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Majorana zero modes and topological quantum computation
Sankar Das Sarma1,2, Michael Freedman2 and Chetan Nayak2,3

We provide a current perspective on the rapidly developing field of Majorana zero modes (MZMs) in solid-state systems. We
emphasise the theoretical prediction, experimental realisation and potential use of MZMs in future information processing devices
through braiding-based topological quantum computation (TQC). Well-separated MZMs should manifest non-Abelian braiding
statistics suitable for unitary gate operations for TQC. Recent experimental work, following earlier theoretical predictions, has shown
specific signatures consistent with the existence of Majorana modes localised at the ends of semiconductor nanowires in the
presence of superconducting proximity effect. We discuss the experimental findings and their theoretical analyses, and provide a
perspective on the extent to which the observations indicate the existence of anyonic MZMs in solid-state systems. We also discuss
fractional quantum Hall systems (the 5/2 state), which have been extensively studied in the context of non-Abelian anyons and
TQC. We describe proposed schemes for carrying out braiding with MZMs as well as the necessary steps for implementing TQC.

npj Quantum Information (2015) 1, 15001; doi:10.1038/npjqi.2015.1; published online 27 October 2015

INTRODUCTION

Topological quantum computation1,2 is an approach to fault-
tolerant quantum computation in which the unitary quantum
gates result from the braiding of certain topological quantum
objects called ‘anyons’. Anyons braid non-trivially: two counter-
clockwise exchanges do not leave the state of the system
invariant, unlike in the cases of bosons or fermions. Anyons can
arise in two ways: as localised excitations of an interacting
quantum Hamiltonian3 or as defects in an ordered system.4,5

Fractionally charged excitations of the Laughlin fractional
quantum Hall liquid are an example of the former. Abrikosov
vortices in a topological superconductor are an example of the
latter. Not all anyons are directly useful in topological quantum
computation (TQC); only non-Abelian anyons are useful, which
does not include the anyonic excitations (sometimes referred to as
Abelian anyons, to distinguish them from the more exotic non-
Abelian anyons, which are useful for TQC) that are believed to
occur in most odd-denominator fractional quantum Hall states. A
collection of non-Abelian anyons at fixed positions and with fixed
local quantum numbers has a non-trivial topological degeneracy
(which is, therefore, robust—i.e., immune to weak local perturba-
tions). This topological degeneracy allows quantum computation
as braiding enables unitary operations between the distinct
degenerate states of the system. The unitary transformations
resulting from braiding depend only on the topological class of
the braid, thereby endowing them with fault tolerance. This
topological immunity is protected by an energy gap in the system
and a length scale discussed below. As long as the braiding
operations are slow compared with the inverse of the energy gap
and external perturbations are not strong enough to close the
gap, the system remains robust to disturbances and noise. These
braiding operations constitute the elementary gate operations for
the evolution of the TQC.
Perhaps the simplest realisation of a non-Abelian anyon is a

quasiparticle or defect supporting a Majorana zero mode (MZM).
(The zero mode here refers to the zero-energy midgap excitations
that these localised quasiparticles typically correspond to in a low-

dimensional topological superconductor.) This is a real fermionic
operator that commutes with the Hamiltonian. The existence of
such operators guarantees topological degeneracy and, as we
explain in section What is a majorana zero mode?, braiding
necessarily causes non-commuting unitary transformations to act
on this degenerate subspace. The term ‘Majorana’ refers to the
fact that these fermion operators are real, as in Majorana’s real
version of the Dirac equation. However, there is little connection
with Majorana’s original work or its application to neutrinos.
Rather, the key concept here is the non-Abelian anyon, and MZMs
are a particular mechanism by which a particular type of non-
Abelian anyons, usually called ‘Ising anyons’ can arise. By contrast,
Majorana fermions, as originally conceived, obey ordinary Fermi–
Dirac statistics, and are simply a particular type of fermion.
Although the terminology ‘Majorana fermions’ is somewhat
misleading for MZMs, it is used extensively in the literature.
If MZMs can be manipulated and their states measured in well-

controlled experiments, this could pave the way towards the
realisation of a topological quantum computer. The subject got a
tremendous boost in 2012 when an experimental group in Delft
published evidence for the existence of MZMs in InSb nanowires,6

following earlier theoretical predictions.7–9 The specific experi-
mental finding, which has been reproduced later in other
laboratories, is a zero-bias tunnelling conductance peak in a
semiconductor (InSb or InAs) nanowire in contact with an ordinary
metallic superconductor (Al or Nb), which shows up only when a
finite external magnetic field is applied to the wire. Several other
experimental groups also saw evidence (i.e., zero-bias tunnelling
conductance peak in an applied magnetic field) for the existence
of MZMs in both InSb and InAs nanowires,10–14 thus verifying the
Delft finding. However, though these experiments are compelling,
they do not show exponential localisation with system length
required by Eq. (3) or anyonic braiding behaviour. As explained
later in this article, the exponential localisation of the isolated
Majorana modes at wire ends and the associated non-Abelian
braiding properties are the key features which enable TQC to be
possible in these systems.
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In the current article, we provide a perspective on where this
interesting and important subject is today (at the end of 2014).
This is by no means a review article for the field of MZMs or the
topic of TQC as such reviews will be too lengthy and too technical
for a general readership. There are, in fact, several specialized
review articles already discussing various aspects of the subject
matter, which we mention here for the interested reader. The
subject of TQC has been reviewed by us in great length earlier,3

and we have also written a shorter version of anyonic braiding-
based TQC elsewhere.15 There are also several excellent popular
articles on the braiding of non-Abelian anyons and TQC.16,17 The
theory of MZMs and their potential application to TQC have
recently been reviewed in great technical depth in several
articles.18–21

There are essentially two distinct physical systems that have
been primarily studied in the search for MZMs for TQC. The first is
the so-called 5/2-fractional quantum Hall system (5/2-FQHS)
where the application of a strong perpendicular magnetic field
to a very high-mobility two-dimensional (2D) electron gas
(confined in epitaxially-grown GaAs–AlGaAs quantum wells) leads
to the even-denominator fractional quantisation of the Hall
resistance. The generic fractional quantum Hall effect leads to
the quantisation with odd-denominator fractions (e.g., the original
1/3 quantisation observed in the famous experiment by
Tsui et al.22). Interestingly, of the almost 100 FQHS states that
have so far been observed in the laboratory, the 5/2-FQHS is the
only even-denominator state ever found in a single 2D layer. It has
been hypothesised that this even-denominator state supports
Ising anyons. A topological qubit was proposed by us for this
platform23 in 2005, building upon previous theoretical work on
the 5/2 state.24–28 Tantalising experimental signatures for the
possible existence of the desired non-Abelian anyonic properties
were reported in subsequent experiments.29–32 However, these
results have not been reproduced in other laboratories. Potential
barriers to progress are the required extreme high sample quality
(mobility 4107 cm2/V.s), very low o25mK temperature and high
magnetic field 42 T. The second system is the semiconductor
nanowire structure proposed in refs 7,8 building upon earlier
theoretical work on topological superconductors.33–36 Semicon-
ductor nanowires are the focus of this paper, but the 5/2 fractional
quantum Hall state is a useful point of comparison as a great deal
of experimental and theoretical work has been done on the
5/2-FQHS over the last 27 years.

WHAT IS A MZM?

A MZM is a fermionic operator γ that squares to 1 (and, therefore,
is necessarily self-adjoint) and commutes with the Hamiltonian H
of a system:

γ fermionic; γ2 ¼ 1; ½H; γ� ¼ 0 ð1Þ
Any operator that satisfies the first two conditions is called a
Majorana fermion operator. If it satisfies the third condition, as
well, then it is a MZM operator or, simply, a MZM. (For the experts,
it might be useful to comment that propagating Majorana
fermions, of the type that neutrinos are hypothesised to be, can
occur in any superconductor. However, localised MZMs and their
concomitant non-Abelian anyonic braiding is a much more
remarkable phenomenon.) The existence of such operators
implies the existence of a degenerate space of ground states, in
which quantum information can be stored. If there are 2n MZMs,
γ1,…γ2n (they must come in pairs as each MZM is, in a sense, half a
fermion) satisfying

fγi; γjg ¼ 2δij ð2Þ

then the Hamiltonian can be simultaneously diagonalised with the
operators iγ1γ2, iγ3γ4, …, iγ2n− 1γ2n. The ground states can be

labelled by the eigenvalues ± 1 of these n operators, thereby
leading to a 2n-fold degeneracy. There is a two-state system
associated with each pair of MZMs. This is to be contrasted with a
collection of spin-1/2 particles, for which there is a two-state
system associated with each spin. In the case of MZMs, we are free
to pair them however we like; different pairings correspond to
different choices of basis in the 2n-dimensional ground-state
Hilbert space.
Unfortunately, the preceding mathematics is too idealised for a

real physical system. If we are fortunate, there can, instead, be self-
adjoint Majorana fermion operators γ1,…, γ2n satisfying the anti-
commutation relations (2) and

½H; γi� � e - x=x ð3Þ
where x is a length scale mentioned in the introduction (which can
be construed to be the separation between two MZMs in the pair)
and discussed momentarily, and x is a correlation length
associated with the Hamiltonian H. In the superconducting
systems that will be discussed in the sections to follow, x will be
the superconducting coherence length. All states above the 2n− 1-
dimensional low-energy subspace have a minimum energy Δ. In
order for the definition (3) to approach the ideal condition (1), it
must be possible to make x sufficiently large that the right-hand
side of Equation (3) approaches zero rapidly. This can occur if the
operators γi are localised at points xi (which we have not, so far,
assumed). Then γi commutes or anti-commutes, up to corrections
~ e− y/x, with, respectively, all local bosonic or fermionic operators
that can be written in terms of electron creation and annihilation
operators whose support is a minimum distance y from some
point xi. The effective Hamiltonian for energies much lower than Δ

is a sum of local terms, which means that products of operators
such as iγiγj must have exponentially small coefficients ~ e− |xi− xj|/x.
(Terms that contain a single γi operator (and no other fermionic
operators, since none are allowed in the low-energy theory) are
not allowed, due to fermion parity conservation.) Consequently,
the condition (3) then holds (although much of the current
interest in MZM and TQC is focused on semiconductor nanowires,
as proposed in refs 7–9 the possibility of combining SO-coupling
and spin splitting with ordinary s-wave superconductivity to
artificially create topological (spinless) p-wave superconductivity
was actually first considered theoretically37,38 in the context of
ultracold fermionic cold atoms.) The number of MZM operators
satisfying (3) must be even. Consequently, if we add a term to the
Hamiltonian that couples a single zero-mode operator to the non-
zero-mode operators, a zero-mode operator will remain as zero
modes can only be lifted in pairs. Thus, the exponential
‘protection’ of the MZMs allowing their quantum degeneracy is
enabled by the energy gap, which should be as large as possible
for effective TQC operations. Thus, in a loose sense, two Majoranas
together give a Dirac fermion, and these two MZMs must be far
away from each other for the exponential topological protection
to apply.
It is useful to combine the two MZMs into a single Dirac fermion

c= γ1+iγ2. The two states of this pair of zero modes corresponds to
the fermion parities c†c= 0,1. Thus, if the total fermion parity of a
system is fixed, then the degeneracy of 2n MZMs is 2n− 1-fold. This
quantum degeneracy, arising from the topological nature of the
MZMs, enables TQC to be feasible by braiding the MZMs around
each other.
Such localised MZMs are known to occur in two related but

distinct physical situations. The first is at a defect in an ordered
state, such as a vortex in a superconductor or a domain wall in a
one-dimensional (1D) system. The defect does not have finite
energy in the thermodynamic limit and, therefore, it is not
possible to excite a pair of such defects at finite-energy cost and
pull them apart. However, by tuning experimental parameters
(which involves energies proportional to the system size), such
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defects can be created in pairs, thereby creating pairs of MZMs.
The best example of this is a topological superconductor.
Alternatively, there may be finite-energy quasiparticle excitations
of a topological phase3 that support zero modes. This scenario is
believed to be realized in the ν= 5/2 fractional quantum Hall
states, where charge-e/4 excitations are hypothesised to support
MZMs. Although the cases of defects in topological super-
conductors and quasiparticles in ‘true’ topological phases are
closely related, there are some important differences, touched
on later.
When two defects or quasiparticles supporting MZMs are

exchanged while maintaining a distance greater than x, their
MZMs must also be exchanged. As the γi operators are real, the
exchange process can, at most, change their signs. Moreover,
fermion parity must be conserved, which dictates that γ1 and γ2
must pick up opposite signs. Hence, the transformation law is:

γ1-7γ2; γ2- γ1 ð4Þ
The overall sign is a gauge choice. This transformation is
generated by the unitary operator:

U ¼ eiye
π
4γ1γ2 ð5Þ

This is the braiding transformation of Ising anyons. Strictly
speaking, Ising anyons have θ= π/8. Other values of θ can occur
if there are additional Abelian anyons attached to the Ising
anyons, as is believed to occur in the ν= 5/2 fractional quantum
Hall state. In the case of defects, rather than quasiparticles, the
phase θ will not, in general, be universal, and will depend on the
particular path through which the defects were exchanged.
We emphasize that this braiding transformation law follows from
(i) the reality condition of the Majorana fermion operators γ1,2,
(ii) the locality of the MZMs and (iii) conservation of fermion parity.
Therefore, an experimental observation consistent with such a
braiding transformation is evidence that (i)–(iii) hold. This in turn is
evidence that the defects or quasiparticles support MZMs
satisfying the definition (3). Such a direct experimental observa-
tion of braiding has not yet happened in the laboratory.
In the case of quasiparticles in topological phases, braiding

properties, as revealed through various concrete proposed
interference experiments such as those proposed in
refs 23,27,37,38 is, perhaps, the gold standard for detecting
MZMs. However, in the case of defects in ordered states and,
in particular, in the special case of MZMs in superconductors,
a zero-bias peak (ZBP) in transport with a normal lead39 and a 4π
periodic Josephson effect34 are also signatures, as discussed in
section Signatures of MZMs in topological superconductors.
Before discussing these in more detail in section Signatures of
MZMs in topological superconductors, it may be helpful to discuss
the differences between topological superconductors and true
topological phases.

MZMS IN TOPOLOGICAL PHASES AND IN TOPOLOGICAL
SUPERCONDUCTORS

As noted in the Introduction, Ising anyons can be understood as
quasiparticles or defects that support MZMs. In the Moore–Read
Pfaffian state24,25 and the anti-Pfaffian state,40,41 proposed as
candidate non-Abelian states for the 5/2-FQHS, charge-e/4
quasiparticles are Ising anyons.26,42–48 There is theoretical28,49–56

and experimental29–32,57–62 evidence that the ν= 5/2 fractional
quantum Hall state is in one of these two universality classes.
However, there are also some experiments63–66 that do not agree
with this hypothesis. The non-Abelian statistics of quasiparticles at
ν= 5/2 has been reviewed in ref. 3 and would require a digression
into the physics of the fractional quantum Hall effect. Hence, we
do not elaborate on it here, other than to note that Ising-type
fractional quantum Hall states are very nearly topological phases,

apart from some deviations that are salient on higher-genus
surfaces.67 However, the electrical charge that is attached to Ising
anyons enables their detection through charge transport
experiments.23,27,37,38 Ising anyons also occur in some lattice
models of gapped, topologically-ordered spin liquids.68,69 These
are true topological phases in which the MZM operators are
associated with finite-energy excitations of the system and do not
have a local relation to the underlying spin operators, much less
the electron operators, whose charge degree of freedom is
gapped. This limits the types of effects (in comparison to the
superconducting case) that could break the topological degen-
eracy implied by Equations (1) and (2).
MZMs also occur at defects in certain types of superconductors

that form a subset of the class generally called ‘topological
superconductors’.33,34,70 We discuss these in general terms in this
section and then in the context of specific physical realisations in
section `Synthetic' realization of topological superconductors.
Topological phases have some topological features and some

ordinary non-topological features. However, the interplay
between these two types of physics is even more central in
topological superconductors. This is both ‘bad’ and ‘good.’ It is bad
if the non-topological features represent an opportunity for error
or lead to energy splittings that decohere desirable super-
positions. It is good when they allow a convenient coupling to
conventional physics, something we had better have available if
we ever wish to measure the topological system. In topological
phases, there is a trivial tensor product situation in which the
topological and the ordinary degrees of freedom do not talk to
each other. In this case, we do not have to worry that the latter
induce errors in the former, but they also will not be useful in
initialising or measuring the topological degrees of freedom. (As
always, in discussing topological physics, we regard effects that
diminish exponentially with length, frequency or temperature as
unimportant. This is somewhat analogous to computer scientists
classifying algorithms as polynomial time or slower. Clearly the
power and even the constants can make a difference, but such a
structural dichotomy is a useful starting point.) So, for example, if
there are phonons in a system, their interaction with topological
degrees of freedom causes a splitting of the topological
degeneracy that vanishes as e− L/x at zero temperature,67 so we
would consider the system as essentially a tensor product, with
the phonons in a separate factor. However, a topological
superconductor is not a true topological phase but, rather,
following the terminology of ref. 67 a fermion parity protected
quasi-topological phase. The qualifier ‘quasi’ permits the existence
of benign gapless modes as discussed above. With slightly more
precision: an excitation is topological if its local density matrices
cannot be produced to high fidelity by a local operator acting
from one of the system’s ground states. ‘Quasi’ permits low-
energy excitations (below the gap) provided they are not
‘topological’. These subgap excitations surely do exist in real
topological superconductors: there will be phonons and there will
be gapless excitations of the superconducting order parameter—
both are Goldstone modes of broken symmetries (translation in
the first case and U(1)-charge conservation in the second). (The
reader may wonder why the now-so-famous Higgs mechanism
fails to gap the Goldstone mode of broken U(1). The answer is the
mismatch of dimensions, the gauge field roams three-dimensional
space while the superconductor lives in either two- or one-
dimension. In the former case, the interaction with the gauge field
causes superconducting phase fluctuations to have dispersion
ω~ (q)1/2 while in the latter case ω~ q. In a bulk three-dimensional
superconductor the gauge boson is indeed gapped out.) The
more serious caveat is fermion parity protected. This is
simultaneously a blessing and a curse for any project to compute
with MZMs in superconductors. The blessing is that the basis
states of the topological qubit have this precise interpretation:
fermion parity. If we are willing to move into an unprotected
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regime to measure them, MZMs can be brought together and
their charge parity detected locally. Using more sophistication,
one could keep the MZMs at topological separation and exploit
the Aharonov–Casher effect to measure the charge parity
encircled by a vortex. So this coupling will allow measurement
by physics very well in hand. (It is less clear how to do this with, for
instance, the computationally more powerful Fibonacci anyons.3)
Measurement is crucial for processing quantum information with
MZMs as the braid group representation for Ising anyons is a
rather modest finite group: beyond input and output, distillation
of quantum states is needed,71 and this is measurement intensive.
The curse is quasiparticle poisoning. A nearby electron can enter
the system and be absorbed by a MZM, thereby flipping the
fermion parity—i.e., flipping a qubit. The electrons’ charge is
absorbed by the superconducting condensate. This propensity of
a topological superconductor to be poisoned (or equivalently, the
fermion parity to flip in an uncontrolled manner) represents a
salient distinction from the Moore–Read state proposed for the
ν= 5/2 fractional quantum Hall state. In the Moore–Read state, the
vortices carry electric charge (± e/4) and fermions carry charge 0 or
±1/2. Consequently, there is an energy gap to bringing an electron
from the outside into a ν= 5/2-fractional quantum Hall effect fluid.
Its fermion parity can be absorbed by a MZM (as in the case of a
topologial superconductor), but there is no condensate to absorb
its charge; instead, four disjoint charge-e/4 quasiparticles must be
created with their attendant energy cost. It would be harder to
poison a ν= 5/2 fluid but also harder to discern its state and the
signatures discussed in the next section are not available for non-
Abelian FQHS states. Thus, one must choose between potentially
better protection (5/2-fractional quantum Hall effect) or easier
measurement (topological superconductor).

SIGNATURES OF MZMS IN TOPOLOGICAL SUPERCONDUCTORS

Owing to the superconducting order parameter, it is possible for
an electron to tunnel directly into a MZM in a superconductor.
Suppose there is a MZM γ at the origin x= 0 in a superconductor.
Then, if we bring a metallic wire near the origin, electrons can
tunnel from the lead to the superconductor via a coupling of the
form

Htun ¼ λ cyð0Þγ e - iyð0Þ=2 þ λ�γ cð0Þeiyð0Þ=2 ð6Þ
where c(0) is the electron annihilation operator in the lead. For
simplicity, we have suppressed the spin index, which is a
straightforward notational choice if the superconductor and the
lead are both fully spin polarised. In the more generic case, the
spin index must be handled with slightly more care. Here θ is the
phase of the superconducting order parameter. Ordinarily, we
would expect that it would be impossible for an electron, which
carries electrical charge, to tunnel into a MZM, which is neutral as
γ= γ†. However, the superconducting condensate (which is a
condensate of Cooper pairs that breaks the U(1) charge
conservation symmetry) can accommodate electrical charge,
thereby allowing this process, which is a form of Andreev
reflection. In the case of the Moore–Read Pfaffian quantum Hall
state, however, this is not possible. In order for an electron to
tunnel into an MZM, four charge-e/4 quasiparticles must also be
created in order to conserve electrical charge. This can only
happen when the bias voltage exceeds four times the charge gap.
In the case of a topological superconductor, the coupling (6),

which seems like a drawback as compared with a topological
phase, can actually be an advantage as it opens up the possibility
of a simple way of detecting MZMs that does not involve braiding
them. For at T,V≪Δ, the electrical conductivity from a 1D wire
through a contact described by Equation (6) takes the form:39,72–74

G V ; Tð Þ ¼ 2e2

h
h T=V ; T=Λ�ð Þ ð7Þ

where h(0,0) = 1 and Λ* is a crossover scale determined by the
tunnelling strength, Λ* ~ λy, where the exponent y depends on the
interaction strength in the 1D normal wire so that y= 1/2 for a wire
with vanishing interactions. At low voltage and low temperature,
the conductivity is 2e2/h, indicative of perfect Andreev reflection:
each electron that impinges on the contact is reflected as a hole
and charge 2e is absorbed by the topological superconductor.
There is vanishing amplitude for an electron to be scattered back
normally. Such a conductivity can occur for other reasons (see,
e.g., refs 75,76), but they are non-generic and require some special
circumstances and can, in principle, be ruled out by further
experiments. Thus, the observation of perfect Andreev reflection,
with the associated quantised conductance at zero bias, robust to
parameter changes, is an indication of the presence of a MZM. In
section Topological superconductors: experiments and interpreta-
tion, we discuss the extent to which this quantised tunnelling
conductance associated with the zero-energy midgap Majorana
modes has actually been observed in experiments.
A second probe of MZMs that is special to topological

superconductors is the so-called fractional Josephson effect.
When two normal superconductors are in electrical contact,
separated by a thin insulator or a weak link, the dominant
coupling between them at low temperatures is

H ¼ - J cos y ð8Þ

where θ is the difference in the phases of the order parameters of
the two superconductors. It is periodic in θ with period 2π. The
Josephson current is the derivative of this coupling with respect to
θ; it, too, is periodic in θ with period 2π. The Josephson coupling is
proportional to the square of the amplitude for an electron to
tunnel from one superconductor to the other, J∝t2. However,
when two topologial superconductors are in contact and there are
MZMs on both sides of the Josephson junction, the leading
coupling is:

H ¼ - itγLγR cos y=2ð Þ ð9Þ

So long as iγLγR=± 1 remains fixed during the measurement, the
Josephson current now has period 4π, rather than 2π as in non-
topological superconductors. An observation of the 4π ‘fractional’
Josephson effect in alternating current (AC) measurements would
be compelling evidence in favour of the existence of MZMs in a
superconducting system. However, if iγLγR=± 1 can vary in order
to find the minimum energy at each value of θ, then it will flip
when cos(θ/2) changes sign. Consequently, the current will have
period 2π. The value of iγLγR=± 1 can change if a fermion is
absorbed by one of the zero modes γL or γR. Such a fermion may
come from a localised low-energy state or an out-of-equilibrium
fermion excited above the superconducting gap. In order to use
the Josephson effect to detect MZMs, an alternating current
measurement must be done at frequencies higher than the
inverse of the timescale for such processes.
This can be done through the observation of Shapiro steps.10

When an ordinary Josephson junction is subjected to electro-
magnetic waves at frequency ω, a direct current (DC) voltage
develops and passes through a series of steps VDC= n(h)/(2e)ω as
the current is increased. However, when there are MZMs at the
junction, then the 4π periodicity discussed above translates to
Shapiro steps VDC= n(h)/(e)ω. In essence, charge transport across a
junction with MZMs is due to charge e rather than charge 2e
objects, so the flux periodicity and voltage steps are doubled. In
terms of conventional Shapiro steps, the odd steps should be
missing,10 but the experiment actually observes only one missing
odd step. This simple picture of missing odd Shapiro steps,
although physically plausible, may not be complete, and a
complete theory for Shapiro steps in the presence of MZMs has
not yet been formulated (see, however, ref. 77).
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‘SYNTHETIC’ REALISATION OF TOPOLOGICAL
SUPERCONDUCTORS

Before further discussing experimental probes of Ising anyons, we
pause to discuss ‘synthetic’ realisations of topological super-
conductors because it will be useful to have concrete device
structures in mind when we describe procedures for braiding non-
Abelian anyons. ‘Synthetic’ systems are important because there is
no known ‘natural’ system that spontaneously enters a topological
superconducting phase. The A-phase of superfluid He-3 (ref. 78)
and superconducting Sr2RuO4 (ref. 79) are hypothesised to
possess some topological properties, but it is not known precisely
how to bring these systems into topological superconducting
phases that support MZMs, nor is it known precisely how to detect
and manipulate MZMs in these systems.80 There are also specific
proposals for converting ultracold superfluid atomic fermionic
gases into topological superfluids,81 but experimental progress
has been slow in the atomic systems because of inherent heating
problems. However, topological superconductivity can occur in
‘synthetic’ systems7,8,35,36,82–84 that combine ordinary non-
topological superconductors with other materials, thereby facil-
itating interplay between superconductivity and other (explicitly,
rather than spontaneously) broken symmetries.
The following single-particle Hamiltonian is a simple toy model

for a topological superconducting wire,34 which illustrates how
MZMs can arise at the ends of a 1D wire:

H ¼
X

i

- t c
y
iþ1ci þ c

y
i ciþ1

h i

- μc
y
i ci þ Δciciþ1 þ Δ

�cyiþ1c
y
i

� �

ð10Þ
Here the electrons are treated as spinless fermions that hop along
a wire composed of a chain of lattice sites labelled as i= 1, 2,…, N.
It is assumed that a fixed pair field Δ= |Δ|eiθ is induced in the wire
by contact with a three-dimensional superconductor through the
proximity effect. To analyse this Hamiltonian, it is useful to absorb
the phase of the superconducting pair field into the operators cj
and then to express them in terms of their real and imaginary
parts: ei(θ)/(2)cj= a1,j+ia2,j, e

− i(θ)/(2)cj
†= a1,j− ia2,j. The operators a1,j,

a2,j are self-adjoint fermionic operators—a1,j
† = a1,j, a2,j

† = a2,j—i.e.,
they are Majorana fermion operators. They are (generically) not
zero modes as they do not commute with the Hamiltonian but
they enable us to elucidate the physics of this Hamiltonian as it
can be written as:

H ¼ i

2

X

j

- μa1;ja2;j þ t þ Δj jð Þa2;ja1;jþ1 þ - t þ Δj jð Þa1;ja2;jþ1

� �

ð11Þ
Now, it is clear that there is a trivial gapped phase (an atomic
insulator) centred about the point |Δ| = t= 0, μo0. The Hamilto-
nian is a sum of on-site terms i|μ|a1,ja2,j/2, each of which has
eigenvalue− |μ|/2 in the ground state, with minimum excitation
energy |μ|. However, there is another gapped phase that includes
the points t=± |Δ|, μ= 0. At these points, the Hamiltonian is a sum
of commuting terms, but they are not on site. Consider, for the
sake of concreteness, the point t= |Δ|, μ= 0. Then the Hamiltonian
couples each site to its neighbours by coupling a2,j to a1,j+1. As a
result, we can form a set of independent two-level systems on the
links of the chain. Each link is in its ground state ia2,ja1,j+1=− 1.
However, there are ‘dangling’ Majorana fermion operators at the
ends of the chain because a1,1 and a2,N do not appear in the
Hamiltonian. They are MZM operators:

a1;1; a2;N
� �

¼ H; a1;1
� �

¼ H; a2;N
� �

¼ 0 ð12Þ
If we move away from the point t= |Δ|, μ= 0, a1,1 and a2,N will
appear in the Hamiltonian and, as a result, they will no longer
commute with the Hamiltonian. However, there will be a more
complicated pair of operators that are exponentially localised at

the ends of the chain and satisfy Equation (3). Thus, the 1D toy
model describes a system with localised zero-energy Majorana
excitations at the wire ends, which serve as the defects.
Very similar ideas hold in 2D,33,70 where an hc/2e vortex in a

fully spin-polarised p+ip superconductor supports a MZM. The 1D
edge of such a 2D superconductor supports a chiral Majorana
fermion:

S ¼
Z

dx dt χ i∂t þ v∂xð Þχ ð13Þ

where χ(x,t) = χ†(x,t) and {χ(x,t),χ(x′,t)} = 2δ(x− x′). When an odd
number of vortices penetrate the bulk of the superconductor, the
field χ has periodic boundary conditions, χ(x,t) = χ(x+L,t), where L is
the length of the boundary. Then, the allowed momenta are
k= 2πn/L with n= 0,1,2,… and the corresponding energies are
En= vk. The k= 0 mode is a MZM. If an even number of vortices
penetrate the bulk of the superconductor, χ has anti-periodic
boundary conditions, χ(x,t) =− χ(x+L,t) and there is no zero mode
because the allowed momenta are k= (2n+1)π/L. A vortex may be
viewed as a very short edge in the interior of the superconductor,
so that there is a large energy splitting between the n= 0 mode
and the n⩾ 1 modes.
Although the toy model described above is not directly

experimentally relevant, we can realise either a 1D or a 2D
topological superconductor in an experiment, if we somehow
induce spinless p-wave superconductivity in a metal in which a
single spin-resolved band crosses the Fermi energy. This can be
done with a Zeeman splitting that is large enough to fully spin
polarise the system, but superconductivity has never been
observed in such a system; if induced through the super-
conducting proximity effect, it is likely to be very weak as the
amplitude of Cooper pair tunnelling from the superconductor into
the ferromagnet would be very small. However, the surface state
of a three-dimensional topological insulator85–87 has such a band
that can be exploited for these purposes.36 Moreover, a doped
semiconductor with a combination of spin-orbit coupling and
Zeeman splitting leads, for a certain range of chemical potentials,
to a single low-energy branch of the electron excitation spectrum
in both 2D (ref. 36) and 1D systems.7–9 In the former case, the
Zeeman field must generically be in the direction perpendicular to
the 2D system. In the presence of a superconductor, such a
Zeeman splitting must be created by proximity to a ferromagnetic
insulator, rather than with a magnetic field. The exception is a
system in which the Rashba and Dresselhaus spin-orbit couplings
balance each other.82 In 1D, however, the Zeeman field can be
created with an applied magnetic field, thus making a 1D
semiconducting nanowire with strong spin-orbit coupling and
superconducting proximity effect particularly attractive as an
experimental platform for investigating MZMs. This idea7–9 has
been adapted by several experimental groups.6,10–14

In all of these cases, the electron’s spin is locked to its
momentum, rendering it effectively spinless. Such a situation has
the added virtue that an ordinary s-wave superconductor can
induce topological superconductivity7–9,35,36,88,89 as the spin-orbit
coupling mixes s-wave and p-wave components. An effective
model for this scenario takes the following form:

H ¼
Z

dx ψyð - 1

2m
∂
2
x - μþ iασy∂x þ VxσxÞψþ Δψmψk þ h:c:

� 	

ð14Þ
This model is in the topological superconducting phase when the
following condition holds:7–9 Vx4(|Δ|2+μ2)1/2, i.e., when the
Zeeman spin splitting Vx is larger than the induced super-
conducting gap Δ and the chemical potential μ—a situation that
presumably can be achieved by tuning an external magnetic field
B to enhance the Zeeman splitting. (Although much of the current
interest in MZM and TQC is focused on semiconductor nanowires,
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as proposed in refs 7–9 the possibility of combining spin-orbit-
coupling and spin splitting with ordinary s-wave superconductivity
to artificially create topological (spin less) p-wave superconductiv-
ity was actually first considered theoretically91,92 in the context of
ultracold fermionic cold atoms.) (In principle, the system can be
tuned by changing the chemical potential as well using an
external gate to control the Fermi level in a semiconductor
nanowire, thus adding considerable flexibility to the set up for
eventual TQC braiding manipulations of the MZMs.) When the two
sides of this equation are equal, the system is gapless in the bulk
and is at a quantum phase transition between ordinary and
topological superconducting phases. The emergence of an
effectively spinless band of electrons in this model is summarised
by Figure 1. Here for simplicity, we have assumed that there is a
single sub-band, i.e., a single transverse mode, in the wire. If there
are more modes, then the requirement is that there must be an
odd number of modes described by Equation (14) in the
topological superconducting phase.7,90,91 (In addition, there can
be any number of modes in the non-topological phase; recall from
section MZMs in topological phases and in topological super-
conductor that non-topological physics, here in the form of
normal bands, may coexist with the topological bands.) From the
preceding analysis, we see that there is a minimum magnetic field
that must be exceeded in order for the system to be in a
topological superconducting phase. In a real system in which
there will be multiple sub-bands, there is a maximum applied
magnetic field, too, beyond which the lowest empty sub-band

crosses the Fermi energy. (Also, at high applied fields, the
topological superconducting gap decreases inversely with increas-
ing spin splitting, thus requiring very low temperatures to study
the MZMs.9) It is important that the magnetic field be
perpendicular to the spin-orbit field. If the latter is in the
y-direction, as in Equation (14), then the applied magnetic field
must be in the x− z plane. In practise, this angular dependence on
the magnetic field can be and has been used to study the MZMs
in the laboratory.6

TOPOLOGICAL SUPERCONDUCTORS: EXPERIMENTS AND
INTERPRETATION

A number of experimental groups6,10–14 have fabricated devices
consisting of an InSb or InAs semiconductor nanowire in contact
with a superconductor, beginning with the Mourik et al.6

experiment. Both InSb and InAs have appreciable spin-orbit
coupling and large Landé g-factor so that a small applied
magnetic field can produce large Zeeman splitting. The experi-
ments of refs 6,12 used the superconductor NbTiN, which has very
high critical field, while the experiments of refs 11,13,14 used Al.
All of these experiments observed a ZBP, consistent with the MZM
expectation. The ZBP of Mourik et al.6 is shown in Figure 2.
Meanwhile, the experiment of ref.10 observed Shapiro steps in the
alternating current Josephson effect in an InSb nanowire in
contact with Nb.
According to the considerations of the previous two sections,

once the magnetic field is sufficiently large that Vx4(|Δ|2+μ2)1/2,
where Vx= gμBB, the conductance through the wire between a
normal lead and a superconducting one will be 2e2/h at vanishing
bias voltage and temperature,39,72–74 provided that the wire is
much longer than the induced coherence length in the wire
(i.e., the typical size of the localised MZMs). The five experiments
of refs 6,11–14 observe a ZBP at magnetic fields B⪆0.1 T, provided
that the field is perpendicular to the putative direction of the spin-
orbit field. The peak conductance is, however, significantly smaller
than 2e2/h in all of these experiments. Moreover, the wires appear
to be short, as compared with the inferred coherence length in the
wires, raising the question of why the MZM peak is not split into
two peaks away from zero-bias voltage due to the hybridisation of
the two end MZMs overlapping with each other (although some
signatures of ZBP splitting are indeed observed in some of the
data6,11–14). In addition, the subgap background conductance is

k

k

k

(k)

(k)

(k)

Figure 1. The electron energy ε(k) as a function of momentum k for a
1D wire modelled by the Hamiltonian in Equation (14) for
(a) vanishing spin-orbit coupling and Zeeman splitting; (b) non-
zero spin-orbit splitting but vanishing Zeeman splitting; (c) non-zero
spin-orbit and Zeeman splitting. In the situation in the c, if the Fermi
energy is close to ε= 0, then there is effectively a single band of
spinless electrons at the Fermi energy.

Figure 2. The experimental differential conductance spectrum in an
InSb nanowire in the presence of a variable magnetic field showing
the theoretically predicted Majorana ZBP at finite magnetic field
(taken from ref. 6). See the text for a more detailed discussion of the
experiment.
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not very strongly suppressed at low non-zero voltages, i.e., the
gap appears to be ‘soft’. Finally, the appearance of the peak at
B~ 0.1 T does not appear to be accompanied by a closing of the
gap, as expected at a quantum phase transition.
However, the peak conductance is expected to be suppressed

by non-zero temperature in conjunction with finite tunnel barrier,
and in short wires (see, e.g., refs 92,93). Some of the experiments
do appear to find that the ZBP sometimes splits12–14 and that this
splitting oscillates with magnetic field, as predicted,94 although a
detailed quantitative comparison between experimental and
theoretical ZBP splittings has not yet been carried out in depth,
and such a comparison necessitates detailed knowledge about the
experimental set ups (e.g., whether the system is at constant
density or constant chemical potential94) unavailable at the
current time. The softness of the gap may be due to disorder,
especially inhomogeneity in the strength of the superconducting
proximity effect95 or perhaps an inverse proximity effect at the
tunnel barriers where normal electrons could tunnel in from the
metallic leads into the superconducting wire, leading to subgap
states.96 The softness of the gap may also help explain why the
zero-bias conductance is suppressed from its expected quantised
peak value, although other factors (e.g., finite wire length, finite
temperature, finite tunnel barrier, etc.) are likely to be playing a
role too. Very recent experimental efforts97,98 using epitaxial
superconductor (Al)-semiconductor (InAs) interfaces have led to
hard proximity gaps. The absence of a visible gap closing at the
putative quantum phase transition may be due to the vanishing
amplitude of bulk states near the ends of the wire;92 a tunnelling
probe into the middle of the wire would then observe a gap
closing (but presumably no MZM peaks that should decay
exponentially with distance from the ends of the wires). Such a
gap closing has been tentatively identified in the experiments on
InAs nanowires in ref. 13.
In the experiment of ref. 10 it was observed that the n= 1

Shapiro step was suppressed for magnetic fields larger than
B= 2 T. If this is the critical field beyond which gμBBx= Vx4
(|Δ|2+μ2)1/2 in this device, then all of the odd Shapiro steps should
be suppressed. However, one could argue that the fermion parity
of the MZMs fluctuates more rapidly at higher voltages so that
only the n= 1 step is suppressed. More theoretical work is
necessary to understand Shapiro step behaviour in the presence
of MZMs (see, however, ref. 77).
ZBPs can occur for other reasons, which must be ruled out

before one can conclude that the experiments of refs 6,11–14
have observed a MZM, particularly as the expected conductance
quantisation associated with the perfect Andreev reflection has
not been seen. The Kondo effect leads to a ZBP.75 In the presence
of spin-orbit coupling and a magnetic field, the two-level system
may not be the two states of a spin-1/2, but may be a singlet state
and the lowest state of a triplet, which become degenerate at
some non-zero magnetic field.75 Alternatively, the ZBP may be
due to ‘resonant Andreev scattering’. Of course, a MZM is a type of
resonant Andreev bound state so this alternative really means that
there may be an Andreev bound state at the end of the wire that
is not due to topological superconductivity but is ‘accidentally’
(i.e., at one point in parameter space, rather than across an entire
phase) at zero energy. ZBPs could also arise simply due to strong
disorder due to antilocalization at zero energy in 1D systems
without time reversal, charge conservation or spin-rotational
symmetry, usually called class D superconductors.76

The multiple observations of a ZBP in different laboratories,
occurring only in parameter regimes consistent with theory99–102

substantiate these interesting observations in semiconductor
nanowires and show that they are, indeed, real effects and not
experimental artifacts. Although these experiments are broadly
consistent with the presence of MZMs at the ends of these wires,
there is still room for scepticism, which can be answered by
showing that the ZBPs evolve as expected when the wires are

made longer, the soft gap is hardened (which has happened
recently97,98), and the expected gap closing observed at the
quantum phase transition. Finally, experiments that demonstrate
the fractional alternating current Josephson effect and the
expected non-Abelian braiding properties of MZMs would settle
the matter.
Very recently, there has been an interesting new development:

the claim of an observation of MZMs in metallic ferromagnetic
(specifically, Fe) nanowires on superconducting (specifically, Pb)
substrates where ZBPs appear at the wire ends without the
application of any external magnetic field, presumably because of
the large exchange spin splitting already present in the Fe wire.103

There have been several theoretical analyses of this ferromagnetic
nanowire Majorana platform104–108 showing that such a system is
indeed generically capable of supporting MZMs without any need
for fine tuning of the chemical potential, i.e., the system is always
in the topological phase as the spin splitting Vx is always much
larger than Δ and μ. Although potentially an important develop-
ment, more data (particularly, at lower temperatures, higher
induced superconducting gap values and longer wires) would be
necessary before any firm conclusion can be drawn about the
experiment of ref. 103 as the current experiments, which are
carried out at temperatures comparable to the induced topolo-
gical superconducting energy gap in wires much shorter than the
Majorana coherence length, only manifest very weak (3–4 orders
of magnitude weaker than 2e2/h) and very broad (broader than
the energy gap) ZBPs. If validated as MZMs, this new metallic
platform gives a boost to the study of non-Abelian anyons in solid-
state systems.

NON-ABELIAN BRAIDING

As noted in the introduction, the primary significance of MZMs is
that they are a mechanism for non-Abelian braiding statistics,
arising from their ground-state topological quantum degeneracy.
The braiding of non-Abelian anyons provides a set of robust
quantum gates with topological protection (although, of course,
this only applies if the temperature is much lower than the energy
gap and all anyons are kept much further apart than the
correlation length, so that the system is in the exponentially
small Majorana energy-splitting regime). These braiding properties
are also the most direct and unequivocal way to detect
non-Abelian anyons—including, as a special case, those
supporting MZMs.
It is useful, at this point, to make a distinction between the two

computational uses of braiding, for unitary gates and for
projective measurement. Braiding-based gates can operate in
essentially the same way for quasiparticles in a topological phase
and for defects in an ordered (quasi-topological) state. However,
braiding-based measurement procedures rely on interferometry,
which is only possible if the motional degrees of freedom of the
objects being braided are sufficiently quantum mechanical. This
will be satisfied by quasiparticles at sufficiently low temperatures,
but the motion of defects is classical at any relevant temperature
except, possibly, in some special circumstances.
Consider, first, braiding-based gates. As noted above, braiding

two anyons that support MZMs (either quasiparticles or defects)
causes the unitary transformation in Equation (5). But how are we
actually supposed to perform the braid? Here quasi-topological
phases have an advantage over topological phases (which no one
has presently proposed to build). In a true topological phase, it
may be very difficult to manipulate a quasiparticle because it need
not carry any global quantum numbers. However, in an Ising-type
quantum Hall state, the non-Abelian anyons carry electrical
charge, and one can imagine moving them by tuning electrical
gates.23 In the case of a 2D topological superconductor, MZMs are
localised at vortices, and one can move vortices quantum
mechanically through an array of Josephson junctions by tuning
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fluxes. In a 1D topological superconducting wire MZMs are
localised at domain walls between the topological superconductor
and a non-topological superconductor or an insulator (e.g., at the
wire ends). These domain walls can be moved by tuning the local
chemical potential or magnetic field. In short, it is easier to ‘grab’
quasiparticles when they are electrically charged and, potentially,
easier still to grab a defect when it occurs at a boundary between
two phases between which the system can be driven by varying
the electric or magnetic field.109 The latter scenario is exemplified
in Figure 3a. There are in fact many theoretical proposals on how
to braid the end-localised MZMs using electrical gates in various T
junctions made of nanowires, all of which depend on the ability of
external gates in controlling semiconductor carriers. The potential
to manipulate MZMs through external electrical gating is, in fact,
one great advantage of semiconductor-based Majorana platforms.
In both cases, quasiparticles and defects, it turns out not to be

necessary to move quasiparticles to braid them. Instead, one can
effectively move non-Abelian anyons via a ‘measurement-only’
scheme.110,111 Through the use of ancillary Einstein-Podolsky-
Rosen (EPR) pairs and a sequence of measurements, quantum
states can be teleported from one qubit to another. Similarly, a
measurement involving an ancillary quasiparticle–quasihole or
defect–anti-defect pair can be used to teleport a non-Abelian
anyon. A sequence of such teleportations can be used to braid
quasiparticles. The required sequence of measurements can be
performed without moving the anyons at all, as illustrated by the
flux-based scheme of refs 112–114. By tuning Josephson
couplings (which can be done by varying the flux through SQUID
loops), pairs of MZMs can be measured electrostatically, as
depicted in Figure 3b. The fermion parity of a pair of MZMs is
measured by isolating that pair on a small superconducting island
so that the two parity states differ by an electrostatic charging
energy. When the Josephson coupling between the island and a
large superconductor is non-zero, that pair of MZMs is not
measured, and a different pair (possibly involving one member of
the first pair of MZMs) can be measured. Thereby, a measurement-
only braiding scheme can be implemented without moving any
defects at all; all that is necessary is to teleport their quantum
information.
The second use of braiding is for interferometry-based

measurement. This can only be done when the non-Abelian
anyons are ‘light’ so that two different braiding paths can be
interfered. This can be done with charge-e/4 quasiparticles in
Ising-type ν= 5/2 fractional quantum Hall states. The two-point
contact interferometer depicted in Figure 4a measures the ratio
between the unitary transformations associated with the two
paths. In the case of non-Abelian anyons, this is not merely a
phase. For Ising anyons, there is no interference at all when an
odd number of MZMs is in the interference loop. When an even

number is in the interference loop, the interference pattern is
offset by a phase of 0 or π, depending on the fermion parity of the
MZMs in the loop. The experiments of refs 29–32 are consistent
with these predictions, but their interpretation has been
questioned.115

Domain walls in nanowires are always classical objects whose
position is determined by gate voltages. Abrikosov vortices in 2D
topological superconductors are similarly classical in their motion.
However, Josephson vortices, whose cores lie in the insulating
barriers between superconducting regions, may move quantum
mechanically, thereby making possible an interferometer such as
that depicted in Figure 4. Moreover, the fermionic excitations at
the edge of a superconductor are light and can be used to detect

Figure 3. (a) MZMs localised at domain walls between topological superconducting (TS) and normal superconducting (NS) phases can be
moved by tuning regions between these phases to move the domain walls.109 (b) As explained in the text, a measurement-only scheme can
replace actual movement of MZMs. A pair of MZMs can be measured by tuning the flux Φ through a SQUID loop to decouple the
superconducting island on which the pair resides. This causes the island and nanowire to be in a superselection sector of fixed electrical
charge.112

Figure 4. (a) With a two-point contact interferometer in a quantum
Hall state, it is possible to detect topological charge and, thereby,
read out a qubit by measuring electrical conductance (taken from
ref. 3). (b) In a long Josephson junction with two arms, different
paths for Josephson vortices can interfere, thereby enabling the
detection of topological charge through electrical measurement
(taken from ref. 18). Conversely, if two MZMs, 71 and 72, are brought
close together, then the right-hand-side of Equation (3) may no
longer be small.
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the presence or absence of a MZM (but not to detect the quantum
information encoded in a collection of MZMs).

QUANTUM INFORMATION PROCESSING WITH MZMS

There are two primary approaches to storing quantum informa-
tion in MZMs: ‘dense’ and ‘sparse’ encodings. In the dense
encoding, n qubits are stored in 2n+2 MZMs γ1, γ2,…, γ2n+2. The
two basis states of the kth qubit correspond to the eigenvalues
iγ2k− 1γ2k=± 1. The last pair, γ2n+1, γ2n+2 is entangled with the
total fermion parity of the n qubits so that the state of the system
is always an eigenstate of the total fermion parity of all 2n+2
MZMs. The advantage of this encoding is that it is easy to
construct gates that entangle qubits. The disadvantage is that the
last pair of MZMs is always highly entangled with the rest of
the system, so errors in that pair (even if rare) can infect all of
the qubits. In the sparse encoding, n qubits are stored in
4n MZMs γ1,γ2,…,γ4n. For all k, we enforce the condition
γ4k− 3γ4k− 2γ4k− 1γ4k=− 1, i.e., the total fermion parity of the set
of four MZMs is even in the computational subspace. The two
basis states of the kth qubit correspond to the two eigenvalues
iγ4k− 3γ4k− 2=± 1. (Note that, in the computational subspace,
iγ4k− 3γ4k− 2= iγ4k− 1γ4k.) As each quartet of MZMs has fixed
fermion parity, it is easier to keep errors isolated. However, there
are no entangling gates resulting from braiding alone. In order to
entangle qubits, we need to perform measurements in order to
pass from one encoding to the other.
The gates H,T,Λ(σz) form a universal gate set, where H is the

Hadamard gate, T is the π/8-phase gate and Λ(σz) is the controlled-
Z gate:

H ¼ 1 ffiffiffi

2
p 1 1

1 - 1

� �

; T ¼ 1 0
0 eiπ=4

� �

; Z ¼ 1 0
0 - 1

� �

:

To apply the Hadamard gate to the kth qubit, we perform a
counterclockwise exchange of the MZMs γ4k− 2 and γ4k− 1. In order
to apply Λ(σz) to two qubits encoded in eight MZMs, we first
change to the dense encoding in which the two qubits are
encoded in six MZMs. This involves a measurement. In this
encoding, a braid implements Λ(σz). Finally, we introduce an
ancillary pair of MZMs and perform a measurement in order to
return to the sparse encoding. To be more precise, suppose that
our two qubits are associated with MZMs γ1,…γ8 in the sparse
encoding, with the first four encoding the first qubit and the
second four the second qubit. First, we measure iγ4γ5. If it is equal
to +1, then the remaining MZMs form a dense encoding of the
two qubits. If the measurement returns − 1, a straightforward
correction will be needed. Then we perform a counterclockwise
exchange 3 and 6 (which are the middle two of the remaining
MZMs) followed by clockwise exchanges of 1 and 2 and of 7 and 8.
Finally, we return to the sparse encoding by introducing an
ancillary pair of MZMs, which we will call γ4 and γ5, which are in
the known state iγ4γ5= 1. Then a measurement of γ5γ6γ7γ8 returns
the system to the sparse encoding.
A single-qubit phase gate can be performed by bringing two

MZMs close together for a period of time, t, so that their two states
will be split in energy by ΔE, and then pulling them apart again:

U ¼ 1 0
0 eiΔEt

� �

ð15Þ

This is a completely unprotected operation. Topology does not
help us here. If we had perfect control over our system, then we
would be able to control ΔE and t precisely so that we could set
ΔEt= π/4 and obtain a T gate. (Indeed, this is the type of control on
which ‘conventional’ qubits rely.) However, we do not expect to
have such perfect control, so some error correction will be
needed. In the case of the T gate, for example, we can use ‘magic
state distillation’71 to provide a higher fidelity T gate. Fortunately,

the availability of topologically protected operations, namely
protected Clifford operations, to perform error correction and
distillation means fewer physical qubits should be required in the
topological case compared with the conventional case.
The basic idea behind distillation is as follows. If we can produce

the state |a〉= |0〉+eiπ/4|1〉 on demand, this is as good as being able
to apply the T gate as we can perform a controlled-NOT (CNOT)
gate with |a〉 as the control qubit and our data qubit as the target.
This is followed by a measurement of the latter and a correction
by a Clifford operation if the measurement returns a+1. Therefore,
the goal is to produce a high-fidelity copy of |a〉. This can be done
in a variety of ways and has become, now, highly optimised.116–120

The original distillation protocol71,121 proceeds by taking 15
approximate copies of |a〉: 9a~1〉; ¼ ; 9a~15〉, each with fidelity at
least 1− ε. The tensor product of these 15 states is projected on
the code subspace of the1,3,15 Reed–Muller code. This stabiliser
code has the following properties: it encodes 1 logical qubit in 15
physical qubits; it can detect up to two phase (Z) errors and up to
six bit (X) errors; and, remarkably, the logical state |a〉 is the
product of 15 copies of |a〉. Consequently, given 15 noisy copies of
|a〉, we can check 14 stabilisers to see if it is consistent with being
in the Reed–Muller code subspace. If it is, we can decode the
resulting 15 physical qubits into a logical qubit, which will be a
purified version of the state |a〉, with fidelity 1− εout≈1− 35ε

3, in
the limit that ε is small. Distillation improves the fidelity so long as
the initial fidelity ε exceeds the threshold found by solving
εout(ε) = ε. The threshold is roughly ε0≈0.141 ref. 121. The
distillation protocol can be applied recursively to achieve even
higher fidelities on the state |a〉. Practically, the fidelity of the
Clifford operations implementing the stabiliser checks dictates the
minimum εout achievable using the distillation protocol. For
example, to achieve εout≈10

− 12, a reasonable value for quantum
algorithms, the Clifford operations must also have fidelity of 10− 12

(ref. 122) Conventional qubit systems will require, e.g., the surface
code to achieve such fidelities on the Clifford operations, while
topological qubit systems may achieve this fidelity naturally. Thus,
a potential advantage of MZM-based TQC would be the need for
fewer qubits and fewer gate operations than in conventional
quantum computation.
A given quantum algorithm must be decomposed into a circuit

consisting of gates drawn from a fault-tolerant universal gate set,
such as the set consisting of H,T,Λ(σz). Quantum algorithm
decomposition methods based on algebraic number theory have
recently dramatically reduced the number of T gates required to
implement a given quantum algorithm.123–125 By additionally
allowing an ancilla qubit and measurement to be used during
decomposition, another constant factor reduction in the number
of T gates can be achieved.126–128 The latter techniques are
referred to as probabilistic ‘Repeat-until-Success’ circuits. These
aforementioned methods, as well as, e.g., techniques to produce
Fourier angle states,129 may be ultimately hybridised to more
efficiently and fault-tolerantly implement a quantum algorithm
using Majorana anyons.
Before concluding this section, we briefly mention some of the

potential problems in carrying out TQC with the current Majorana
nanowire systems. First, the soft gap problem alluded to above
indicates the presence of considerable non-thermal subgap
fermionic states that would cause ‘quasiparticle poisoning’ of
the MZM as the Majorana will hybridise with the subgap fermions
and decay (and thereby lose its non-Abelian anyonic character).
Thus, poisoning by stray subgap non-thermal quasiparticles puts
an absolute upper bound on the effective Majorana coherence
time as poisoning will directly destroy the fermion parity at the
heart of the proposed non-Abelian TQC. Recent experimental
work has suppressed quasiparticle poisoning considerably, lead-
ing to possible coherence times as long as 1 min.130,131 Another
issue is that the current experimental topological gap is rather
small (a few K), whereas the Majorana splitting due to the overlap
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of the MZMs from the two ends of the nanowire are likely to be in
the range of 100–200mK (as the current nanowires are rather
short). The lack of a large separation between these two energy
scales introduces complications as the TQC braiding operations
must be slow (‘adiabatic’) compared with the topological gap
energy and fast (so that one is in the topologically protected
regime) compared with the Majorana splitting energy. Improve-
ment in materials should lead to larger (smaller) gap (splitting),
making this issue go away eventually. Finally, the current ZBPs,
even assuming that they are indeed the predicted MZM
conductance peaks, are much smaller (by more than an order of
magnitude) than the quantised MZM conductance value of 2e2/h
associated with the Majorana-induced perfect Andreev reflection,
perhaps because of finite temperature, short wire length and finite
tunnel barrier at the interfaces. This could lead to severe visibility
problem during Majorana braiding with very weak signal to noise
ratio, necessitating considerable measurement averaging. Only
future braiding experiments could actually decisively establish
whether the observed ZBPs in the nanowire tunnelling measure-
ments are indeed the predicted MZMs or not.

OUTLOOK

It does not seem fanciful to compare Majorana systems and non-
Abelian topological quantum systems in general with the field-
effect transistor (FET). Both are sweet theoretical solutions to the
problem of efficient processing of signals and the information
they carry. (For FETs, of course, this theoretical solution has turned
out, through Moore’s law, to be an astounding practical
engineering success as well, leading to the modern information
technology universe we live in.) The kinds of information (classical
versus quantum) and the energy scales (eV versus meV) are
different, just as the two ideas are temporally separated by more
than 50 years, but each proposes a radical solution to an
information processing roadblock. In each case, the roadblock
was not absolute but sufficiently daunting to inspire serious and
sustained effort. There were pretransistor electronic computers,
and it may well be possible to build a pretopological quantum
computer through an extraordinary investment in error correction
using ordinary non-topological qubits.132 As with our current
efforts to build MZM systems, the history of the FET was anchored
in materials development and required a rethinking of solid-state
physics (involving substantial and continuous developments in
surface science, semiconductor physics, materials growth and
lithography). Today, building topological materials will push the
frontiers of purity and precision in materials growth and force us
to extend our ability to model exotic bulk materials, interfaces
and, finally, devices. As our entire civilisation now turns around the
transistor, it would be grandiloquent to claim any untested
technology as the new transistor, and we make no such claim. No
one can see the future. However, we have arrived at a gateway
where, in the next few years, our ability to process information
may explode disruptively; there is certainly a large heterogeneous
international effort in this direction of building quantum informa-
tion processing devices and circuits. In such a world the
topological route is the analogue of the FET.
Edgar Lilienfeld filed the first FET patent in 1925. It was in an

entirely metallic system in which the required electronic depletion
was too difficult to accomplish reliably. It took roughly four
decades and the advent of semiconductor devices to realise the
initial FET vision. Where do we stand with MZM systems today?
Experimentalists have picked the most promising materials: high
Landé g-factor (to keep the applied B-fields moderate), high spin-
orbit coupling (to strongly lock the spin and momentum bands in
order to produce a large topological superconducting gap), low
Schottky barriers and good epitaxial contact (to facilitate induced
superconductivity), and high mobility (for coherent transport),
among what was known, i.e., lying around, and predicted by the

theorists. Incremental improvements in nanowire design, pacifica-
tion of interfaces and transparency to contacting superconductors,
may take us into the regime of workable devices—the transistor of
the 1950s. But one may expect now that the concepts are clear,
that systematic study of materials and their growth and interface
properties could easily lead to new choices. A lesson already
emerging from experiments in Copenhagen97 can radically reduce
subgap states. Their data shows a remarkably crisp Bardeen-
Cooper-Schrieffer (BCS) spectrum in epitaxially coated
nanowires.98 We cannot of course be sure that the appropriate
materials for the future TQC devices have already been developed
—after all, the first transistors were made of germanium although
silicon now rules the electronics world—but there is now a clear
path for progress toward the eventual building of TQC using
Majorana anyons.
The materials frontier discussed above addresses fidelity and

lifetimes the numerator of the expression defining computational
power. The denominator is the clock rate. In the case of a MZM
system, the key timescale is that of measurement. As explained in
section Quantum information processing with majorana zero
modes, measurement of fermion parity is essential to the
distillation of magic states and is the leading candidate even for
braiding operations. To compute well we must be able to measure
quickly and accurately. The two figures of merit are in fact related:
if we can make n measurements within the qubit lifetime, it does
us no good if the fidelity is o1− 1/n, for with less fidelity the
qubit state will be forgotten long before we make the nth

measurement. For computations in parallel (as will be the norm),
the demands on fidelity are proportionately greater because the
appropriate n is the total number of measurements during the
computation, not the number on any particular qubit. This tells us
that there will be a second measurement frontier in which
accuracy and speed will be the figures of merit. The leading
measurement ideas today involve coupling to superconducting
qubits living in an optical cavity and using a shift in the resonant
frequency of the microwaves to read out fermion parity.112,114 This
is certainly a good starting point, but the typical number are
photon frequencies ~ 6 GHz and, with beat frequencies recording
the energy spitting of tens of MHz, read out would be limited to
perhaps a MHz clock speed. The inherent energy scales of present
MZM systems are on the order of 1 K≈20 GHz so there is room to
do much better. In fact, to combine the two frontiers one might
envision exploiting exotic superconductors with very large
(~100 K) energy gap, pnictides or cuprates,133,134 in conjuction
with semiconductor wires to increase the gap protecting Majorana
systems and clock rates by an order of magnitude.
Lifetimes/clock rate are hardware specs, but equally important

is the scaling of the algorithms that we will run. There have been
roughly three epochs: (i) Circa 1982, Feynman135 told us that if we
could build a quantum computer, its resource requirements would
scale in precisely the same way as the quantum mechanical
problems, e.g., quantum chemistry problems, we wished to solve
—replacing the exponential scaling of a classical computer (in
which memory must double to account for each new spin-1/2
degree of freedom); (ii) in the 1990s and 2000s, many key
quantum algorithms were developed, including Shor’s factoring
algorithm,136 and a detailed analysis of Feynman’s idea; (iii) recent
papers have focused on realistic regimes for quantum chemistry,
rather than asymptotics. A straightforward estimate for gate
counts of quantum chemistry Hamiltonians found that the
number of computational steps for near equilibration to the
ground-state scaled rather disastrously; polynomially by very high
powers ~ 11 so that to obtain the energy of FeO2 to a milliHartree
with a GHz clock rate would take the age of the universe.137

However, improved estimates,138 combined with some algorith-
mic improvement,139 has this time down now to a few minutes
(with the most recent polynomial scaling ~ 5th power). This is one
example; now that quantum computers appear to be increasingly
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realistic, computer scientists and physicists will find efficient
quantum algorthims for an array of problems. Many of these will
be physical (e.g., quantum field theory140 and many-body
localisation are attractive targets141), but even areas distant from
physics are seeing quantum advances. Deep learning has had a
dramatic impact on machine learning in the last few years,142–145

but there is a computational bottleneck: computation of the true
gradient of L, where L is the ‘log-likelihood function’, is classically
intractable, leading to classical methods that can efficiently only
approximate ∇L. In physical terms, L is an entropy of a transverse
field Ising model on a union of complete bipartite graphs. It is now
known146 that quantum computers may be used to estimate ∇L
efficiently by emulating the corresponding Ising model, which
leads to improved deep learning models using a quantum
computer.
But when do we get to the analogue of the silicon FET?

Presumably we will eventually do better than MZMs. Even as we
anticipate great breakthroughs in the physics and engineering of
Majorana systems, we can anticipate their eventual eclipse by
anyonic systems (e.g., Fibonacci) that have topologically protected
universal quantum operation. For many years, that phrase
primarily meant a dense braid group representation. MZMs mirror
the topological phase associated with SU(2)2 (see, e.g., ref. 3 for an
explanation of this notation). Fibonacci anyons are present in SU
(2)3 and have dense braid group representations. Furthermore,
there is a hint of a potential path towards physical realisation147

through a combination of fractional quantum Hall effect (at the
ν= 2/3 plateau) and superconductivity. SU(2) and all levels 5 and
higher also have dense braiding but seem physically impractical.
SU(2)4 is an anomaly; it is potentially related to metaplectic
anyonic systems148 with a proposed realisation,5,149–151 but
braiding alone does not furnish a dense gate set. However, recent
unpublished work152 has demonstrated that SU(2)4 becomes
universal when braiding is combined with interferometric
measurement.
We are poised on the brink of a revolution in our ability to

control quantum systems. Topological systems, initially Majorana
systems, will have a role. How wide the technological impact will
be outside of physics is not foreseeable, but we can say that we
are standing at a transition—we are about to learn to process
information—to think, so to speak—in the manner that we know
the universe operates: quantum mechanically. The first steps in
this intellectual journey have been taken with the potential
realisation of MZMs in the laboratory,6,10–14 but we still have a
long way to go.
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