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Major impacts of climate change on deep-sea benthic 
ecosystems

Andrew K. Sweetman*, Andrew R. Thurber†, Craig R. Smith‡, Lisa A. Levin§,  
Camilo Mora‖, Chih-Lin Wei⁋, Andrew J. Gooday**, Daniel O. B. Jones**, Michael Rex††, 

Moriaki Yasuhara‡‡, Jeroen Ingels§§, Henry A. Ruhl**, Christina A. Frieder§,‖‖,  
Roberto Danovaro⁋⁋,***, Laura Würzberg†††, Amy Baco‡‡‡, Benjamin M. Grupe§,§§§,  
Alexis Pasulka‖‖‖, Kirstin S. Meyer⁋⁋⁋,****, Katherine M. Dunlop*, Lea-Anne Henry†††† and  
J. Murray Roberts††††

The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor eco-
systems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric 
greenhouse gases are bringing about significant changes in the environmental properties of the ocean 
realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts 
on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could 
increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water forma-
tion may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. 
Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans 
by the year 2100 (0.29 to 0.37 pH units). O

2 
concentrations will also decline in the bathyal NE Pacific 

and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another impor-
tant environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline 
significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted 
to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect 
deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed 
overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that 
will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how 
these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas 
extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications. 
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Introduction 
The oceans are a major sink for CO

2
 produced by the 

burning of fossil fuels (Pauchauri et al., 2014) as well as 
for the heat produced by the greenhouse effect (Glecker 
et al., 2016). Oceans thus help to buffer multiple aspects 
of global climate change and their effects on marine and 
terrestrial ecosystems (Reid et al., 2009). Deep-sea ecologi-
cal processes and characteristics, such as nutrient cycling, 
carbon sequestration, productivity, habitat provision, 
and trophic support, underlie the healthy functioning of 
ocean ecosystems and provide valuable ecosystem services 
to mankind (Thurber et al., 2014). For example, nutrients 
produced during the re-mineralization of organic matter 
at the deep seafloor are ultimately used by phytoplankton 
to produce organic matter that fuels secondary produc-
tion. At the same time, organic-matter degradation and 
re-mineralisation contribute to carbon biogeochemical 
cycling in the ocean, and help to buffer the ocean against 
pH changes and the effects of ocean acidification (Berelson 
et al., 1997; Wenzhöfer et al., 2001; Cerrano et al., 2013). 
The health and sustainable functioning of the planet are 
therefore highly dependent on the deep sea (defined here 
as > 200 m), which accounts for more than 95% of the 
volume of the Earth’s oceans. 

Atmospheric CO
2
 concentrations have risen from 

~ 280 ppm during pre-industrial times to 407 ppm today 
as a result of the burning of fossil fuels, deforestation 
and the removal of other habitats that sequester carbon. 
Continued use of fossil fuels into the 21st century is pre-
dicted to lead to atmospheric CO

2
 levels > 900 ppm by 

2100 (under Representative Concentration Pathway (RCP) 
8.5; Meinshausen et al., 2011), though the precise level is 
highly dependent on the emission scenario (Pachauri et al., 
2014). These rising atmospheric greenhouse gas concentra-
tions have led to an increase in global average temperatures 
of ~ 0.2°C decade–1, much of which has been absorbed by 
the oceans, whilst the oceanic uptake of atmospheric CO

2
 

has led to major changes in surface ocean pH (Levitus et al., 
2000, 2005; Feely et al., 2008; Hoegh-Guldberg and Bruno, 
2010; Mora et al., 2013; Roemmich et al., 2015).

The deep sea has experienced dramatic changes in 
physical and chemical variables in the geological past. For 
example, major expansion and strengthening of oxygen 
minimum zones (OMZs; O

2
 < 0.5 mL L–1) are known to 

have occurred during abrupt, decadal–centennial-scale 
warming events during the last deglaciation (Moffitt et al., 
2015b; Praetorius et al., 2015). Similar fluctuations in OMZ 
intensity have occurred during the Dansgaard-Oeschger 
(D-O) events (millennial-scale abrupt climate oscillations) 
during the last glacial period (Cannariato and Kennett, 
1999; Schmittner et al., 2007). Bottom-water tempera-
ture and current velocities have also fluctuated in rela-
tion to decadal–millennial scale climatic changes during 
the last de-glaciation and Holocene (Bianchi and McCave, 
1999; Marchitto and deMenocal, 2003; Farmer et al., 
2011; Cronin et al., 2012). Finally, deep-sea bottom tem-
peratures have also exhibited systematic glacial-low, inter-
glacial-high patterns during the Plio-Pleistocene (Dwyer 
et al., 1995; Martin et al., 2002; Sosdian and Rosenthal, 
2009; Elderfield et al., 2010). 

These paleo-environmental changes significantly modi-
fied deep-sea biodiversity and probably ecosystem func-
tioning (Thomas and Gooday, 1996; Yasuhara and Cronin, 
2008; Yasuhara et al., 2008, 2016). For example, in the 
bathyal Santa Barbara Basin (California margin), rapid, 
alternated shifts in the seafloor ecosystem have occurred 
in response to changes in OMZ intensity associated with 
D-O and de-glacial abrupt warming events (Cannariato 
et al., 1999; Moffitt et al., 2015a). North Atlantic fos-
sil records during the last de-glaciation showed abrupt 
changes in deep-sea biodiversity associated with a rap-
idly changing climate (specifically deep-water circulation 
and temperature) over decadal to centennial time-scales 
(Yasuhara et al., 2008, 2014). Longer time-scale paleo-eco-
logical studies have also shown systematic changes in fau-
nal structure and biodiversity related to glacial-interglacial 
climate cycles over the last three million years, and more 
specifically to climate-driven changes in bottom tempera-
ture or particulate organic carbon (POC) flux, depending 
on the ocean and taxonomic group (Cronin et al., 1996; 
Cronin and Raymo, 1997; Yasuhara and Cronin, 2008; 
Yasuhara et al., 2009, 2012a; Yasuhara and Danovaro, 
2016). Paleoecology (Yasuhara et al., 2015) has thus 
revealed the dynamic and sensitive nature of deep-sea 
ecosystem structure and biodiversity across a wide range 
of time scales in response to changing climatic conditions. 

Many observational studies are showing that present-
day climate change is already impacting deep-sea environ-
ments, as evidenced by increased deep-sea temperature 
(Purkey and Johnson, 2010), deoxygenation (Stramma 
et al., 2008, 2010, 2012; Keeling et al., 2010; Helm et al., 
2011), lowered pH of intermediate deep-waters (Byrne 
et al., 2010), and altered POC flux to the seafloor (Ruhl 
and Smith, 2004; Smith et al., 2013). Despite emerging 
evidence that climate-driven changes in deep-sea environ-
mental conditions may perturb the functioning of ocean-
floor ecosystems (Danovaro et al., 2001; Smith et al., 2007, 
2008; Dunlop et al., 2016; Yasuhara et al., 2016), our 
understanding of the extent to which projected physi-
cal and chemical changes will lead to deleterious eco-
logical consequences is still very poor (Philippart et al., 
2011). Given that deep-sea ecosystems are vitally impor-
tant to the Earth system (Danovaro et al., 2014) and are 
at considerable risk from ongoing climate change (Mora 
et al., 2013; Jones et al., 2014; Levin and Le Bris, 2015), 
our goal in this paper is to understand and predict the 
nature and consequences of climate change at the deep 
seafloor until 2100. To this end, we describe the present 
status of four major environmental variables at the seabed 
that are likely to be altered by increased CO

2
 emissions to 

the atmosphere: temperature, oxygenation, pH and food 
supply (or POC flux). We then explore how these condi-
tions may change by 2100, and assess how these changes 
are likely to modify benthic biodiversity and ecosystem 
functioning especially along continental margins, in polar 
regions, and at the abyssal seafloor. Finally, we briefly 
address how additional pressures (e.g., from bottom fish-
ing, deep-sea mining) may further impact deep-seafloor 
ecosystems, and identify the possible societal implications 
of these combined changes. 
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Methods
To identify the present and future state of deep-sea eco-
systems, we used a combination of expert opinion, cur-
rent literature, and the output of the IPCC (Intergov-
ernmental Panel on Climate Change) Fifth Assessment 
Report (AR5) models. To generate maps of present-day 
ocean conditions at the seafloor we: (1) derived the 
annual climatological means of bottom temperature and 
dissolved O

2
 based on the World Ocean Atlas 2013 (avail-

able from the NOAA National Oceanographic Data Center 
at http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.
html); (2) calculated the current seafloor pH from total 
inorganic CO

2
, total alkalinity, temperature, salinity, and 

pressure using the program CO2SYS (data on seafloor 
carbon content and the program CO2SYS were available 
from the Global Ocean Data Analysis Project at http://
cdiac.ornl.gov/oceans/; data on temperature, salinity 
and pressure were from the annual climatological mean 
from the World Ocean Atlas 2013); and (3) estimated POC 
flux to the global seafloor by first gathering data (from 
the portal www.science.oregonstate.edu/ocean.produc-
tivity) for global climatological monthly mean SeaWiFS  
(1998–2007) and MODIS (from 2008–2010) Level-3 
chlorophyll-a concentration and Level-4 VGPM ocean pri-
mary productivity (Behrenfield and Falkowski, 1997). The 
export POC flux at the seafloor was then calculated using 
an equation from Lutz et al. (2007) based on the mean and 
seasonality (standard deviation/mean) of primary produc-
tion, as well as the mean export depth below the euphotic 
zone over a 12-year period. The euphotic zone was calcu-
lated from the mean surface chlorophyll concentrations 
using the Case I model of Morel and Berthon (1989), 
while the export depth was calculated by subtracting the 
euphotic zone depth from the water depth. The ETOPO1 
Global Relief Model from the NOAA National Geophysical 
Data Center (www.ngdc.noaa.gov/mgg/global/) was used 
for the global ocean depth.

Future ocean projections for the year 2100 were com-
piled from all available data generated by Earth Systems 
Models as part of the Coupled Model Inter-comparison 
Project Phase 5 (CMIP5) to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change (Taylor 
et al., 2012) as in Mora et al. (2013). A total of 31 Earth 
System Models from 18 centers in nine countries were col-
lected and multi-model averages of temperature, pH, O

2
 

and POC flux to the seafloor were reported as the inter-
annual mean projections between 2090 and 2100 (Mora 
et al., 2013). Detailed descriptions of the accuracy and 
precision of multi-model estimates can be found in Mora 
et al. (2013). 

Characterization of present and future seafloor 
environmental conditions 
Abyssal (water depth 3000–6000 m) and polar habitats 
can be characterized as cold, slightly alkaline, and well-
oxygenated systems (Table 1; Figure 1). They are also 
quite dynamic environments with environmental con-
ditions (e.g., temperature, POC flux) fluctuating over 
intra- and interannual timescales. At bathyal depths  
(200–3000 m) on continental margins, spatial gradients 

in  temperature, pH, O
2
 and food supply can be much 

steeper (Table 1; Figure 1). One of the major differences 
between abyssal and bathyal regions is in terms of food 
supply to the seafloor, with abyssal regions being charac-
terized by extreme food limitation over many thousands 
of kilometers (Table 1; Figure 1).

Temperature

Currently, temperatures at the abyssal seafloor at low to 
mid latitudes in the Atlantic, Indian and Pacific Oceans 
range between about 0.01 and 4°C (Table 1; Figure 1) 
(Yasuhara and Danovaro, 2016). Bathyal temperatures typ-
ically range from 2 to 8°C (Figure 1), though exception-
ally warm seafloor temperatures can be found at upper 
bathyal depths, and in smaller enclosed seas such as the 
deep Red Sea (> 20°C; Roder et al., 2013), and bathyal 
and abyssal Mediterranean Sea (12–14°C). Sub-zero sea-
floor temperatures tend to occur only at high latitudes 
(Table 1; Figure 1).

Earth-system-model analyses suggest that some abyssal 
ecosystems are presently warming at rates of 0.01 to 0.1°C 
decade–1 (e.g., the Southern Ocean; Purkey and Johnson, 
2010). Approximately 19% of the ocean’s heat uptake 
has gone into the deep ocean > 2000 m (Talley et al., 
2015). Over the next 84 years, the highest temperature 
changes are likely to occur at the abyssal seafloor in the 
North Atlantic, Southern and Arctic Oceans (Mora et al., 
2013) (Table 2; Figure 2). Bathyal depths are also likely 
to experience increasing temperatures (Soltwedel et al., 
2005); Mora et al. (2013) modeled increases of 3.6, 4.4 
and 3.7°C in the Pacific, Atlantic, and Arctic Oceans (e.g., 
Barents and Kara Sea), with lower temperature increases 
in the Indian and Southern Oceans (e.g., at sites of deep-
water formation in the Weddell Sea) (Table 2; Figure 2) 
by 2100. These predictions of temperature change are in 
alignment with evidence that the deep Greenland Sea has 
warmed by 0.7°C since the 1950s (~ 0.01°C yr–1; Somavilla 
et al., 2013). Bathyal waters off Antarctica are also warm-
ing by 0.005–0.01°C yr–1 (Smith et al., 2007; Purkey and 
Johnson, 2010). 

Oxygenation

Presently, much of the Atlantic Ocean is well oxygenated 
(Figure 1) relative to the North Indian and Pacific Oceans, 
where bottom water O

2
 concentrations are lower because 

of the biological removal of O
2
 as thermohaline circula-

tion moves deep waters across ocean basins from the 
North and South Atlantic towards the North Pacific, in 
isolation from the surface ocean. Warming of the oceans 
will enhance thermal stratification and density gradients, 
which will reduce vertical mixing. Combined with a reduc-
tion in O

2
 solubility in warmer water, increased thermal 

stratification is predicted to create widespread ocean de-
oxygenation (Keeling et al., 2010; Long et al., 2016), with 
the greatest effect in intermediate waters (100–1000 m; 
Stramma et al., 2012; Bopp et al., 2013). Already, distinct 
deep-water masses in the Southern Ocean (Helm et al., 
2011), eastern North Atlantic (e.g., Sub-polar Mode Water, 
the Intermediate Water and the Mediterranean Outflow 
Water; Stendardo et al., 2015), and in the West Pacific 

http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html
http://cdiac.ornl.gov/oceans/
http://cdiac.ornl.gov/oceans/
www.science.oregonstate.edu/ocean.productivity
www.science.oregonstate.edu/ocean.productivity
www.ngdc.noaa.gov/mgg/global/
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Table 1: Present-day ranges for temperature, dissolved oxygen, pH, and seafloor POC flux at abyssal and bathyal depthsa. 
DOI: https://doi.org/10.1525/elementa.203.t1 

Ocean basin Depth  
zonea

Temperature  
(°C)

Dissolved oxygen 
(mL L–1)

pH Seafloor POC flux  
(mg C m–2 d–1)

Atlantic > 3 km –0.07 to 4.39 4.6 to 6.92 7.98 to 8.11 0.69 to 10.41

0.2–3 km –1.23 to 27.83 1.48 to 7.54 7.71 to 8.25 1.4 to 108.05

Pacific > 3 km 0.7 to 3.84 2.01 to 4.9 7.72 to 8 0.56 to 10.68

0.2–3 km –0.23 to 28.39 0.24 to 7.31 7.58 to 8.2 0.66 to 81.86

Indian > 3 km 0.01 to 2.47 2.48 to 5.4 7.9 to 8.03 0.91 to 6.71

0.2–3 km 0.28 to 25.22 0.1 to 7.16 7.7 to 8.12 1.4 to 61.91

Southern > 3 km –0.62 to 1.62 4.15 to 6.07 7.94 to 8.03 0.16 to 2.67

0.2–3 km –2.03 to 8.52 3.66 to 7.81 7.9 to 8.16 0.21 to 51.67

Arctic > 3 km –1.05 to –0.25 5.79 to 7.18 NAb 0.26 to 4.34

0.2–3 km –1.77 to 7.87 2.67 to 8.13 NA 0.3 to 75.57

aAbyssal depths are > 3 km; bathyal depths are 0.2–3 km.
bData not available.

Figure 1: Present-day environmental conditions at the deep seafloor. Temperature (oC), dissolved oxygen (mL L–1), 
pH, and seafloor POC flux (mg C m–2 d–1) conditions at the deep (> 200 m) seafloor. DOI: https://doi.org/10.1525/
elementa.203.f1

https://doi.org/10.1525/elementa.203.t1
https://doi.org/10.1525/elementa.203.f1
https://doi.org/10.1525/elementa.203.f1
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(North Pacific Subtropical mode water; Takatani et al., 
2012) display long-term decreases in O

2
 concentration. 

Bathyal seafloor habitats in the North Pacific, North Atlan-
tic, Arctic and Southern Oceans could experience a reduc-
tion in bottom-water oxygenation by 0.03–0.05 mL L–1 
by the year 2100 (Table 2; Figure 2), which represents a  

reduction in water column O
2
 levels by 0.7%–3.7% (Table 3;  

Figure 3). Significant OMZs are presently found along the 
continental margins of the East Pacific, Southeast Atlantic, 
West Pacific and North Indian Oceans (Levin, 2003; Helly 
and Levin, 2004). Ecosystems within and on the fringes of 
OMZs could be particularly affected by the O

2
 and warm-

Table 2: Modeled changes in temperature, dissolved oxygen, pH, and seafloor POC flux that could occur at the abyssal 
and bathyal seafloora by 2100 relative to present-day conditions. DOI: https://doi.org/10.1525/elementa.203.t2

Ocean basin Depth zonea Temperature 
(oC)

Dissolved oxygen 
(mL L–1)

pH Seafloor POC flux  
(mg C m–2 d–1)

Atlantic > 3 km –0.37 to 0.98 –0.03 to 0 –0.13 to 0 –1.27 to –0.02

0.2–3 km –0.32 to 4.41 –0.03 to 0.02 –0.37 to –0.01 –13.73 to 0.63

Pacific > 3 km 0.02 to 0.47 –0.01 to 0 –0.06 to 0.01 –1.27 to 0.51

0.2–3 km 0.03 to 3.63 –0.05 to 0.01 –0.31 to 0 –5.19 to 2.37

Indian > 3 km –0.01 to 0.45 –0.01 to 0 –0.06 to 0 –0.64 to –0.04

0.2–3 km –0.01 to 2.17 –0.01 to 0 –0.29 to 0 –3.7 to 0.4

Southern > 3 km 0.09 to 0.74 –0.03 to 0 –0.09 to –0.01 –0.31 to 0.48

0.2–3 km 0.08 to 1.71 –0.04 to 0 –0.33 to –0.01 –1.95 to 4.78

Arctic > 3 km –0.13 to 0.76 –0.02 to 0 –0.14 to –0.01 –1.25 to 1.64

0.2–3 km –0.18 to 3.71 –0.03 to 0.02 –0.37 to –0.01 –9.71 to 3.57

aAbyssal depths are > 3 km; bathyal depths are 0.2–3 km.

Figure 2: Modelled environmental changes at the deep seafloor in the year 2100. Modeled changes in tempera-
ture (oC), dissolved oxygen (mL L–1), pH, and seafloor POC flux (mg C m–2 d–1) conditions that could be seen at the at the 
deep (> 200 m) seafloor by 2100 relative to present-day conditions. DOI: https://doi.org/10.1525/elementa.203.f2

https://doi.org/10.1525/elementa.203.t2
https://doi.org/10.1525/elementa.203.f2
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ing changes predicted for bathyal environments (Table 3; 
Figures 2, 3; Keeling et al., 2010; Sperling et al., 2016). 
Though not resolved at the grid resolution shown in  
Figure 1, tropical and subtropical bathyal waters between 
200 and 700 m, including those bathyal margins of all 
major eastern boundaries, have already lost considerable 
amounts of O

2 
over the last half-century, and many OMZs 

have expanded in volume (Stramma et al., 2008, 2010, 
2012; Gilly et al., 2013; Deutsch et al., 2014). 

In the abyssal realm, seafloor habitats under areas of 
deep-water formation (e.g., those in the North Atlantic 
and Southern Oceans) could experience a maximum 
decline in O

2
 concentration of 0.03 mL L–1 by 2100 (i.e., a 

0.5% drop from current levels; Tables 2, 3; Figures 2, 3). 
Greenhouse warming may also exert an effect on abys-
sal O

2
 levels (as well as pH and temperature) by chang-

ing thermohaline circulation (Rahmstorf et al., 2015; 
Yamamoto et al., 2015). Reduced Atlantic Ocean overturn-
ing circulation will initially lead to lower O

2
 levels at the 

deep seafloor, and may alter the intensity of Pacific and 
Indian Ocean OMZs (Schmittner et al., 2007). However, 

over longer terms, deep-water oxygenation may also 
increase even if Atlantic meridional overturning circula-
tion becomes weaker, as deep convection in the Weddell 
Sea and Antarctic Bottom Water becomes enhanced 
(Yamamoto et al., 2015). 

pH

The North Atlantic Ocean is currently the most alkaline 
in terms of seafloor pH, while the pH of the deep North 
Pacific Ocean is lower (Figure 1). This spatial gradient 
in pH reflects the age and isolation of the water masses, 
which accumulate CO

2
 released by biological respiration 

as they move through the ocean basins. There is also a 
contribution of excess atmospheric CO

2
 absorption intro-

duced to deep-water masses from dense, cold CO
2
-rich 

surface waters at downwelling sites (e.g., North Atlantic), 
which then move through the oceans via meridional 
overturning circulation. Presently, studies in the Pacific 
Ocean have revealed that intermediate waters down to 
500 m depth have experienced a decline in pH of 0.06 
units between 1991 and 2006, with the greatest changes 

Table 3: Relative (%) changes in dissolved oxygen and POC flux that could occur at the abyssal and bathyal seafloora by 
2100 relative to present-day conditions. DOI: https://doi.org/10.1525/elementa.203.t3

Ocean basin Depth zonea Dissolved oxygen Seafloor POC flux 

Atlantic > 3 km –0.44 to –0.02 –27.12 to –1.26

0.2–3 km –0.68 to 2.05 –36.27 to 4.79

Pacific > 3 km –0.37 to 0.03 –31.8 to 9.8

0.2–3 km –3.71 to 0.25 –50.4 to 6.54

Indian > 3 km –0.22 to –0.02 –39.65 to –1.27

0.2–3 km –2.36 to 0.72 –54.61 to 3.87

Southern > 3 km –0.46 to –0.06 –18.81 to 21.2

0.2–3 km –0.84 to –0.03 –14.63 to 53.16

Arctic > 3 km –0.31 to –0.03 –15.21 to 37.76

0.2–3 km –1.08 to 0.24 –34.58 to 59.73

aAbyssal depths are > 3 km; bathyal depths are 0.2–3 km.

Figure 3: Relative environmental changes at the deep seafloor in the year 2100. Relative change (%) in dissolved 
oxygen (mL L–1) and seafloor POC flux (mg C m–2 d–1) conditions that could be seen at the deep (> 200 m) seafloor by 
2100 relative to present-day conditions. DOI: https://doi.org/10.1525/elementa.203.f3

https://doi.org/10.1525/elementa.203.t3
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 occurring around 25oN (Byrne et al., 2010). Model predic-
tions from the North Atlantic have revealed that over 17% 
of the seafloor area below 500 m depth will experience pH 
reductions exceeding 0.2 units by 2100 because of sub-
duction of high-CO

2
 waters by thermohaline circulation 

(Gehlen et al., 2014). These major pH reductions are pro-
jected to occur over important deep-sea features, such as 
seamounts and canyons (Gehlen et al., 2014). Bathyal sea-
floor habitats in other areas of the world’s oceans will also 
experience significant reductions in pH by the year 2100 
(e.g., a decrease of 0.29 to 0.37 pH units) as a result of the 
entrainment of CO

2
-rich seawater to the seafloor at sites 

of bottom-water formation (Table 2; Figure 2). Since it is 
estimated to take 1000 years for water entrained at deep-
water formation sites to circulate throughout the abyssal 
ocean basins, vast areas of the abyssal Indian and North 
Pacific Oceans will experience a lesser shift in pH by 2100 
(maximum decrease in pH = 0.06; Table 2; Figure 2).

POC flux or food supply
With the exception of certain continental margin habitats 
(e.g., OMZs, some canyons and seamounts) and chemos-
ynthetic ecosystems, most of the deep sea, and particu-
larly the abyss, is characterized by severe food limita-
tion (POC flux of 1–2 g C m–2 yr–1; Watling et al., 2013) 
(Table 1; Figure 1). Currently, regions with the highest 
POC export lie at high latitudes, although transfer effi-
ciency (the proportion of POC exported that arrives at the 
seafloor) is lowest here compared to lower latitudes. At 
lower latitudes, extensive mineralization takes place in 
the upper water column leading to less export from the 
euphotic zone, but transfer efficiency is higher, as most 
of the exported carbon tends to be refractory (Henson 
et al., 2012). Enhanced warming of the upper ocean is 
predicted to enhance stratification, reducing nutrient 
input to the upper euphotic zone and causing a shift 
in phytoplankton assemblages from large, fast-sinking 
diatoms (with low surface area:volume [SA:V] ratios) to 
slow-sinking picoplankton (with high SA:V ratios; Bopp 
et al., 2005). This shift is likely to reduce export flux to 
the seafloor, as well as transfer efficiency (Buesseler et al., 
2007; Morán et al., 2010, 2015; Steinacher et al., 2010). 
Furthermore, freshening of Arctic regions by sea-ice melt-
water and episodic input of large river runoff have been 
shown to reduce phytoplankton size and, by inference, 
export flux, a trend that has been projected to continue 
into the future (Li et al., 2009, 2013). The areas likely to 
be impacted by significant declines in POC flux owing to 
enhanced water column stratification lie in the North and 
South Pacific, North and South Atlantic, and North and 
South Indian Oceans (Tables 2, 3; Figures 2, 3). The abys-
sal and bathyal regions of the Indian Ocean are predicted 
to experience declines in POC flux by as much as 40% and 
55%, respectively (Tables 2, 3; Figures 2, 3) by 2100. For 
abyssal seafloor habitats, these changes could be severe, 
as they are some of the most food-limited regions on the 
planet (Berelson et al., 1997; Danovaro et al., 2001; Smith 
et al., 1997, 2008). In contrast, the polar oceans are areas 
where POC flux is likely to rise. Vast abyssal and bathyal 
areas of the Arctic and Southern Oceans are predicted 

to experience a POC flux increase of upto 60 and 53%, 
respectively (Tables 2, 3; Figures 2, 3) as a result of 
longer ice-free periods (Comiso, 2010), though account-
ing for future shifts in phytoplankton size and their nutri-
ent supply could modify this expectation (Tremblay et al., 
2012; Arrigo, 2013). Localized increases in POC are also 
predicted for upwelling regions, such as coastal Chile and 
the west coast of the United States (Figures 2, 3) (Jones 
et al., 2014). These regions have already seen an increase 
in primary production and frequency of high POC flux to 
the deep seafloor because of increased wind stress and 
nutrient upwelling. 

Seafloor ecosystem changes under future 
climate change scenarios
The continental margins

The continental margins of the world’s ocean are among 
the most heterogeneous and diverse of the ocean’s envi-
ronments (Levin and Sibuet, 2012). Hydrographic, topo-
graphic and biotic influences create a multitude of sea-
bed habitats and biomass/biodiversity hotspots, and can 
influence biodiversity–ecosystem functioning relation-
ships (Zeppilli et al., 2016). These include broad expanses 
of organic-rich sediment, low O

2 
zones and OMZs, sea-

mounts, banks, ridges, fjords, canyons, basins, coral and 
sponge reefs, organic falls, and areas of methane seepage. 
This heterogeneity supports the biodiversity responsi-
ble for a whole host of ecosystem functions and services 
(Levin and Dayton, 2009; Thurber et al., 2014). Because of 
the shallower depth of continental margin habitats and 
closer connections with land compared to abyssal habitats, 
continental margin ecosystems are likely to experience a 
greater degree of change in all environmental parameters 
compared to the abyssal seafloor (Tables 2, 3).

While few continental margin systems have been inves-
tigated directly in terms of the consequences of climate 
change, their strong gradients and regional variations 
have allowed significant understanding of the effects of 
temperature, pH, O

2
 and POC flux on deep-sea benthic 

ecosystems. Warming of surface waters along continental 
margins, and increased thermal stratification and reduced 
nutrient supply to the surface are likely to reduce both 
productivity and phytoplankton type and size (Smith et al., 
2008; Morán et al., 2010, 2015), yielding reduced phytode-
trital flux to the seabed (Bopp et al., 2005; Buesseler et al., 
2008; Smith et al., 2008). Model outputs suggest that bath-
yal areas particularly prone to declining POC flux lie in the 
Norwegian and Caribbean Seas, NW and NE Atlantic, the 
eastern tropical Pacific, and bathyal Indian and Southern 
Oceans, which could experience as much as a 55% decline 
in POC flux by 2100 (Tables 2, 3; Figures 2, 3). Elevated 
seafloor temperatures at northerly latitudes (Figure 2) 
will lead to warming boundary currents and may trigger 
massive release of methane from gas hydrates buried on 
margins (Phrampus and Hornbach, 2012; Johnson et al., 
2015) especially in the Arctic, with simultaneous effects 
on global climate, aerobic methane oxidation, water col-
umn de-oxygenation and ocean acidification (Biastoch et 
al., 2011; Boetius and Wenzhöfer, 2013). Along canyon-cut 
margins (e.g., the western Mediterranean), warming may 
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additionally reduce density-driven cascading events, lead-
ing to decreased organic matter transport to the seafloor 
(Canals et al., 2006), though this very process is also likely 
to reduce physical disturbance at the seafloor. Greenhouse 
warming will also increase temperature differentials 
between land and oceans, and intensify wind-driven 
upwelling in eastern boundary currents, stimulating 
photosynthetic production at the surface (Bakun, 1990; 
Bakun et al., 2015; Wang et al., 2015). However, this new 
production will ultimately start to decay as it sinks and 
increase biogeochemical drawdown of O

2
. Upwelling will 

also bring low-O
2
, high-CO

2
 water onto the shelf and upper 

slope (Bakun, 1990; Feely et al., 2008; Bakun et al., 2010; 
Sydeman et al., 2014; Wang et al., 2015). Increased levels 
of precipitation on land will also alter terrestrial inputs, 
including sediments and organic debris, nutrients, and 
contaminants (Jaedicke et al., 2009; Caroletti and Barstad, 
2010) that may smother seafloor sediments, and alter the 
trophic ecology of deep-sea habitats situated close to land 
(McLeod and Wing, 2007, McLeod et al., 2010).

Margin habitats are noted for dense, high biomass 
aggregations of structure-forming species, such as cold-
water coral (CWC) reefs and coral ‘garden’ habitats 

(Coleman and Williams, 2002; Roberts et al., 2006; Levin 
and Dayton, 2009; Buhl-Mortensen et al., 2010; De Leo 
et al., 2010). CWC structures provide shelter from preda-
tion for a variety of fauna and, as such, can act as nurs-
ery grounds for commercially important species (Koslow 
et al., 2000, Baillon et al., 2012; Henry et al., 2013). The 
habitat complexity of these biogenic reefs also leads to 
high levels of biodiversity on the reefs (Henry et al., 2007). 
By altering internal currents, CWCs can also act as ecosys-
tem engineers boosting organic matter deposition at the 
seafloor (van Oevelen et al., 2009; Soetaert et al., 2016). 
CWCs and other calcifying taxa (e.g., bivalves and echino-
derms) may be susceptible to ocean acidification leading 
to brittle structures, enhanced susceptibility to predation 
and a loss of habitat as a result of lowered aragonite and 
calcite saturation states (Figures 2, 4C).

To date, studies of aragonitic, scleractinian CWC 
responses to ocean acidification have frequently exam-
ined short-term acclimation, with effects on coral bio-min-
eralization, growth, and skeletal strength only becoming 
evident in experiments run for periods of a year or more 
(e.g., Tittensor et al., 2010). Intriguingly, aragonitic CWC 
species are found close to and even below the aragonite 

Figure 4: Predicted effects of climate change on deep-sea benthic ecosystems. Concept depictions showing how 
changes in temperature (A), oxygen (B), pH (C), and POC flux (D) may alter specific ecosystem properties of deep-sea 
benthic ecosystems. DOI: https://doi.org/10.1525/elementa.203.f4
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saturation horizon (Roberts et al., 2009a; Findlay et al., 
2014), raising the question of whether species adapted to 
lower saturation states may have inherent adaptations to 
future lower pH ocean conditions. However, with many 
of the known CWC reefs projected to be bathed in under-
saturated water by the end of the century (Guinotte et al., 
2006; Roberts et al., 2006) the accumulated biogenic 
reef structures will degrade over time, even if living cor-
als persist (Hennige et al., 2015). This degradation could 
have implications for habitat provision with consequent 
effects on fish populations and fisheries production. 
Likely major impact zones include CWC reefs found in 
the northern Atlantic and Arctic Oceans, the Southern 
Ocean, and around New Zealand (Guinotte et al., 2006; 
Yesson et al., 2012) where deep-water pH could decrease 
by approximately 0.3–0.4 pH units by 2100 relative to 
current day values. Reduced food supply owing to lower 
POC fluxes could exacerbate these impacts because the 
metabolic cost of increased rates of calcification become 
greater as pH declines (Wood et al., 2008). Calcareous 
reef habitats in the northern Atlantic could therefore be 
especially hard-hit (Figure 2). 

The expansion of low O
2
 zones will affect many aspects 

of deep-sea ecosystem structure and function (Gooday 
et al., 2010). Biodiversity declines as O

2
 levels decline, 

which can be manifested in multiple ways. Many species 
of octocorals (including gorgonians and pennatulaceans) 
provide habitat for a diverse array of associated inverte-
brates, but octocorals often decrease in abundance as O

2
 

levels decline (e.g., Etnoyer and Morgan, 2005; Roberts 
et al., 2009b; Buhl-Mortensen et al., 2010). Reductions in 
octocoral abundance from de-oxygenation could signifi-
cantly impact hard substratum availability, habitat com-
plexity and benthic biodiversity (Roberts et al., 2009b; 
Hennige et al., 2015). Sediment-burrowing fauna will 
probably be increasingly excluded as water column O

2
 

levels decline leading to a reduction in the mixed layer 
depth, and altered bioturbation rates and C-sequestration 
in sediments (Smith et al., 1997; Smith et al., 2000; Levin 
et al., 2009; Sperling et al., 2016; Figure 4B). This cascade 
of effects is highly likely at depths of 500–1000 m in parts 
of the Eastern Pacific, where OMZ expansion is projected 
to exceed thresholds for biodiversity (Sperling et al., 2016; 
Figures 2, 3).

Intolerant pelagic, demersal and benthic fish and inver-
tebrate species that are mobile will experience habitat 
compression into shallower depths (McClatchie et al., 
2010; Koslow et al., 2011; Sato et al., 2016), or adapt by 
migrating horizontally along continental slopes into 
higher-O

2
 environments. Hypoxia expansion over meth-

ane seeps may inhibit oxidizing symbionts that support 
dense mussel and tubeworm aggregations. These chem-
osynthetic aggregations typically enhance production and 
biodiversity on margins (Levin and Dayton, 2009; Cordes 
et al., 2010), and can provide critical nursery habitats 
(Treude et al., 2011). In contrast, hypoxia-tolerant taxa 
(e.g., squid and jellyfish) may expand their population 
sizes and distributions with consequences for food-web 
structure and pelagic-benthic coupling (Gilly et al., 2013; 
Lebrato et al., 2013; Sweetman et al., 2014a).

Single stressors like warming will limit tolerance win-
dows for other stressors such as low O

2
 or low pH (Pörtner 

and Knust, 2007; Pörtner, 2012). Reductions in food sup-
ply and warming together with expansion of low O

2
 and 

pH zones, will increase the vulnerability of key habitats 
(e.g., CWC reefs) to anthropogenic disturbance (e.g., ben-
thic trawling) and retard recovery of these fragile habitats 
from physical damage. Heavily-fished areas off the north-
ern coast of Norway, which are also home to abundant 
CWC reefs (Fosså et al., 2002), could be especially sensi-
tive, as they are predicted to experience an increase in 
temperature of 2–3°C and pH changes of –0.3 to –0.35 
units, while also being subject to declining O

2 
(0.03 mL 

L–1: Figures 2, 3).
Benthic organisms inhabiting sediments along conti-

nental margins are responsible for most nitrogen cycling, 
while over 50% of carbon burial in the ocean occurs in 
continental margin sediments. In eastern current bound-
ary systems (e.g., off the coast of Namibia), where O

2
 is 

already at sub-oxic levels, these regulating services (e.g., 
nitrogen removal, carbon sequestration) are currently, and 
will continue to be highly sensitive to small changes in 
oxygenation (Deutsch et al., 2011). For example, expan-
sion of low O

2
 waters could easily shift carbon-processing 

pathways by favoring chemosynthesis and by increas-
ing the relative importance of bacteria, protozoa (e.g., 
foraminifera) and metazoan meiofauna in biogeochemi-
cal cycling relative to larger taxa (Levin et al., 2003; Diaz 
and Rosenberg, 2008; Woulds et al., 2009; Sweetman 
et al., 2016), which would impact energy flow to upper 
trophic levels (Figure 4B).

The abyssal zone

Major changes in the upper ocean resulting from global 
warming are likely to include increased sea-surface tem-
peratures and thermal stratification, and reduced nutrient 
upwelling over vast areas of the open ocean (Bopp et al., 
2001; Gregg et al., 2003; Fischlin et al., 2007; Smith et al., 
2008). Ocean acidification is also predicted to reduce 
microbial production of nitrate from ammonium (Beman 
et al., 2011), which could have major consequences for 
oceanic primary production because a significant frac-
tion of the nitrate used by phytoplankton is generated 
by nitrification at the ocean surface (Yool et al., 2007). 
Major consequences of such changes over regional scales 
will probably include (1) reductions in primary produc-
tion combined with (2) shifts from diatom-dominated 
(low SA:V ratio) phytoplankton assemblages with high 
POC-export efficiencies to picoplankton communities 
(high SA:V ratio) characterized by low export efficiencies 
(Smith et al., 2008; Morán et al., 2010; Morán et al., 2015). 
In addition, reductions in calcification from lowered pH 
in surface waters could reduce phytoplankton sinking 
rates through loss of ballast (Hofmann and Schellnhuber, 
2009), though this effect will depend on the ratio of the 
fraction of ballasted vs. un-ballasted fractions of the sink-
ing POC. Our model outputs suggest that seafloor POC 
flux will decline in most oceanic areas with exceptions off 
Peru, the northern coast of Chile, and the Southern and 
Arctic Oceans (Tables 2, 3; Figures 2, 3). The continued 
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reduction in the extent of sea ice in the Arctic is expected 
to lead to increased photosynthetic primary production 
and POC flux there (Jones et al., 2014), which could ben-
efit fauna whose energetic demands increase as a result 
of ocean acidification (e.g., calcifying taxa). Reductions 
in seafloor POC flux will be most drastic, on a percent-
age basis, in the oceanic gyres and equatorial upwelling 
zones, with the northern and southern Pacific Ocean and 
southern Indian Ocean gyres experiencing as much as a 
32–40% decline in POC flux (Tables 2, 3; Figures 2, 3). 
Recent studies have suggested that the NE Atlantic Ocean 
could also undergo similar reductions in POC flux (Jones 
et al., 2014). Because the quantity and quality of POC flux 
is an important ecological forcing factor in the abyss, abys-
sal ecosystems will be highly sensitive to such changes 
(Smith et al. 2008, 2009; Tittensor et al., 2011). For exam-
ple, 3-fold reductions in POC flux (e.g., from 1.5 to 0.5 g C 
m–2 yr–1), which might occur in the equatorial Pacific (Laws 
et al., 2000), are predicted to halve benthic microbial and 
nematode biomass (Figure 4D). These POC flux changes 
could also lead to a 5-fold decline in macrofaunal biomass, 
and cause dramatic reductions in the sediment mixed-
layer depth, benthic respiration, and bioturbation inten-
sity (Smith et al., 2008; Jones et al., 2014; Figure 4D). 
Such a decrease in POC flux would also mean a decline 
in the diversity of nematodes and macrofauna, which are 
thought to be key functional components of abyssal sea-
floor ecosystems. This decline in diversity is particularly 
likely as these groups of organisms tend to rely heavily 
on detrital matter sinking to the seafloor for their energy 
requirements (Danovaro et al., 2008; Smith et al., 2008; 
Jones et al., 2014). 

Holothurians are often the prominent abyssal benthic 
megafauna (Lauerman and Kaufmann, 1998) and play an 
important role in organic carbon processing and bioturba-
tion. Holothurian population dynamics have been linked 
to POC flux (Smith et al., 2008) and are considered indi-
cators of climate change impacts on abyssal ecosystems 
(Glover et al., 2010). Holothurian community dynamics 
have been examined in detail at long-term time-series 
sites in relation to shifts in surface phytodetritus input 
linked to the North Atlantic Oscillation (Porcupine Abyssal 
Plain, NE Atlantic; Billett et al., 2001) and to the Northern 
Oscillation Index and Bakun Upwelling Index (Station 
M, NE Pacific; Ruhl et al., 2014). At both sites, variation 
in these climate indices were correlated with increased 
pulses of POC, which resulted in significant increases in 
abundance of holothurian species, particularly those spe-
cies able to rapidly use phytodetrital material and success-
fully reproduce and recruit (Billett et al., 2001; Smith et al., 
2006, 2009; Huffard et al., 2016). These studies confirm 
the predictions of basic macro-ecology and spatial-gra-
dient studies that climate change fluctuations can cause 
temporal changes in food inputs leading to changes in 
overall macro- and megafaunal biomass and community 
structure in terms of size distributions and dominance 
(Ruhl et al., 2008, 2014). Thus, it is a reasonable expecta-
tion that macro- and megafaunal communities will shift 
in relation to future climatically linked changes in POC 
flux to the abyssal seafloor (Figure 4D). Episodic pulses 

provide food supply to sustain benthic communities over 
periods of deficit (Smith et al., 2013, 2014); the predicted 
reduction in POC input over large abyssal areas will likely 
increase these deficits with a significant impact on fau-
nal communities and their role in ecosystem functioning 
(Figure 4D). 

POC flux to the seafloor, and its degree of seasonality, 
also strongly influence benthic foraminiferal abundance, 
diversity and assemblage composition (Altenbach et al., 
1999; Sun et al., 2006; Corliss et al., 2009; Gooday et al., 
2012). There are well-established decreases in the relative 
abundance of calcareous taxa (as well as calcite satura-
tion) compared to agglutinated taxa, and in labile organic 
matter flux, with increasing water depth. Thus, one con-
sequence of reduced POC flux may be enhanced abun-
dances of agglutinated relative to calcareous foraminifera 
(Gooday, 2003; Cornelius and Gooday, 2004). Shoaling of 
the carbonate compensation depth (CCD) over time as 
a result of increased CO

2
 levels would also have impor-

tant consequences for the diversity of abyssal benthic 
foraminifera, especially in regions where the depth of the 
seafloor lies close to the present depth of the CCD (e.g., the 
eastern Clarion Clipperton Zone, Pacific Ocean). This is an 
area where foraminifera are overwhelmingly dominated 
by agglutinated taxa already (Saidova, 1965; Nozawa et al., 
2006). A shift from calcareous to agglutinated foraminif-
era would likely impact deep-sea function (e.g., deep-sea 
carbon cycling) in addition to altering the biogeographical 
distribution of fauna (Gooday et al., 2012). Agglutinated 
foraminifera, particularly forms such as komokiaceans, 
which are a dominant faunal component in the abyssal 
deep sea (Tendal and Hessler, 1977), are believed to have 
a lower metabolic rate and to be less active in carbon pro-
cessing than calcareous foraminifera (Gooday et al., 2008). 

All of these changes predicted for the abyssal zone 
are likely to fundamentally alter the structure of abys-
sal ecosystems, as well as the functions that they pro-
vide. Changes to microbial and faunal biomass, as well as 
shifts in biodiversity resulting from changes in POC flux 
(Figure 4D), and the complex interactions among benthic 
organisms, have the potential to feed back over long time-
scales to a range of intertwined functions, such as carbon 
cycling, which is highly dependent on benthic biomass 
and diversity (Thurber et al., 2014). 

The polar deep seas

The Arctic Ocean and Antarctic coastal seas have particu-
lar characteristics in common, notably seasonality in solar 
radiation, sea-ice cover and temperature, that can modu-
late surface primary production. Despite these common-
alities, the oceanographic and physiographic settings and 
the geological histories of the Arctic and Antarctic regions 
are very different. There are also major differences in their 
faunal characteristics (Dayton, 1990; Clarke and Johnston, 
2003), as well as contrasting macro-ecological patterns 
(Brandt et al., 2009; Yasuhara et al., 2012b). For example, 
the Arctic seafloor has many more surface-burrowing spe-
cies, such as echiurans, polychaetes, echinoderms and 
crustaceans, relative to the Antarctic (Dayton, 1990), but 
deep-sea diversity is generally much lower in the Arctic 
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(Culver and Buzas, 2000). This difference is thought to 
reflect more glacial disturbance and insufficient time for 
recolonization in the Arctic, as well as fluctuations in sur-
face productivity and reduced circulation during glacial 
episodes (Culver and Buzas, 2000). 

The Arctic and many areas of the Antarctic (e.g.,  
western Antarctic Peninsula or WAP) are predicted to 
undergo more surface-water warming than other parts 
of the Earth over the next century, which will affect sur-
face production, sea-ice cover, and hence food availability 
and quality for deep-sea benthic organisms (see Ingels et 
al., 2012, for Antarctic coastal to deep-sea ecosystems). 
Parts of the Antarctic Peninsula, including the WAP, are 
already experiencing the greatest increase in mean annual 
atmospheric temperature on Earth (Chapman and Walsh, 
2007; Clarke et al., 2007; Solomon et al., 2007; Smale 
and Barnes, 2008), and temperatures at the seafloor in 
the Southern Ocean are predicted to rise by as much as 
0.7°C at abyssal depths and 1.7°C at bathyal depths by 
2100 (Table 2). Field and modeling studies have also 
revealed rapid atmospheric and surface-water warming 
in the Arctic Ocean during recent decades (Overland et 
al., 2004; Spielhagen et al., 2011). Bathyal Arctic waters 
are following this rapid warming trend (Soltwedel et al., 
2005), and temperatures at both bathyal and abyssal 
depths could increase by as much as 0.1–3.7°C relative 
to present-day temperatures by 2100 (Table 2; Figure 2). 
A recent study has shown that deep-sea benthic Archaea 
can be more sensitive to temperature shifts than their 
bacterial counterparts; changes in deep-water tempera-
ture may thus alter the relative importance of Archaea in 
benthic ecosystem processes at polar latitudes (Danovaro 
et al., 2016). Warming at polar latitudes will also open up 
new habitat for invasive species (Figure 4A). For exam-
ple, in the Arctic, the commercially important snow crab 
has extended its range to the north (Alvsvåg et al., 2009; 
Bluhm et al., 2009), and warming appears to have led to 
the appearance of highly predacious, temperature-sensi-
tive king crabs (Lithodidae) in waters of the WAP (Smith 
et al., 2011). These invasive top predators can threaten 
the diversity of epi- and infaunal communities, as well as 
physically disturb large areas of soft sediment (Smith et 
al., 2007). On the other hand, warming-induced exten-
sions of the ranges of temperate–subpolar benthic spe-
cies into polar oceans (Bluhm et al., 2011) may increase 
benthic diversity, both in the short-term (Węsławski et al., 
2011) and the long-term (Rasmussen et al., 2003; Yasuhara 
and Danovaro, 2016), although these invasive species are 
likely to displace less competitive, endemic species unable 
to cope with increased temperatures (Figure 4A). 

Although open ocean polar regions are likely to expe-
rience increased primary productivity and POC flux, the 
production and transport of organic matter to the seafloor 
will probably initially decline in deep-sea habitats located 
close to land. As polar and sub-polar regions become 
warmer, glacial meltwater and erosion of melting tundra 
(Węsławski et al., 2011) will enhance water column tur-
bidity in coastal zones (Grange and Smith, 2013; Sahade 
et al., 2015), reducing water column light levels and phy-
toplankton production, which could affect near-shore 

deep-sea systems. The increased sedimentation in deep 
coastal areas, particularly fjords, may also smother or clog 
the breathing and feeding apparatus of sessile suspen-
sion-feeding fauna. Ophiuroids, capitellid polychaetes and 
other opportunists may be favored by increased sediment 
inputs. In deep Arctic fjords, high sediment fluxes already 
create large areas of burial disturbance, which can nega-
tively impact trophic complexity, diversity and productiv-
ity of benthic assemblages while also inducing O

2
 stress 

(Syvitski, 1989; Włodarska-Kowalczuk et al., 2005; Renaud 
et al., 2007). In time, continued warming will reduce sedi-
ment fluxes into many high-latitude fjords as a result of 
glacial retreat onto land, potentially increasing benthic 
productivity and biodiversity (Syvitski et al., 1989). 

Changing ice regimes will impact glacial and ice-sheet 
calving, with ramifications for physical disturbance in the 
deep sea. Large icebergs can scour the sediment down to 
400 m on the Antarctic shelf. This disturbance leads to 
scale-dependent recolonization of scoured areas and an 
increased input of dropstones (Smale and Barnes, 2008). 
These processes will enhance seafloor heterogeneity and 
create hard substrates for sessile megafauna (Schulz et al., 
2010; Meyer et al. 2015, 2016). Dropstones also create 
diverse microhabitats for meiofauna, allowing for greater 
trophic and functional diversity around stones (Hasemann 
et al., 2013; Gooday et al., 2015). In the longer term, iceberg 
scouring and dropstone deposition will tend to elevate 
diversity on regional scales through (re)colonization pro-
cesses, although the immediate effect of scouring will be 
local elimination of many species (Gutt et al., 1996; Gutt 
and Piepenburg, 2003). In addition, recent evidence sug-
gests that iceberg production followed by melting might 
significantly elevate local nutrient levels, driving greater 
primary production and POC flux to the seafloor in deeper 
waters (Smith et al., 2007), though this will probably 
decline after initial increases under continued warming. 
Thus, the immediate direct impacts on seafloor commu-
nities will be relatively short-lived, but the wider effects 
may be longer lasting. Finally, melting of icebergs and gla-
cial ice may lead to freshening of surface waters leading 
to enhanced stratification of the upper water column and 
the release of essential nutrients and trace metals such as 
iron (Wang et al., 2014). Together with decreased sea-ice 
cover these factors may act to increase primary produc-
tion and POC flux. However, increased respiration (owing 
to increased temperatures) might result in local hypoxia, 
especially in isolated intra-shelf basins and fjords such as 
those found along the WAP. 

Changes in the quantity and the quality of POC flux to 
the seafloor will have impacts on ecosystem structure and 
function (Figure 4D). Present-day reductions in sea-ice 
and ice-shelf cover (Comiso, 2010) are leading to changes 
in upper-ocean pelagic dynamics (e.g., increasing surface 
primary production, and generating shifts from krill to 
salps; Loeb et al., 1997; Arrigo et al., 2008, 2013; Arrigo 
and van Dijken, 2011). Under high O

2
 conditions at shallow 

depths, metazoans tend to outcompete bacteria in terms 
of organic matter processing when carbon input to the 
seafloor increases (van Nugteren et al., 2009; Sweetman 
et al., 2014b). If the same holds true for the deep seafloor, 
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then elevated POC fluxes caused by reduced sea-ice cover 
could trigger a switch from dominance of benthic organic 
matter processing by bacteria to dominance by metazo-
ans with consequences for energy flow to upper-trophic 
levels (Figure 4D). Increases in the abundance, biomass 
and diversity of benthic communities, the depth of bio-
turbation, the prevalence of large, habitat-forming taxa 
(sponges, benthic cnidarians), and the extension of spe-
cies ranges downslope into deeper water (De Rijk et al., 
2000) are other likely consequences of enhanced POC 
flux (Figure 4D). However, minor increases in tempera-
ture will also increase overall metabolic rates of benthic 
and pelagic communities. In Antarctic regions, one of 
the key processes that is thought to govern the deep-
water soft sediment communities is captured in the 
FOODBANCS hypothesis (Smith and DeMaster, 2008), 
according to which concentrated summer food pulses and 
slow microbial enzymatic activity caused by the cold tem-
peratures provide a long-lasting food bank that supports 
benthic metazoan communities (Mincks et al., 2005). 
With increasing temperatures, bacterial recycling will be 
enhanced, potentially leading to a non-linear increase in 
the overall metabolism of the benthic community and 
increased food limitation in deeper seas (Figure 4A). This 
effect could explain why some groups like meiofauna may 
prefer to feed on bacterial food sources in polar areas 
(Ingels et al., 2010). 

Another important stressor, ocean acidification (OA), 
will be enhanced at high latitudes because of the higher 
capacity of seawater to absorb CO

2 
at low temperatures 

(Orr et al., 2005; Table 2; Figure 2). While some areas 
will experience increased POC flux resulting from a loss 
of sea-ice cover that could help alleviate some OA effects 
(Wood et al., 2008), the additional carbon deposited 
will increase respiratory CO

2
 production with impacts 

on carbonate dissolution. Carbonate dissolution is an 
issue of particular concern around the Antarctic conti-
nent, where it exerts a strong influence on the distribu-
tions of benthic foraminifera and other calcareous fauna. 
Here, the CCD is currently ‘multi-bathic’, ranging from 
a few hundred meters in intra-shelf basins to several 
thousand meters over abyssal plains. The depression of 
the CCD will increase the energy required for organism 
calcification (Wood et al., 2008), impacting many of the 
archetypal Antarctic fauna (e.g., molluscs, echinoderms, 
foraminifera and ostracods). The exact nature of these 
effects, however, needs detailed examination because, 
as with all of these factors, there will be synergies that 
could either exacerbate or ameliorate the stress induced 
by another perturbation.

Many of the changes outlined above could affect both 
Arctic and Antarctic seafloor ecosystems, although their 
intensity will probably vary between the poles and among 
areas within polar regions that are warming at different 
rates (e.g., WAP versus the eastern Ross Sea). Moreover, dif-
ferent organism groups (e.g., bacteria versus metazoans), 
and different life stages of the same species (e.g., larvae 
versus adults), may respond differently and display dif-
ferent degrees of sensitivity to environmental changes 
(Ingels et al., 2012). 

Implications of climate forcing on societal uses 
and values of the deep sea 
Climate mitigation by the deep ocean may ultimately 
compromise many of the ecosystem services we value. 
The large fraction of the planet covered in deep waters 
guarantees that most carbon sequestration and signifi-
cant nitrogen cycling in the ocean occurs here. Presently 
the ocean absorbs approximately 25% of industrial area 
CO

2
 emissions, and 93% of the heat; much of this absorp-

tion occurs in deep waters below 200 m (Levin and Le 
Bris, 2015). Non-market supporting services are provided 
by deep-sea ecosystems in the form of habitat provision, 
nursery grounds, trophic support, refugia, and biodiversity 
functions provided by assemblages on seamounts, coral 
and sponge reefs, banks, canyons, slopes, fjords and other 
settings (Armstrong et al., 2012; Mengerink et al., 2014; 
Thurber et al., 2014; Levin and Le Bris, 2015). The extensive 
species, genetic, enzymatic, and biogeochemical diversity 
hosted by the deep ocean also holds the potential for new 
pharmaceutical and industrial applications, as well as keys 
to adaptation to environmental change. Because huge 
expanses of the deep ocean will be exposed to changing 
environmental conditions as a result of climate change 
(Mora et al., 2013; this study), the societal impacts of cli-
mate change in the deep sea will undoubtedly be wide-
spread, complex and dynamic. Some effects will be direct; 
for example, we expect alterations in the distributions 
and health of open-ocean and deep-sea fish populations 
and commercially exploited stocks. This impact will result 
from warming-induced changes in metabolism (Deutsch 
et al., 2015) and body size (Cheung et al., 2013) linked 
to latitudinal or depth shifts in species distributions, in 
addition to vertical habitat compression from OMZ expan-
sions (Prince and Goodyear, 2006; Stramma et al., 2010, 
2012; Yasuhara and Danovaro, 2016). Less clear are the 
impacts of acidification stress and multiple stressors on 
deep-sea fish populations and fisheries production (Rosa 
and Seibel, 2008). These effects can be indirect, via shifts 
in food availability or species interactions (e.g., predation 
and competition). Direct effects from depletion of O

2
 lev-

els and rising water temperatures over the next century 
may also impact embryonic survival rates of vulnerable 
deep-sea oviparous (egg-laying) elasmobranchs that cur-
rently deposit their capsules at the seafloor in very narrow 
oceanographic niches with distinct O

2
, salinity and tem-

perature conditions (Henry et al., 2016). 
At the same time, the deep sea is fast becoming a tar-

get area for increased exploitation of key resources and 
the dumping of pollutants (Mengerink et al., 2014). For 
example, oil and gas are currently being extracted to 
depths > 3000 m on continental margins, with increasing 
risk for leakage and spills (Cordes et al., 2016). Pressure 
from fishing has also increased since the mid-20th cen-
tury on seamounts and along continental margins, and 
there is now strong evidence that many deepwater fish 
species (e.g., rockfish, Greenland halibut, lings and tusks, 
orange roughy, sablefish and blue grenadier) have been 
severely exploited through trawling and longlining, with 
some species having been fished to commercial extinc-
tion (e.g., pelagic armourhead; Koslow et al. 2000). There 
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is also extensive interest in mineral mining at hydrother-
mal vent systems along mid ocean ridges and back arc 
basins, bathyal seamounts and polymetallic nodule areas 
at abyssal depths, as well as for phosphorites on margins 
(Mengerink et al., 2014; Thurber et al., 2014; Wedding 
et al., 2015; Amon et al., 2016; Levin et al., 2016; Vanreusel 
et al., 2016). Deep-sea sediments and organisms are also 
sinks for a variety of chemical pollutants, including per-
sistent organochlorine pollutants (e.g., PCBs), which may 
have toxic effects for a variety of fauna at high concentra-
tions (Froescheis et al., 2000; Looser et al., 2000; Ramirez 
Llodra et al., 2011). 

Many of the areas that will be targeted for resource 
extraction lie in areas that will be most heavily impacted 
by climate change (e.g., the Arctic for oil, gas and fisheries, 
the equatorial open ocean for nodule mining, upwelling 
margins for phosphorites, and the North Atlantic for fish-
ing). Although some animals (e.g., fishes) may be able to 
adapt to a limited degree to these anthropogenic stress-
ors, for example, by accelerating their growth and reach-
ing maturity at earlier ages (Koslow et al., 2000), the slow 
population growth rates and long generation times that 
characterize the evolution of many deep-sea organisms 
will ultimately limit their adaptation to stress. Additional 
stresses imposed by low O

2
, low pH, elevated temperature 

and reduced food supply are likely to further reduce the 
resilience of individual species and ecosystems to anthro-
pogenic stressors, and slow rates of recovery. For example, 
slowed growth of carbonate skeletons in the face of acidi-
fication will reduce recovery of biogenic habitats from bot-
tom fishing disturbance, and delayed development under 
hypoxic conditions and nutritional stress with declining 
food availability could impact communities recovering 
from oil pollution and mining impacts, which will further 
compromise ecosystem structure and function in the deep 
sea. Thus, a key challenge going forward is to understand 
the synergies between different stressors associated with 
climate change and those linked to direct human impacts, 
such as physical disturbance from bottom trawling or 
mining plumes, overfishing, oil spills and more.

There is a growing need for multi-sector ocean govern-
ance in the deep sea. Efforts to reform the single-sector 
approach to marine spatial management should incorpo-
rate expected climate-induced changes in temperature, 
oxygenation, pH, and POC flux to the seabed in the devel-
opment of regional and international management sce-
narios. By the end of the 21st century, managers will also 
need to account for background changes in ecosystem 
functions and services that may not relate to anthropo-
genic climate change. Naturally occurring interannual and 
multidecadal shifts in regional ocean regimes such as the 
Pacific El Niño-Southern Oscillation, the North Atlantic 
Oscillation, and the Atlantic Multidecadal Oscillation, 
for example, are bimodal oscillations that cycle between 
phases of warmer and cooler sea surface temperatures. 
These oscillations can produce effects that mimic CO

2
-

induced changes (e.g., altered upwelling regimes of deep 
nutrient-rich waters with effects on POC flux; Merino and 
Monreal-Gomez, 2009). Observations of climate variables 
underpin much of the knowledge and modeling described 

here. However, these observations are decidedly sparse in 
the deep sea and need to be enhanced, through sustained 
deep-ocean observing (e.g., via Deep Argo). Meeting this 
need will require enhanced international co-operation 
across disciplines as enshrined by the Global Ocean 
Observing System, and the associated, nascent Deep 
Ocean Observing Strategy. An integrated approach would 
allow policy-makers to react to changing distributions and 
resilience of marine resources, and would underpin adap-
tive multi-sectoral marine spatial plans to help safeguard 
deep-sea ecosystems. 

The deep sea provides our global society a diversity 
of ecological and ecosystem services, which are likely to 
expand in the coming decades. At the same time, a num-
ber of co-occurring stressors are likely to impact the ecol-
ogy of deep-sea communities and the ways in which these 
communities influence the long-term carbon cycle. As 
society makes critical decisions about the use and conser-
vation of deep-ocean ecosystems, it is important that we 
recognize the vulnerability of life on the ocean floor to 
climate-related stressors, and the direct influence that the 
surface climate can exert on the world’s largest biome.
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