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MAIZEROUTER: Engineering an
Effective Global Router

Michael D. Moffitt

Abstract—In this paper, we present the complete design and
architectural details of MAIZEROUTER. MAIZEROUTER reflects
a significant leap in progress over existing publicly available rout-
ing tools yet relies upon relatively simple operations, including
extreme edge shifting, a technique aimed primarily at the efficient
reduction of routing congestion, and edge retraction, a counter-
part to extreme edge shifting that serves to reduce unnecessary
wirelength. We present enhanced variations of these operations
to enable the rapid exploration of candidate paths, along with
a form of dynamic cost deflation that provides our various path
computation procedures with progressively more accurate (and
less optimistic) cost information as search continues. These al-
gorithmic contributions are built upon a framework of interde-
pendent net decomposition, a representation that improves upon
traditional two-pin net decomposition by preventing duplication of
routing resources while enabling cheap and incremental topolog-
ical reconstruction. Collectively, these operations permit a broad
search space that previous algorithms have been unable to achieve,
resulting in solutions of considerably higher quality than those of
well-established routers.

Index Terms—Algorithms, design automation, optimization,
routing.

I. INTRODUCTION

G LOBAL routing is a critical step in modern very large

scale integration physical design. Its importance has re-

cently been cast into the limelight with the IEEE Council on

Electronic Design Automation-sponsored Global Routing Con-

test [30], a competition that attracted nearly a dozen academic

and industrial participants from around the globe. As reported

in EE Times [9], contests such as these serve as an important

bellwether of urgent problems in Electronic Design Automa-

tion, as well as a showcase for state-of-the-art algorithms and

solutions.

Despite increased attention to the problem of global routing,

there remains little consensus as to what techniques contribute

to a truly successful routing engine. This can be seen not only in

the wide range in solution quality of entries to the competition

but also in the broad spectrum of algorithms that have been pro-

posed in recent years. A survey of conventional approaches to

global routing reveals a variety of methods, ranging from tradi-

tional maze-based algorithms [12] to flow-based techniques [1],
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to integer linear programming (ILP) formulations [5], and to

congestion-driven Steiner tree generation [22]. The choice of

algorithm has a dramatic effect on competing qualities of the

solution (i.e., overflow and wirelength), as well as the runtime

incurred by the solver.

Of equal importance to the design of an effective global

router are the various data structures and elementary atomic

units used “under the hood” to model and maintain a partial

(or complete) solution. For instance, several academic routers

require a strict decomposition of Steiner trees into two-pin

nets, while others instead operate directly on an explicitly

defined topology. Surprisingly, little attention has been paid in

the literature to the mechanisms needed to manipulate these

representations dynamically during the course of a global rout-

ing algorithm. This is due, in part, to limitations imposed by

previous global routers on the flavor of manipulations allowed.

In particular, topological reconstruction is usually avoided at

all costs, a design decision that simplifies the construction of

algorithms but severely curtails the freedom of the routing

engine.

In this paper, we reveal the complete design and architectural

details of MAIZEROUTER [20], a novel state-of-the-art multi-

layer global routing algorithm that took First Place in the 3-D

track of the inaugural Global Routing Contest held at the

International Symposium on Physical Design (ISPD) 2007. At

the highest level, the design of MAIZEROUTER draws primarily

upon two complementary edge-based operations:

• extreme edge shifting: a simplification and generalization

of edge shifting [22] that has been enhanced to restructure

Steiner tree topologies, providing particularly effective

support for congestion reduction;

• edge retraction: a counterpart to extreme edge shifting

that reduces unnecessary wirelength by safely sliding tree

segments into areas where overflow has been eliminated.

We generalize these operations to enable the rapid explo-

ration of candidate paths, and expose parallels between our

methods and the practice of pattern routing. We also propose

an application of dynamic congestion amplification [10] to

the powerful logistic function used in [22], serving to balance

the tradeoff between wirelength and overflow as a function of

runtime.

These algorithmic contributions are situated atop a frame-

work of interdependent net decomposition, a model that

improves upon traditional two-pin net decomposition by pre-

venting duplication of routing resources while enabling cheap

and incremental topological reconstruction. We introduce two
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Fig. 1. Bin decomposition and grid graph of the global routing problem
formulation. (a) Global bin decomposition. (b) Corresponding grid graph.

mechanisms needed to adequately maintain this internal repre-

sentation:

• garbage collection: a process whereby leftover routing

segments produced by our edge-based operations are re-

moved from the solution;

• net defragmentation: a means to consolidate adjacent

routing segments for the purpose of wirelength recovery.

Collectively, these operations permit a broad search space

that previous algorithms have been unable to achieve. Com-

bined with a moderate amount of traditional maze routing,

our algorithm is shown to surpass previous routers in solution

quality and remains extremely competitive in runtime. On the

ISPD ’98 benchmarks, MAIZEROUTER achieves zero overflow

(i.e., full routability) on all ten instances, running an average

of 7.8× faster than BoxRouter and producing 1.84% shorter

wirelength. In addition, a reduction in wirelength of 2.73%

is observed over FastRoute 2.0. Competitive results on the

ISPD ’07 benchmarks are observed as well.

The remainder of this paper is organized as follows.

Section II covers preliminary background on global routing, in-

cluding a basic problem formulation, previous algorithms, and

leading solvers. Section III introduces our algorithm, namely,

MAIZEROUTER, and its principle algorithmic components.

In Section IV, we expose the underlying representation that

MAIZEROUTER uses to encode and manipulate its routing

solutions, along with the basic procedures for maintaining this

structure. In Section V, we present an empirical comparison of

algorithms. We also provide a complete and thorough summary

of the Global Routing Contest, including performance statistics

of all entries to the competition. We briefly describe future work

in Section VI and end with concluding thoughts in Section VII.

II. BACKGROUND

A. Global Routing: Problem Formulation

The problem of global routing can be characterized as fol-

lows. There is a grid graph G specifying a set of vertices V

and a set of edges E. As shown in Fig. 1, each vertex vi ∈ V

corresponds to a particular rectangular 3-D region (or cell)

of the global routing resource grid, and each edge eij ∈ E

corresponds to a boundary between adjacent vertices (with a

maximum allowable resource mij). There is also a set of nets

N , where each net ni ∈ N is composed of a set Pi of pins (with

each pin corresponding to a vertex vi). A solution is a mapping

of nets to routes, in which each route connects all the pins of a

net using the edges of the graph G.

When evaluating a routing solution (or, for that matter, a

routing engine), one is typically concerned with three metrics.

Overflow refers to the total amount of demand that exceeds

capacity over all edges [16]. As it directly corresponds to

the routability of the design, overflow is desired to be as

small as possible (ideally zero). Wirelength is the combined

length of segments needed to route all nets and should also

be minimized. In 3-D routing, this calculation can also in-

clude special costs for vias, the wires used to connect routing

segments between consecutive layers of metal. Finally, one is

almost always concerned with the runtime needed to construct

the solution. This is particularly true in cases where global

routing is repeatedly used to guide a placement algorithm

[24]. Global routing is a textbook example of a multiobjec-

tive optimization problem, in which the relative importance

of the individual criteria depends heavily on the context in

question.

B. Global Routing: Basic Algorithms

As is the case with many large-scale optimization problems,

a wide variety of algorithms have been proposed for global

routing [12], [26]. Here, we briefly review the most well-known

and successful techniques and solvers, focusing particularly on

those methods that directly relate to our proposed contributions.

Maze routing is a grid-based search algorithm that has long

held a reputation as a brute-force approach to routing, con-

necting pairs of source and target locations using the shortest

possible path (with respect to an arbitrary cost function). Naïve

implementations typically employ Breadth First Search (BFS)

or Dijkstra’s algorithm, whereas A∗-style approaches (using,

for instance, the Manhattan distance between two points as an

admissible heuristic) often perform significantly better.

Pattern routing [16] considers a significantly smaller number

of paths than does maze routing, in an attempt to increase

the speed of the routing algorithm. Simple patterns (such as

one-bend L shapes and two-bend Z shapes) allow substantially

fewer grid edges to be examined. However, pattern routing

offers no guarantee on the optimality of the chosen path and

must typically be used in conjunction with some amount of

maze routing to generate solutions of adequate quality.

After the initial routes for a set of nets have been determined,

they may be repeatedly torn apart and reassigned in an iterative

repair framework known as Ripup-and-Reroute (R&R). R&R

strategies often differ by the order in which to visit nets, as this

ordering may significantly impact the allocation of resources.

Among the more exotic approaches to global routing is its

reformulation as a multicommodity flow problem [1]. Here, the

flow problem is used to solve a linear programming relaxation

of global routing, whose dual solution provides a lower bound

on the optimum maximum relative congestion.

Due to the computational expense of global routing, some

have explored the use of probability-based congestion pre-

diction [14], [19], [27], [28] in an effort to help placement

algorithms anticipate which regions of the chip will present the

most difficult areas for routability. Although recent work has

cast doubt on the usefulness of this technique [29], it is still

commonly used in industrial placement tools.
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Fig. 2. Two applications of extreme edge shifting followed by garbage collection. Dark gray indicates an area of overflow, light gray indicates an at- or near-
capacity area, and white indicates an area of relatively low demand.

C. Global Routing: Leading Solvers

Prior to 2006, the leading global routing tools were Labyrinth

[15] (which uses primarily pattern routing) and the Chi Dis-

persion Router [10] (which incorporates a form of congestion

amplification into its flow). However, significant progress has

been made in recent years resulting in a new breed of state-of-

the-art routers.

BoxRouter [5] progressively expands a box initiated from the

most congested region of the chip, applying an ILP formulation

to reroute wires between successive boxes. Although the ILP

considers only L-shaped patterns for each two-pin decomposi-

tion, a round of maze routing is applied thereafter to compute

paths for wires that cannot be successfully routed.

FastRoute [22] uses a congestion map to warp the structure

of a Hanan grid [11] during Steiner tree generation, followed by

edge shifting and a form of pattern routing. It has also recently

been enhanced with monotonic routing and multisource multi-

destination maze routing [23], although the most recent version

of FastRoute did not prove to be competitive in the contest.

Along with our own MAIZEROUTER, several other modern

routers debuted at the Global Routing Contest, including a

sequel to BoxRouter [4] and a new router named FGR [25].

Two others—Archer [21] and NTHU-Route [8]—emerged af-

terward, both based on R&R and history-based congestion

functions. The latter also employs adaptive multisource, multi-

destination maze routing, and congestion-based net reordering.

Recently, released results demonstrate substantially improved

quality as compared with the contest solutions, reflecting state-

of-the-art performance.

With the exception of FGR, all modern routers make use of

the publicly available FLUTE package [6], [7] to create initial

Steiner trees. FLUTE uses lookup tables to produce solutions

of optimal wirelength for nets containing up to nine pins and

applies a divide-and-conquer strategy for nets of larger size.

III. MAIZEROUTER—ALGORITHM FUNDAMENTALS

While recent work has certainly broadened the space of high-

level techniques available to global routers, several deficiencies

remain. In this section, we describe the algorithmic details and

overall flow of our routing engine, named MAIZEROUTER,

which addresses many of these issues.

A. Solution Initialization and Representation

MAIZEROUTER begins by greedily generating complete

fully connected routes for all nets independently from one

another. In our implementation, we use FLUTE to derive the

topology for each net, although any reasonably efficient Rec-

tilinear Steiner minimal tree (RSMT) or Rectilinear Minimum

Spanning Tree package (such as FastSteiner [13]) will suffice.

Since virtually no attempt is made to improve routability at this

stage, the cheap initial solution typically comes at the expense

of an extremely high amount of overflow.

Conventional wisdom stipulates that during the entire course

of a routing procedure, the topology of any individual net may

be understood and represented recursively as a tree. As such, we

will likewise refer to Steiner points, tree edges, etc., to describe

the remainder of the algorithm. However, in understanding the

search space of MAIZEROUTER, it is more useful to imagine

the routing of a net simply as an unnested collection of intervals

(or flat wires) in 2-D (or, for multilayer routing, 3-D) space. As

will be addressed in Section IV, we do not explicitly encode net

topology, as we instead operate on flat segments obtained from

a special type of decomposition. Hence, our search paradigm

will be one where these flat wires are individually rerouted

in such a way that reduces (or eliminates) overflow while

preserving connectivity of their corresponding nets.

B. Extreme Edge Shifting

Of the many techniques that the engine FastRoute [22]

employs, one particularly useful step called edge shifting is

designed to move tree edges out of highly congested regions.1

The approach leverages the Steiner tree topology in such a way

that guarantees no change in wirelength. For instance, consider

the Steiner tree in Fig. 2(a), which happens to lie in an area

of high congestion. Edge shifting will permit the bold edge to

be slid anywhere between its current position and the far left

side of the diagram, since this area is bounded from above

and below by sibling segments. If the cumulative cost of any

of these alternate positions is more desirable than the current

location, the edge may be safely relocated. Hence, edge shifting

provides a means to reroute the path between a pair of points by

exploiting the presence of neighboring wires.

Although powerful, edge shifting is sharply limited in scope,

in that it provides a relatively narrowband where the tree

edge may be repositioned. In our current example, there is no

place within the so-called “safe region” where overflow can be

completely avoided. As a result, the effectiveness of the router

may remained burdened by heavy congestion in this area.

In response, we introduce a critical generalization of edge

shifting that we call extreme edge shifting. Extreme edge shift-

ing relaxes the requirement that Steiner wirelength be preserved

when moving an existing segment out of a congested region.

1A similar technique named segment move is deployed in the DpRouter
engine [2].
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In fact, the new edge may be relocated far outside the original

tree, so long as the appropriate routing segments are added to

connect it to the points of origin (forming a C-shaped detour).2

As illustration, Fig. 2(b) shows a case where the bold edge

from Fig. 2(a) has been moved to the far right, a region where

routing resource is relatively underutilized. Two so-called par-

allel segments must be added to join the central segment to the

tree. A second application of extreme edge shifting on another

segment of the tree is shown in Fig. 2(c), this time in an upward

direction.

One may choose from any number of strategies for cost()

(i.e., step, linear, etc.) although our implementation makes use

of the logistic function. Just as in traditional edge shifting, cost

need not be accumulated for any cell that contains a wire for the

current net. A single pass of extreme edge shifting will examine

each cell in the grid, and if the ratio of demand to capacity is

above a particular threshold, it will attempt to detour as many

segments away from that cell as possible. As described earlier,

the algorithm focuses only on individual segments that pass

through the region of congestion and will not explicitly attempt

to manipulate or reroute the entire tree of any net (as would

typically be done in R&R). We perform several such passes of

extreme edge shifting to achieve its full benefit.

C. Edge Retraction

There are two notable disadvantages of our repair procedure

that require remedy. The first of these is the creation of super-

fluous wires, such as the dangling segment shown in Fig. 2(c).

We will address this concern in Section IV-B when present-

ing the underlying representation used by MAIZEROUTER to

incrementally maintain routing solutions. The second major

deficiency of extreme edge shifting is that, depending on how

the cost function has been adjusted to balance overflow and

wirelength, it may produce very long parallel wires. Of course,

this happens for good reason, namely, to route the central

segment toward a distant region that is less congested, thereby

reducing overflow and freeing resources for other wires. How-

ever, as the engine begins to reach a routable (or possibly

near-routable) solution, it becomes more important to recover

whatever wirelength has been sacrificed in intermediate steps.

Our solution is to reverse the process of extreme edge

shifting, in an attempt to “undo” its adverse effects. This new

procedure, deemed edge retraction, is identical to extreme edge

shifting with two exceptions. First, the segment being moved

must remain bounded from above and below by neighboring

wires.3 Second, we will move this segment only so far as it will

not create overflow in any of the cells in its new position, thus

maintaining whatever degree of routability had been previously

achieved. Once the segment has been assigned its new position,

unneeded wires may be removed from the net. Edge retraction

is similar in spirit to the postrouting stage of BoxRouter [5],

since both reduce wirelength as a postprocessing step (although

our approach avoids the use of maze routing).

2A form of U-shaped move is proposed in [18], but it too is constrained by
the predetermined topology of the net.

3Since the objective of edge retraction is to reduce wirelength, we will not
permit a location that necessitates the addition of segments.

Fig. 3. Example of edge retraction followed by garbage collection. Dark gray
indicates an area of overflow, light gray indicates an at- or near-capacity area,
and white indicates an area of relatively low demand.

Fig. 4. Space of candidate paths considered by rapid exploration when the
partial set of possible central segment locations C = {1, 3, 6, 10, 15}.

In Fig. 3, we demonstrate edge retraction on our running ex-

ample. The segment on the far right can be moved two units to

the left without incurring additional overflow [Fig. 3(a)]. After

this translation is performed, dead-end segments are detected

and eliminated [Fig. 3(b)], thereby fulfilling the promise of

reduced wirelength. The final routing for this net is shown in

Fig. 3(c).

D. Relations to Pattern Routing: Rapid Exploration

As discussed earlier, both the classical and extreme ver-

sions of edge shifting used in FastRoute and MAIZEROUTER,

respectively, leverage the existence of nearby subnets when

repositioning routing segments. However, there is an additional

computational advantage to extreme edge shifting (as compared

with, for instance, maze routing) that resembles the well-

known practice of pattern routing [16], which considers L- and

Z-shaped solutions to two-pin nets. Recall that while maze

routing requires O(NlgN) time4 in the number of cells N ,

pattern routing requires only O(N) time and will typically

examine far fewer edges. For instance, the cost of L-shaped

routes can be computed by examining only the edges along

the periphery of the bounding box. Similarly, Z-shaped routes

examine only half of the interior edges (i.e., those in alignment

with the center of the Z). The C-shaped routes explored by

MAIZEROUTER provide a similar computational advantage,

ignoring all edges that do not fall along either the parallel

segments or each candidate central segment.

It is with this observation in mind that we propose a slightly

more generalized version of edge shifting that enables the rapid

exploration of candidate paths. While accumulating the cost of

the parallel segments, we compute only a partial set of possible

4This is for arbitrary cost functions; pure wirelength minimization can be
performed with a linear-time BFS.
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Fig. 5. Dynamic logistic cost function of MAIZEROUTER. (a) To distribute routing resources and maintain reasonable wirelength, low values of h and k are used
to inflate congestion information in early stages of search. (b) As search continues, h and k are steadily increased to encourage fewer violations. (c) In the final
stages of search, high values of h and k approximate the step function, corresponding to an accurate evaluation of overflow.

locations for the central segment and thus examine an even

fewer number of global edges. As shown in Fig. 4, this allows

one to sample the search space the more sparsely as longer

detours are attempted.

E. Dynamic Cost Deflation

When accumulating total cost along a path, our edge manip-

ulation algorithms employ a variation on the logistic function

(as suggested in [22]) to amplify congestion estimates

cost = 1 +
h

1 + e−k(demand−capacity)
− h.

Here, parameter k controls the smoothness of the function,

with larger values causing it to change more rapidly in the

center. Parameter h controls the tradeoff between congestion

and wirelength; a value of zero results in path measurements

based solely on total length, whereas a value of one measures

solutions entirely by total congestion. The use of functions to

amplify congestion information, originally proposed in [10],

helps immensely in the early stages of search, as it provides

the router with an artificial incentive to focus on trouble areas.

However, it is also observed in [10] that the benefits of

congestion amplification diminish in later iterations, when the

global router should be more concerned with the actual non-

inflated cost of its decisions. Hence, we gradually warp the

logistic function by increasing both h and k after each iteration,

as shown in Fig. 5. In the final stages of search, this resembles

a step function, encouraging any remaining violations to be

eliminated regardless of the wirelength consumed. We found

this modification to dramatically improve the success of the

routing engine, as compared with the static logistic function.

IV. MAIZEROUTER—ARCHITECTURE FUNDAMENTALS

In the previous section, we focused primarily on the high-

level algorithmic design decisions of MAIZEROUTER. How-

ever, a separate yet equally important issue that arises in

our implementation (and that of any router, for that matter)

is that of model maintenance. For one to assume that low-

level tasks (such as topological reconstruction) can be handled

transparently, significant attention must be paid to the internal

representations and procedures used to dynamically update

solution structure.

In this section, we present the underlying architecture that

enables global solution modifications to be performed with

minimal complexity and computational expense. As such, these

general principles could be applied to any global routing recipe,

although we will show that they are particularly well suited to

the search space of MAIZEROUTER.

A. Interdependent Net Decomposition

One common attribute of academic global routers is the

tendency to decompose Steiner trees into two-pin nets (or

wires) and to subsequently route these subnets independently

from one another, a process that we will hereafter refer to

as wire-independent net decomposition. This holds true for

the entire flow of BoxRouter, which performs no topological

reconstruction after its initial Steiner trees have been created

and decomposed. FastRoute 2.0 is slightly more complex, as

it may need to construct entirely new tree topologies from

scratch during multisource multitarget maze routing. However,

its monotonic algorithm for routing two-pin nets does not

consider new decompositions and has the potential to create

duplicate (and unnecessary) wires.

Given that our edge manipulation algorithms make heavy use

of topological reconstruction (a technique that has been largely

avoided by academic global routers due to its complexity and

computational expense), we require a means to incrementally

modify the position of individual segments without resorting

to full-blown tree reconstruction. Such a task is made difficult

if trees are maintained in the traditional manner (i.e., using an

explicit representation of topology), since small local pertur-

bations may introduce large defects in the existing topological

construction.

Hence, a key design decision in the development of

MAIZEROUTER is an internal representation that performs the

following:

1) enables fast incremental updates;

2) allows topology to be modified easily and cheaply;

3) prevents the creation of duplicate or overlapping wires.

We achieve these criteria by way of an interdependent de-

composition of routing segments. MAIZEROUTER does not

encode net topologies explicitly and instead stores the routing

solution for each net simply as an unnested collection of flat

wires. For instance, if we designate the upper left coordinate
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of Fig. 2(a) as (0, 6), the following set of intervals captures the

vertical and horizontal components of its corresponding tree:

VERT. EDGES HORIZ. EDGES

[(0, 0) − (0, 1)] [(0, 1) − (4, 1)]
[(0, 4) − (0, 5)] [(4, 1) − (5, 1)]
[(4,1) − (4,4)] [(0, 4) − (4, 4)]
[(5, 0) − (5, 1)]

The segment selected to be shifted has been highlighted

in bold. The edge shifting procedure chose x = 8 as its new

location; this choice will result in the removal of

[(4, 1) − (4, 4)]

and the addition of

{[(4, 1) − (8, 1)] , [(8, 1) − (8, 4)] , [(4, 4) − (8, 4)]} .

However, note that the first of these three segments over-

laps with an existing subnet (namely, [(4, 1) − (5, 1)]).
MAIZEROUTER detects this duplication and responds by trans-

parently decomposing the segment [(4, 1) − (8, 1)] into two

adjacent edges, namely, [(4, 1) − (5, 1)] and [(5, 1) − (8, 1)].
Only the latter of these two will be inserted into the global set

of flat wires

VERT. EDGES HORIZ. EDGES

[(0, 0) − (0, 1)] [(0, 1) − (4, 1)]
[(0, 4) − (0, 5)] [(4, 1) − (5, 1)]
[(4, 1) − (4, 4)] [(0, 4) − (4, 4)]
[(5, 0) − (5, 1)] + [(5,1) − (8,1)]

+ [(8,1) − (8,4)] + [(4,4) − (8,4)]

In general, each segment to be added must be checked against

all other segments for duplication and will be broken down into

irredundant subcomponents as necessary.

Observe that even though we have made no explicit attempt

to modify tree topology, this new set of intervals implicitly

reflects a different topology than before. Furthermore, since

we operate on a segment-by-segment basis, only those edges

affected by the local change will be modified to accommodate

the candidate path selected by extreme edge shifting. Hence,

interdependent net decomposition models the global interaction

that occurs between routing segments (in contrast to the model

of strict independence assumed in traditional two-pin decom-

position), and it also enables cheap incremental updates to this

underlying structure.

B. Garbage Collection

Recall from previous sections that our edge manipulation

algorithms may, on occasion, produce superfluous wires. For

instance, Fig. 2(c) shows a solitary dead-end routing segment

on the far right of the tree that could be removed without affect-

ing connectivity. This defect is a consequence of abandoning

nonpin Steiner points when shifting a segment across existing

wires within the tree.

Fortunately, such edges can be easily removed through a

process that we loosely term garbage collection, as it eliminates

Fig. 6. Pseudocode for garbage collection.

Fig. 7. Pseudocode for net defragmentation.

leftover remnants of wasted wire. Fig. 6 shows a rough outline

of this procedure. We cycle through all routing segments for a

recently modified net and process each endpoint that begins or

terminates a segment. Any Steiner node that is seen only once

(provided that it is not a pin) is, by definition, a dead end and

may be safely removed. The computational complexity is linear

in the number of segments.

The specific set of intervals corresponding to Fig. 2(c) is as

follows:

VERT. EDGES HORIZ. EDGES

[(0,0)∗ − (0, 1)] [(0, 1) − (4, 1)]
[(0, 4) − (0,5)∗] [(4, 1) − (5, 1)]
[(5,0)∗ − (5, 1)] [(0, 4) − (4, 4)]
[(5, 1) − (5, 2)] [(4, 4) − (8, 4)]
[(8,1)∗ − (8, 2)] [(5, 2) − (8, 2)]
[(8, 2) − (8, 4)]

Of all the nodes that fall on the endpoints of these segments,

only the four marked with ∗ occur exactly once

{(0, 0), (0, 5), (5, 0), (8, 1)} .

The first three are pins; the final coordinate lies at the end of our

superfluous wire, which should be removed. Fig. 2(d) shows our

example after garbage collection has identified and removed the

unneeded branch.

We willfully admit that the process of garbage collection is

simple and straightforward; nevertheless, it is a necessary and

important procedure for removing excess routing segments that

arise from our approach to restructuring tree topologies. Refer

to Fig. 3(b) for an additional example of unneeded segments

eliminated via garbage collection.

C. Net Defragmentation

Occasionally, edge retraction alone may be incapable of

collapsing a net into its minimal possible footprint, due to

the internal fragmentation of routing segments. This effect is
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Fig. 8. Illustration of the need for net defragmentation. (a) Maze routing has avoided an area whose routing resources are at near capacity, creating an excessively
long detour. (b) Single application of edge retraction collapses two “folds” of the solution but is unable to make further improvements. (c) Desired routing solution,
obtained after repeated interleavings of edge retraction and net defragmentation.

Fig. 9. Complete flow of MAIZEROUTER.

often observed after occasional applications of maze routing, a

process that tends to create many bends. Consider Fig. 8(a), in

which maze routing has avoided a near-capacity (but not yet at-

capacity) area shown in light gray. Once a fully routed solution

has been obtained, edge retraction will attempt to condense

these segments to reduce wirelength. Fig. 8(b) shows a single

application of edge retraction on two “folds” of the solution.

Although both of the newly added segments are now adjacent to

pairs of neighboring sibling subnets, our internal representation

has failed to consolidate these edges into unbroken wires.

As a result, no further retractions can be performed in either

region, since none of the three individual edges can be slid

independently from the other two.

As a result, we introduce a means to rejoin adjacent routing

segments through net defragmentation. Fig. 7 shows a rough

outline of this procedure. As in garbage collection, we cycle

TABLE I
ISPD ’98 BENCHMARKS

through all routing segments for a recently modified net and

process each endpoint that begins or terminates a segment. Any

Steiner node that lies at the intersection of a single pair of

unidirectional routing segments represents an internal rift that

may be repaired. The computational complexity is again linear

in the number of segments. Fig. 8(c) shows a fully collapsed

solution after repeated interleavings of edge retraction and net

defragmentation.5

Our running example can benefit from net defragmentation

as well. In the previous table, the horizontal segments [(0, 1) −
(4, 1)] and [(4, 1) − (5, 1)] are the only two subnets to converge

at the coordinate (4,1) and may thus be combined

VERT. EDGES HORIZ. EDGES

[(0, 0) − (0, 1)] ⊲ [(0,1) − (5,1)] ⊳
[(0, 4) − (0, 5)] [(0, 4) − (4, 4)]
[(5, 0) − (5, 1)] [(4, 4) − (8, 4)]
[(5, 1) − (5, 2)] [(5, 2) − (8, 2)]
[(8, 2) − (8, 4)]

In this case, consolidation does not serve to enable edge

retraction, but it may aid future applications of edge shifting.

For instance, this larger segment may now be shifted down-

ward as a whole one unit to completely avoid the congested

region, whereas an attempt to shift either of the original edges

5The use of defragmentation within the context of interdependent net de-
composition parallels recent techniques for the consolidation of edges within
explicitly defined Steiner tree topologies [18].
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TABLE II
COMPARISON OF FastRoute 2.0, BoxRouter, AND MAIZEROUTER ON THE ISPD ’98 BENCHMARKS

individually would only partially reduce congestion [in addition

to creating a new segment emanating from (4,1)].

D. Layer Assignment in Multilayer Routing

The basic components of our routing algorithm extend easily

to the case of 3-D routing. First, MAIZEROUTER projects all

pins, capacities, blockages, etc., into single-layer routing nets

in two dimensions. It then iteratively unfolds this solution level

by level, using the same strategies to achieve layer assignment

as it did to avoid congestion in the original projected solution.

For instance, the parallel segments of extreme edge shifting

correspond to vias in the 3-D solution, and candidate positions

for the central segment correspond to candidate layers.

Provided that there is no limit on the number of vias between

the cells of any pair of layers (as was the case in the Global

Routing Contest), segments may be broken as needed to obtain

a solution whose overflow is identical to that in the projected

solution.

E. Complete Flow of MAIZEROUTER

In Fig. 9, we provide the complete high-level flow of

MAIZEROUTER. After initialization (including RSMT gener-

ation and interdependent net decomposition), extreme edge

shifting is repeatedly applied over all segments identified for

relocation. Afterward, net defragmentation and edge retraction

are performed to reclaim routing resources, followed by a pass

of maze routing and additional recovery. This general process

continues until a user-specified set of termination criteria is

met; for instance, until zero overflow (or more generally, a

particular overflow threshold) has been reached, or a time-out

limit has passed. Finally, the projected routes are extracted

into a multilayer solution (using conservative edge shifting if

possible but breaking segments as needed).

Although we found this particular recipe to be successful,

several other combinations and orderings of techniques exist.

The development of metaalgorithms to control this flow is

worthy of continued research but was not a primary focus of

our study.

We stress that this flow diagram does not (and cannot)

capture all the salient details of MAIZEROUTER. Critically

important lower level operations that form our incremental

routing “maintenance system” (such as interdependent net de-

TABLE III
ISPD ’07 BENCHMARKS

composition, garbage selection, etc.) are not shown but are

selectively invoked when routing structures are modified.

V. EXPERIMENTAL RESULTS

A. Results on the ISPD ’98 Benchmarks

In Table I, we provide a summary of the original ten

ISPD ’98 benchmarks [31] that have become standard in the

routing literature. To empirically evaluate the performance of

MAIZEROUTER on these instances, we compare it with the

FastRoute 2.0 [23] and the original BoxRouter [5], the two

leading global routers prior to the release of the larger instances.

In Table II, we present the results of MAIZEROUTER against

BoxRouter and FastRoute 2.0. For each test case, we report the

total number of overflows, total wirelength, and CPU runtime

for each solver. All experiments were performed on a 64-b

machine with 16 GB of memory and a dual-core 2.8-GHz AMD

Opteron(tm) Processor.6 We confirm that BoxRouter completes

six of the ten instances with wirelengths comparable with those

of the Chi dispersion router [10] and that FastRoute 2.0 fails

to route three of the benchmarks. However, MAIZEROUTER

outperforms BoxRouter on all counts, successfully routing all

benchmarks, reducing wirelength by an average of 1.84%, and

running significantly faster over the entire set of problems.

As compared with FastRoute 2.0, MAIZEROUTER tends to be

slower but improves upon wirelength by 2.73%.

B. Results on the ISPD ’07 Benchmarks

Table III summarizes key statistics of the test cases released

during the Global Routing Contest. The relative sizes of these

6At the time of this writing, a binary of FastRoute has not yet been made
publicly available, and thus, we report the runtime statistics from [23].
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TABLE IV
COMPARISON OF MAIZEROUTER AGAINST MATURED MULTILAYER GLOBAL ROUTERS ON THE ISPD ’07 BENCHMARKS

benchmarks significantly dwarf those of the older set, both in

terms of the number of nets (which has increased by a full order

of magnitude), and the scale of the routing grids.

As mentioned earlier, MAIZEROUTER took first place in

the 3-D track of the contest, followed closely by BoxRouter

and FGR.7 However, in the months following the contest, all

three leading routers from the contest matured significantly. In

Table IV, we report the latest results of FGR, BoxRouter 2.0,

and MAIZEROUTER on the ISPD ’07 benchmarks. FGR now

successfully routes six of the eight 3-D benchmarks, whereas

it previously routed only three. The wirelengths of BoxRouter

2.0 have been improved as compared with its contest results,

although no runtime statistics have yet been published. Two

new global routers, named Archerand NTHU-Route, are also

shown in the table and demonstrate particularly impressive

runtime performance.

The latest results of MAIZEROUTER are shown in the final

columns of Table IV. Overall, its wirelength over all bench-

marks has improved considerably (by an average of over 6%

as compared with the contest version), and it is now capable

of successfully routing adaptec5. Despite its relatively simple

design, MAIZEROUTER remains within a few percent of the

best known results and is significantly faster than the only router

with less wire length (FGR), particularly in the unroutable cases

that are of great interest to placers. Compared with the high-

speed routers Archer and FastRoute, MAIZEROUTER exhibits

better wirelength, and it is also generally more effective than

BoxRouter 2.0.

VI. FUTURE WORK

Development of MAIZEROUTER is an ongoing process, and

we suspect that there remains further room for improvement.

In an effort to encourage others to improve upon our results,

we have released the source code of MAIZEROUTER to the

academic community under a general public license [37].

7We omit the details of the contest results here, since they have become
largely out of date—see [20] for a complete summary.

VII. CONCLUSION

In this paper, we have presented the complete design and

architectural details of MAIZEROUTER, a novel and state-of-

the-art global routing engine. MAIZEROUTER reflects a sig-

nificant leap in progress over previously available academic

routing tools, due in part to its simple yet powerful edge-

based operations (extreme edge shifting and edge retraction)

and also due to its use of an interdependent form of net

decomposition, a representation that improves upon traditional

two-pin net decomposition by preventing duplication of routing

resources and enabling cheap topological reconstruction. The

mechanisms of garbage collection and net defragmentation

complement our edge-based operations by eliminating the rifts

and leftover routing segments that they produce. We believe

that many of our techniques can be incorporated into existing

routers to substantially improve their performance and quality.
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