning
PdM and intelligent

sensors in
smart factories

Burst analysis,
systematic review,

co-occurrence analysis
of keywords, and
cluster analysis

Web of Science, Scopus 26 papers from
2010–2020

Intelligent sensors used
for predictive

maintenance in
smart factories

[18] 2022

Review of methods and
applied tools for

intelligent PdM models
in Industry 4.0

Literature review n/a n/a
Models associated with

this type of maintenance:
CBM, PHM, and RUL

[19] 2022

The analysis of existing
ontology evolution

methodologies and their
use in the field of

predictive maintenance
(PdM)

Systematic literature
review (SLR)

Web of Science, ACM
Digital Library,

IEEE Xplore

140 papers from
2017–2022

Time-sensitive domains
and knowledge-based

approach

[20] 2022

Review of VR, AR, and
MR technologies and
applications for smart

building operation
and maintenance

Literature review Scopus, Web of Science,
and Google Scholar

86 papers from
2018–2022

XR applications in the
AECO industry

[21] 2022

Synthesizing the existing
evidence on the

application PdM with
visual aids and

identifying the key
knowledge gaps in the

investigated research area

Research Questions, a
brief exploratory

study

Web of Science, Scopus,
IEEE Xplore

37 papers from
2017–2022

Implementation studies
that utilized PdM to

optimize utilities, power
production,

manufacturing, and
energy consumption,

and studies with
human-centered data
visualization methods

[22] 2020

Identification and
analysis of frameworks,
architectures, and tools
in the area of predictive

maintenance in Industry 4.0

Systematic literature
review (SLR)

IEEE Xplore, Google
Scholar, Springer, ACM

Digital Library,
ScienceDirect

38 papers from
2015–2020

Combination of
ontologies, machine
learning, and PdM

[23] 2022

Review of fault detection
systems using the data
collected from sensor

devices/physical
devices of various
systems for PdM

Systematic literature
review (SLR) Scopus 93 papers from

2017–2021

Fault detection
algorithms, anomaly

detection

[24] 2021

Review on major
expectations,

requirements, and
challenges for SMEs

regarding the
implementation of PdM

Systematic literature
review (SLR) IEEE Xplore, Springer 36 papers from

2010–2020

Smart
manufacturing—PdM
based on Industry 4.0

use in small- and
medium-sized enterprises

[25] 2022

Overview of the current
state of research

concerning the PdM
process from a data
mining perspective

Systematic literature
review (SLR)

Web of Science, Scopus,
Google Scholar

132 papers from
2015–2021

Predictive maintenance,
CBM, prognostic health

management, data
mining, machine

learning and
deep learning

[26] 2018

To investigate the role of
maintenance for

sustainable
manufacturing, with a
particular focus on the

Industry 4.0 and the
enabling technologies 4.0

Scoping literature
review Web of Science, Scopus 68 papers from

2003–2017

Industrial maintenance
for sustainability in the

Industry 4.0 context

[27] 2022

Review of maintenance
employees’

competencies
concerning Maintenance

4.0 characteristics and
existing skills in

Industry 4.0

Systematic literature
review (SLR)

Google Scholar, Science
Direct, and IEEE

52 papers from
2015–2020

19 competencies of
Operator 4.0
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Table 1. Cont.

Ref. Publication Year Research Objectives Methodology Used Databases Analyzed Papers Analyzed Focused on

[28] 2022

Performance of a
bibliometric study to

analyze and quantify the
most important

concepts, application
areas, methods, and

main trends of AI
applied to real-time

predictive maintenance

Bibliometric
performance analysis Web of Science 4065 papers from

2000–2021

Guidelines that may
help researchers and

practitioners to
understand the key

challenges and the most
insightful scientific

issues that characterize a
successful application of

AI to PdM4.0

[29] 2018
Review of machine

health management for
the smart factory

Literature review n/a 97 papers from
1993–2017

Different types of
machine health
managements

techniques in terms of
data connectivity,

communications, CPS
and virtual factory, IoT,
cloud computing, and
big data management

[30] 2021

Review on PdM in
relation to the

exploration of machine
learning and deep

learning algorithms to
improve the

performance of failure
classification and

detection

Systematic literature
review (SLR)

IEEE Xplore,
ScienceDirect, Springer,
ACM, Research Gate,

AAAI, Proc. of Science

32 papers from
2010–2021

Artificial intelligence
algorithms to predict

failures in
mission-critical

environments for
supercomputing and

deep learning techniques

[31] 2021
Review of PdM in smart

grid distribution
networks

Systematic literature
review (SLR)

Scopus, ScienceDirect,
IEEE Xplore, and Web of

Science

65 papers from
2012–2020

Fault types and
consequences,

prediction methods
and techniques

[32] 2021 Review on PdM using
vibration analysis Bibliometric review Scopus 2086 papers from

2006–2021

Artificial Intelligence,
machine learning, deep
learning, Industry 4.0,

data-driven model

[33] 2020
Review on current

trends in diagnostics
and prognostics for PdM

Systematic literature
review (SLR)

IEEE Xplore,
ScienceDirect, Springer,

Web of Science

158 papers from
2015–2019

Predictive maintenance,
condition-based

maintenance,
prognostics, and

health management

[34] 2020

Review of recent
technologies available in
PdM with Industry 4.0

for SME

Literature review n/a n/a
Recent advancements in

the IIoT with a
corporative point-of-view

[35] 2021

Study of the evolution of
concepts such as

e-maintenance (eM) and
intelligent maintenance

(IM), together with
emergent concepts such
as smart maintenance

(SM) and maintenance 4.0

Comparative review
based on SLR,

bibliometric analysis,
a multiple case study,
and experts survey

Scopus 773 papers from
1985–2020

Four concepts were
selected to be
investigated:

e-maintenance,
intelligent maintenance,
smart maintenance, and

Maintenance 4.0

[36] 2022

A review of PdM
focused on a defense

domain context, with a
particular focus on the

operations and
sustainment of

fixed-wing defense
aircraft

Systematic literature
review (SLR) Scopus 50 papers from

2000–2022
PdM with military

applications

[37] 2022
Review of Industry 4.0
technologies used in

maintenance management
Literature review Web of Science, Scopus,

and Google Scholar
54 papers from

2017–2022

Integration of the main
functions and

components of the
maintenance

management model and
the Industry 4.0 features

and technologies

[38] 2020

Analysis of maintenance
tasks and maintenance
management strategies

development in
Industry 4.0 context

Systematic literature
review (SLR)

Scopus, IEEE Xplore,
Google Scholar,
Web of Science

65 papers from
2015–2019

The state-of-the-art
Industry 4.0

technologies currently
employed in

the maintenance
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Table 1. Cont.

Ref. Publication Year Research Objectives Methodology Used Databases Analyzed Papers Analyzed Focused on

[39] 2022 Study on the challenges
of the PdM

Systematic literature
review (SLR) Google Scholar 91 papers from

2016–2021

Predictive models,
engineering, prognostic
and health management,

remaining useful life
and CBM

[40] 2022 Overview of studies on
PdM using digital twins

Systematic literature
review (SLR)

ScienceDirect, Scopus,
ACM Digital Library,
IEEE Xplore, Wiley,
Taylor and Francis

Online, Springer Link

42 papers from
2002–2021

Digital Twin in
predictive maintenance,
predictive maintenance
system, cyber–physical

system

[41] 2020

Review on smart
remanufacturing and

maintenance in the era
of Industry 4.0

Literature review Scopus, ScienceDirect,
and ProQuest 2000–2020

Automated inspection,
condition monitoring,

and integrated
optimization of
production and

maintenance planning

[42] 2020

Review on PdM in
Industry 4.0 in the

context of identifying
and cataloging methods,
standards, and applications

Systematic literature
review (SLR)

Google Scholar,
Association for

Computing Machinery
(ACM), IEEE,

ScienceDirect, Scopus,
Web of Science

47 papers from
2008–2018

Prediction or monitoring
applied to Industry 4.0,
smart factory, IoT as a

model, method,
or architecture

This briefly presented background of conducted and published literature reviews on
predictive maintenance/Maintenance 4.0 allowed us to conclude that there is currently
a lack of studies that summarize recent developments in a cross-sectional manner. Most
of the conducted reviews focus on a particular application area or the industry sector
(see, e.g., [13–15]). The literature specializes in specific topics, treating them separately
(e.g., [16,17]). As a result, treating this as a research gap, the authors decided to provide
a complete review of the existing literature to present an up-to-date and content-relevant
analysis in this field, focusing on both bibliometric performance analysis and a systematic
literature review.

Following this, the research questions are as follows:
RQ1: What are the current trends in Maintenance 4.0 approaches, and how have these

trends evolved over the last decade?
RQ2: What are the future research directions and perspectives in Maintenance 4.0 in

the context of the defined application fields?
Therefore, the article aims to develop a literature review in the area of Maintenance 4.0

main application fields, including (1) bibliometric performance analysis of research works
from the period 2012–2022 being published in two scientific databases—Web of Sciences
and Scopus, and (2) systematic analysis using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) method, aimed at summarizing and identification
of the main research areas in the identified application fields. Following this, the main
contributions of this paper include the following:

• A summary of the research developed in Maintenance 4.0 application fields in the
last decade, focusing on (a) augmented and virtual reality, (b) system architecture,
(c) cybersecurity, (d) data-driven decision, and (e) Operator 4.0;

• Identification of research gaps and knowledge gaps in the identified application fields
of the Maintenance 4.0 approach.

In conclusion, the article is organized into seven sections (Figure 1). After the In-
troduction (Section 1), the Theoretical Background (Section 2) introduces the concept of
Industry 4.0 and discusses the evolution of maintenance approaches, focusing on the Main-
tenance 4.0 concept. Review methodology (Section 3) explains the main methods used for
the review. This section also describes the strategy used for the literature search process
performance and criteria that were applied to assess the relevance of analyzed documents.
Section 4 describes the main results of conducted bibliometric performance analysis in
the macro-view and for the selected papers on the five identified application fields. Later,



Sensors 2023, 23, 1409 6 of 55

Section 5 focuses on presenting the results of the identified application fields. Section 6
provides a discussion of the obtained results. Here, the literature research and knowledge
gaps are also identified. The last part contains conclusions (Section 7) with a summary of
contributions, limitations definition, and recommendations for future studies’ presentation.
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2. Theoretical Background
2.1. Industry 4.0

The first studies on the Industry 4.0 emerged in 2011 [43]. They highlighted the new
high-tech techniques, such as Internet of Things (IoT) platforms, advanced human–machine
interfaces, smart sensors, big data-based analytics, augmented reality-based solutions, and
the concept of the smart factory have become part of industrial production [37]. In line
with the observed rapid technical and technological development of the global economy,
the so-called fourth industrial revolution started only 42 years after the third revolution,
relatively short compared to the 99 years recorded between the second and third industrial
revolutions (Figure 2) [44]. At the same time, it posed new challenges to managers in terms
of building the so-called Operator 4.0 competence or effectively implementing modern
technologies in practice.
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the smart industry concept mostly referred to industrial IoT technologies use. The main 
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extend this approach by implementing other Industry 4.0 technologies in the context of 
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factory performance. It is also connected with the e-commerce sector’s rapid development 
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It has become commonplace to use smartphones or other mobile devices and plat-
forms that use algorithms to drive motor vehicles (including navigation tools, ride-shar-
ing apps, delivery and transportation services, and autonomous vehicles) in daily opera-
tions and to embed all these elements in an interoperable global value chain shared by 
many companies from many countries (Figure 4) [44,52]. 
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The Fourth Industrial Revolution is the next stage of socio-economic development.
This revolution is associated with [44,45]:

• Widespread digitalization and the provision of constant communication between
people, people with devices, and devices between one another;

• An increase in the implementation of disruptive innovations;
• A leap in the efficiency of the socio-economic system performance;
• The development of machines capable of autonomous operation through the use of

artificial intelligence (AI);
• The implementation of modern communication using technology and the capabilities

of modern networks throughout the supply chain;
• Adaptive automation;
• The use of intelligent approaches to information processing;
• The use of future-oriented techniques.

The term Industry 4.0 refers to the combination of several significant innovations
in digital technology. These technologies include, among others, advanced robotics and
artificial intelligence, digital manufacturing (including 3D printing), software as a service,
and other new business models (robot as a service, machine as a service, software as a
service, etc.) as well as support in decision-making processes [46]. In addition, in the recent
literature, the term smart industry is used concerning the Industry 4.0 concept. Both terms
are often used interchangeably (see, e.g., [47]). However, the first works focused on the
smart industry concept mostly referred to industrial IoT technologies use. The main goal
was to interconnect various industrial objects through sensors, GPS devices, radio frequency
identifiers, actuators, and other wireless and mobile devices [47]. Recent works extend this
approach by implementing other Industry 4.0 technologies in the context of smart industry
performance, such as big data, digital twins, or artificial intelligence (see, e.g., [48]). Indeed,
smart industry enables organizations to maximize the yield from existing operational
capabilities and to develop the next generation of operational capabilities necessary to
compete in a digital economy [49]. As a result, the term Industry 4.0 may be perceived in
the context of developing smart connections between products, machines, and people using
the latest technologies to provide more efficient, intelligent, and aware factory performance.
It is also connected with the e-commerce sector’s rapid development [50,51] (Figure 3).

It has become commonplace to use smartphones or other mobile devices and platforms
that use algorithms to drive motor vehicles (including navigation tools, ride-sharing apps,
delivery and transportation services, and autonomous vehicles) in daily operations and to
embed all these elements in an interoperable global value chain shared by many companies
from many countries (Figure 4) [44,52].



Sensors 2023, 23, 1409 8 of 55
Sensors 2023, 23, 1409 8 of 60 
 

 

 
Figure 3. Technologies prevalent in Industry 4.0. Source: own contribution based on [53]. 

 

 
Figure 4. Development directions in Industry 4.0—what are businesses working towards? Source: 
own contribution based on [52].  

Simultaneously, the high complexity, automation, and flexibility of the so-called 
smart factory bring new challenges regarding reliability and safety [54]. The digital factory 
requires the exchange of data between machines or the exchange of data on production 
and operation and is intended to optimize costs, improve availability and reliability, or 
ensure an adequate level of overall equipment effectiveness (OEE) [55]. Therefore, to gain 
maximum benefit from the implementation of the Industry 4.0 concept, the production 
system and the factory itself must be connected internally (using the Intranet) throughout 
the organization and externally with suppliers and customers, so that important infor-
mation and data can be exchanged (promptly) within the complete supply chain (using 
the Internet) [56,57]. Further, networks can be developed into connected factories operat-
ing in different regions. In this approach, business data are combined, compared, and pro-
cessed in one place. At the same time, such cooperation can concern the level of a single 
department or the entire business organization [52]. The highest level of organizational 
maturity is the so-called Industry 4.0 enterprise, in which we combine the supply chain 
with product design and after-sales service using Industry 4.0 technologies. This way, 
product customization can be achieved in a highly flexible production environment [54]. 

Figure 3. Technologies prevalent in Industry 4.0. Source: own contribution based on [53].

Sensors 2023, 23, 1409 8 of 60 
 

 

 
Figure 3. Technologies prevalent in Industry 4.0. Source: own contribution based on [53]. 

 

 
Figure 4. Development directions in Industry 4.0—what are businesses working towards? Source: 
own contribution based on [52].  

Simultaneously, the high complexity, automation, and flexibility of the so-called 
smart factory bring new challenges regarding reliability and safety [54]. The digital factory 
requires the exchange of data between machines or the exchange of data on production 
and operation and is intended to optimize costs, improve availability and reliability, or 
ensure an adequate level of overall equipment effectiveness (OEE) [55]. Therefore, to gain 
maximum benefit from the implementation of the Industry 4.0 concept, the production 
system and the factory itself must be connected internally (using the Intranet) throughout 
the organization and externally with suppliers and customers, so that important infor-
mation and data can be exchanged (promptly) within the complete supply chain (using 
the Internet) [56,57]. Further, networks can be developed into connected factories operat-
ing in different regions. In this approach, business data are combined, compared, and pro-
cessed in one place. At the same time, such cooperation can concern the level of a single 
department or the entire business organization [52]. The highest level of organizational 
maturity is the so-called Industry 4.0 enterprise, in which we combine the supply chain 
with product design and after-sales service using Industry 4.0 technologies. This way, 
product customization can be achieved in a highly flexible production environment [54]. 

Figure 4. Development directions in Industry 4.0—what are businesses working towards? Source: own
contribution based on [52].

Simultaneously, the high complexity, automation, and flexibility of the so-called smart
factory bring new challenges regarding reliability and safety [54]. The digital factory
requires the exchange of data between machines or the exchange of data on production and
operation and is intended to optimize costs, improve availability and reliability, or ensure an
adequate level of overall equipment effectiveness (OEE) [55]. Therefore, to gain maximum
benefit from the implementation of the Industry 4.0 concept, the production system and the
factory itself must be connected internally (using the Intranet) throughout the organization
and externally with suppliers and customers, so that important information and data can
be exchanged (promptly) within the complete supply chain (using the Internet) [56,57].
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Further, networks can be developed into connected factories operating in different regions.
In this approach, business data are combined, compared, and processed in one place. At
the same time, such cooperation can concern the level of a single department or the entire
business organization [52]. The highest level of organizational maturity is the so-called
Industry 4.0 enterprise, in which we combine the supply chain with product design and
after-sales service using Industry 4.0 technologies. This way, product customization can be
achieved in a highly flexible production environment [54].

Smart production is designed based on a modular structure, where production facili-
ties and logistics systems are organized without human intervention [58]. Production is
supervised using a number of intelligent sensors, cameras, and indicators. Where informa-
tion is not exchanged online, data are stored in the device’s memory and exchanged on
demand. In addition to data on the condition of the product itself, data on the condition
of the machinery and equipment operating in the factory are also collected [59,60]. The
collection and analysis of this data lead to the Maintenance 4.0 concept, which is described
in detail in Section 2.3 [61].

2.2. Maintenance Approaches Evolution

Currently, in the available literature, we can distinguish many definitions of the con-
cept of technical maintenance [1]. For the purpose of this paper, the literature survey carried
out is based on the definition proposed in the European standard BS EN 13306: 2017 [62],
where “maintenance/operation is a set of all technical, organizational and managerial activities dur-
ing the life cycle of an object, the purpose of which is to maintain or renew the state in which it can be
used to fulfil the required function”. A similar definition is given in IEC 60300-3-10: 2001 [63],
in which maintenance of a technical system is defined as “all activities necessary to pre-
serve/maintain or restore a specific state of an object”. Maintenance management, on the other
hand, according to BS EN 13306: 2010 [62], is defined as “all management activities that
determine the objectives and strategies of maintenance and their implementation through appropri-
ate tools, such as maintenance planning, control and supervision, improvement of methods in the
organization, together with consideration of the economics of operation”.

Based on the definitions presented, one may state that the main objectives of the
maintenance of technical systems are related to [64]:

• Ensuring the basic functional parameters of the facility (e.g., availability, efficiency, reliability);
• Efficient management of resources to provide the required durability of equipment;
• Ensuring efficient use of resources, energy, and raw materials/replaceable parts;
• Ensuring the safety of a technical facility, people, and the environment;
• Taking into account the financial requirements of the implemented operation process.

The achievement of such objectives is based on the use of appropriate maintenance
approaches. The evolution of known approaches to maintenance that have been developed
over the last fifty years is shown in the scheme included in Figure 5. At the same time,
a primary classification of known and widely used maintenance strategies is given in
EN 13306 [62]. A recent review of the literature on technical maintenance of systems and
facilities can be found, for example, in works [35,65,66], and an analysis of the development
of maintenance philosophies can be found in [67]. A general classification of maintenance
strategies can be found in [1].

The first approach to maintenance (Maintenance 1.0), often referred to as the ‘run to
failure’ or Corrective Maintenance (CM) strategy, was prevalent between 1940 and 1960 [1].
CM is a reactive strategy and refers to all unplanned maintenance activities performed to
restore the system’s operability after a failure by carrying out repair operations or replacing
failed components, implying that there is no optimization in the maintenance activities
undertaken concerning economic or reliability criteria. On the other hand, this maintenance
strategy is still popular due to the low cost of its implementation [1].
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When it is necessary to avoid a system failure during operation, especially when such
an event is costly and/or dangerous, it is important to carry out planned maintenance
activities [1,8]. Therefore, the Maintenance 2.0 approach related to Preventive Maintenance
(PM) is being implemented. PM, according to MIL-STD-721C [68], refers to “all activities
undertaken to maintain a facility/system in a specified condition by systematically inspecting,
detecting and preventing incipient failures, with the objective of reducing the probability of failure
or slowing the degradation processes of a system in operation”. In general, the approach is
geared toward optimizing the length of maintenance intervals in relation to the wear and
tear process of the investigated system. In this area, time-based PM and on-condition
maintenance (CBM) strategies are the most frequently mentioned in the literature [9].
Furthermore, the differences between CM and PM are presented in [69], and a comparison
of the leading maintenance strategies is in [70].

A periodic maintenance strategy involves planned and periodic repairs/replacements
of equipment. It is still one of the predominant maintenance strategies used in practice for
those technical assets for which it is impossible to implement diagnostic measures, e.g., for
technical or economic reasons [71]. For example, more information can be found in the
works [72,73].

A condition-based maintenance approach is considered the first maintenance strat-
egy to be included in Maintenance 3.0 [9]. CBM is based on monitoring the parameters
that define the technical condition of a system or its components using diagnostic meth-
ods/measures [74]. For selected cases, the CBM strategy even offers the possibility to
implement maintenance activities just before the failure of the system/its components
occurs. Thus, CBM can be regarded as a method used to reduce the uncertainty of mainte-
nance activities for technical systems [75]. A literature review of CBM policies is presented,
for example, in the works [74,76,77].

Another maintenance policy, which in the literature is often considered synonymous
with the CBM concept, is predictive maintenance (PdM) [17]. This maintenance policy is
used in those sectors where reliability is of strategic importance, such as nuclear power,
transport, or energy industry solutions [1,9]. Its main task is to predict faults or failures
in a degrading system to optimize maintenance tasks by monitoring system operating
conditions to detect any signs of wear and tear that lead to component failure [10]. The PdM
program aims to track component degradation/wear using a methodology that ensures the
detection of any impending failure [78]. Some commonly used monitoring and diagnostic
techniques include vibration monitoring, thermography, or visual inspection [79].

A proactive approach to maintenance in line with the Maintenance 4.0 concept is currently
the most technologically advanced form of maintenance for technical systems. In the literature
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and practice of the issue under study, it is often emphasized that the Maintenance 4.0 concept
is a practical implementation of PdM and SMART PdM solutions [80,81]. Therefore, references
can be found to the so-called Predictive Maintenance 4.0 concept.

2.3. Maintenance 4.0 and the Leading Technologies

If the main elements of Industry 4.0 are the Industrial Internet of Things (IoT), cloud
computing, and technologies such as augmented reality (AR) and virtual reality (VR),
Maintenance 4.0 is based on the implementation of these technologies in the company’s
maintenance practices [82]. Maintenance 4.0 is thus about using smart technologies to improve
daily factory operations [83]. The aim is to maximize uptime by eliminating unplanned, reac-
tive maintenance activities. One of the concepts used here is the Internet of Things, which
takes machine-to-machine technology to the next level by including a third element: data.
According to [84], all machine data are to be available on a single virtual network, giving
manufacturers the ability to aggregate and analyze data to generate better predictive analyt-
ical models. For more information, the author recommends reading, for example, [10,17].
On the other hand, a literature review on Maintenance 4.0 and the smart industry can be
found among others in [15,36,42].

Against this background, it is possible to define the directions for developing the
Maintenance 4.0 concept in business practice as a general overview observed in polish
companies (mainly from the automotive sector) (Figure 6). In the first step of implementing
the solutions of the Maintenance 4.0 concept, investments are made in the so-called intelli-
gent components—a system of diagnostic sensors, which usually refers to the possibility of
vibration analysis performance [32,52]. In the next step, a monitoring and diagnostic system
are developed for the selected machine, and PdM-type systems based on fundamental,
predictive analyses are introduced The smart factory is already at the level of developing
dynamic self-diagnostic systems, the so-called SMART PdM—based on acquired diagnostic
data, failure prediction, and automation of maintenance processes. The level of connected
factories includes designing and implementing a so-called centralized control system for
maintenance processes based on solutions such as asset sharing or IoS business models [85].
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The highest level of organizational maturity allows the implementation of intelligent
maintenance methodologies already at the product design level [85].

Based on the presented developments in the implementation of Maintenance 4.0, it
can be concluded that this approach allows the design and implementation of so-called
self-aware (self-diagnose) and self-service (self-service) equipment systems that can self-
assess their technical condition and degradation process and use information from other
machines to make intelligent maintenance decisions [60]. The Deloitte report classifies
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the technologies that underpin PdM 4.0 under five categories [53]. These are sensors,
networking, integration, augmented intelligence, and augmented behavior (Figure 7).

Sensors 2023, 23, 1409 12 of 60 
 

 

 
Figure 6. Development directions in Maintenance 4.0. Source: own contribution based on [52].  

The highest level of organizational maturity allows the implementation of intelligent 
maintenance methodologies already at the product design level [85]. 

Based on the presented developments in the implementation of Maintenance 4.0, it 
can be concluded that this approach allows the design and implementation of so-called 
self-aware (self-diagnose) and self-service (self-service) equipment systems that can self-
assess their technical condition and degradation process and use information from other 
machines to make intelligent maintenance decisions [60]. The Deloitte report classifies the 
technologies that underpin PdM 4.0 under five categories [53]. These are sensors, net-
working, integration, augmented intelligence, and augmented behavior (Figure 7).  

 
Figure 7. Technologies enabling PdM processes in the context of Industry 4.0. Source: own contri-
bution based on [53,86,87].  

A key issue, therefore, is the continuous monitoring and analysis of the physical asset 
network, which enables [88]: 
• Predicting and notifying of potential failures/damages;  
• Maintenance scheduling and planning of spare parts requirements;  
• Automation of specific maintenance tasks. 

In summary, Maintenance 4.0 encompasses a holistic view of data sources, how they 
are combined, collected, analyzed, and are recommended actions to provide digital sup-
port to the function (reliability) and value (management) of assets. As a result, a holistic 
approach enables effective plant-wide communication between machine operators, 
maintenance and engineering teams, and management, allowing informed decisions and 
better utilization of resources [89]. In addition, implementing a holistic approach to pre-
dictive maintenance provides that individual components are assessed for their value in 

Figure 7. Technologies enabling PdM processes in the context of Industry 4.0. Source: own contribu-
tion based on [53,86,87].

A key issue, therefore, is the continuous monitoring and analysis of the physical asset
network, which enables [88]:

• Predicting and notifying of potential failures/damages;
• Maintenance scheduling and planning of spare parts requirements;
• Automation of specific maintenance tasks.

In summary, Maintenance 4.0 encompasses a holistic view of data sources, how they
are combined, collected, analyzed, and are recommended actions to provide digital sup-
port to the function (reliability) and value (management) of assets. As a result, a holistic
approach enables effective plant-wide communication between machine operators, mainte-
nance and engineering teams, and management, allowing informed decisions and better
utilization of resources [89]. In addition, implementing a holistic approach to predictive
maintenance provides that individual components are assessed for their value in the entire
production chain and sensors are applied accordingly. Indeed, a wide range of complex,
interconnected assets must be considered for interdependencies rather than their singular
function alone [90]. Properly developed, a holistic approach is to be shown to ensure the
maximum potential for early warning analysis and root cause identification in technical
systems [91].

As a result, it is essential to analyze the main trends in developing the Maintenance 4.0
concept in practice and literature. This issue is the subject of the next sections of this paper.

3. Review Methodology

The main goal of the conducted review is to investigate the five main research areas
developed under the Maintenance 4.0 concept. As part of our literature review, we ana-
lyzed, evaluated, and discussed scientific publications from prestigious databases related
to engineering fields. Therefore, a two-phase review methodology was implemented,
incorporating the following:

• Bibliometric analysis of the literature within the scope of application.

The main focus of the bibliometric analysis of the literature is to present a macro-view
of Maintenance 4.0 and its leading research areas investigated over time. The first phase
also allowed for properly defining the main inclusion criteria for SLR performance in the
second step of the reviewing methodology.

• Systematic analysis of the selected papers within the scope of application.

The main focus of systematic analysis is to define the main aspects and trends occurring
in the area of Maintenance 4.0 research.

The first of these methods is a form of quantitative analysis, while the second is both
quantitative and qualitative. As a whole, this methodology adequately presents the full
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spectrum of publications connected to the Maintenance 4.0 concept, both in quantitative
and qualitative terms. In addition, it allows for presenting a macro and micro view of the
investigated issues. Following this, the research procedure and review strategy phases are
shown in Figure 8.
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First, we defined research questions that helped with keyword selection. In the next
step, the main keyword, “Maintenance 4.0”, was described to identify in the broadest
possible way the relevant articles related to the maintenance issue in the context of the
Industry 4.0 concept. The next steps are connected with the performance of meta-analysis
and systematic analysis of the identified literature. A detailed description of the conducted
research procedure is presented in the following subsections.

3.1. Meta-Analysis of the Literature

A meta-analysis is the statistical pooling of data across studies to generate summary estimates
of effects [92]. This paper conducted such an analysis based on a bibliometric performance
analysis approach following the PRISMA guidelines, as defined in [93,94]. PRISMA is
an evidence-based approach for reporting in systematic reviews and meta-analyses [92].
Therefore, it was used in both phases of the conducted literature review in Maintenance 4.0.

Bibliometrics is a branch of scientometrics that uses mathematical and statistical
methods to assess scientific activities’ performance. The bibliometric analysis allows us to
study the networks formed around the most representative keywords and presents how
citations, scholars, affiliations, counties, and publications indicate the importance of specific
topics in the field of research. At the same time, we can see a noticeable increase in interest
in bibliometric studies in science (see, e.g., [95–98]). As a result, the analysis’s objective is
to identify the main trends in Maintenance 4.0 research through bibliometric analysis.
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A preliminary bibliometric analysis was conducted using two available databases: Web
of Science [99] and Scopus [100]. The investigation was completed in October 2022, and the
search term was the keyword “Maintenance 4.0”.

The selection of two databases, Web of Science and Scopus, is related to the fact that
both of these databases have similar bibliographic attributes, such as literature searching
and citation analysis of bibliometric records. As a result, it was considered that an analysis
of both scientific databases would provide a compatible and complementary view of
Maintenance 4.0 issues.

At first, the Web of Science database was under investigation. The initial search
procedure was based on the following search term “Maintenance 4.0” regardless of where
it occurred (filtering by “all fields”). The first step of the searching procedure provided the
opportunity to identify 4944 relevant records. In the next step, an objective screening was
performed based on the title and keywords. To evaluate the eligibility, the research team
analyzed the title and keywords of publications. For this purpose, we have defined criteria
for exclusion. First, to focus on relatively new problems and technologies, the search results
were limited to papers published within the last ten years.

Additionally, articles written in English were considered. In addition, the search was
limited to citation topics related to production, logistics, or maintenance (non-topically related
publications were excluded). Indeed, papers that do not have a production/logistics/factory
focus were excluded from the further analysis (for example, we eliminated documents
related to medicine, biology, and agriculture). The indicated exclusion criteria were in-
cluded as subject area filters within the WoS search string. Indeed, within the framework
of the selection process, the authors have selected the subject area filters available in the
WoS database that are related to these three indicated citation topic areas. As a result, such
citation topics as nutrition and dietetics, urology and nephrology, dairy and animal sciences,
anesthesiology, and dentistry and oral medicine have been excluded from further research.

Based on these exclusion criteria, 1113 records were identified and subjected to funda-
mental bibliometric analysis.

The Web of Science database final search engine:
(ALL = (Maintenance 4.0)) AND LA = (English) and Design & Manufacturing or Safety &

Maintenance or Friction & Vibration or Telecommunications or Human Computer Interaction or
Management or Supply Chain & Logistics or Artificial Intelligence & Machine Learning or Software
Engineering or Transportation or Robotics

An analogous bibliometric analysis was carried out for publications included in the
Scopus database. The first stage of the study identified 24,603 relevant records (search-
ing by Maintenance 4.0 keyword and filtering by “all fields”). Subsequent filtering
by “abstract/title/keywords” reduced the number of records searched to 3747 publi-
cations. In the final step, the analysis was again narrowed down to publications from
2013-2023, and only texts in English were included. Non-topically related publications
were also excluded. Indeed, the filtered subject areas also have been related to the pro-
duction/logistic/maintenance issues. Therefore, subjects such as medicine, mathematics,
energy, biochemistry, genetic and molecular biology, chemistry, or nursing were excluded
from further analysis.

This allowed 1933 publications to be highlighted, which were then analyzed.
The Scopus database final search engine:
(TITLE-ABS-KEY (Maintenance 4.0) AND LANGUAGE (English)) AND PUBYEAR > 2012

AND (LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUB-
JAREA, “MATH”) OR LIMIT-TO (SUBJAREA, “DECI”) OR LIMIT-TO (SUBJAREA, “MATE”) OR
LIMIT-TO (SUBJAREA, “BUSI”) OR LIMIT-TO (SUBJAREA, “SOCI”) OR LIMIT-TO (SUBJAREA,
“ECON”) OR LIMIT-TO (SUBJAREA, “PSYC”))

As a result of the selection process for both databases, we finally received 1133 records
for the Web of Sciences database and 1933 records for the Scopus database. In the next
step, the obtained results for both databases were separately subjected to analysis and
synthesis. First, the analysis was performed using Mendeley reference manager and
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Microsoft Excel software. This allows us to perform content-based analysis for trends or
frequency of occurrence. Next, we used the clustering method during the analysis based
on the use of VOSviewer software [101]. Based on [102], the VOSviewer is a program
developed for constructing and viewing bibliometric maps that can be examined in full
detail. Following its functionality, we performed a co-occurrence analysis of keywords. The
distance-based bibliometric maps reflect the strength of the relation between the selected
keywords. Indeed, the cluster analysis results clearly capture the knowledge structure
of the research fields. They were also used for adequately selecting inclusion criteria for
systematic analysis performance.

3.2. Systematic Analysis of the Literature

The review’s second phase focused on systematic analysis (Figure 8). A systematic
review is “connected with identifying, evaluating and interpreting all available research relevant
to a particular research question, or topic area, or phenomenon of interest” [103]. It follows a
standard procedure for developing, conducting, and reporting processes, reported in detail
in [92,104]. The basis for reporting systematic review conducted by the research team
was PRISMA guidelines. The chosen method gives the possibility to properly search and
select the relevant scientific literature on the given topic by defining research objectives and
providing clear quantification of scientific developments in a specific field of knowledge
(see, e.g., [13,105,106]).

Following this, the next subsections explain the document search and selection
process with a definition of eligibility criteria and identification of relevant papers for
further investigation.

3.2.1. Collection of Publications for Review

The literature searching process was based on using the multi-search tool Primo [107],
which allowed the analysis of many information resources, including, among others, the
ScienceDirect database, Elsevier, Wiley, and Springer publishers’ databases. The literature
search was conducted between 2 October 2022 and 10 October 2022.

The initial search procedure was based on the following “Maintenance 4.0” search
term. The first step of the search procedure allowed the identification of 309,994 rele-
vant records. In the next step, to focus on relatively new applications, problems, and
technologies, the searches were limited to studies published during the last ten years.
Additionally, only documents written in English were considered. Based on these exclusion
criteria, 219,725 records were identified and further analyzed based on the filtering and
extraction process.

3.2.2. Filtering and Extraction

The authors focused on filtering studies, considering six inclusion criteria. The cri-
teria were defined based on the results obtained from the first phase of the conducted
literature review.

Based on the meta-analysis, we could identify the primary clusters with relationships
occurring between critical keywords. With the use of VOSViewer software, the authors
conducted an in-depth analysis of the main keywords’ co-occurrence. First, they focus
on the 223 most frequently used keywords for the WoS database (keywords occurred at
least five times). This analysis made it possible to identify nine main clusters. Within
the defined clusters, the first cluster was connected with data collection, analysis, and
decision-making processes (58 items selected). The second cluster focused on digitalization
and smart maintenance as synonyms of the Maintenance 4.0 term (35 items). The third
cluster includes keywords connected with cyber–physical systems and human–machine
interactions (31 items). The next cluster focused on maintenance planning and scheduling
(26 items). Cluster no. 5 (22 items) and Cluster no. 6 (19 items) regarded virtual and
augmented reality.
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Next, a similar analysis for the Scopus database was performed. On the one hand, it
confirmed the main research findings obtained from WoS database analysis (for 792 keywords
and 12 clusters). Conversely, it allowed identifying another significant cluster connected
with cybersecurity (Cluster no. 7, 48 items). The six main inclusion criteria were de-
fined based on this initial scientometric analysis and following the reviews on this topic
(e.g., [25,27]). As in the case of the definition of the basic keywords “Maintenance 4.0”,
inclusion criteria were defined at a general level. This made it possible to encompass
a broad spectrum of investigated problems related to maintenance. The main inclusion
criteria were as follows:

1. “data-driven maintenance”;
2. “system architecture”;
3. “Operator 4.0”;
4. “virtual reality”;
5. “augmented reality”;
6. “cybersecurity”;

The screening process had the purpose of filtering out papers that were not related to
the main topic. Therefore, the identified records were scanned by title. The filtering process
was performed manually by the research team based on the filtering options available in
the Primo search tool. The filtering process was carried out separately for each inclusion
criteria according to the filtering procedure:

All fields = “Maintenance 4.0” AND Title = “inclusion criterion”. (1)

The results of this procedure are presented in Table 2.

Table 2. A summary of the conducted filtering procedure.

Combination of Words for Inclusion Criteria Research Results

Maintenance 4.0 AND Data-driven decision 36

Maintenance 4.0 AND System architecture 165

Maintenance 4.0 AND Operator 4.0 25

Maintenance 4.0 AND Virtual reality 182

Maintenance 4.0 AND Augmented reality 272

Maintenance 4.0 AND Cybersecurity 127

Total (records selected for further analysis) 807

As a result of the filtering process considering the inclusion criteria, 218,918 were
eliminated out of the initial 219,725 records (based on Table 2 results).

In the next step of the filtering and extraction procedure, the search was limited to the
following documents: articles (Note: In the Primo search tool, the term “articles” relates to
scientific articles published in journals and conference articles published in high-quality
proceedings from, e.g., Elsevier’s journals (e.g., Procedia CIRP)), books, and book chapters
for a higher data quality.

The last exclusion criterion regarded the type of online databases used. The search
procedure was limited to online databases like ProQuest Central, EBSCO, IEEE Electronic
Library, Springer (All available), or Elsevier with ScienceDirect. The excluded databases
from the further analysis were:

1. Health and Medical collection;
2. Earth, Atmospheric, and Aquatic Science Database;
3. GFMER Free Medical Journals;
4. Environmental Science Database.

This choice was connected with eliminating work unrelated to the production/logistics/factory
maintenance areas.
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After applying these rejection criteria, the documents were reduced to 517. Moreover,
31 publications were deleted as duplicates. As a result, 486 papers were defined, which
were later fully read to identify the most relevant papers during the selection process.

3.2.3. Selection Process

The authors later examined 486 papers to verify their eligibility for further qualitative
and quantitative analysis. The main criterion applied in the full-text research was its
relevance to the investigated thematic area and defined groups. The authors evaluated
the publications first individually. Later, at research team meetings, we compared team
members’ opinions. In case of discrepancies in assessing the paper’s suitability, the team
members focused on reviewing the whole document more thoroughly. In addition, the
studies that describe maintenance issues concerning, e.g., chemical engineering or medicine
applications were excluded. After a consensus between the authors of this systematic
review, 272 papers were rejected as being out of scope after reviewing the full document.

Consequently, a total of 214 manuscripts were included for further qualitative and
quantitative analysis. Figure 9 represents the flow diagram of the selection of studies
according to PRISMA statements. The PRISMA checklist is available in supplementary
materials (Table S1).
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3.2.4. Content Analysis and Synthesis

The selected papers were further subject to analysis and synthesis. As during the meta-
analysis, to carry out this analyses we used Mendeley reference manager and Microsoft
Excel software. In addition, VOSviewer software was used for cluster analysis.

First, the bibliometric analysis for the five selected research areas in Maintenance 4.0
was performed. The main results are presented in relation to, among others, authors’
location, publication time, or most frequently used keywords. The results are shown in
Section 4.2.

The next step was focused on the main research fields overview. Later, the obtained
research outputs were discussed concerning the defined research questions RQ1 and RQ2.
The results are presented in Sections 5 and 6.

4. Bibliometric Performance Analysis of the Literature within the Scope of Application
4.1. General Bibliometric Performance Analysis

First, the meta-analysis results for the Maintenance 4.0 concept’s macro-view and
main research fields were investigated. The data are sourced from the Web of Sciences [99]
and Scopus [100], one of the largest scientific literature databases. They were accessed on
2 October 2022. The conducted analysis provided a curated dataset of relevant publications
for further state-of-the-art research.

The publications year-on-year for the analyzed period of time for both datasets are pre-
sented in Figure 10. The results confirm a considerable rise in year-on-year Maintenance 4.0
publications, especially in the last five years. The exception is 2020, which annotated a
decline in publications in the scientific area under study. This may be due to the pandemic
period, in which engineering issues related to the development of technologies such as
augmented or virtual reality may have been given lower priority over, for example, research
areas such as risk analysis or resilience engineering. 2022 is not finished yet, so we do not
have a complete picture of the development trend of the number of publications in a given
area. Additionally, 2023 is also excluded from the visualization.
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In the Web of Science database, each paper can be classified according to the pub-
lication titles. In the case of the investigated research area, the most frequently selected
publication titles, where the documents on Maintenance 4.0 appeared, are presented in
Figure 11. During the analyzed time period, the most significant number of publications
appeared in the journal IFAC-PapersOnLine series (72 articles). Numerous publications can
also be found in Proceedia Computer Science (50 articles), Procedia CIRP (46 articles), and
Applied Sciences (44 articles). This paper distribution indicates that during the analyzed
period of time, researchers were very keen to publish the results of their research at confer-
ences across all topics of, among others, computer science, mechanical engineering, and
manufacturing engineering areas.
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frequently published (for the Web of Science database).

The presented analysis can be supplemented with the results obtained from the Scopus
database. In the Scopus database, each paper is classified by subject area. In the investigated
case, one can distinguish eight subject areas that include the most significant number of
publications (Figure 12). The obtained results are compatible with Web of Science database
analysis conclusions. The engineering and computer science publications account for 70%
of all results analyzed.

Another important aspect was investigating the main keywords in the analyzed
publications. First, the Web of Science dataset was under investigation. The analysis



Sensors 2023, 23, 1409 20 of 55

was performed for the keywords which occurred in the database at least ten times. This
restriction identified the 97 most popular keywords, which formed five main clusters, with
a link strength of 2503 and a total link strength equal to 8762. The results are shown in
Figure 13.

Two clusters for the item ‘predictive maintenance’ and for ‘Industry 4.0’ are particularly
noteworthy in the area under review. The results of the strength of the links in the respective
clusters are shown in Figures 14 and 15. The strength of linkages indicates a strong interest
in Maintenance 4.0 issues in the context of predictive strategy and the Industry 4.0 concept.
Previous review publications in the field of Maintenance 4.0 also confirm such results. On
the other hand, such keywords, like augmented reality, machine learning, or digital twin,
also indicate the high strength of the links and suggest a potential direction for research in
the area under consideration. An analysis of the database confirms this conclusion in the
context of the publication date. According to the results obtained, the most recent studies
are about digital twins, deep learning, or smart factories.
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A similar analysis was performed for the Scopus database. The selected 1933 papers
were reviewed for highlighting all keywords that have occurred a minimum of 10 times
in the database. The obtained results are presented in Figure 16. The clusters for ‘predic-
tive maintenance’ and for ‘Industry 4.0’ are shown in Figures 17 and 18. The obtained
results confirm the previously defined conclusions. Additionally, an interesting aspect is the
occurrence of a cluster related to keywords such as ‘automated maintenance’, ‘intelligent op-
erations’ or ‘digital storage’. This is confirmed by the emergence of a number of publications
that target solutions related to the digitalization and automation of industrial processes.
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4.2. Bibliometric Performance Analysis of the Papers Selected in the Investigated Five
Research Fields

The second step of the conducted bibliometric analysis includes the detailed investiga-
tions carried out for selected articles from five thematic groups for Maintenance 4.0 from
the last decade.

Two hundred fourteen articles from five analyzed areas were adopted for detailed anal-
ysis. Most publications were found for the keywords ‘augmented reality’ and ‘virtual reality’,
which accounted for almost 45% of all the analyzed texts. The number of publications for
each of the analyzed search terms was:

• In the area of augmented and virtual reality: 96 publications;
• In the area of system architecture: 41 publications;
• In the area of cybersecurity: 37 publications;
• In the area of data-driven decisions: 23 publications;
• In the area of Operator 4.0: 17 publications.

The analysis of the authors’ and scientific centers’ origins allows us to state that most
of the publications from the studied area come from the USA (24 papers), China, and Italy
(17 papers per country), Germany (15 papers), and three countries: Poland, Greece, and
the United Kingdom (UK) (10 papers per country). The regions of origin of the analyzed
publications’ authors are shown in Figure 19.
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annual number of publications has been about 30 or higher for the last five years, while in 
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The analyzed publications were limited in the second step of the adopted methodology
to those published during the last decade. The adopted limitation seems to be correct,
as the verification of the years in which subsequent articles were published indicates a
generally high increase in publication frequency from 2017. As shown in Figure 20, the
annual number of publications has been about 30 or higher for the last five years, while in
previous years, it did not exceed four articles per year. This suggests that the research issues
connected with Maintenance 4.0 are far from being exhausted, and its popularity among
researchers should be still rising. It is safe to say that further developments regarding this
field of knowledge will keep appearing in the near future.
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The publications on Maintenance 4.0 have appeared in many scientific databases.
The investigated 214 papers include 124 articles published in scientific journals, 22 book
chapters, and 68 papers published in international conference materials.

The investigated articles have appeared in 83 journals. Of the publishing titles, 50%
include one article. A detailed list of journals in which the analyzed research results were
published is shown in Figure 21. The journals in which at least two papers have been
published are presented. The analysis includes 50 selected articles from 12 journals.
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The most significant number of publications appeared in Economics, Management, and
Financial Markets (10 articles). Numerous publications can also be found in the International
Journal of Advanced Manufacturing Technology (9 articles) and the International Journal of
Advanced Manufacturing Technology (6 articles). Due to the significant diversity of topics
covered in the research field under study, there were also singled-out publications on
decision science (e.g., Computers in Industry), manufacturing engineering (e.g., International
Journal of Production Research), or sensors (e.g., Sensors).

The conducted biometric analysis also concerned identifying the most frequently used
keywords. The results of the conducted study are presented in Figure 22. Those keywords
were included, which occurred in the articles at least two times. This limitation made
it possible to identify 85 main keywords in 9 clusters. The largest cluster, “augmented
reality,” contains 14 items with 53 links and a total link strength of 111, whereas the second
cluster, “Industry 4.0”, encompasses 13 items, 57 links, and a total link strength of 152.
This indicates the main area of research to which the publications on Maintenance 4.0 are
devoted. It is worth noting the “smart factory” cluster, which has 27 links and a total link
strength equal to 47. The term smart factory is mostly in relation to such keywords as big
data, manufacturing, maintenance, and Industry 4.0.
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5. Systematic Literature Review of the Selected Papers within the Scope of the Application

The identification of the main problems and issues raised in the context of Maintenance 4.0
was based on an extensive review of the available literature. The prepared literature
analysis was also supplemented by review publications in the area of Industry 4.0 or
Maintenance 4.0 (e.g., works [17,38,42,80]) or reports in the field of Maintenance 4.0 and
PdM 4.0 (e.g., [10,53,108]). As a result of the research carried out, five primary research
areas were defined, which have been most extensively developed over the past few years.
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Additionally, the selected research areas appeared in review publications as those research
directions that will be mainly developed in the coming years from both a research and
industrial perspective (Figure 23). These are discussed in detail in the next subsections.
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Additionally, one of the investigated research areas is data storage and processing 
technologies. Here, big data applications are of utmost importance. An example of a big 
data application for predictive maintenance is presented in [115]. The paper presents chal-
lenges encountered when building the data value chain for predictive maintenance of a 
grinding machine in 5G-enabled manufacturing. The data-driven value chain is also in-
vestigated by Albert in his work [116]. 

Another interesting problem is investigated in work [117]. The authors focus on de-
veloping and testing a data-driven condition-based maintenance tool for enabling risk-
informed decision-making. The proposed approach integrates prior knowledge obtained 
from Preliminary Hazard Analysis–Fault Tree (PHA–FT) analysis with cyberspace de-
fined by data-driven knowledge of system conditions.  

Additionally, the data-driven decision-making process, presented in Figure 24, is 
also investigated by Graham for pharmaceutical manufacturing processes based on the 
effective use of a process analytical technology (PAT) methodology [118].  
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5.1. Data-Driven Decision-Making in Maintenance 4.0

The first research area under consideration is data-driven decision-making in Mainte-
nance 4.0. In this context, Maintenance 4.0 solutions are most easily characterized in terms
of the individual stages of the decision-making process (Figure 24).
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Data-driven models most common in the current evolution of Maintenance 4.0 solu-
tions are those based on statistics, pattern recognition, or artificial intelligence (AI) and
those based on machine learning algorithms. The application of sensors in smart factories
lies mainly in the area of control, emphasizing processes [17].

In this area, issues such as knowledge management (e.g., [109]), machine learning
(e.g., [22,88]), artificial intelligence (e.g., [110–112]), IoT technologies (e.g., [113]), or big
data analyses (e.g., [114]) are addressed.

Additionally, one of the investigated research areas is data storage and processing
technologies. Here, big data applications are of utmost importance. An example of a
big data application for predictive maintenance is presented in [115]. The paper presents
challenges encountered when building the data value chain for predictive maintenance
of a grinding machine in 5G-enabled manufacturing. The data-driven value chain is also
investigated by Albert in his work [116].

Another interesting problem is investigated in work [117]. The authors focus on
developing and testing a data-driven condition-based maintenance tool for enabling risk-
informed decision-making. The proposed approach integrates prior knowledge obtained



Sensors 2023, 23, 1409 28 of 55

from Preliminary Hazard Analysis–Fault Tree (PHA–FT) analysis with cyberspace defined
by data-driven knowledge of system conditions.

Additionally, the data-driven decision-making process, presented in Figure 24, is also
investigated by Graham for pharmaceutical manufacturing processes based on the effective
use of a process analytical technology (PAT) methodology [118].

At the same time, issues related to the design and implementation of so-called digital
twins are currently being developed very intensively. According to the definition, a digital
twin is “a digital copy of physical assets, processes and systems with static or dynamic charac-
teristics; often also a software term for creating virtual representations of physical systems and
simulating them” [119]. Digital Twins are a source of data that can improve the design of new
products, machines, or processes. They are also used for the ongoing analysis of existing
solutions to assess their capabilities, optimization, or verification of as-built documentation.
With their help, it is possible to simulate optimization opportunities, conduct sensitivity
analyses, or assess modification/expansion opportunities [120]. A literature review in
the area of the applicability of digital twins in complex control systems was presented in
the paper [121]. The digital twins’ implementation in the predictive maintenance area is
reviewed in [122]. The review of applications is provided in [123].

A literature review of the area under study indicates that the basic methods used in
decision-making in Industry 4.0 enterprises can be found in the works [61,124]. In addition,
a significant proportion of the publications that have been selected for the literature review
presented here focus on providing summaries of ongoing surveys and reports published by
consulting companies such as PwC. For example, the relationships between cyber–physical
systems (CPSs), AI-based decision-making algorithms, and big data-driven innovation
are surveyed in [125]. In addition, the problem of robotic wireless sensor networks and
real-time monitoring is studied in [126]. The survey works focus on the following:

• AI-based decision-making (see, e.g., [110,112,125]);
• Big data-driven decision-making (see, e.g., [127–130]);
• Business models and business processes optimization (see, e.g., [131,132]);
• Information systems and sensor networks for decision-making (see, e.g., [133–136]);
• Cyber–physical manufacturing systems (see, e.g., [136–138]).

5.2. Operator 4.0 to Support Balanced and/or Symbiotic Interaction between Humans
and Machines

The history of operators’ interaction with various industrial and digital manufacturing
technologies can be depicted as a so-called generational evolution (Figure 25). Operator
Generation 1.0 is defined as people doing ‘manual and skilled work’ with some support
from mechanical tools and manually operated machine tools. Operator Generation 2.0 rep-
resents people doing ‘assisted work’ with the support of computer tools, ranging from CAx
tools to NC operating systems (e.g., CNC machine tools), as well as enterprise information
systems. Operator Generation 3.0 embodies the human being engaged in ‘cooperative
work’ with robots and other machines and computer tools, also known as human–robot
collaboration. Operator Generation 4.0 represents the ‘operator of the future’, an intelligent
and skilled operator who does ‘machine-assisted work’. It represents a new philosophy of
designing and engineering adaptive manufacturing systems, emphasizing treating automa-
tion to enhance humans’ physical, sensory, and cognitive capabilities through integrating
cyber–physical systems. So, we are presently focused on new cyber–physical systems with
human participation—Human Cyber–Physical Systems (H-CPS), which are being designed
for the following purposes [45]:

• Improve the ability of humans to interact dynamically with machines in the cyber
and physical worlds through ‘intelligent’ human–machine interfaces, using human–
computer interaction techniques designed to match the cognitive and physical needs
of the operators’

• Improve humans’ physical, sensory, and cognitive capabilities using various enriched
and enhanced technologies.
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Both H-CPS goals are achieved through computational and communication techniques,
similar to human-in-the-loop (H-in-the-loop) adaptive control systems [45].

As a consequence of the introduction of Industry 4.0 technologies, new skills are
required from maintenance operators in terms of “enhancing physical, sensory and cognitive
capabilities and the ability to support major aspects of maintenance processes” [141].

This is aimed at fostering a socially sustainable environment for production workers in
the factories of the future, where “intelligent and skilled operators should not only perform
‘collaborative work’ with robots but also ‘assisted work’ by machines when needed through
human cyber-physical systems, advanced human-machine interaction technologies and
adaptive automation towards a ‘human-automation symbiosis’” [141].

In this context, Maintenance Operator 4.0 refers to an operator with the ability to
improve their own perception of the real world through augmented reality technology, ana-
lyzing digital data collected in collaboration with robots, with the consequent improvement
of maintenance tasks in the area of their execution and control [142].

The main issues in the literature in the context of the analysis of Maintenance Operator 4.0
mainly include:

The definition of core skills in the context of Industry 4.0 requirements (e.g., [143,144])
and operator training issues (e.g., [145,146]);

The relationship between CPS and maintenance tasks and the control role of the
human (e.g., [139,147,148]);

The ways in which CPS interacts with humans (e.g., [140,149]).
Additionally, studies are devoted to knowledge management within the smart opera-

tor domain (e.g., [150,151]). In another study [152], the authors focused on new technologies
implementation for Operator 4.0. They investigated the 5G-aided solutions’ influence on
necessary network infrastructure for the human–machine symbiosis in the smart factory.
The visual computing and simulation technologies implementation for Operator 4.0 was
investigated in work [153]. The role of Operator 4.0 in the context of logistics and trans-
portation systems was analyzed in [154] and continued in work [155], where intralogistics
activities in relation to the Operator 4.0 concept are discussed via case studies. Another
example may be the hybrid-augmented intelligence system developed in [156], where
the intelligent digital assistant interacts with experts and operators during predictive
maintenance performance.

As a result, the main challenge in this research area is how to steer the design and
deployment of the Maintenance 4.0 paradigm in enterprises in the context of integrating
people within CPS to achieve the desired goals.
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5.3. Virtual and Augmented Reality in Maintenance

Currently, the issue of the application of virtual/augmented reality solutions in
the maintenance field is gaining increasing importance. Thanks to the application of
augmented/virtual reality in maintenance, we can see a new perspective on the work
of the maintenance employee, where it is possible to superimpose 2D and 3D docu-
mentation on the actual machine in the field, helping the technician to carry out the
maintenance operation [157]. This means the online transmission of operating instruc-
tions and so-called virtual support in the process of disassembly/repair or component
replacement/reassembly [158–160]. Using this type of solution, we can reduce the risk of
individual failures/damages due to maintenance tasks carried out by a service technician
with little experience. In addition, the problem of employee learning by means of trial and
error is eliminated [161].

A literature review of the applicability of virtual/augmented reality in the maintenance
area can be found among others in the works [17,29,158,162]. The industry’s augmented
reality (AR) technologies are reviewed in [163]. The problem of integrating an AR system
with an available enterprise information system was analyzed, for example, in work [164].
The overview of managerial-focused applications of AR is presented in [165]. In addition,
the literature reviews focus on AR implementation in robotics (see, e.g., [166]), supply
chain management (see, e.g., [167]), shipbuilding industry (see, e.g., [168]), and smart
manufacturing (see, e.g., [169–172]). The AI technologies implementation possibilities in
AR are reviewed in [173]. A summary of the existing knowledge on AR-powered digital
twins is given in [174]. In addition, an overview of the current knowledge and future
challenges of augmented reality smart glasses (ARSG) for use by industrial operators
in presented in [175]. The authors focus on such categories as assembly instructions,
human factors, design, support, and training. The developments in virtual reality (VR) are
reviewed and summarized in [176,177], among others.

The main application fields of VR are mostly connected with (Figure 26) [176,178]:

• Industrial Maintenance and Assembly (IMA);
• Design and Prototyping (D&P) stages of the product/system development cycle;
• Collaborative Virtual Environment (CVE).
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In addition, the implementation of VR-based technologies should be discussed with
the applied knowledge-based approach to classify them by the type of contained and
presented knowledge about a product/system or a process [178]. Generally, we may
distinguish three levels of knowledge of industrial VR applications [178]:
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1. General knowledge: based on interactive product/system/process visualizations. As
an output, we may receive a virtual design of the investigated object;

2. Procedural knowledge: focused on process sequence presentations and interactive
machine manuals development;

3. Applied knowledge (practical skills), which includes machine operator training simu-
lators, “Virtual Factory” training, and ergonomics developments.

Following this, the IMA application field needs to be characterized. In this area, the
research focuses on VR training in relation to knowledge transfer and an increase in the
performance and accuracy of maintenance technicians [176]. A comprehensive literature
review on this area is given in [158].

The VR-based training for a manufacturing assembly process is presented in [179].
The authors propose the integration of training simulations with virtual reality to increase
assembly training effectiveness based on the “learning by doing” approach. The extension
of this work is given in [180], where the authors describe a process of building a virtual
training system for operators of production (assembly) workplaces in an intelligent factory.
The prototype of virtual training is dedicated to use by inexperienced operators of particular
stands and consists of an application (e.g., virtual environment, user interface) and specific
peripheral devices. In another work [181], the authors focus on manufacturability and
maintainability in the context of VR-based training implementation possibilities. They
introduce Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE),
which encompasses VR hardware, software, and a simulation manager. In addition, two
case studies demonstrate the VR training system’s ability for maintainability tests and
assembly analysis. The case studies were presented for an aircraft carriage and railway
coach cooling system. Another work focused on the development of VR-based training
system prototype for aviation maintenance is [182]. The solution helps practitioners in
the process of carrying out specific maintenance activities as removing and positioning
components into aircraft structures.

The problem of a VR-based ergonomic design process for the IMA task is investi-
gated in [183]. The authors provide a method to quickly build a virtual IMA scenario for
immersive simulation based on the traditional design platform DELMIA.

Another application area is the implementation of VR-based training for industrial
robots’ proper operation and maintenance. First, the aspect of VR technologies application
for machining industrial robots to improve the accuracy of teaching repetition is presented
in work [184]. Next, in work [185], the authors propose using VR to train the service and
maintenance of robots and robotic stations.

In addition, the investigation of teaching design and its influence on learning per-
formance in the operation training for CNC milling machine tools under a VR-based
environment is presented in [186]. The authors analyze the sequence- (traditional) and
context-based teaching designs.

The impact of VR on learning in the context of the safety training of power producer
companies is investigated in work [187]. An experiment was aimed at comparing VR
training with traditional classroom training.

Simultaneously, the problem of identifying how VR training technology can be im-
plemented in a generic operating cycle is investigated in [146]. Modular teaching is the
problem studied in [188]. In addition, a methodology to develop VR tutorials and training
courses for professional preparation in industrial jobs is given in [189]. An open approach
to knowledge formalization and management in virtual reality applications for use in
industry, especially for design and training purposes, is given in [190]. Subjective visual
vertical (SVV) and subjective visual horizontal (SVH) tests are investigated in [191].

The second VR application field is D&P. In this area, the VR has the potential to support
the design stage of the product development cycle via, among others, product testing
or maintenance/manufacturing process review. In this area, a comprehensive review
is presented in [192], where the authors investigate how VR supports different design
functions and how they can benefit from the different degrees of immersion and additional
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tools. This is complemented by the work [193], where the application of VR in the assembly
validation stage is presented. The authors present a developed assembly simulation to
validate the feasibility of virtual assembly models. The designed system integrates low-cost,
commercially available hardware to facilitate hand tracking and VR display. It is also worth
mentioning [194], wherein the authors focus on the development cycle of a production
system. The authors implement virtual reality (VR) into the virtual commissioning (VC)
method to verify the mutual interaction of signals between the simulation in the VR
environment, the digital model of the selected production system, and the control system.
They focus on a real production robotic system (assembly line).

The last application field of VR is CVE. Collaborative virtual environments are
computer-enabled, distributed virtual spaces where people can meet and interact with
others, with agents, and with virtual objects. In this area, we may distinguish two main re-
search problems investigated in the reviewed papers. First, the CVE supports synchronous
and asynchronous collaboration and may increase the quality of communication, knowl-
edge sharing, and interactions among stakeholders and multidisciplinary teams. In this
context, a virtual reality collaborative platform for remote teams able to work in a fully
equipped environment is presented in work [195]. The problem of the utilization of virtual
reality (VR) to facilitate the asynchronous collaboration of globally dispersed departments
involved in the pipeline of maintenance methods and documentation creation is under
investigation by the researchers in work [176]. The authors present the designed COVE-VR
platform, which was developed as an academia–industry collaboration and was evaluated
iteratively with subject matter experts.

Second, regarding CVE as a support for decision-making processes based on immer-
sive VR applications, the work in [177] presents one of the investigated problems in this
area. The authors review recent research on VR applications in Building Information Mod-
eling (BIM). They discuss the current status, use cases, technologies used, and relevant
future research in the field of AEC (Note: architecture, engineering, and construction)/BIM.

The use of digital twins and VR for decision-making processes in production systems
is presented in [196]. The authors propose a co-simulation and communication architecture
between the digital twin and virtual reality software to make optimal decisions during the
design of industrial workstations.

In another work [197], the authors introduce an architecture based on virtual reality
to evaluate the civil aircraft’s maintainability. The prototype system mainly focused on
accessibility during maintenance activities and was tested by importing digital 3D models
of Boeing 737 and A320.

Another aspect is the problem of VR application systems designing and develop-
ment. Following this, in work [198], the authors focus on VR technologies—their aspects
and limitations for supporting VR developers in creating VR industrial environments.
They analyze the VR technologies based on cost, reliability, or usability criteria, among
other considerations. The continuation of this problem is given in work [190], where the
authors focus on a selected aspect of a methodology of building open VR systems and
applications—knowledge formalization and management in industrial VR apps. In an-
other study [199], the authors propose a distributed system monitoring tool based on VR
technology. The paper discusses the design and implementation of the proposed tool and
verifies the technical feasibility for further distributed system monitoring applications.

One can also identify the works focused on both AR and VR implementation. A
qualitative literature review focused on investigating the current state of these two innova-
tive technologies and their practical application in industrial systems is presented in the
works [200,201]. AR and VR are compared in [202–205]. A methodology that helps pro-
grammers to build virtual and augmented reality systems for a broad number of industrial
plants is given in [206]. In addition, an overview of the opportunities for using VR and AR
in a standardized value chain in various industries is presented in [207].

In work [208], the authors introduce the AR-based environment to support the vir-
tual user during the assembly process. The use of AR and VR in a dynamic welding
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environment is given in [209]. Additive manufacturing (AM) and augmented reality tech-
nologies for supporting the workflow of producing special components are provided in
work [210]. Next, in the work [211], a virtual and augmented reality in the lifecycle of
semi-trailers is presented. At the exploitation stage, they support users in activities realized
by operators (drivers) and service technicians. Another interesting work focuses on mixed
reality applications to monitor the data of a fuel cell’s spatially resolved current density
distribution [212]. In the presented case, the fuel cell represents a machine that delivers
sensor values, whereas a HoloLens is the monitoring application. The use of AR with a
digital twin in the area of predictive maintenance is given in work [213]. In addition, the
method to visualize digital twin data by using AR technology in a real environment is
presented in work [214].

Additionally, we may distinguish a growing number of research works focused on
AR applications. Recent overviews of AR implementation possibilities in the industry
sector and key success factors are given in [171,215,216]. The overview of AR technical
components and their practical application in the industry (especially in manufacturing,
maintenance, assembly, training and collaborative operations) is presented in [217,218].
Works focused on comparing traditional and AR-based learning are [219,220]. The dis-
cussion of AR technologies’ implementation possibility in decision-support processes is
presented in [221].

The AR-based technologies implementation for ultrasonic pipework inspection is pre-
sented in [222]. The proposed solution is to improve the learning curve in non-destructive
ultrasonic testing and to decrease the costs involved in traditional training. The discussion
of AR-based technologies implementation for pipes operation and maintenance in the
HVAC&R industry is given [223].

The AR-based solution that supports visual inspection performance on a production
line is presented in [224]. The application was developed in the automotive industry. An
application of acoustic processing of conditioned machine sounds and operation-related
data is given in [225].

The introduction of a generic use case in the context of retrofitting and visualization of
the data for real-time monitoring using a web-based AR application is given in [226].

The use of AR to help operators in the correct understanding of a plant and to retrieve
useful information about the plant (e.g., machines layout, history of maintenance) is given
in [227]. The main task is to augment the Piping and Instrumentation Diagrams (P&ID) of
a selected plant/group of plants. This problem is later extended in work [227], where the
authors compare the AR application with the currently applied practice, based on paper
documentation, for an information retrieval task within a maintenance procedure.

The analysis of possibilities of the practical application of modern AR solutions in
the industry, with a particular focus on remote support for maintenance operations and
training of production employees, is given in [228]. Two experiments are described to
determine the impact of various environmental conditions on the possibility of using AR
Remote Support.

A solution for remote maintenance based on off-the-shelf mobile and AR technologies
is provided in [229]. The proposed application allows for the remote connection of a skilled
operator in a control room with an unskilled one located where the maintenance task has to
be performed. The AR application possibilities to support remote maintenance as a service
in the robotics industry are given in [230]. The main objective of this paper is to develop
an internet-based, service-oriented system that implements AR technology for enabling
tele-maintenance by the cooperation of the end user and the manufacturer. In another
work [231], the authors focus on AR-based remote maintenance processes supported by
cutting-edge optical head-mounted display technology. The proposed solution is based on
the remote connection between a maintenance worker who wears the HoloLens and an
expert who observes the live-stream video on a laptop. The expert provides advice orally
or via 3D virtual annotations that are transferred back to the maintenance worker.
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Examples of the use of AR include bus maintenance systems (e.g., [232]), power plant
maintenance (e.g., [233]), railway systems (e.g., [234]), and military systems (e.g., [235]). The
concept of a system for assisting diagnostic processes using AR technology was presented
among others in works [236,237]. An example of a platform used in the training process
of service engineers based on virtual reality is shown in work [238]. The AR application
concerning workforce skills is given in [239].

In addition, other AR-based application areas include education engineering (e.g., [240,241]),
manufacturing processes performance (e.g., [242–245]), assembly workstations support
(e.g., [246–249]), flexible manufacturing systems layout planning (e.g., [250]), product in-
spection during the design process (e.g., [251]), learning and training of 3D printing process
(e.g., [252]), construction industry (e.g., [253,254]), AR application selection framework
process (e.g., [255]), and logistics operations (e.g., [256]).

Finally, worth mentioning here is also that such systems have recently become very
expensive, and there is the problem of battery durability (limiting the use of solutions
in practice). In addition, the use of such a solution requires the company to invest in
a machine diagnostic system, build a 3D model of the machine, develop and introduce
assembly/disassembly instructions and all the information about individual machine
components so that they are available to the service technician during maintenance [159].

5.4. Maintenance System Architecture

In the given research area, the authors of the publication focus primarily on the
problem of designing cyber–physical systems, taking into account the essential elements
and potential organizational and technological solutions that allow efficient and economical
operation in Industry 4.0 organizations. CPS is defined as integrating computational and
physical capabilities that can interact with humans through many new modalities [257].

Problems are considered in the context of both vertical and horizontal integration.
At the same time, cyber–physical systems and their architecture include elements such as
(Figure 27) [257]:

• Sensor network;
• Real-time data transmission;
• Data centers;
• Control centers;
• Control systems;
• System users.
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CPS is characterized by close interconnection and coordination between networked

and physical systems. Through the integration and in-depth collaboration of computing,
communication and control (3C) technologies, CPS can provide real-time sensing, control
and information services to large engineering systems [84]. This problem is particularly
developed in the works [84,257–259]. Additionally, in work [260], the authors review
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and summarize the differences between CPS’s traditional centralized and hierarchical
architectures, which rely on decentralized decision-making and control. The concurrency
and synchronization problem in CPS is reviewed in [261]. A short survey regarding the
concept, architecture, and challenges for deploying cyber–physical systems within the
concept of Industry 4.0 is then presented in [262]. The problem of knowledge-based
systems and their architecture is also overviewed in the work [263].

The problem of CPS architecture designing based on the Lean Six Sigma approach is
reviewed in work [264]. The 8 C architecture, i.e., connection, conversion, cyber, cognition,
coalition, customer, and content, is applied for conducted review.

Another problem in this area is connected to IoT system architecture. This aspect of
CPS is investigated in works [265–270]. In work [266], the authors review four main IoT
architectures, namely (a) IoT identity management architecture, (b) IoT edge computing
solution architecture, (c) IoT information modeling and management architecture, and
(d) autonomous industrial IoT communication architecture. They also define the main
limitations of the existing studies.

The IoT systems architecture in the context of digital twins designing is investigated
in work [267]. The main architectural aspects, such as internal structure or runtime envi-
ronment, are discussed.

The IoT architecture security is also one of the important aspects being investigated
recently. In work [265], the authors focus on security-based IoT architecture analysis. In
addition, the authors in [269] review IoT ecosystems and the possibilities of their security
improvement based on new technologies (e.g., blockchain, AI, ML) implementation.

The application of IoT architecture is presented in [270], where the authors focus on
an organic rankle cycle turbine. Another work [268] summarizes the relations between CPS
and IoT.

The next problem regarding the CPS architecture is connected with the require-
ments for cloud computing implementation. The cloud-based CPS are investigated in
works [271–275]. In work [271], the authors focus on cloud-based applications in the
context of data sharing and computing resource availability. The new federated cloud
computing model is presented. In another work [272], service-oriented architecture is intro-
duced. The proposed service architecture attempts to cover the basic needs for monitoring,
management, data handling, and integration by considering the disruptive technologies
and concepts that could empower future industrial systems. The cloud-based industrial
automation system architecture is, in turn, introduced in work [273]; the author bases on
networked control systems (NCS), industrial control theory, and computing theory imple-
mentation. The last paper in this area focuses on developing software system architecture
based on model-based system engineering (MBSE) and cloud computing. This system
architecture’s building process follows the ISO/IEC/IEEE 42010 and federal enterprise
architecture framework. An interesting view of cloud-based maintenance services is pre-
sented in [275]. The main problem here is properly managing maintenance data concerning
stakeholder groups.

Another investigated problem is connected with big data and the ML approach im-
plementation for CPS architecture. The data-driven issues in CPS are investigated in
works [276–278]. A big data architecture for Industry 4.0 is introduced in work [278].
The authors describe its main layers and components, supporting data collection, inte-
gration, storage, processing, analysis, and distribution. This problem is later extended in
work [277], where the authors analyze the implications of the inclusion of ML components
into traditional anomaly detection systems in relation to IT system architecture. In the
last work [276], a data-based SAE–SVM (Serious Adverse Event-Support Vector Machine)
approach is proposed to diagnose transmission faults for multi-joint industrial robots. The
proposed solution is based on a deep learning approach implementation.

Moreover, recent developments focus on AI and virtual reality implementation (see
works [279–281]). Here, the investigated issues regard:
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• Designing a novel cognitive architecture for artificial intelligence in cyber–physical
production systems [279];

• A six-layer digital twin architecture with upstream and feedback flows [280];
• Designing a middleware system architecture that can automate X-Reality (XR) systems

configuration and create tangible in-site visualizations and interactions with industrial
assets [281].

Worth noting are also works focused on special reference architecture models’ pre-
sentation and implementation. Here, such system architecture models and approaches
like Reference Architecture Model Industry 4.0 (RAMI 4.0) or Industrial Internet Reference
Architecture (IIRA) are introduced.

The RAMI 4.0 model’s use and implementation possibilities are presented in works [282,283].
First, in work [282], the authors introduce a domain-specific systems engineering ap-
proach using a Domain Specific Language (DSL) based on the results of this reference
architecture. Later, in work [283], the authors review multi-agent systems design patterns
based on, among others, RAMI 4.0 requirements. The IIRA (Industrial Internet Reference
Architecture) model is investigated in work [284], where the author focuses on autonomic
CPS for Industry 4.0.

The published works also address issues related to the safety or reliability of the
designed architecture systems. The safety aspects of CPS architecture are analyzed in [285]
in the context of dynamic safety assurance for Industry 4.0 technologies. In another
work [286], the resilience aspect of CPS architecture is investigated. The authors propose a
design method for a resilient architecture of a cyber–physical production system that can
deal with disturbances and failures in a discrete-event process. The reliability issues of CPS
architecture are investigated in [287]. The authors focus on a communication-based train
control system and its reliability evaluation.

The CPS architecture implemented in maintenance is defined as another research prob-
lem investigated in the reviewed literature. The main aspects regard: the implementation
of a reference architecture for cyber–physical systems (CPS) to support the condition-
based maintenance (CBM) of industrial assets [288], the designing of industrial control
system architecture for large-scale industrial and infrastructure construction projects [289],
self-aware machines development and support [290,291], predictive maintenance system
architecture [292,293], manufacturing process scheduling and control [294], an industrial
event-driven architecture implementation [295], and key performance indicators for CPS
development [296].

Additionally, few works focus on some special applications of CPS with an investiga-
tion of system architecture. For example, a warehouse management system architecture
based on IoT implementation is presented in [297]. The implementation possibilities are
described for a textile company. Reconfigurable manufacturing supply (RMS) chain archi-
tecture for ensuring rapid and autonomous reconfiguration of production systems while
considering unpredictable supply-chain factors and their impacts on production capacity
and operational/energy cost is investigated in work [298]. It is also worth highlighting the
work [299], where the authors presented the concept of Smart Innovation Engineering (SIE)
that enhances the product innovation process in a manufacturing company.

5.5. Cybersecurity in Maintenance

Cybersecurity is becoming a key aspect of operational technology (OT) in the con-
text of digitalization and the development of industrial networks. This is confirmed by
a number of studies and reports dedicated to the topic and published in recent years
(e.g., [300–303]). A brief overview of the main Industry 4.0 technologies and paradigms
concerning cybersecurity aspects is given in the work [304].

According to the Industrial Cybersecurity Centre (CCI) [305], industrial cybersecurity
is “a set of practices, processes and technologies designed to manage cyber risks arising from the
operation, processing, storage and transmission of information used in industrial organizations and
infrastructures, using a people, process and technology perspective”.
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The stages of development of cybercrime and the most significant cyber-attacks that
have taken place in recent years are identified in work [306]. Thus, the cybersecurity strate-
gies built in a company should be fully integrated from the outset with its organizational
strategy and information technology and provide secure, proactive, and resilient IT solu-
tions. Therefore, these strategies are currently built at three key levels: device, industrial
network, and device security management (Figure 28). The impetus for the development
of solutions related to cyber risk in business was provided by, among others, the EU Cyber
Security Directives (NIS and NIS2) [307,308] and the Polish Act on the National Cyber
Security System (KSC) [309]. Specific standards have been defined in some industries,
such as the VDA ISA/TISAX for the automotive industry. On the management level, on
the other hand, international standards such as ISO 27001 [310] or ITIL/ISO 20000 [311]
are used.

In addition, every country develops its cyber security strategy to define and institu-
tionalize the national cyber security system. This strategy covers the national documents
explaining what should be performed to achieve a high common level of network and
information systems security. The cybersecurity strategies developed in the selected EU
countries and NATO members are reviewed in work [312].
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According to CGI [300], countering cyber threats requires a holistic approach based on
three basic steps: (1) identify and evaluate (assess), (2) monitor, and (3) control and secure
(Figure 29). These steps are designed to help organizations achieve a mature level of cyber
security, secure their most valuable assets, and ensure business continuity.
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Following this, the key issues currently addressed in the literature include:

• Cyber risk analysis and assessment (cyber risk evaluation) (e.g., [314–317]);
• Cyber vulnerability assessment (e.g., [318–321]);
• Resilience to cyber-attacks (e.g., [322]);
• Safety aspects of digitalized CPS (e.g., [323–325]).

The problem of cybersecurity in Maintenance 4.0 is also investigated concerning the
main requirements for information security from an engineering perspective [326]. The
author focuses on four engineering-related requirements for achieving security: security
requirements elicitation, security analysis, security design, and security validation. The
systems engineering approach for cybersecurity analysis is also used in work [327]. The au-
thors determine the body of knowledge for creating a postgraduate cybersecurity module.

The reviewed literature also focuses on the primary Industry 4.0 technologies and their
cybersecurity [328–334]. An overview of the leading enabling technologies in Industry 4.0
and possible cybersecurity threats to them is presented in [331]. Key security issues related
to the implementation of IoT are investigated in works [328,329,333]. Cloud computing
security and big data are analyzed in [330,332,334].

The decision-making support system developed for system analysis and searching
of optimal versions for cyber security facilities placement of an enterprise or organization
distributed computational network (DCN) is given in [335]. The data-driven manufacturing
processes and their cybersecurity is investigated in [336]. The manufacturing information
architecture and its security is discussed. This problem is also extended in work [337], where
interoperability services are investigated. The requirements of cybersecurity information
exchange are defined.

The problem of human factor security in IoT systems was deemed worthy of inves-
tigation and analysis in work [320]. The authors focus on socio-technical dimensions in
relation to industrial environment cyber security improvement possibilities.

Additionally, few works can be identified focused on cybersecurity for specific sys-
tems. For example, in work [338], the authors investigated aviation cybersecurity. They
overview known frameworks to determine the current maturity status at the international,
regional (the European Union), and national (the Republic of Poland) levels. In addition, in
work [339], the authors address the cybersecurity issues of autonomous haulage systems
(AHS) in the mining industry. They investigate AHS cybersecurity in relation to communica-
tion challenges, cybersecurity, and safety. Robotics cybersecurity is reviewed in work [319].
The authors focus on the main security vulnerabilities, threats, risks with their impacts, and
the main security attacks within the robotics domain. The robotic/mechatronic systems
cybersecurity is also reviewed in work [322]. The authors focus on the problem regarding
the possibility of cyber-attack detection. For this purpose, they developed a laboratory
stand devoted to the design of Industry 4.0 technologies. The extension of this work is
given in [340], where the authors focus on detecting anomalous behavior in cyber–physical
devices caused by threat models based on Stuxnet-like and BlackEnergy-like malware.

The safety aspects of digitalized offshore oil and gas production systems are reviewed
in work [323]. In the work, five principal attributes related to the cybersecurity of safety
instrumented systems (SIS) are investigated and carefully reviewed, namely: governing
standards and regulatory frameworks, risk intelligence, barrier design, continuous revision
and management, change control, surveillance, and system resilience, and industry sector-
specific cybersecurity culture. The impact of cybersecurity attacks on power systems is
investigated in [341].

In addition, supply chain cybersecurity is reviewed in work [342]. The authors focus
on such aspects as network security, information security, web application security, and IoT.
E-governance and its cybersecurity is the subject of interest to the authors of [343].

For a summary of cybersecurity issues, see the article [344]. The cybersecurity per-
spectives for AR and digital twins are reviewed in the work [174], whereas AI aspects are
summarized in work [345]. Machine learning and cybersecurity aspects are reviewed in
work [346].
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6. Discussion

The main goal of this article is to provide a complete review of the existing literature
to present an up-to-date and content-relevant analysis in the area of Maintenance 4.0 main
application fields. Two hundred fourteen articles that satisfied the defined selection criteria
were compiled, which allows answering the stated research questions.

RQ1 intended to discover the leading trends in Maintenance 4.0 approaches and
investigate their evolution over the last decade. The main research outputs here are
discussed broadly in Sections 5.1–5.5.

In the defined five application areas, the scope of issues covered is very complex,
ranging from the presentation of technological solutions dedicated to predictive
maintenance/Maintenance 4.0 to issues related to the analysis of acquired data and the
need to make complex operational decisions. There are a number of papers concerning
topics that are primarily related to the key terms of sensors, smart factories, deep machine
learning, the Internet of Things, or big data analytics. The smart factories’ maintenance
processes are mostly based on digitalization, data-driven manufacturing, and digital twins.
According to the literature review, the application field that has been most extensively devel-
oped in recent years is VR-based and AR-based technologies in maintenance. Over the last
ten years, we have selected 96 publications devoted to the problems of VR/AR-based train-
ing systems development, VR/AR-supported production development cycle processes,
or Collaborative Virtual Environment areas. On the one hand, a lot of work aimed at
dedicated solutions for production and maintenance process support for various industry
sectors was highlighted. On the other hand, the clear industrial demand for this type of
solution indicates that this research area will continue to be widely developed in the future
in the context of technological (hardware) or software solutions.

The conducted systematic analysis of the selected literature makes it possible to answer
the second research question.

RQ2 intended to discover the future research directions and perspectives in Mainte-
nance 4.0 selected application fields.

One of the main identified knowledge gaps is the automation of diagnostic procedures
and methods in the context of large amounts of data generation. This process drives the
need for the development of more complex and sophisticated methods of autonomous
analysis of condition-monitoring data. As a result, the big data analysis methods sup-
ported by various AI-based solutions will be one of the main challenges in both scientific
and practical terms. Another issue in this context is connected with the operators’ skills
necessary to realize the full potential within the gathered data. In addition, the problem
of data acquisition concerning the required infrastructure to record and transmit data
to maintenance engineers will also constitute one of the biggest challenges of today’s
industry sectors. The last challenge in this area is uncertainty at various maintenance
decision-making stages. Here, the detection stage (signal processing), diagnostics, and
prognostics are strictly affected by epistemic and ontological uncertainty regarding, among
others, the operational environment, measurement errors, and modeling of degradation. In
addition, the maintenance decision-making process should also be investigated regarding
the availability and (long-term) reliability of sensors in manufacturing plants. Not every
plant has the same data capture and storage capabilities.

At the same time, a key issue is properly selecting intelligent sensors for smart factories
in designing proper predictive maintenance systems that allow for efficient decision-making
processes. There is a wide range of available sensors in the market, and the appropriate
decision-making process based on adequately defined criteria is one of the knowledge
gaps. The well-known approaches are mainly based on four criteria: cost, flexibility, size,
and sensitivity.

In the context of the identification of the leading research gaps, the issues of knowledge-
based solutions and data-driven techniques will constitute one of the future research
development directions in the area of PdM 4.0. Here, one of the knowledge gaps is the
integration of data-driven techniques with VR/AR-based solutions and data gathering
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and analysis issues with the support of cloud-related technologies. Moreover, despite the
growing interest in machine learning techniques and digital twins’ application in predictive
maintenance, there is still room for development in anomaly detection (abnormal patterns
and events).

Another research gap may be connected with developing new performance models in
maintenance focused on the new concept of “Machine as a Service”. This concept uses con-
nectivity with industrial IoT touchpoints to deliver information about real-time operations
to extend the machine’s capabilities to meet business-wide goals. A new concept will be
developed in the future in the context of maintenance management, product optimization
opportunities, or new business models definition.

Finally, based on the presented overview, it can be concluded that these issues will
evolve both in the literature and in practice towards providing more precise and faster
diagnostic systems, allowing companies to take the right action in even shorter decision-
making times. In this context, one will see the rise of augmented and virtual reality-
based solutions as a new form of communication between operators and maintenance
engineers. Devices such as smart glasses allow engineers to create a digital representation
of faults/failures and diagnose machine conditions with greater detail and reliability.
Digitization and the increasing use of big data technologies will provide greater connectivity
between machines and equipment and allow cost-effective decision-making. Ensuring an
adequate level of cybersecurity in the modern smart factories of the future will remain a
fundamental challenge.

At the same time, when looking at Industry 4.0 and Maintenance 4.0, it is also essential
to consider the new challenges facing companies. In 2021, the European Commission
officially presented a report: Industry 5.0: Towards a sustainable, human-centric and resilient
European industry [347], introducing the new concept of Industry 5.0. According to the
report, Industry 5.0 complements the existing concept of Industry 4.0 by emphasizing
the importance of research and innovation as drivers of the transition to a sustainable,
human-centered, and resilient European industry (Figure 30). A review of these three
leading characteristics of Industry 5.0 was provided in [348]. A preliminary survey-based
tutorial on potential applications and supporting technologies of Industry 5.0 is presented
in [349]. The first attempt to investigate the relations between human-in-the-loop-based
maintenance framework and physical asset resilience can be found in [350].
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7. Conclusions

This paper presented the performed meta-analysis and systematic review that ad-
dresses the issues of Maintenance 4.0 in the context of the main application areas. The
discussion of specific application areas is provided through the analysis of 214 recent papers
and a macro-view of publication trends in the overall state-of-the-art. In addition, the main
research and knowledge gaps are discussed to identify the main trends and challenges
facing the Maintenance 4.0 technologies development.

The presented work suffers several limitations, mostly related to the reviewing method-
ology assumptions connected with publication collection, searching strategy, and filtering
criteria. The search strategy is biased by the problematic key term “predictive mainte-
nance”, which was omitted in the search engine. The term predictive maintenance is not
interchangeable with “Maintenance 4.0” in the same meaning. In addition, the literature
related to medicine, health issues, or environmental aspects is omitted in the conducted
overview analysis. The authors focused on manufacturing and production-related publica-
tions only. Moreover, the conducted literature analysis does not consider the quality of the
investigated publications based on times cited. The authors present only the most cited
keywords in their bibliometric analyses.

Moreover, it is worth noting here that topics concerning Industry 4.0 in maintenance have
rapidly evolved, especially in particular industry sectors. The presented literature overview
provides a general macro-view without considering the specific characteristics of individual
industrial sectors. In this regard, it should be noted that the development of the Maintenance
4.0 concept in various industrial sectors, such as the mining industry, is characterized by its
dynamics and the complexity of the proposed solutions and research trends.

The authors recommend that a more exhaustive literature review, especially related
to domain-specific areas, should be performed for future work. Furthermore, topics such
as sustainable maintenance systems or the mitigation of environmental impacts related to
new technologies implementation may require further exploration. Another interesting
research direction may be connected with new business model development. In this area,
such concepts as “Machine as a Service”, “Software as a Service”, “Software as a Service”
are other trends suitable for future research.
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AR Augmented reality
ARSG Augmented reality smart glasses
BIM Building Information Modeling
CAGR Compound Annual Growth Rate
CAx Computer-aided technologies
CBM Condition-based maintenance
CCI Industrial Cybersecurity Centre
CM Corrective Maintenance
CNC Computerized Numerical Control
CPS Cyber–physical system
CVE Collaborative Virtual Environment
eM e-Maintenance
DCN Distributed computational network
DL Deep learning
D&P Design and Prototyping
DSL Domain-Specific Language
GPS Global Positioning System
H-CPS Human Cyber–Physical System
HVAC&R Heating, Ventilation, Air Conditioning, and Refrigeration
IM Intelligent maintenance
IMA Industrial Maintenance and Assembly
IIoT Industrial Internet of Things
IIRA Industrial Internet Reference Architecture
IoS Internet as a Service
IoT Internet of Things
IT Information Technology
MBSE Model-based system engineering
ML Machine learning
MR Mixed reality
NC Numerical Control
NCS Networked Control Systems
OEE Overall Equipment Effectiveness
OT Operational technology
PAT Process analytical technology
P&ID Piping and Instrumentation Diagrams
PdM predictive maintenance
PHA Preliminary Hazard Analysis
PHM Prognostic Health Management
PM Preventive Maintenance
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PwC PricewaterhouseCoopers
RAMI Reference Architecture Model Industry
RMS Reconfigurable manufacturing supply
RUL Residual lifetime
SAE Serious Adverse Event
SIE Smart Innovation Engineering
SIS Safety Instrumented Systems
SLR Systematic literature review
SM Smart Maintenance
SME Small- and Medium-sized Enterprises
SVH Subjective visual horizontal
SVM Support Vector Machine
SVV Subjective visual vertical
VC Virtual commissioning
VR Virtual reality
VR-MATE Virtual Reality for the Maintainability and Assemblability Tests
WoS Web of Science
XR X-Reality
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