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We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy

using Nyquist’s instability criterion. In contrast to typically employed threshold models which consider a

single free-energy source, this method includes the effects of proton and He2þ temperature anisotropy with

respect to the background magnetic field as well as relative drifts between the proton core, proton beam,

and He2þ components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are

unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are

unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton

beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-

kinetic-scale timescales. Unstable spectra are associated with relatively large He2þ drift speeds and/or a

departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra

are also identified.

DOI: 10.1103/PhysRevLett.120.205102

Introduction.—Plasma instabilities, wave-particle inter-

actions driven by departures from local thermodynamic

equilibrium, influence the dynamics of nearly collisionless

systems, including those frequently encountered in space

and astrophysical contexts. In order to transfer free energy

from plasma particles to electromagnetic fields and drive

unstable growth, nonequilibrium attributes—including

anisotropic temperatures relative to the local mean mag-

netic field, relative drifts between component distributions,

and more general agyrotropic features—must either con-

tribute to sufficiently large departures from equilibrium or

enable a resonant interaction between fields and velocity-

space structure in the particle distribution. The determi-

nation of these conditions is complicated in systems with

many sources of free energy.

The large number of in situ observations of the solar

wind, a nearly collisionless, low-density, high-temperature

plasma emanating from the Sun’s surface, enables the

statistical study of plasma processes, including instabilities.

Typical instability studies focus on what unstable modes

may arise due to a single free-energy source in a reduced

parameter space. As an example, the departure of the proton

temperature ratio T⊥p=Tkp from isotropy, where ⊥ and k
are defined with respect to the mean magnetic field B, can

drive Alfvén ion cyclotron [1,2], mirror [3–5], parallel

firehose [6,7], Alfvén (or oblique) firehose [8], or Chew

Goldberger Low (CGL) (or long-wavelength) firehose [9]

instabilities. Similar instabilities arise for electron and

minor ion temperature anisotropies, and other instabilities

arise due to drifts between the distributions. A recent review

of kinetic plasma instabilities can be found in Ref. [10].

For each kind of unstable mode, one can determine using

linear theory the threshold value of a single parameter,

assuming all other plasma parameters are held constant,

beyond which the fastest growing mode has a growth rate

exceeding some specified value γmin. Varying a second

parameter enables the construction of a stability threshold

model for each kind of unstable mode for a single free-

energy source [11,12]. Such models must be modified for

any variation of other plasma parameters, including minor

ion densities or relative drifts between components, which

can suppress or enhance the modeled instability as well as

drive other unstable modes [13–15].
These simple two-parameter models were combined

with decades of observations to demonstrate that the solar

wind’s evolution is bound by long-wavelength instabilities,

specifically by the mirror and CGL firehose thresholds

[16–18]. Chen et al. [19] accounted for the free-energy

contribution from protons, electrons, and He2þ (α) to long-

wavelength instability thresholds, further demonstrating

that the solar wind is well constrained by these long-

wavelength instabilities and that each plasma species

contributes to the stability threshold. However, such

long-wavelength thresholds neglect instabilities arising at

kinetic scales and, in the case of the mirror mode threshold,

neglect the effects of relatively drifting components. Using

these methods, the majority of intervals were found to be

stable, with only a few percent classified as unstable.

Instead of focusing on a single free-energy source or

using long-wavelength thresholds which neglect kinetic-

scale instabilities, we identify the presence of any ion-driven

instabilities using a numerical implementation of Nyquist’s
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instability criterion [20,21], which determines the number of

unstable modes supported by a specified linearized equilib-

rium via a contour integral. Of a statistically random set of

Wind observations with protons and alpha particles modeled

as a collection of drifting bi-Maxwellians, 53.7%are found to

be unstable. Unstable modes preferentially arise at parallel

ion-kinetic scales and for spectra with an observed proton

beam. Instabilities appear to be pervasive in the solar wind

rather than simply serving as a boundary that constrains its

evolution, acting on only a minority of intervals.

Nyquist’s instability criterion.—Nyquist’s method deter-

mines if any complex frequency solutions ½ω; γ�ðkÞ to a

dispersion relation jDðω; γ;k;PÞj ¼ 0 have a positive

imaginary component γ > 0 and thus are unstable for a

given wave vector k and other system parameters P [20].

This is achieved by calculating the contour integral of jDj−1
over the upper half of the complex frequency plane for

fixed values of k and P and counting the number of

enclosed poles via the residue theorem, producing an

integer, the winding number Wn. If Wn ¼ 0, the system

is stable; if Wn ¼ N, the system supports N unstable

modes. This method, as well as the specific numerical

implementation employed in this work, are described in

more detail in Ref. [21]. This method does not report the

kind of mode driven unstable, only if an unstable mode

exists. This calculation can be performed not just to test for

absolute instability, integrating over the complex half-plane

with lower boundary γ ¼ 0, but for any minimum growth

rate, performing a contour integration with an arbitrary

lower boundary γ ¼ γmin, yielding the number of unstable

modes with growth rates larger than γmin, Wnðk;P; γminÞ.
To apply Nyquist’s method to solar wind observations,

we treat the solar wind as a hot, magnetized plasma

consisting of a collection of drifting bi-Maxwellian

populations. The linear response of this system is described

by the set of parameters P, which includes a normalized

density ns=nref, drift speed relative to the reference

distribution vs normalized by the Alfvén speed vA ¼
B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πnrefmref

p
, parallel and perpendicular temperatures

defined by T⊥s=Tks and Tks=Tkref , charge qs=qref , and mass

ms=mref for each component s, as well as a reference

plasma beta βkref ¼ 8πnrefTkref=B
2 and thermal speed

vt ref=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tkref=mrefc
2

q

. The linear dispersion relation

jDj for such a system is calculated as a function of wave

vector ðk⊥; kkÞρref normalized to the reference gyroradius

ρref ¼ vt ref=Ωref using the PLUME numerical solver [22].

We calculate Wnðk;P; γminÞ by the numerical integration

of jDj−1 using the proton core distribution as the reference

species and normalizing our timescales by the proton

gyrofrequency Ωp ¼ qpB=mpc. For an observed P, we

calculate Wnðk;P; γminÞ over a log-spaced grid covering

ðk⊥; kkÞρp ∈ ½10−2; 101� and define the unstable mode

density as ððγminÞ ¼ ½
R

dkWnðk;P; γminÞ�=
R

dk.

Data.—We choose for our analysis a random set of solar

wind observations rather than intervals associated with

signatures for the presence of instabilities [23], selecting

the first nominal peak-tracking mode spectrum of the day

measured by the Solar Wind Experiment Faraday cup [24]

on the Wind spacecraft from 309 days in 2016 and 2017;

data from the magnetometer [25,26] are used to determine

the orientation and amplitude of the magnetic field. For

each spectrum, a nonlinear-least-squares bi-Maxwellian fit

is performed for up to three ion components—a proton

core, proton beam, and α population—using intelligent

initial guesses to find the simplest physical model that fits

the data. The number of spectra with resolved proton beams

and/or an α population is listed in Table I. While the

inclusion of electron free-energy sources may decrease the

stability at fluid and kinetic scales [19,27], the details of

the electron velocity distribution function will not signifi-

cantly inhibit ion-driven instabilities. We treat the electrons

as isotropic Maxwellians with Te ¼ Tp ¼ ð2T⊥p þ TkpÞ=3
and a drift speed necessary to ensure zero net current.

For spectra without a proton beam population, values

for seven dimensionless parameters are extracted from bi-

Maxwellian fits: βkp, vtp=c, T⊥p=Tkp, T⊥α=Tkα, Tkα=Tkp,
nα=np, and vα=vA. For spectra with a proton beam, four

additional parameters are used: T⊥b=Tkb, Tkb=Tkp, nb=np,
and vb=vA. The mean values of these parameters, given in

Table II, are consistent with previous statistical studies of

solar wind observations [28], though the inclusion of

proton beams in this work reduces Tkp compared to studies

which assume a single-proton population. We calculate

Wnðkρp;P; γmin ¼ 0Þ as a function of ðk⊥; kkÞρp; example

winding number distributions and unstable mode densities

ð for three unstable spectra are shown in Fig. 1, as well as

the mean winding number W̄nðkρp; γmin ¼ 0Þ averaged

over all 309 spectra.

Occurrence of instability.—We find that 53.7% of the

randomly selected spectra have ððγmin ¼ 0Þ > 0 and thus

support at least one growing mode in ðk⊥; kkÞρp ∈
½10−2; 101�. Considering the spectra with (without) a proton

TABLE I. Total number of, and number of unstable, spectra.

The results are divided between cases with and without resolved

proton beam and/or α components. The unstable spectra are

further divided into mirror, CGL firehose, and ion-kinetic-scale

instabilities.

Number

of spectra

Number

of unstable Mirror

CGL

firehose Kinetic

Total 309 166 14 1 151

p, b, &α 189 130 12 0 118

p& α 114 33 2 1 30

p& b 5 3 0 0 3

p 1 0 0 0 0
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beam, 70.0% (28.7%) are unstable; a summary of the

number of unstable modes as a function of the resolved

components is presented in Table I. Figure 2 illustrates the

(βkp; T⊥p=Tkp) distribution of the 309 spectra; unstable

spectra are color coded by the associated unstable mode

density ð, and stable spectra are plotted in gray. The

stability thresholds for proton-temperature anisotropy-

driven instabilities with γmin ¼ 10
−3
Ωp [12] are included

for context.

The mean winding number W̄nðkρp; 0Þ [Fig. 1(c)] shows
that most unstable modes arise at parallel wave vectors near

ion-kinetic scales (k⊥ρp < kkρp ≲ 1), though there exist a

finite number of unstable modes at long wavelengths and/or

at more oblique wave vectors. The abrupt cutoff of W̄n

beyond kρp ≈ 1 is due to our model’s lack of electron free-

energy sources, which are necessary to drive instabilities

between ion- and electron-kinetic scales.

To determine what kinds of instabilities arise for a given

spectrum, we inspect Wnðkρp;P; 0Þ for the 166 unstable

spectra. For the mirror instability, the long-wavelength

threshold [29] cannot be simply applied, as it does not

account for the effects of relative drift between distribu-

tions. Instead, we identified 14 spectra that have unstable

modes with jkρpj extending from long wavelengths up to

the proton gyroscale covering oblique angles, k⊥ > kk.
These intervals are classified as mirror unstable; an

example of such a spectrum is found in Fig. 1(a). For

each mirror unstable case, there also exist kinetic insta-

bilities with kkρp ≲ 1, in agreement with the canonical

T⊥p=Tkp > 1mirror unstable distribution [e.g., Fig. 2(c) of

Ref. [21] ]. One spectrum, not shown, exceeds the long-

wavelength CGL firehose threshold [30] and has a winding

number distribution similar to the canonical case [e.g.,

Fig. 2(f) of Ref. [21] ], driving unstable modes for nearly

all wave vectors with kρp < 1, one (two) mode(s) for

k⊥ > ð<Þkk. We classify the remaining 151 unstable

spectra with growing modes satisfying k⊥ρp < kkρp ≲ 1

as kinetic; two example Wn distributions for these kinetic

cases are shown in Figs. 1(b) and 1(d). The instability

classification as a function of resolved ion components is

given in Table I.

Using this classification scheme, we repeat our analysis

for a range of minimum growth rates γmin ∈ ½10−4; 100�Ωp,

shown in Fig. 3. We see that [black line in Fig. 3(a)] the

fraction of unstable spectra decreases with an increase in

γmin, with no spectrum having growth rates exceeding

γ > 0.2Ωp. The number of mirror and CGL firehose

unstable modes (red and blue regions) remains constant

TABLE II. Mean plasma parameters for the 309 observed spectra (top row), for the stable and unstable spectra (second and third), and

the normalized difference of the parameters ΔX between stable and unstable spectra (fourth and fifth).

βkp 10
4vtp=c T⊥p=Tkp T⊥α=Tkα T⊥b=Tkb Tkα=Tkp Tkb=Tkp nα=np nb=np jvαj=vA jvbj=vA

Total 0.60 1.07 1.57 0.96 1.48 10.89 2.72 0.04 0.43 0.31 0.84

Stable 0.50 0.91 1.12 1.03 1.39 5.24 2.35 0.04 0.41 0.16 0.73

Unstable 0.68 1.21 1.96 0.90 1.52 15.74 2.88 0.05 0.44 0.44 0.89

ΔXp;α;b (%) 19.12 13.46 50.59 −21.06 8.45 64.27 20.83 2.61 2.90 61.57 21.84

ΔXp;α (%) 132.53 57.59 −26.77 14.16 � � � 26.46 � � � 18.10 � � � 77.44 � � �

(a) (b)

(c) (d)

FIG. 1. (a),(b),(d) The number of unstable modes with γmin > 0

as a function of wave vector kρp for three example spectra.

(c) The mean winding number averaged over the 309 observed

spectra.

FIG. 2. The (βkp; T⊥p=Tkp) distribution of the observed spec-

tra; color indicates the unstable mode density ð, and gray

indicates a stable spectrum.
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with increasing γmin up to 0.1Ωp. Most of the kinetic

instabilities associated with spectra without proton beams

(dark gray) are limited to growth rates less than 10
−2
Ωp,

while a decreasing fraction of the unstable spectra with

proton beams (light gray) persists to 0.1Ωp.

Instability timescales.—To compare γmin with timescales

other thanΩ−1
p , we calculate the fraction of unstable spectra

as a function of four additional time scales: the advected

proton gyroscale timescale ρp=vSW, the advected proton

inertial length timescale dp=vSW ¼ vA=ðΩpvSWÞ, the

Faraday cup measurement period τWind ¼ 92 s, and

τnl ¼ ðk0ρpÞ−1=3ρp=vA, an estimate for the nonlinear tur-

bulent energy transfer time at the proton gyroscale k⊥ρp¼1

assuming a critically balanced cascade of energy [31,32]

from an outer scale k0ρp ¼ 10−4. For each spectrum, the

values for these timescales are calculated, and the unstable

mode density ððγmin=ΩpÞ is interpolated onto a log-spaced

grid for ððγminτÞ. This distribution is averaged over the 309
spectra to calculate the fraction of unstable spectra as a

function of τ, shown in Fig. 3(b).

The unstable modes typically have growth rates slower

than ion-kinetic timescales. Nearly all unstable spectra have

growth rates slower than a hundredth of ρp=vSW or dp=vSW,
indicating that any growing ion-kinetic-scale structure

associated with instabilities will be static in the spacecraft

frame. As nearly all unstable spectra have growth rates

slower than 92 s, the nominal spectra selected for this work

are in steady state with respect to any instability-induced

evolution. Less than 10% of the spectra have growth rates

faster than τnl, indicating that only a small fraction of the

instabilities act quickly enough to compete with ion-scale

damping processes.

Parametric dependence.—We wish to determine any

relation between a velocity distribution’s bulk parameters

and its stability. Given the high dimensionality of the

parameter space—3þ 4ðNion − 1Þ values for Nion resolved

ion components—it is difficult to determine the relative

importance of a given parameter; previous attempts typi-

cally focused on the effects of a handful of parameters, e.g.,

βkp and T⊥;p=Tk;p. To ascertain any relation, we calculate

the normalized difference

ΔX ≡
X̄unstable − X̄stable

X̄total

ð1Þ

with X drawn from the ion bulk parameters; X̄total, X̄unstable,

and X̄stable are the mean value of X averaged over all

spectra, over the unstable spectra, and over the stable

spectra, respectively, with the stability determined using

γmin ¼ 0. The selection of larger γmin=Ωp does not quali-

tatively alter these results. We calculate ΔX using two

disjoint subsets of data: spectra with a resolved alpha

distribution and proton core or spectra with all three ion

components resolved. Values of ΔX are presented in

Table II.

Unstable spectra both without and with proton beams

have higher mean alpha drift velocities vα=vA than stable

spectra, indicating that the free energy associated with the

larger relative drift between the protons and alphas is

important in driving instabilities. The mean core proton

temperature anisotropy T⊥p=Tkp for unstable spectra

is significantly decreased (increased) from isotropy for

cases without (with) a proton beam. This reduction of

the temperature anisotropy is potentially due to the beam

having relaxed into the proton core, leading to an

increased Tkp.
For the no-proton-beam case, βkp is significantly larger

for the unstable spectra, with a 132% increase compared to

stable spectra. The normalized core proton thermal speed

vtp=c, our dimensionless proxy for the parallel core proton

temperature, is also significantly larger. Combined with the

normalized difference Δjvαj=vA, this indicates that parallel
free energy is important for driving these systems unstable.

For spectra with proton beams, Tkα=Tkp is increased for

unstable spectra. The proton beam is also slightly hotter,

while the alpha temperature anisotropy T⊥α=Tkα is slightly
decreased. The values of the other proton beam parameters

are only marginally increased for unstable spectra.

Effects of uncertainty.—To consider the robustness of

this method against measurement uncertainty, we follow

Ref. [21] and repeat our instability analysis on an ensemble

of 100 Monte Carlo variations of P for each of the 309

observed spectra. Each observed dimensional quantity from

which P is composed is replaced by a Gaussian-distributed

random variable with a mean of the original quantity and a

standard deviation of 10%. The width of the random

variable distribution is motivated by measurement uncer-

tainties found, for instance, by Kasper et al. [33]. For these

31 209 values of P, 56.0% are unstable, qualitatively

similar to 53.7% calculated from the observed spectra.

For the ensembles corresponding to stable observations,

Pðð0 ¼ 0Þ, an average of 83.6% of the elements are stable;

for Pðð0 ≠ 0Þ, an average of 90.5% are unstable. Of the

ð0 ≠ 0 ensembles, 0.6% have a majority of their elements

(a) (b)

FIG. 3. The fraction of observed spectra supporting unstable

modes with a growth rate exceeding γmin. (a) The spectra are

divided according to the instability classification presented in the

text. (b) The minimum growth rate distribution is rescaled by

selected timescales τ.
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stable, while 8.3% of the ð0 ¼ 0 ensembles are majority

unstable.

In addition to measurement uncertainty, our results may

be affected by unresolved proton beams with small nb=np
or vb=vA or by the assumption of bi-Maxwellian distribu-

tions [34,35]. Repeating this work with a dispersion

relation which neglects analytic forms and captures non-

Maxwellian features [36] will enable a more accurate

determination of solar wind stability.

Conclusions.—We assess the stability of 309 randomly

selected solar wind spectra with ion components modeled

as a collection of drifting bi-Maxwellians using Nyquist’s

instability criterion and find 53.7% are unstable. This

mode-agnostic method includes the effects of ion drifts

and temperature anisotropies, contrasting with previously

employed threshold models that identify only a small

fraction of solar wind intervals as unstable. This method

identifies the same instabilities as traditional Vlasov studies

but does not require a priori knowledge of which linear

modes are unstable, allowing for an automated analysis.

The unstable modes identified using Nyquist’s criterion are

primarily kinetic, with k⊥ρp < kkρp ≲ 1; only 4.5% of the

observed spectra have long-wavelength instabilities. The

maximum growth rate for these unstable modes is slower

than measurement and ion-kinetic timescales. The mean

alpha drift speed for unstable spectra is larger than for

stable spectra, and the ratio T⊥p=Tkp for unstable spectra is

further from isotropy. The majority of the unstable spectra

have a resolved proton beam component.

Further study is needed to assess the effects of this

profusion of instabilities. While a majority of observed

spectra are unstable, it remains unclear from this initial

study if all the inferred instabilities are dynamically

important or simply a by-product of other processes.

The resonant instabilities which comprise the majority of

the unstable spectra do not act as efficiently as long-

wavelength instabilities to return the plasma toward isot-

ropy and therefore may not constrain the dynamics of the

solar wind’s evolution. This may be an effect of slower

growth rates, smaller regions of wave vector space being

driven unstable, or departures from the assumed bi-

Maxwellian distribution affecting resonance conditions.

One way to discern if these instabilities are continuously

generated or a remnant of processes in the near-Sun

environment, and how their role in solar wind dynamics

changes at varying distances from the Sun, will be to

combine this automated instability detection method with

forthcoming measurements from Parker Solar Probe [37]

and Solar Orbiter [38].

The spectrum data used in this project were taken

from Ref. [39].
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