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Solid tumors exhibit chromosomal rearrangements resulting in gain or loss of multiple

chromosomal loci (copy number variation, or CNV), and translocations that occasionally

result in the creation of novel chimeric genes. In the case of breast cancer, although most

individual tumors each have unique CNV landscape, the breakpoints, as measured over

large datasets, appear to be non-randomly distributed in the genome. Breakpoints show

a significant regional concentration at genomic loci spanning perhaps several megabases.

The proximal cause of these breakpoint concentrations is a subject of speculation, but is,

as yet, largely unknown. To shed light on this issue, we have performed a bio-statistical

analysis on our previously published data for a set of 119 breast tumors and normal con-

trols (Wiedswang et al., 2003), where each sample has both high-resolution CNV and

methylation data.The method examined the distribution of closeness of breakpoint regions

with differentially methylated regions (DMR), coupled with additional genomic parameters,

such as repeat elements and designated “fragile sites” in the reference genome.Through

this analysis, we have identified a set of 93 regional loci called breakpoint enriched DMR

(BEDMRs) characterized by altered DNA methylation in cancer compared to normal cells

that are associated with frequent breakpoint concentrations within a distance of 1 Mb.

BEDMR loci are further associated with local hypomethylation (66%), concentrations of the

Alu SINE repeats within 3 Mb (35% of the cases), and tend to occur near a number of can-

cer related genes such as the protocadherins, AKT1, DUB3, GAB2. Furthermore, BEDMRs

seem to deregulate members of the histone gene family and chromatin remodeling factors,

e.g., JMJD1B, which might affect the chromatin structure and disrupt coordinate signaling

and repair. From this analysis we propose that preference for chromosomal breakpoints

is related to genome structure coupled with alterations in DNA methylation and hence,

chromatin structure, associated with tumorigenesis.

Keywords: DNA methylation, copy number variation,Alu repeat element, genome instability, multi-modal analysis,

breast cancer

INTRODUCTION

Breast cancer is a complex disease characterized by a combina-

tion of multiple genetic and epigenetic changes that have been

widely studied in the past two decades. Pioneering works by Perou

et al. (2000) and Sørlie et al. (2003) showed that breast cancer

tumors consist of five expression-based molecular subtypes with

different clinical outcomes. Genome instability in breast cancer has

also been extensively characterized, first using array CGH based

methods such as in Hicks et al. (2006), Kamalakaran et al. (2009),

Abbreviations: BEDMR, breakpoint enriched differentially methylated region;

BER, breakpoint enriched region; CBS, circular binary segmentation; CGH, com-

parative genomic hybridization; CNV, copy number variation; DMR, differen-

tially methylated region; EM, expectation-maximization; FDR, false discovery rate;

MOMA, methylation oligonucleotide microarray analysis; ROMA, representational

oligonucleotide microarray analysis.

Bergamaschi et al. (2006), Chin et al. (2006), André et al. (2009),

and more recently using high-resolution 500 k SNP arrays in, for

example Haverty et al. (2008). These studies showed that can-

cer genomes are highly unstable, with recurrent, subtype specific

rearrangements, defining groups that are consistent with existing

molecular subtypes (Weigman et al., 2011). Furthermore, genome

rearrangements occur in a non-random manner with copy num-

ber gains in 1q, 8q11, 11q, 17q, 20q, and losses in 5q, 6q, and 8p.

These regions harbor cancer related genes such as TP53, CDKN2A,

ERBB2, KRAS, PTEN, and are therefore extensively cataloged. In

Hicks et al. (2006), three patterns were defined to qualitatively

classify genome rearrangement profiles of breast tumors. A for-

malization of the model was proposed recently in Russnes et al.

(2010), using scores to quantify the complexity of genome-wide

architectural distortion. They have proposed that these patterns of

genomic architecture could be used as prognostic markers.
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In addition to large scale rearrangements of DNA, the charac-

terization of cancer methylomes and their corresponding normal

profiles has demonstrated that cancer genomes also undergo a

remarkable amount of epigenetic disruptions leading to activa-

tion and silencing of genes involved in cancer related pathways.

For example, the BRCA1 gene promoter is often hyper-methylated

in hereditary breast cancers (Tapia et al., 2008). Furthermore,

studies such as Kamalakaran et al. (2010) showed that Luminal

and non-Luminal breast cancer tumors have different methyla-

tion patterns and that differentially methylated genes are associ-

ated with relapse risk and overall survival. More recently, using a

cohort of 187 normal/breast cancer paired samples, a study showed

that subtype specific changes in DNA methylation are associated

with expression-based subtypes Luminal A, B, HER2 positive, and

basal-like tumors (Bediaga et al., 2010). Similarly, the analysis of

cancer related genes in fresh frozen breast tumor samples showed

that Luminal A, B and basal-like tumors had distinct methyla-

tion patterns, with a higher methylation frequency in the Luminal

B and a lower frequency in the basal-like subtype (Holm et al.,

2010).

These studies point to a probable existence of mechanistic

cross-talk between epigenetic modifications, genome instability,

and transcriptional programs within breast cancers.

While a majority of studies follow a mono-modal approach,

multi-modal analysis seem to be more suited to characterize this

complex disease involving such diverse molecular, genetic, epige-

netic factors. Combining DNA methylation and gene expression

profiles of cancer tissues has shown a strong inverse correla-

tion between gene expression and promoter methylation levels

(Kamalakaran et al., 2010). Furthermore, the relation between

copy number variation (CNV) and gene expression was similarly

studied, looking at the impact of the chance of DNA copies of

each gene on their expression, and looking for potential ther-

apeutic targets (Staaf et al., 2010). Multi-modal platforms have

been designed to identify complex signatures of breast cancer. For

example, ER status has been correlated with differences in methy-

lation, expression, and DNA copy number (Sun et al., 2011). More

importantly, in the recent large scale integrated analysis of 2000

breast tumors (Curtis et al., 2012),novel molecular subgroups were

defined based on the inter-relationship between inherited genomic

variants, somatic copy number alterations and their impact on the

transcriptome.

Although gene-centered, these methodologies are important in

defining predictive or prognostic signatures, or common aber-

rations, in each type of cancer. However, these methodologies

provide little insight into the mechanisms that drive these epi-

genetic and genetic changes on a genome-wide scale. To begin to

probe these mechanisms we have re-examined published data in

order to look for relationships between epigenetic gene regula-

tion and the physical alterations associated with cancer. We ask

several questions: (1) What is the relationship between the break-

points in chromosomal rearrangements and DNA methylation?

(2) If correlated, what is the overlap between these differen-

tially methylated breakpoints with regions in the genome that are

prominently deregulated in cancer? (3) What is the relationship

between breakpoint dense and differentially methylated regions

(DMR) and repetitive elements across the genome? To address

the problem, we developed a model integrating a combination

of statistical and experimental methods. Genome-wide profil-

ing of DNA methylation and DNA copy number was performed

on 108 tumor and 11 adjacent normal tissue samples from a

Norwegian breast cancer cohort (Wiedswang et al., 2003) using in-

house analysis platforms: Methylation Oligonucleotide Microar-

ray Analysis (MOMA; Kamalakaran et al., 2009) and Representa-

tional Oligonucleotide Microarray Analysis (ROMA; Lucito et al.,

2003). Systematic identification of DMRs and Alu enriched loci

was performed with regards to major genome rearrangements and

breakpoint enriched regions (BERs).

Our work uncovers several lines of evidence relating major

genome rearrangements and breakpoint rich regions, with differ-

ential methylation patterns, local repeat enrichment, and func-

tional enrichment in these regions. These different observations

will allow us to understand better the mechanisms underlying

rearrangement events in breast cancer and their relation to the

other molecular and epigenetic anomalies.

MATERIALS AND METHODS

TUMOR SAMPLE SET

We used the 119 Norwegian breast cancer dataset (the Oslo Metas-

tases Study) described in Wiedswang et al. (2003), Naume et al.

(2007), and Russnes et al. (2010). These samples were part of

the cohort that established molecular subtypes. The subtypes

were established by the original study, by using the correlation

to the expression centroids of the intrinsic genes from microarray

expression data, described in Sørlie et al. (2003).

Each patient of the study is further classified into one of the fol-

lowing subgroups: luminal A tumor subtype (40 patients), Lumi-

nal B (15), ERBB2 positive (19), basal-like (12), normal-like (14),

and eight undefined. The normal tissue dataset consisted of 11

adjacent breast tissue samples. For each sample, DNA methylation

and CNV analysis was performed. We used the DNA methylation

MOMA analysis data previously published in Kamalakaran et al.

(2010) and the copy number ROMA analysis data previously pub-

lished in Hicks et al. (2006). The MOMA and ROMA experimental

platforms are described below.

ROMA PLATFORM

To measure CNV across the genome, we used the ROMA plat-

form described in Lucito et al. (2003). The genome is covered by

regularly spaced 82,055 probes printed on an array, providing a

coverage of the genome at 40,000 nucleotides resolution. Copy

number ratios are measured using the skin fibroblast CHPSKN-

1 cell-line as reference. Since CHPSKN-1 cells come from a male

individual, we focused our analysis on the 22 autosomes only. Mul-

tiple segmentation schemes were used in the development of the

ROMA platform to obtain copy number values, before settling on

the Circular Binary Segmentation (CBS) algorithm (Venkatraman

and Olshen, 2007). This scheme requires three consecutive probes

to define a change in copy number value. A whole genome com-

parison of the ROMA platform with the Agilent 44 k and Illumina

109 k aCGH platforms showed overall similarity with minor dif-

ferences in amplitude and number of events (Baumbusch et al.,

2008), and FISH probes were used to validate the copy number

calls in the “firestorm” regions (Hicks et al., 2006).
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CNV ANALYSIS ACROSS TUMOR SAMPLES

We partitioned the genome into variable windows such that each

sample is observed in a single segmented copy number state

(amplified, deleted, normal copy number). Windows are deter-

mined by all the breakpoints obtained by segmentation of the copy

number values in each sample using the CBS algorithm. Longer

intervals describe regions that have very little copy number change

across all the patients while short intervals correspond to regions

with high copy number changes, i.e., many breaks across different

samples.

We defined three levels of amplification in order to bin samples

into three categories. In each given interval, samples with a ROMA

ratio greater than 1.1 are defined as amplified, samples with ratio

less than 0.9 are defined as deleted, and if their ROMA ratio fall

between these two values are defined as normal. The thresholds

that define the normal copy number ratio were chosen empirically

to take into account the measurement noise around 1. The CNV

profile of the dataset can be then plotted as the fraction of sample

showing amplifications and deletions across.

BREAKPOINT ENRICHED REGION DETECTION

We used the segment’s start and end defined by the CBS algorithm

for the CNV profile of each sample to define our breakpoints. We

then calculated the density function using the R function with a

bandwidth of 1 Mb and defined the center of the breakpoint dense

region as the local maxima of the density.

MOMA PLATFORM

We surveyed the methylome of each tumor sample using the

MOMA platform (Kamalakaran et al., 2009). Each CpG island

is covered by one or several MOMA fragments that undergo

MspI cleavage and McrBC or mock digestion. McrBC and mock

digested fragments are then labeled and hybridized on a chip.

The hybridization ratio reflects the level of methylation of the

probed CpG island. In total, the 27,000 CpG islands anno-

tated by the UCSC genome browser (hg17 build) are covered

by 159,436 MOMA fragments. The data is normalized by con-

verting the hybridization log-ratios into the probabilistic space

using an Expectation-Maximization (EM) method (Kamalakaran

et al., 2010; and Supplementary text). Each MOMA fragment is

assigned one of the following states: high methylation (+1), low

methylation (−1), and 0 state for cases falling in none of the two

categories.

DIFFERENTIALLY METHYLATED REGION DETECTION

To identify local variations of DNA methylation in the 108 breast

cancer samples, we compared the distribution of methylations calls

within each of the intervals defined by all the copy number break-

points with the one observed across the genome. Each MOMA

fragment is surveyed and we can associate to each fragment a

triplet of observations accounting for the number of “+1,” “0,”

and “−1”s seen across all samples. For example, a window can be

seen 30 times as “+1,” 3 times as “0,” and 7 times as “−1.”

To identify local changes DNA methylation across the genome,

we use the Hotelling’s T 2-test, a generalization the Student’s T -

test for multivariate hypothesis testing. The null hypothesis H 0

is defined as the observed distribution of “+1,” “0,” and “−1”s

observed at each fragment across the MOMA platform. It is

calculated based on 159436 observations. It has an expectation

µ0 = (µ01, µ02, µ03) and covariance B. If a window contains n

MOMA fragments, let X 1, X 2, . . ., Xn be n independent three-

dimensional vectors, n − 1 ≥ 3. X 1, X 2, . . ., Xn follows the normal

law N (µ,B). Then, the T 2 statistic can be expressed as:

T 2
= n(µX − µ0)

T S−1(µX − µ0) (1)

where

µx =
1

n

n∑

i=1

Xi (2)

and

S−1
=

1

n − 1

n∑

i=1

(Xi − µx ) (Xi − µX )t (3)

are the sample maximum likelihood estimators of µ and B.

Then T2 has the Hotelling’s T -square distribution and the statistic

F =
n − p

p (n − 1)
T 2 (4)

has a Fisher’s F distribution with p and n − p degrees of freedom,

p = 3 and parameter (µ − µ0)
T B−1(µ − µ0).

To test whether the null hypothesis H 0:µ = µ0 is rejected, we

compute the F statistics using the observations X 1, X 2, . . ., Xn

of the three-dimensional normal law N (µ, B) and derive the

associated p-value. We then perform a Benjamini and Hochberg

(1995) False discovery Rate (FDR) correction on the obtained sta-

tistics. A window is considered to have significant deviation in its

methylation pattern if its p-value is smaller than 10−2.

BREAKPOINT ENRICHED DIFFERENTIALLY METHYLATED REGION

DETECTION

To detect association between BER and DMR we measured the

cumulative number of DMRs as a function of the distance to the

nearest BER (see Figure S1 in Supplementary Material) and com-

pared the distance distributions of the observed occurrences in

tumor with randomized locations derived using a null model. To

choose the most suitable null model, we first plotted the distri-

bution of distances between two DMRs, shown in Figure S2 in

Supplementary Material). We evaluated three different null mod-

els (uniform, normal, and gamma model) with differing degrees

of similarity to the observed distribution of distances between

locations of methylation deviation. The shape of each null model

compared to that of the observed data is shown in the Figure

S3 in Supplementary Material The uniform distribution is least

similar to the observed distribution and thus the least stringent

of null models, as compared to observed the normal distribution

is somewhat more stringent and finally the gamma distribution

is the most realistic null model and thus the most stringent null

model. Then we compute the mean cumulative distributions of

the randomized locations based on the individual null models
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(after 1000 randomizations). In addition, we carried out an FDR-

corrected Wilcoxon test to compare the observed distribution with

the one generated by the gamma as the null model. This test was

designed to identify the locations of maximal difference between

the observed and null model curves.

REPEAT ENRICHED LOCI DETECTION

To identify local changes of Alu repeat frequencies, we used the

Repeat masker database (hg17) as reference and compared the

repeat enrichment frequencies in our regions of interest with the

one observed across the genome. An FDR-corrected Wilcoxon test

was performed for each repeat type (AluJ, AluS, AluY), in every

non-overlapping sliding window of 100 kb. An empirical thresh-

old of p < 0.001 was used to decide whether the tested region was

significantly enriched or not.

RESULTS

The model shown in Figure 1 is conceptualized to integrate copy

number and DNA methylation patterns in order to determine if

there is a mechanistic association between the location of major

chromosomal breakpoints and local DNA methylation changes.

In order to address this question, we first need to define the

genomic regions in which the associations can be tested. Using

the ROMA genome-wide copy number profiles of the 108 breast

tumors, we partition the genome into variable intervals, delin-

eated by the density of breakpoint observations, so called BER.

Next, we identified frequently differentially methylated regions

(DMR) in tumor samples compared to normal samples (using

MOMA and Hotelling’s T 2-test, BH p < 0.01, see Materials and

Methods).

It was interesting to see that DMRs were spread across the

genome and out of the 217 DMRs, 145 were hypo-methylated,

and 72 were hyper-methylated loci compared to the normal. In

Figure 2, we summarize the integrative analysis on the whole

genome. The top track CNV recapitulates the copy number gains

and losses as frequencies among all the tumor samples. The scores

and locations of significant DMR are shown in the middle track

(DMR). A positive score means that the surveyed window is hyper-

methylated compared to the baseline for normal samples while a

negative score indicates a local hypomethylation. We identified 217

DMR regions in all tumor samples (BH p < 0.01). Finally, we com-

bine these DMR with the BER, shown in the bottom track (BER) in

order to test their associations. To guide the reader across the dif-

ferent tracks, we highlight breakpoint enriched DMR (BEDMR)

with vertical yellow lines that visually link DMRs that appear to co-

localize with BERs, within a distance of 1 Mb (arrows inserted to

accentuate locations of BEDMRs). In the next section, we provide

a more objective measure of this association.

SIGNIFICANT DMRs IN TUMORS CO-LOCALIZE WITH BREAKPOINTS

We measured the cumulative number of DMRs as a function of

the distance to the nearest BER and compared the distance distri-

butions of the observed occurrences in tumor with randomized

locations derived using a null model (see Materials and Methods).

Figure 3A presents the mean cumulative distributions of the ran-

domized locations based on the individual null models alongside

with the observed data.

The cumulative frequency curve obtained with the dataset of

all tumor samples (red) shows that DMR occur more frequently

FIGURE 1 | Analysis method in order to find DMRs associated with BERs.

ROMA genome-wide copy number profiles from breast tumors were

combined to partition the genome into variable intervals of stable copy

number state in which we estimate DNA methylation levels using MOMA

measurements from tumor and Normal samples. A Hotelling’s T 2-test is

performed to identify significant DMRs. On the other track, the locations of

BERs are obtained from the ROMA profiles and the list of both significant

DMRs and BERs are further evaluated for statistical association (Figure 3).
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FIGURE 2 | Significant DMRs tend to co-localize with breakpoints

enriched regions. The copy number profile of all 108 breast tumors is shown

on the top track (CNV). The middle track (DMR) shows the amplitude of the

DNA methylation level change compared to normal across genome.

Hypo-methylated regions are assigned a negative score, defined as log10(p)

while hyper-methylated regions take a score equal to −log(p). Significant

DMRs are marked by peaks with a score greater than ±2. The bottom track

(BER) shows the locations of breakpoint enriched regions. Breakpoint

enriched DMRs (BEDMR), i.e., DMRs occurring in the vicinity of a BER are

marked by vertical yellow lines and black arrows.

than random events generated by the normal (purple) and uni-

form (brown) or gamma (green) models in the 0–10 Mb distance

range away from a BER, suggesting the existence of a positional

bias (Wilcoxon test, FDR-corrected p < 0.05; Figure 3B).

The best p-value score (p = 0.039), i.e., the lowest value on the

blue curve, was reached at a distance of 1 Mb, where 42.8% of the

observed DMR were found (73% occur within 2 Mb). In contrast,

only 23.7% of the regions in the gamma null model are within

1 Mb of BERs. In addition, changing null models did not affect

dramatically the result, showing that the DNA methylation change

events that we found are consistently co-occurring near break-

points rich regions in a non-random manner. We also observed

that the co-localization of DMR and BERs is more significant than

the expectation in each individual subtype and irrespective of each

subtype data was used (see Figure S4 in Supplementary Material).

To summarize, we found that 93 of the identified 217 DMRs

in our set of 108 breast tumors compared to 11 normal samples

significantly co-occurred with BERs within a distance of 1 Mb

(Detailed summary is presented in Figure S6 in Supplementary

Material and Table S1 in Supplementary Material). This result

provides the evidence of a likely association between differentially

methylated and BERs within a distance of 1 Mb (shaded yellow in

Figure 3B). In the following, we will use the shorthand BEDMR

(breakpoint enriched DMR) to designate these regions.

To investigate further, we focused on a few loci located on chro-

mosomes 5, 7, 16, and 11 (Figure 4). These examples illustrate the

different contexts in which we find BEDMRs: intra-chromosomal

(Figures 4A,C), and peri-centromeric (Figures 4B,D), involv-

ing whole-arm rearrangement events. We found that BEDMRs

were ubiquitous and not biased toward repetitive regions such as

telomeres or centromeres.

We analyzed the gene content of the 93 identified BEDMRs

(Table S2 in Supplementary Material) and reported remarkable

copy number and methylation status in at least 20% of the

patients (Table S3 in Supplementary Material). The annotation

was obtained using the ROMA/MOMA data and we reported all

the genes in the vicinity of a MOMA fragment. We found that 71

regions contained genes.
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A B

FIGURE 3 | Differentially methylated regions co-localize with breakpoints enriched regions. (A) DMRs tend to be more proximal to BER than expected

(B): the most significant distance of the association between DMRs and BERs occurs at a distance of 1 Mb (shown in yellow).

When looking at the genes contained in the BEDMRs, we found

that many of the discovered regions have been previously linked

with breast cancer and contained known oncogenes. In Figure 4A,

we highlight the gene-dense 5q31.2 locus. It contains the protocad-

herin gene cluster, PCDHA, B and G and genes involved in cancer

such as EGR1, CTNN1A, JMJD1B, and CXXC5. It has been shown

that this locus was subject to agglomerative epigenetic aberration

and reported to be epigenetically silenced in cancer (Novak et al.,

2008). In Figure 4B, we show the peri-centrometic region of chro-

mosome 7, with centromere proximal and intra-chromosomal

BEDMRs further down in the q-arm. The hypo-methylated and

amplified BEDMR on 7p11.2 is functionally important since it is

located about 1 Mb downstream of the locus containing EGFR.

In addition we found HIP1, a regulator of EGFR in the endo-

cytic pathway at the boundary of the hyper-methylated BEDMR

in 7q11.23. Figure 4C shows the q-arm of chromosome 11, which

undergoes intense copy number changes, in particular the hem-

izygous deletion of the GAB2 locus (11q14.1). The GAB2 gene,

located within a methylated BEDMR, in unmethylated in 73% of

the samples. This gene was reported to inhibit E-cadherin expres-

sion and to enhance the expression of ZEB1, a transcription factor

involved in epithelial-to-mesenchymal transition and cell migra-

tion and invasion through the activation of the PI3K pathway

(Wang et al., 2012). In our last example, Figure 4D, we showed the

whole chromosome 16 which involves a whole-arm amplification

(16p) and deletion event (16q). The peri-centromeric breakpoint

is located near the locus containing the FUS oncogene and the

unmethylated BEDMR containing TP53TG3.

In addition to these examples, we looked at databases of can-

cer related genes such as the Cancer Gene Census (Futreal et al.,

2004), which reports a list of 487 genes with mutations that have

been causally associated with cancer. We found that 8 of our

93 regions contained such types of genes, nine in total, includ-

ing AKT1, ARNT, PMS2, and the oncogenic ubiquitin hydrolase,

DUB3 for which we previously reported abnormal demethylation

in our integrated study of ovarian cancer (Wrzeszczynski et al.,

2011). Furthermore, we performed a manually curated literature

search using the text-mining tool pubmatrix (Becker et al., 2003) to

identify all the genes located within BEDMRs that have been previ-

ously linked with cancer. We found that 57% of the regions had at

least a gene with three matches. In total,39% of the genes (244/623)

in these regions had at least one match, and 29% (184/623/599) at

least three matches in the literature. (Table S2 in Supplementary

Material).

The described results provided lines of evidence that many

BEDMRs were proximal to important cancer genes, although there

was no strong positive selection from the statistics.

To investigate further the functional importance of the

BEDMRs, we looked whether these genes were undergoing epige-

netic and genetic regulatory processes. In Table S3 in Supplemen-

tary Material, we listed genes found in BEDMRs with a remarkable

copy number and DNA methylation status in at least 20% of the

patients. One could see that several of these loci undergo cumu-

lative genetic and epigenetic regulatory effects, favoring either

silencing or an increase of gene expression. For example, the 5q31.2

locus, containing the protocadherin gene family, EGR1, CTNN1A,
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A B C

D

FIGURE 4 | Localization of BEDMRs in the genome. BEDMRs tend to

occur in genomic contexts. For example (A) 5q31.3 (PCDHA,B,G cluster) (B)

7p11.2 and 7q11.23 (EGFR, HIP1) (C) 11q14.1 (GAB2). (D) 16p13.3, 16p11.2,

16q24.2 (TSC2, FUS, P53TG3, CBFA2T3). These regions contain important

cancer related genes and can be both deleted and hyper-methylated (A) or

amplified and demethylated (C).
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JMJD1B, and CXXC5 is hyper-methylated and in decreased copy

number in 22% of the patients. We also found that the histone

gene cluster on 1q21.2 was hypo-methylated and amplified (in

34–52% of the samples for each gene), so was 6p22.1 which was in

the 217 DMRs and not in the 93 BEDMR loci. Although we found

many deleted and methylated BEDMRs such as the protocadherin

cluster, a large majority of BEDMR loci were hypo-methylated

compared to normal (61/93). For example, centromeric regions

tend to be methylated, however, in Figures 4B,D, we found a local

decrease of DNA methylation level. This can be associated with

local structure remodeling allowing transcription (Wong et al.,

2006). Actually, the region in chromosome 7 (see Figure 4B)

shows both peri-centromeric and intra-chromosomal BEDMRs.

The observed bias toward amplification and demethylation in our

list of regions seem to suggest a preferential activating function of

these regions.

ALU REPEAT ENRICHMENT IN THE VICINITY OF SIGNIFICANT

METHYLATION CHANGES AND BREAKPOINTS

Recent studies (Witherspoon et al., 2009; Konkel and Batzer, 2010)

showed that Short Interspersed Elements (SINE) and Long Inter-

spersed Elements (LINE) could have a large impact on genome

instability, increasing local recombination rates. Alu repeats are

the most numerous transposable elements (one insertion every

3 kb) and Alu-mediated Non-Allelic Homologous Recombination

(NAHR) are more frequent than other transposable element-

mediated NAHR (Konkel and Batzer, 2010). Naturally, the ques-

tion is whether the BEDMR loci that we identified can be linked

to the presence of repeat elements such as Alu repeats.

We observed significant association between Alu enriched

regions and breakpoint dense regions where the repeat enrichment

is localized and occurs within 3 Mb of BER (see Figure 5). Further-

more, when compared to the background, 33 out of 93 BEDMRs

have significant Alu repeat enrichment (in 100 kb sliding windows,

Wilcoxon test, FDR-corrected, p < 0.001). A large majority of them

(24/33) are hypo-methylated compared to normal. A detailed

diagram recapitulating methylation, breakpoint, and Alu repeat

enrichment associations across 22 chromosomes is available in the

Figure S11 in Supplementary Material. Some important chromo-

somal regions, chromosomes 1, 5, 12, 16 are presented in Figure 6.

We found that loci with strong association between repeat enrich-

ment and presence of a BEDMR pattern, affect important regu-

latory mechanisms in cancer. For example, the 1q21.1 locus (see

Figure 6A) contains the HIST2H2, 2H3, 2H4 gene cluster, and

the TSRC1, MCL1, ECM1 oncogenes. Hypomethylation of his-

tone genes seems to be an important mechanism since we found

hypo-methylated DMRs containing histone genes in 1q42.13 and

6p22.2. Deregulation of histone genes could contribute to genome

instability in cancer by affecting chromatin structure. We also

found again that the 5q31 protocadherin locus (see Figure 6B), is

enriched with Alu repeats, upstream from the deletion locus. Inter-

estingly, we found a hypo-methylated and Alu enriched BEDMR

at the 12q13.2 locus containing ERBB3. This gene was found to

be hypo-methylated in 45% of our samples suggesting a deregula-

tion of this locus (see Figure 6C). Figure 6D presents, the 16p13.3

locus which includes PKD1 (associated with proliferation).

DISCUSSION

Our results provide evidence that there a statistically significant

association between the locations of DMR (DMRs) and break-

points enriched regions (BERs). In particular, 93 DMR regions

occurred within a distance as short as 1 Mb from BERs, that we

A B

FIGURE 5 | Breakpoint enriched DMR tend to co-localize with Alu enriched regions. The statistical evaluation shows that Alu enriched regions and

BEDMRs co-localize within a distance of 3 MB (A,B).
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A B C D

FIGURE 6 | Alu enrichment at BEDMRs. Locations of significant DMRs (top track) near breakpoint enriched regions (middle track) are compared with local Alu

repeat enrichment (bottom track). About 33 of the 93 identified BEDMRs overlap with an Alu enriched region. We show here four interesting regions on 1p21.1

(A), 5q31.2-3 (B), 8q24.3 (C), and 16p13.3 (D).

call breakpoint enriched DMRs (BEDMRs). It was interesting to

see that DMRs were ubiquitous and were often hypo-methylated:

145 hypo-methylated and 72 hyper-methylated loci compared to

the reference. This result is consistent with previous reported

observations that global DNA hypomethylation is associated with

punctual hyper-methylations in cancer genomes (tumor suppres-

sor genes). Stratifying our analysis based on molecular subtypes

(Luminal A and B, ERBB2+, basal-like), we found that the statis-

tical association between DMRs and BERs was more significant

than the expectation in each individual subtype [slightly stronger

in Luminal B (73.5% of DMRs within 1 Mb distance of a BER),

basal-like (65%), weaker in ERBB2 + (57.3%), Luminal A (55.5%),

and all combined (42.9%), see Table S4 in Supplementary Mate-

rial] and irrespective of which subtype was used (Figure S4 in

Supplementary Material). More interestingly, we observed poten-

tial subtype specific BEDMR position patterns, see Figures S7–S10

in Supplementary Material for positional patterns of BEDMRs

in Luminal A, Luminal B, basal-like and ERBB2 + subtypes and

Figure S5 in Supplementary Material for a heat map recapitulat-

ing the different positional patterns. For example, 58 BEDMRs

occurred only in basal-like samples, in particular in chromo-

some 6 and 18, which undergo frequent copy number alterations.

However, these results may be further refined in another study

with larger number of samples.

We focused on the regions where breakpoints and methylation

pattern deviations co-localize. The analysis of a few important

loci (Figures 4 and 6) allowed us to better understand the func-

tional aspects of the BEDMR events. We detected changes across

the entire chromosome, indicating that there was no positional

preferences on the chromosome and possibly also no bias toward

centromeres or telomeres. Subtelomeric regions are potentially

unreliable for array based methods due to their highly repeti-

tive DNA composition and high C + G content, and associated

high methylation levels (Lee et al., 2009). Furthermore, BEDMR

regions seem to occur in genic regions, in particular near genes

with cancer related functions. In Figure 4, we showed a BEDMR

at the 5q31.2 locus, which is epigenetically silenced in most can-

cers and contains the protocadherin A,B,G family, reported to

be potential tumor suppressor genes modulating the canonical

Wnt pathway in Wilms’ tumor (Dallosso et al., 2009) and other

cancer related genes such as EGR1, CTNN1A, and CXXC5. We

also found that BEDMR tend to deregulate genes involved in

proliferation and invasion. For example, in chromosome 11, a

BEDMR was found near the GAB2 gene that inhibits E-cadherin
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and promotes cell migration and invasion, in chromosome 1, the

ADAMTS4 and PRDX6 genes were amplified and unmethylated

in about half of the samples (Table S3 in Supplementary Mater-

ial). Most interestingly, we found hypo-methylated BEDMRs and

DMRs affecting histone gene clusters in chromosomes 1q21.2 and

6p22.1. The deregulation of members of histone gene family and

chromatin remodeling factors such as the histone H3 demethylase

JMJD1B may affect the chromatin structure and disrupt the coor-

dinate signaling and repair, contributing to genome instability in

cancer.

In the second part of our study, we investigated the relation-

ship between the density of retro-transposable SINE elements

(Alu) and genome instability. Observing the enrichment levels

of the 93 BEDMRs, we found that in a significant fractions of

cases (33/93), Alu repeat enrichment occurs in the vicinity of

frequent recombination area. The role of Alu repeat elements

in non-allelic homologous recombination events has been well

described in the literature but many aspects are still unclear.

Furthermore, the presence of SINE and LINE elements affects

DNA methylation. It has been reported that the promoter regions

of methylation resistant genes are twice as frequently enriched

with SINEs and LINEs than the ones of methylation prone

genes (Estécio et al., 2010). Furthermore, in a recent article (Li

et al., 2012), it was shown that segments repeated in low-copy

number regions (LCRs) were associated with genome instabil-

ity and hypomethylation in the germline, and interestingly it

was found that homebox, cadherin, and histone families were

highly enriched in methylation deserts. In addition, a study on

five cancer types using whole genome sequencing showed that

transposable elements tend to occur in the vicinity of genes fre-

quently mutated in cancer and biased toward regions of cancer-

specific DNA hypomethylation (Lee et al., 2012). We found that

23 of the 32 BEDMRs enriched with Alu elements were hypo-

methylated. We suggest that there might be a mechanistic rela-

tionship between hypomethylation, the presence of these repeat

elements and genome instability, as also described in the litera-

ture. However, we recognize that further study is required to tease

out how much these elements really contribute to the genome

instability and whether the presence of oncogenes, change of

methylation state, or local sequence repeat enrichment prevail in

the mechanism.

Other studies have shown that fragile sites and associated genes

are frequently deleted or rearranged in many cancer cells and

have clearly demonstrated their importance in genome instabil-

ity in cancer (Debacker and Kooy, 2007). Out of the 93 BEDMRs

detected in breast tumor samples, 38 overlap with fragile sites

while only 18 of them had an overlap with both Alu enriched

regions and fragile sites (see Table S1 in Supplementary Material

and associated genes in Table S3 in Supplementary Material). In

these BEDMRs that overlap with Alu enriched regions and frag-

ile sites, we found 35 genes with significant DNA methylation

and copy number state in at least 20% of the patients. A remark-

able locus is 1q21.3, overlapping with the fragile site FRA1A, in

which SETDB1 and ARNT are amplified and unmethylated in

51% of the samples. SETDB1 is a histone methyltransferase and

was previously shown to have oncogenic functions in melanoma,

accelerating its formation (Ceol et al., 2011). Furthermore, ARNT

is regulator involved in TF-miRNA feed-forward loop in can-

cer (Yan et al., 2012). Interestingly, the 1q21.3 locus has been

also reported to be a melanoma susceptibility locus (Macgre-

gor et al., 2011), suggesting that BEDMRs might target regions

that are frequently fragilized or susceptible to deregulation in

cancer. However, since approximately 30% of the genome is cov-

ered by fragile sites, it is unlikely that fragile sites contribute

solely to genome instability and the presence of BEDMRs. The

fraction of BEDMRs overlapping with fragile sites is indeed

not statistically significant, suggesting that other elements con-

tribute to the mechanism of association between BERs and

DMRs. Furthermore, BEDMRs provide a much higher resolution

insight into the relationship between breakpoints and differential

methylation.

Our work focused on analyzing genome-wide patterns of DMR

(DMRs) and (BERs) in relation to the genome architecture.

Another important aspect relates to mosaicism. Breast cancer is

a complex disease in which chromosomes are both affected in

their structures and numbers, leading to mosaic karyotypes. At the

resolution of our ROMA platform (ca. 40 kb),and using our break-

point density functions we can appreciate and quantify regions of

intense rearrangements made by the means of objective scoring

schemes, as shown in Hicks et al. (2006) for firestorm indexes and

Russnes et al. (2010) for WAAI and CAAI indexes of the Micma

samples (also used in this paper). We should note that interphase

FISH on 33 loci was used to confirm firestorms in a previous study,

Hicks et al. (2006), 5 out of 12 validated loci described in the study

overlapped with our DMRs and including one of these which co-

localized with BEDMRs (11q14.1, Figure S12 in Supplementary

Material). Our BEDMR regions can be seen as proxies to complex

and frequent rearrangements. Nevertheless, one can also check

the different clones of individual chromosomes using multi-color

FISH. For example, in Bilal et al. (2012), a FISH experiment was

performed on 36 samples which are ER + /HER2− of the Micma

cohort to detect amplicons at 8q24.3, 8p11.2, 17q21.33-q25.1.

These regions overlapped with BERs (8q11.2, 17q24.1-q25.1)

and DMRs (8q24.3, 17q25.1) detected in our study (Table S1 in

Supplementary Material). However true mosaicism can only be

assessed in a future next-generation sequencing study of chromo-

somal translocations. Our assessment of co-localization of BERs

and DMRs is a possible model toward genomic remodeling and

temporal emergence of cancer.

Combining the different clues obtained throughout our work,

we can sketch a tentative model that describes the relationship

between the epigenetic and genetic changes in the genome asso-

ciated with cancer and try to address the several questions that

we asked in introduction. First, we showed that breakpoint occur-

rences seem to co-occur with local hypomethylation and BERs

within 1 Mb. These regions, herein called BEDMR, were found

in of presence of retro-transposable SINE Alu elements in 35%

of these cases within a distance of 3 Mb. Second interrogation

focused on the functional aspects of these structural and epige-

netic changes and whether they had an impact on genomic regions

which are prominent in cancer.

We found indeed that 8 of 93 BEDMRs were co-located with

regions containing genes causally linked with cancer based on the

Cancer Gene Sensus definition, but in fact this number could be
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larger since 47/93 of all BEDMRs and more interestingly 66% of

the BEDMRs encompassed in a genic region (47/71) contained at

least one gene reported previously in the literature as linked with

cancer, e.g., PCDH family, SETDB1, ARNT, PRDX6, ADAMTS4,

EGR1, CTNN1A, and genes involved in the chromatin struc-

ture such as histone gene families and remodeling factors. The

number remains important even when taking a threshold of a

minimum of three references for a gene (41/71, 57%). Our result

was in agreement with other studies suggesting that transposable

elements’ insertions, combined with abnormal hypomethylation

and increased genome instability provide a selective advantage in

tumorigenesis. Although no causal relationships can be inferred,

we can say that each feature contributes partially to the preferential

choice of certain loci for genome rearrangement.
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