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Abstract Collective decision-making is a process whereby the members of a group decide
on a course of action by consensus. In this paper, we propose a collective decision-making
mechanism for robot swarms deployed in scenarios in which robots can choose between
two actions that have the same effects but that have different execution times. The proposed
mechanism allows a swarm composed of robots with no explicit knowledge about the differ-
ence in execution times between the two actions to choose the one with the shorter execution
time. We use an opinion formation model that captures important elements of the scenarios
in which the proposed mechanism can be used in order to predict the system’s behavior.
The model predicts that when the two actions have different average execution times, the
swarm chooses with high probability the action with the shorter average execution time. We
validate the model’s predictions through a swarm robotics experiment in which robot teams
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must choose one of two paths of different length that connect two locations. Thanks to the
proposed mechanism, a swarm made of robot teams that do not measure time or distance is
able to choose the shorter path.

Keywords Opinion dynamics · Differential latency · Collective decision-making ·

Self-organization · Swarm intelligence · Swarm robotics

1 Introduction

When a person is immersed in a social context, his/her decisions are influenced by those of
others. The effects of social influence on the collective-level behavior of groups of people
have been studied by economists and sociologists since at least the 1970s (Schelling 1978;
Granovetter 1978). More recently, statistical physicists have developed models to quanti-
tatively describe social and economic phenomena that involve large numbers of interact-
ing people (Chakrabarti et al. 2006; Castellano et al. 2009; Helbing 2010). Some of the
models that have emerged from these efforts are referred to as opinion formation mod-

els.
Krapivsky and Redner (2003) proposed a binary opinion formation model in which a

population of agents reaches a consensus with high probability on the opinion initially fa-
vored by more than 50% of the population. The process that drives the system to consensus
is based on the repeated application of the majority rule at a local level on small teams of
agents (see Sect. 2). This model is interesting from a swarm intelligence perspective because
the resulting opinion dynamics can be seen as a decentralized collective decision-making
process in which the opinion favored by more than half of the population spreads to the rest
of the population. However, to be of practical use, the majority-rule opinion dynamics needs
to make an initially unbiased population (i.e., a population with 50%–50% opinion distribu-
tion) reach consensus on the opinion associated with the “best” alternative. In this paper, we
demonstrate that it is possible to achieve this goal in a swarm robotics context. In particu-
lar, if agents represent robots, and opinions represent actions whose execution temporarily
prevents robots from changing opinion or influencing other robots, we demonstrate that an
unbiased population can reach consensus on the action that takes less time, on average, to
perform.

We begin by introducing a number of modifications to Krapivsky and Redner’s model
in order to capture important elements of the interaction of real robots with a physical
environment (see Sect. 3). The most important of these modifications builds on the con-
cept of latency, which is a period of time of stochastic duration during which an agent
cannot be influenced by other agents, and thus cannot change opinion (Lambiotte et al.
2009). We call this modification differential latency because in our model the duration of
a latency period is different for different opinions. We demonstrate, both analytically and
through Monte Carlo simulation, that with the introduced modifications, a population of
agents reaches consensus on the opinion associated with the shorter average latency even
if that opinion is initially favored by less than half of the population. The predictions
of the majority-rule opinion formation model with differential latency are then validated
through a swarm robotics experiment that resembles the well-known double bridge experi-
ment designed by Goss et al. (1989) (see Sect. 4). We show that a swarm of robots, which
do not measure distance or time, selects the shorter of two paths that connect two loca-
tions.
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Fig. 1 Majority-rule opinion dynamics. Initially, three agents have opinion A (represented in black) and three
others have opinion B (represented in gray). In this example, after applying three times the majority rule on
randomly-formed teams of three agents each (marked with squares), the population has reached consensus
on one of the two opinions

2 Majority-rule opinion dynamics without and with latency

The majority rule as an element of opinion formation models was first used by Galam (1986)
to study voting in hierarchical structures. Krapivsky and Redner (2003) studied the dynamics
induced by the majority rule in a well-mixed population case, that is, a situation where
everybody can interact with the same probability with everybody else (Nowak 2006). In
Krapivsky and Redner’s model, a population of agents, each of which can assume one of
two states, called opinions (A or B),1 evolves as follows: First, a team of three randomly
chosen agents is formed. Then, the team members adopt the opinion held by the majority
within the team. Finally, the team members are put back in the population and the process
is repeated (see Fig. 1).

An important aspect of the system’s dynamics is the probability of reaching consensus
on one opinion, say A, as a function of the initial fraction of the population favoring it
(see Fig. 2(a)). In Krapivsky and Redner’s model, if the initial fraction of the population
in favor of opinion A is greater than a critical initial fraction of 0.5 (i.e., they represent
the majority at the population level), then the population reaches consensus on opinion A

with a higher probability than on opinion B . If the initial fraction of the population favoring
opinion A is 0.5, then the probability of reaching consensus on opinion A is also 0.5. The
transition of the probability of reaching consensus on one opinion beyond the initial critical
fraction is sharper with larger populations. The average number of team formations required
to reach consensus in the majority-rule opinion formation model also depends on the initial
fraction of the population favoring one opinion and on the population size. At the critical
initial fraction, the system takes the longest to reach consensus. Additionally, the larger the
population size, the more team formations are needed to reach consensus (see Fig. 2(b)).

Lambiotte et al. (2009) extended Krapivsky and Redner’s model by incorporating la-

tency. In the extended model, a team is formed with three randomly picked agents that can
be either latent or non-latent. The team’s majority opinion is adopted only by the team’s
non-latent agents. If the team’s non-latent agents switch opinion as a result of the majority
rule, then they become latent, otherwise they remain non-latent. The team’s latent agents

1Throughout this paper, we use letters A and B to label the two available opinions.
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Fig. 2 Dynamics of Krapivsky and Redner’s model. (a) Estimated probability of reaching consensus on one
opinion (labeled A) as a function of the initial fraction of the population in its favor. (b) Average number of
team formations per agent needed to reach consensus on one opinion. Results are based on averages of 1,000
independent runs of a Monte Carlo simulation

Fig. 3 Dynamics of Lambiotte et al.’s model. Depending on the value of the parameter α, consensus may
or may not be the only stable state of the system. (a) When α = 1/2 consensus is always achieved (we plot
the estimated probability of reaching consensus on opinion A). (b) When α = 1/20 the population does
not always achieve consensus (we plot the average fraction of agents with opinion A after 100,000 team
formations). Results are based on averages of 1,000 independent runs of a Monte Carlo simulation

become non-latent with probability α, which is a parameter of the model. Lambiotte et al.
showed that when α ≥ 1/4, the system’s final state is the same that it would reach with-
out latency (see Fig. 3(a)). However, when α < 1/4, consensus is not the only stable state.
When α < 1/4, a state in which the fraction of the population favoring one opinion fluctuates
around 0.5 is also stable (see Fig. 3(b)).
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3 Majority-rule opinion dynamics with differential latency

In Lambiotte et al.’s extension of Krapivsky and Redner’s model, the duration of latency
periods is independent of the opinion adopted by the agents. In this section, we introduce
the idea of differential latency and apply it to Krapivsky and Redner’s model. In a differential
latency setting, the duration of latency periods depends on the opinion adopted by the agents.

We interpret agents as robots, opinions as actions that robots have to repeatedly execute
while solving a task, and latency as the state of being executing the action associated with
the adopted opinion. Under our interpretation, it is reasonable to assume that different robot
actions may have different durations. Hence, in our setting, opinions may be associated with
latency periods of different duration.

The rest of this section is structured as follows. First, in Sect. 3.1, we describe the main
features of the proposed opinion formation model. Then, in Sect. 3.2, we analytically study
the proposed system’s dynamics under some simplifying assumptions using an ordinary
differential equations (ODE) model. Finally, in Sect. 3.3, we relax some of the assumptions
made in the formulation of the ODE model and investigate the system’s behavior using
Monte Carlo simulation.

3.1 Main features of the majority-rule opinion formation model with differential latency

The main features of our opinion formation model are the following:

1. k independent teams of three individuals are formed simultaneously. This feature models
the fact that in a real swarm robotics scenario robots can form multiple teams concur-
rently. The number of teams, k, is a parameter of our model. Our model is different from
Krapivsky and Redner’s and Lambiotte et al.’s models because in them only one team at
a time is formed.

2. Teams are formed with non-latent agents only. As a result, latent agents cannot change
opinion and they cannot contribute to other agents’ opinion changing process. This fea-
ture models situations in which a robot cannot be part of two teams at the same time (e.g.,
when an action requires some form of physical interaction among team members). Our
model is similar to Lambiotte et al.’s model in that latent agents cannot change opinion;
however, our model is different from Lambiotte et al.’s model in that latent agents cannot
influence other agents.

3. Agents become latent regardless of whether they changed opinion or not after team for-
mation. This feature models situations in which agents immediately execute the action
associated with the team’s majority opinion. In Lambiotte et al.’s model, agents become
latent only if they switch opinions after team formation.

4. Different opinions are associated with latency periods of different duration. This fea-
ture is what we call differential latency. As explained above, differential latency models
situations in which different actions take different amounts of time to perform. As in
Lambiotte et al.’s model, the duration of latency periods is stochastic.

A system governed by the proposed model evolves as follows: Initially, agents are non-
latent and each agent has a certain opinion. Then, k teams of three randomly chosen agents
are formed. The majority rule is used within each team in order to update its members’
opinions. Agents that belong to a team enter a latent state whose duration depends on the
team’s adopted opinion. When a team’s latency period finishes, its agents become non-latent
and eligible to form a new team. As soon as a team of agents becomes non-latent, a new
team is formed. This new team’s members are picked randomly from the whole population
of non-latent agents. The process is repeated until the population reaches a consensus.
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Table 1 Notation used in our
ODE model State Opinion A Opinion B Total

Latent l(t) 1 − β − l(t) 1 − β

Non-latent n(t) β − n(t) β

Total n(t) + l(t) 1 − n(t) − l(t) 1

3.2 Analytical study

Our analytical study has two goals: (i) to determine the effects of differential latency on the
probability of reaching consensus, and (ii) to determine whether consensus is a stable state of
the system’s dynamics. We investigate the dynamics generated by the proposed model in the
continuum limit using a set of ordinary differential equations. For this purpose, we assume
the existence of a very large but finite population of constant size. This assumption allows
us to focus on the evolution of the latent and non-latent fractions of the population that are
in favor of the different opinions. We also assume that an agent’s probability of switching
from a latent to a non-latent state is constant over time, that is, we assume that the duration
of latency periods is exponentially distributed. These assumptions, a large population, and
constant probability of switching states, simplify the analysis and are standard practice in
the statistical physics literature—see Castellano et al. (2009) and Lambiotte et al. (2009).

3.2.1 Preliminaries

At the microscopic level, agents can be non-latent or latent with opinion A or B , and switch
between the resulting four states according to the dynamics of the proposed model. At the
macroscopic level, we can aggregate the number of agents in any of the four states and focus
on the evolution of the corresponding fractions of the population. Thus, in our analysis, for
any t ≥ 0, n(t) represents the fraction of the population in a non-latent state with opinion A.
Likewise, l(t) represents the fraction of the population in a latent state with opinion A.
Hence, n(t) + l(t) is the fraction of the population with opinion A and 1 − n(t) − l(t) is the
fraction of the population with opinion B .

In the proposed opinion dynamics model, the number of teams, k, is fixed. In our ODE
model, the fixed number of teams is translated into a constant fraction of the population in
a latent state (under our robotics-based interpretation of agents and latency, this means that
there is always a certain number of robot teams executing an action). Thus, the fraction of
the population in a latent state is a parameter of the ODE model, which we denote by 1 −β .
The constant β ∈ (0,1) represents the fraction of the population in a non-latent state.

The fractions n(t) and l(t) are sufficient to completely describe the system because the
fraction of the population in a non-latent state with opinion B is β − n(t) and the fraction
of the population in a latent state with opinion B is 1 − β − l(t). In Table 1, we summarize
the notation used in our model.

Opinions A and B are associated with exponentially distributed latency periods whose
mean duration is denoted by µA = 1/λA and µB = 1/λB , respectively. λA and λB are the
rate parameters of each distribution. Since we are interested in the relative duration of one
latency period with respect to the other, we define the latency period duration ratio as r =

µB/µA = λA/λB . Since for different values of λA and λB we can obtain the same ratio, we
can set λA = 1 and λB = λ with λ ∈ (0,1] to study the system’s behavior without any loss of
generality. With this notation, we can model any relation between the two latency periods.
For example, if λ = 1/2 then r = 2, which means that the mean duration of the latency
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Fig. 4 Schematic structure of
the ODE model. 1: Latent to
non-latent with opinion A.
2: Non-latent with opinion A to
latent with any opinion.
3: Non-latent with any opinion to
latent with opinion A

period associated with opinion B is twice as long as the mean duration of the latency period
associated with opinion A.

3.2.2 ODE model

Our ODE model lets us determine the fractions of the population that switch from a latent
to a non-latent state, and vice versa. In Fig. 4, we show the schematic structure of our ODE
model.

The first element of the ODE model is the size of the fraction of the population, already
with opinion A, that switches from a latent to a non-latent state. The size of this fraction
is 1 · l(t), since the rate at which agents with opinion A become non-latent is equal to one.
Due to the fact that no opinion change occurs, the loss of the latent fraction is a gain for the
non-latent fraction (arrow 1 in Fig. 4).

The second element of the ODE model is the size of the fraction of the population in a
non-latent state with opinion A that becomes latent with any opinion (arrow 2 in Fig. 4). As
described before, randomly chosen non-latent agents form teams before switching to a latent
state. Thus, the probability of choosing an agent with opinion A from the fraction of non-
latent agents is p(t) = n(t)/β . Therefore, the fraction of non-latent agents with opinion A

must decrease by a quantity equal to p(t)f (t) = n(t)f (t)/β , where f (t) is the total fraction
of the population that changes from a non-latent to a latent state. To compute f (t), we need
to recall that the fraction of the population in a non-latent state has a constant size β . Thus,
the total fraction of the population that changes from a non-latent to a latent state must be
equal in size to the fraction of the population that changes from a latent to a non-latent state.
Such a fraction is given by

f (t) = 1 · l(t) + λ ·
(

1 − β − l(t)
)

, (1)

where the first term is the fraction of the population that is in a latent state with opinion
A multiplied by the rate at which agents with opinion A become non-latent. Similarly, the
second term is the fraction of the population that is in a latent state with opinion B multiplied
by λ, which is the rate at which agents with opinion B become non-latent.
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The third element of our model is the size of the fraction of the population that changes
from a non-latent state with any opinion to a latent state with opinion A (arrow 3 in Fig. 4).
Becoming latent with opinion A can occur if agents are part of teams in which at least
two agents favor opinion A. Such an event occurs only in the following four configurations
of opinions in a randomly formed team: A A B , A B A, B A A, and A A A. Thus, the
probability that an agent becomes latent with opinion A is given by 3p(t)2(1 − p(t)) +

p(t)3 = 3p(t)2 − 2p(t)3 = 3n(t)2/β2 − 2n(t)3/β3. Therefore, the rate of change of the
fraction of latent agents with opinion A must increase by a quantity equal to [3n(t)2/β2 −

2n(t)3/β3]f (t).
Putting these three elements together, we can model the dynamics of the system with the

following equations:

dn(t)

dt
= l(t) −

n(t)

β
f (t),

dl(t)

dt
= −l(t) +

[

3 n(t)2

β2 − 2 n(t)3

β3

]

f (t).

(2)

Figure 5(a) shows six example trajectories of this ODE model. The curves give the value
of n(t) + l(t), that is, the fraction of the population with opinion A. The values of n(0) and
l(0) are determined as n(0) = βF and l(0) = (1 − β)F , where F is the initial fraction of
the population with opinion A.

There are two important cases to be examined: (i) when λ = 1 and (ii) when 0 < λ < 1.
If λ = 1, or equivalently, when the latency periods have equal mean duration (dashed lines),
and F = 0.5 (middle line) no dynamics takes place. By contrast, if λ = 1 and F �= 0.5 the
population reaches consensus on the opinion favored by the initial majority. For example, if
the system starts with the majority favoring opinion A (F = 0.52, top line), the population
reaches consensus on opinion A. On the contrary, if opinion A is favored by the minority
(F = 0.48, bottom line), consensus is reached on opinion B . This result is similar to the one
obtained by Krapivsky and Redner with their original model (see Sect. 2).

If 0 < λ < 1, the system can reach consensus on an opinion that is initially favored by
a minority of the agents. For instance, if λ = 0.5 (solid lines of Fig. 5(a)), that is, agents
with opinion B remain latent for twice as long as agents with opinion A, it is sufficient
that an initial fraction of only F = 0.4 favors opinion A to lead the system to consensus
on this opinion (top line). However, there is a critical initial fraction that determines the
opinion on which the system finally reaches consensus. If the initial fraction is lower than
the critical initial fraction, the system converges to the opinion associated with the latency
period with longer mean duration. For example, if λ = 0.5 and F = 0.36 (bottom line), the
system reaches consensus on opinion B .

In Fig. 5(b), we compare the dynamics predicted by the ODE model (labeled as “ODE”)
with results obtained through Monte Carlo simulations (labeled as “MC Sim.”). This figure
shows the fraction of the population that favors opinion A as a function of the elapsed
time t . The simulation results are obtained with 1000 agents over 100 independent runs.
The bars indicate the interquartile range of the obtained simulation values. In the Monte
Carlo simulation, all agents start non-latent with a fraction F in favor of opinion A. In the
very first step, the desired number of teams is formed (agents are randomly selected from
the non-latent agents, the majority rule is applied and the selected agents become latent). In
the ODE model, this initial team formation step determines the model’s initial conditions.
Thus, for a given initial bias F , the values of n(0) and l(0) are calculated as n(0) = βF ,
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Fig. 5 Example trajectories of the model defined in (2). In all cases, β = 0.25. (a) shows the fraction of
agents with opinion A over time as predicted by the ODE model. For λ = 1 (dashed lines) the system is
initialized with F = 0.52 (top), F = 0.5 (middle), F = 0.48 (bottom). For λ = 0.5 (solid lines) the system is
initialized with F = 0.40 (top), F = 0.3845 (middle), F = 0.36 (bottom). (b) shows a comparison of the ODE
model with results of Monte Carlo simulations with 1000 agents over 100 independent runs. The bars indicate
the interquartile range of the obtained simulation values. As predicted by the ODE model, when F = 0.45, the
population reaches consensus on opinion A. By contrast, when F = 0.35, the population reaches consensus
on opinion B

Fig. 6 Direction field of the
system defined by (2) with
isoclines (dotted) and example
trajectories (solid). The thick line

represents an unbiased system

and l(0) = (1 − β)(3F 2 − 2F 3), respectively. Our results show that the predictions of the
ODE model fit the simulation results well. For F = 0.35 the fraction of the population with
opinion A converges to zero. By contrast, if F = 0.45 the system reaches consensus on
opinion A.

A more detailed analytical study of the proposed opinion formation model is presented
by Scheidler (2011) who relaxes our assumption of a very large population and determines,
using the Fokker–Planck equation, the probability of reaching consensus on the opinion
associated with the shorter latency period as well as the time needed to reach consensus.
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3.2.3 Stability

We investigate the stability of the equilibrium points of our ODE model. The station-
ary solutions of the system ( dn(t)

dt
= 0, dl(t)

dt
= 0) are the states [n(t) = β, l(t) = 1 − β],

[n(t) = 0, l(t) = 0], and [n(t) = β/2, l(t) = λ(1 − β)/(1 + λ)]. In Fig. 6, we show a visual
example of the state space of the system when β = 0.25 and λ = 0.5. The arrows indicate
how the system evolves at the specific point in the state space. The two dashed lines mark the
two isoclines. These are the points at which dn(t)

dt
= 0 and dl(t)

dt
= 0, respectively. The two iso-

clines meet at the three stationary solutions [n(t) = 0.25, l(t) = 0.75], [n(t) = 0, l(t) = 0],
and [n(t) = 0.125, l(t) = 0.25]. Four example trajectories for different starting conditions
are depicted. The trajectories of the system that start at [n(t) = 0.25, l(t) = 0.05] and
[n(t) = 0, l(t) = 0.3] both end up in [n(t) = 0, l(t) = 0] (consensus on B), whereas for
the starting conditions [n(t) = 0.25, l(t) = 0.35] and [n(t) = 0, l(t) = 0.45], the system
converges to [n(t) = 0.25, l(t) = 0.75] (consensus on A). The trajectory plotted with a thick
line starts at [n(t) = 0.125, l(t) = 0.375]. This case represents an unbiased system, that is,
when exactly half of the agents start with opinion A.

The solutions [n(t) = β, l(t) = 1 − β], [n(t) = 0, l(t) = 0] correspond to consensus
on A and B , respectively. The Jacobian matrix evaluated at these two points results in
[ β−1

β
λ

0 −λ

]

and
[ λ(1−β)

β
1

0 −1

]

, respectively. The eigenvalues of these matrices are (β − 1)/β

and −λ for the first matrix and (λβ − λ)/β and −1 for the second matrix. In the range
of variability of the values β and λ, 0 < β,λ < 1, these eigenvalues are real and nega-
tive. Thus, both consensus states are asymptotically stable. The linearization of the sys-
tem near the third equilibrium point has one positive and one negative eigenvalue (details
are omitted because of excessive lengthiness). Thus, this third point is a saddle point and,
hence, it is not stable. Consequently, the only stable equilibrium points of the system are
[n(t) = β, l(t) = 1 − β] and [n(t) = 0, l(t) = 0]. Thus, we can conclude that with large
populations and exponentially distributed latency periods the opinion dynamics induced by
the majority-rule opinion formation model with differential latency always lead to consen-
sus.

3.3 Simulation study

In the ODE model, we made some simplifying assumptions that are not likely to hold in a
real world robotics scenario. Specifically, in a real swarm robotics scenario, the number of
robots is not very large and the duration of the latency periods is not likely to be exponen-
tially distributed. Thus, we now relax these assumptions and study the system’s dynamics
using Monte Carlo simulation. In our simulation study, we assume that the duration of la-
tency periods is normally distributed. Thus, we model situations in which robot actions have
a mean duration with a symmetrical deviation. In Sect. 4, we further relax this assumption
and test the system in a scenario in which the duration of latency periods is the result of
robots interacting with other robots and with their environment.

Our simulation study is performed in three steps. First, we explore the effects of different
parameters on the system’s dynamics. In particular, we focus on the effects of different
durations of the latency periods associated with each opinion and of the number of teams.
Next, we study the system’s dynamics when the number of teams is equal, or very close to
the limit N/3, where N is the total number of agents. Such a case is of interest because in
a continuous time system the probability of two teams becoming non-latent at exactly the
same time is zero (in our discrete time simulation, this effect is implemented by not allowing
teams that happen to finish at the same time to exchange team members). As a result, new
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team formations do not change the opinions of the agents involved. Thus, we expect that
when k = N/3 the system will behave differently than when k < N/3. Finally, we study
the system’s dynamics when the distributions of the latency periods have various degrees of
overlap.

3.3.1 Setup

The latency periods associated with opinions A and B are modeled as two normally dis-
tributed random variables with means µA and µB , and standard deviations σA and σB , re-
spectively. The latency period duration ratio is defined as before: r = µB/µA. In our simu-
lations, we used populations of N ∈ {9,90,900} agents.2 For each population size, we vary
the number of teams: k ∈ {1,2,3}, when N = 9, k ∈ {1,10,20,30}, when N = 90, and
k ∈ {1,100,200,300}, when N = 900. We also vary r by changing the value of µB . The
explored values of r are 1, 2, 3, and 4. The reference mean, µA, is fixed to a value of 100
time steps. We set σA = σB = 20 time steps. With these settings, the two distributions do not
significantly overlap. In Sect. 3.3.3, we study the system’s dynamics when the distributions
of the latency periods significantly overlap.

3.3.2 Dynamics

Figure 7 shows the dynamics of the proposed model with a population of 900 agents. The
relation between the initial configuration of the population and the probability of reaching
consensus on one of the alternative opinions follows the same nonlinear pattern observed in
Fig. 2(a). However, when latency periods have a different mean duration, it is more likely
that the system achieves consensus on the opinion associated with the shorter latency period.
This fact is reflected by a lower critical initial fraction. In Fig. 7(a), for example, the critical
initial fraction is approximately equal to 0.35 when r = 4, while it is approximately equal to
0.42 when r = 2. In every case, the peak on the number of team formations needed to reach
consensus occurs at the critical initial fraction (see Fig. 7(b)). Additionally, at this critical
point, the larger the latency period duration ratio, the more team formations are needed to
reach consensus.

A second aspect that we study in this experiment is the effect of the number of teams on
the system’s dynamics. An example of the obtained results is shown in Figs. 7(c) and 7(d).
For a latency period duration ratio greater than one, increasing the number of teams reduces
the critical initial fraction. In terms of the number of team formations to achieve consensus,
the results are similar to the ones observed in Fig. 2, that is, the maximum number of team
formations occurs at the critical initial fraction. As expected, when k approaches N/3, the
system exhibits different dynamics and stops following the aforementioned tendencies. Ex-
cept for cases in which consensus is reached after the first team formations (e.g., with very
small populations and very low or large initial densities), when N = 3k the system does
not reach consensus (curve plotted in gray in Fig. 7(c)). The reason for this result is the
following. When N = 3k, every time a team is destroyed and formed anew, it is composed

2Due to space constraints, we present only the results obtained with 900 agents. Where appropriate, the results
obtained with smaller populations are mentioned. The complete set of results as well as other supplemental
material can be found in Montes de Oca et al. (2011).
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Fig. 7 Dynamics of the majority-rule opinion formation model with normally distributed latency periods
on a population of 900 agents. (a) and (b) respectively show the probability of reaching consensus on opin-
ion A and the number of team formations per agent necessary to reach consensus for different latency period
duration ratios and for a fixed number of teams (k = 200). (c) and (d) respectively show the probability of
reaching consensus on opinion A and the number of team formations to reach consensus for different number
of teams and for a fixed latency period duration ratio (r = 4). The gray curve in (c) shows the case k = N/3
in which the system does not reach consensus (in this case, the data plotted is the fraction of the population
with opinion A after 100,000 time steps). Results obtained through 1,000 independent runs of a Monte Carlo
simulation

of exactly the same members because the probability of two teams leaving the latent state at
exactly the same time is zero. This means that when N = 3k there is no change in the num-
ber of agents with one or another opinion after the initial team formations. We have also
tested the case in which N = 3k + 1 and, as in the previous case, consensus is not reached.
In this case, this phenomenon occurs because three of the four non-latent agents available
at the moment of forming a new team have the same opinion. Thus, while there may be a
different agent in a new team, the team’s opinion does not change, eliminating the possibil-
ity of an eventual consensus. When N = 3k + 2 the population always reaches consensus.
Two non-latent agents are enough for possibly changing the opinion of one agent that just
switched from a latent to a non-latent state. Thus, a non-latent population of at least two
non-latent agents guarantees consensus.
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Fig. 8 The probability of reaching consensus on the opinion associated with the shorter latency period and
the average number of team formations needed to do it as a function of different levels of overlap between
latency period duration distributions. Results obtained through 1,000 independent runs of a Monte Carlo
simulation

3.3.3 Dynamics of the system when latency distributions significantly overlap

If the distributions of the duration of latency periods significantly overlap, we expect that
the population of agents will not be able to consistently reach consensus on the opinion
associated with the shorter latency period. Thus, it is important to assess the ability of the
system to discriminate between the two distributions if the system’s dynamics are to be used
as a decision-making mechanism.

The following experiment is aimed at measuring the extent to which the population can
still reach consensus on the opinion associated with the shorter latency period when the
two latency duration distributions overlap. We assume that there is no a priori information
about which opinion is associated with the shorter latency period. Thus, the initial fraction
of agents in favor of one opinion or the other is equal to 0.5. We fix the parameters of the
distribution associated with the shorter latency period (µA, σA). We vary both the mean and
the standard deviation of the distribution associated with the longer latency period (µB , σB ).
The explored ranges are: µB = rµA with r ∈ [1.0,2.0] in increments of 0.1, and σB = sσA

with s ∈ [1.0,3.0] in increments of 0.5. The parameters used for the distribution associated
with the shorter latency period are µA = 100, and σA = 10. Other values were explored,
but the system does not exhibit different dynamics as long as the relations between the
distributions’ coefficients of variation remain the same. As discussed in Sect. 3.3.2, two extra
non-latent agents are needed to ensure consensus. Thus, in these experiments, we increase
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Fig. 9 Task Scenario. The environment, shown in (a), is a bridge-like arena with two branches of different
lengths. In (b), we show a team of robots attached to an object. The task of the robots is to transport objects
from the starting to the target location of the arena. The choice robots must make is to take either the longer
or the shorter path

the population size with respect to the previous experiments. The results obtained with 902
agents are shown in Fig. 8.

The probability of reaching consensus on the opinion associated with the shorter latency
period grows more rapidly when a large number of teams and, consequently, a large pop-
ulation is used. For example, with 11 agents the system has great difficulties in detecting
the opinion associated with the shorter latency period (results shown in Montes de Oca et
al. 2011). With 11 agents, the maximum probability of reaching consensus on the opinion
associated with the shorter latency period is approximately 0.8. In contrast, in the example
shown in Fig. 8, the system is able to discriminate latency periods under a wide range of
combinations of means and standard deviation ratios. With 100 and 200 teams (Figs. 8(a)
and 8(b)), the system is mostly affected by the ratio between means. When using 200 teams,
the system reaches a probability of 1 for achieving consensus on the opinion associated with
the shorter latency period already from r ≥ 1.3. At the same time, the number of team for-
mations needed to reach consensus decreases as r increases (Figs. 8(d) and 8(e)). With 300
teams (Fig. 8(c)), the system exhibits a good discrimination ability (although not as good as
with 200 teams) but at a much higher cost in terms of team formations (Fig. 8(f)).

Irrespective of the size of the population, the standard deviation ratio does not have a
significant impact on the probability of the system discriminating between the two distribu-
tions. We believe that this is the result of an “averaging” effect due to the large number of
team formations needed to reach a consensus. The effects of short-term fluctuations due to
the high variability of one of the distributions become negligible in the long run.

4 Self-organized collective decision-making in swarms of robots

In this section, we use a physics-based simulator to validate the predictions of the opinion
formation model described in Sect. 3. We use a scenario that resembles the well-known
double bridge experiment designed by Goss et al. (1989) (see Fig. 9(a)). The task of the
robots is to transport objects from a starting location (at the bottom of the figure) to a target
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location (at the top of the figure). The objects that need to be transported weigh more than
what a single robot can carry. Thus, robots need to team up in order to move the objects. An
assembled team ready to transport an object is shown in Fig. 9(b). While performing this
task, robots must choose to take either the short or the long path to reach the target location.
These two options represent the robots’ “opinions.” The time needed by robots to go from
the starting location to the target location and back is the duration of the latency period
associated with the chosen path, and is called traversal time. Hence, in this example, latency
periods arise naturally as a result of the robots’ embodiment and the interactions of the robots
with their environment. Moreover, the physical dimensions of the environment determine the
maximum number of teams that can be used to perform the task. It is important to keep in
mind that in this experiment active robots are those that traverse a path, and thus are latent
with respect to the decision-making process because they can neither change opinion nor
influence other robots to do so. Similarly, inactive robots are those that wait in the starting
location, and thus are non-latent because they can potentially form new teams, and change
or spread their opinion. Like the ants in Goss et al.’s experiment, robots do not have any
knowledge about the length of the paths and do not measure distances or travel times.

4.1 Experimental setup

To carry out our experiments, we use ARGoS (Pinciroli et al. 2011), a simulator developed
as part of the SWARMANOID project.3 ARGoS accurately simulates physical interactions
between robots and their environment. The robot models are based on the physical and
electronic designs of the actual SWARMANOID foot-bots (Bonani et al. 2010).

In our simulations, only active robots are placed in the environment. The dimensions of
the environment do not allow a parallel deployment of teams. Thus, a sequential deployment
strategy is adopted. Every time a new team needs to be formed, three robots are chosen at
random from the set of inactive robots. Note that since only active robots are in the envi-
ronment, the process that ensures that team formation occurs with randomly picked robots
is not physically simulated. The three chosen robots are placed in the starting location to-
gether with the object to be carried. These robots attach to the object using their gripper
actuators. Next, the robots determine the team’s majority opinion by exchanging messages
using their range and bearing communication devices which allow robots to communicate
locally with other robots (Roberts et al. 2009). Only robots that are located within a short
range and that are in line of sight receive messages. Each robot sends its own opinion to
the other two robots of the team, and once a robot receives the opinions of the others, it
applies the local majority rule to determine the opinion to adopt. Upon agreement on the
path to follow, robots start moving. Two LEDs are placed at the bifurcations to let robot
teams know when and in which direction they should turn. Robots detect LEDs using their
omnidirectional camera. When robots reach the goal area, they detach from the object they
were transporting and go back, as single robots, through the same path they used when they
were part of a team. On their way to the target location, robots use the collective transport
controller designed by Ferrante et al. (2011). This controller allows robots to transport the
object to the target location while avoiding obstacles (walls and single robots that are on
their way back to the starting location). Obstacles are detected using a rotating distance
scanner. The target location is indicated by a light source located above it, which the robots
perceive through their light sensors. To go back to the starting location, robots use the light

3http://www.swarmanoid.org/

http://www.swarmanoid.org/
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Fig. 10 Estimated traversal time distributions for the two paths when there are two (a) and ten (b) teams
in the environment. Each density plot is based on 10,000 round trips (100 runs of 100 trips each) of a robot
between the starting and goal locations in the environment shown in Fig. 9(a)

source that identifies the target location as a landmark and move away from it. To coordinate
the heading direction, robots again use the range and bearing device as described in Ferrante
et al. (2011). New teams are deployed every 40 simulated seconds until a specific number
of teams is reached, or the environment reaches its maximum capacity, which is determined
by the maximum number of teams that the shorter branch can hold. In our experiments, the
shorter branch can hold up to ten teams.

4.2 Estimation of the traversal time distributions

The traversal time distributions of robots moving in the environment shown in Fig. 9 are
related to the latency duration distributions discussed in Sect. 3. Although these distribu-
tions are related, there are some important differences. In the analysis presented in Sect. 3,
we assumed that the distributions of the latency periods are independent of the number
of agents with a particular opinion. However, in a swarm robotics scenario, this assump-
tion does not generally hold because interference between robots is likely to dynamically
change the latency duration distributions and their ratio. In our environment, for instance, a
branch could become congested if many robots choose it. This increased congestion trans-
lates into longer and more variable path traversal times. To measure the effects of interfer-
ence in our environment, we deploy from two to ten robot teams and make them traverse
several times the environment using only one of the two branches. The estimated traver-
sal time distributions when there are two and ten teams in the environment are shown in
Fig. 10.

The results of this experiment show that both the mean and the standard deviation of
the traversal time distributions change as a result of the number of teams that choose each
branch. When there are only two teams in the environment, the average time needed to
traverse the short and long branches of the environment is 408.5 and 699.8 seconds, respec-
tively. Similarly, the standard deviation is 59.3 seconds for the short path and 15.7 seconds
for the long path. When there are ten teams, the average time needed to traverse the short
and long branches of the environment becomes 419.2 and 724.0 seconds, respectively. The
standard deviation in this case becomes 29.0 seconds for the short path and 35.9 seconds
for the long path. In our simulations with two agents choosing the short path, there were
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Fig. 11 Path selection process. (a) shows a swarm of robots in the process of transporting objects from the
starting location to the target location. Note that the robots use both branches of the environment. (b) shows
the state of the environment when the swarm of robots has reached consensus. The shorter path is selected by
the swarm of robots. A video visualization of the simulation is available as online supplementary material

Fig. 12 Fraction of the population of robots with the opinion associated with the shorter path. The evolution
of the system with five and ten teams is shown in (a) and (b), respectively. Single run results are shown in
gray lines. The average over 100 runs is marked with a thick black line

a few rare cases in which the time needed by a robot to perform a round trip between the
starting and target locations was very long. These outliers explain the high standard devia-
tion observed. We also observe that the traversal time distributions are right-skewed. This is
because robots that have reached the target location have to avoid collisions with incoming
teams. This phenomenon occurs more frequently when the number of teams in the environ-
ment increases.

4.3 Collective decision-making

We now test the ability of a swarm of robots to choose the shorter of the two paths that con-
nect the starting location with the target location in the environment shown in Fig. 9(a). In
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Table 2 Probability of choosing
the shorter branch of the
environment as a function of the
number of teams k. The
population size N is equal to 32
robots. The highest probability is
highlighted in boldface. These
results are based on statistics
taken from 100 independent
simulations

Physics-Based Simulation Monte Carlo Simulationk

Probability Avg. Team
Formations

Probability Avg. Team
Formations

1 0.48 74.29 0.54 70.66

2 0.52 72.67 0.62 74.62

3 0.69 72.75 0.58 74.39

4 0.71 70.28 0.68 71.87

5 0.75 71.60 0.74 70.17

6 0.74 75.22 0.72 71.18

7 0.79 76.20 0.83 80.84

8 0.86 77.73 0.82 85.58

9 0.83 81.29 0.86 98.43

10 0.81 109.95 0.69 248.25

this experiment, the robots’ decisions are governed by the dynamics of the model described
in Sect. 3. We use a total of 32 robots (30 of which are executing the task at the same time
plus two extra robots that are used in order to ensure consensus). Initially, 16 robots favor
the shorter path and 16 favor the longer path. In Fig. 11, we show two snapshots of a sim-
ulation that finishes with the swarm selecting the shorter path. The reader can find a video
that shows the system in action in the online supplementary material.

In Fig. 12, we show two examples of the development over time of the fraction of robots
with the opinion associated with the shorter path. Consensus is the final state of all individual
runs; however, notice that the swarm does not reach consensus on the shorter path in all runs.
The probability of reaching consensus on the shorter path depends on the number of teams
deployed. In Table 2, we list the estimated probabilities of reaching consensus on the shorter
path. We also include results obtained with the Monte Carlo simulator used in Sect. 3.3
for validation purposes. The simulation setup uses the data gathered in the experiment de-
scribed in Sect. 4.2. Specifically, we set the mean and standard deviation of the latency
period associated with the shorter path to 100 and 20 time steps, respectively. The mean of
the latency period associated with the longer path is set to 724

408.5 × 100 = 1.72 × 100 = 172
time steps, and its standard deviation is set to ⌈ 35.9

29 × 20⌉ = ⌈1.23 × 20⌉ = 25 time
steps.

The probability of choosing the shorter path increases with the number of teams and
reaches its maximum value with eight teams with the physics-based simulator and with nine
teams with Monte Carlo simulations. In both cases, the maximum probability is 0.86. The
average team formations needed to reach consensus oscillates within the range [70,75] for
most cases and grows when the number of teams approaches the limit N/3, where N is
the number of robots. Based on these results, we can make the following observations. First,
small swarms (a 32-robot swarm can be considered small) have difficulties in discriminating
latency distributions whose ratio is lower than two (see also the results in Montes de Oca
et al. 2011). Second, as the number of teams approaches the limit N/3, the size of the non-
latent subpopulation starts playing a role in both the quality of the decision eventually made
by the swarm (lowering its quality) and the time it takes to reach consensus (increasing the
number of needed team formations).
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5 Related work

5.1 Models

In the biological sciences, self-organization models have been proposed to explain the co-
ordination of large groups of animals (Camazine et al. 2001; Couzin and Krause 2003).
Self-organization is itself the result of the interaction of several elements that include mul-
tiple direct or indirect interactions among the system’s components, positive and negative
feedback, and random fluctuations (Camazine et al. 2001). These models are particularly
relevant for our proposal because the dynamics of the model described in Sect. 3 can be
seen as an example of self-organization. In fact, the double-bridge experiment proposed by
Goss et al. (1989) is reproduced here with the goal of pinpointing the self-organized nature
of the collective decision-making mechanism introduced in this paper. Positive feedback,
for example, occurs in experiments with real ants through the reinforcement of pheromone
trails. In our experiment, positive feedback occurs because robots that use the shorter path
return to the starting location before the robots that use the longer path. Thus, the probability
that a new team has a majority in favor of the shorter path increases. Pheromone evaporation
is a negative feedback process in path finding with real ants. In our experiment, negative
feedback is the result of the increased difficulty with which teams that adopt the opinion
associated with the longer path are formed. In both cases, real ants and robots, randomness
plays an important role to break symmetries and produces the fluctuations that are amplified
by the processes described above.

5.2 Collective decision-making in artificial swarms

Many collective decision-making mechanisms in swarm robotics are based on the simula-
tion of pheromones. Approaches range from the use of real chemicals (Russell 1999; Fu-
jisawa et al. 2008a, 2008b), to message passing between robots (Campo et al. 2010b), to
the use of digital video projectors to cast images of pheromone trails on the ground (Sug-
awara et al. 2004; Garnier et al. 2007; Hamman et al. 2007). There are also works in which
the environment is enhanced in order to let it store information. For example, Mamei and
Zambonelli (2005) and Herianto and Kurabayashi (2009) deploy RFID tags in the environ-
ment so that robots can read from or write in them. Mayet et al. (2010) use an environment
whose floor is covered with a paint that glows if robots activate ultraviolet LEDs. Another
variant of the pheromone-inspired approach is to use actual robots as markers to form trails.
Some works that use this approach are the ones by Werger and Matarić (1996); Payton et al.
(2001); Nouyan et al. (2008 2009) and Ducatelle et al. (2010). Simulating pheromones, at
least in the way it has been done so far, has important limitations. For example, dealing with
chemicals is problematic because very specialized sensors are needed. The level of sophis-
tication is such that some authors have even used real insect antennae (Kuwana et al. 1995;
Nagasawa et al. 1999). Using video projectors is an approach that can be adopted only in-
doors and under controlled conditions. Furthermore, the use of video projectors implies the
use of tracking cameras and a central computer to generate the images to be projected. The
existence of such a central information processing unit gives the approach a single point
of failure. Modifying the environment with special floors or with RFID tags is a cheap and
interesting approach. However, its applicability is limited to situations in which it is possible
to design and build an environment where it is known that robots are going to be deployed.
Finally, using robots as markers allows a swarm to operate in unknown environments and
no central control is required. However, complex robot controllers are needed in order to al-
low individual robots to play different roles in the swarm. While a promising approach, the
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development of complex robot control software for swarms is in its infancy as we are still
trying to understand the connection between individual-level and collective-level behaviors.

Other insect behaviors have also served as inspiration sources. For example, trophal-
laxis, the exchange of liquid food between insects, was first used in swarm robotics by
Schmickl and Crailsheim (2008) to generate gradients through robot-to-robot communica-
tion to allow robots to find the shortest path between two locations. Gutiérrez et al. (2010)
also used trophallaxis as an inspiration source for a method through which a swarm of
robots can locate and navigate to the closest location of interest from a particular origin.
Both of these methods need robots to implicitly know that the goal is to find the short-
est path between two locations. In Schmickl and Crailsheim’s work, robots decrease a
numerical value at a certain rate as they move. This value is communicated when there
are encounters with other robots. Thus, the exchanged information gives a rough indica-
tion of the distance traveled. In Gutiérrez et al.’s work, robots actually measure the dis-
tance they have traveled and communicate this information to other robots in order to
reduce the uncertainty of each robot’s estimate of the location of a target. In our work,
robots measure neither travel times nor distances. Nevertheless, the swarm finds the short-
est path between the two locations. The aggregation behavior of cockroaches has been
the source of inspiration for a site-selection mechanism with robots (Garnier et al. 2009;
Campo et al. 2010a). The nest-selection mechanism used by ants, which is based on de-
tecting a quorum in favor of one option, has inspired the work of Parker and Zhang (2009,
2010). In these works, robots need to know whether there are enough committed robots to
one of the competing options. In both cases, the more robots are committed to one of the
options, the more likely it is for a single robot to commit to that option too. In Garnier et al.’s
work, the decision is probabilistic; and in Parker and Zhang’s work, the decision depends
on whether the number of committed robots is larger than a threshold. Choosing the value
of this threshold or the rate at which the commitment probability increases is a critical issue
because the first alternative that is identified as dominant will be the alternative chosen by
the swarm. In our work, there are no thresholds or probabilities that depend on the number
of robots with one opinion or the other. Thus, decision-making is a continuous process that
ends when the whole population reaches a consensus.

Finally, robots in the work of Wessnitzer and Melhuish (2003) use the majority rule to
decide which of two “prey” to chase and immobilize. Robots capture one prey after the other.
Although the decision is collective, the majority rule is used simply to break the symmetry
of the decision problem.

6 Conclusions and future work

In this paper, we have introduced a self-organized collective decision-making mechanism
for swarm robotics. The settings for which the proposed mechanism can be useful are those
in which robots face a binary choice on actions that produce the same result but that may take
different amounts of time to perform. The proposed mechanism makes a swarm of robots
choose with high probability the action with the shorter execution time in a completely
decentralized way.

An opinion formation model, based on the majority-rule opinion formation model orig-
inally proposed by Krapivsky and Redner (2003), was used to determine on which opinion
consensus was reached and whether consensus was a stable state. The main modification that
we introduced to Krapivsky and Redner’s model is called differential latency, which models
the fact that the different actions that the robots can perform may take different amounts of
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time to be completed. Our analysis demonstrated that the population of agents reaches with
high probability a consensus on the opinion associated with the shorter latency period. We
showed that this is the case when the duration of latency periods are exponentially and nor-
mally distributed. We also showed that if the probability of two teams of agents becoming
non-latent at exactly the same time is zero, it is possible to guarantee consensus if there are
always at least two non-latent agents in the population.

We used a collective transport task in an environment that resembles the well-known
double bridge experiment proposed by Goss et al. (1989) to validate the predictions of the
model. In our simulations, robots form teams to transport objects and the actions that robots
need to choose from to perform the task are to take the shorter or the longer path from a
starting location to a target location. We observed that the swarm of robots indeed chooses
the shorter path with high probability. In our simulations, only active robots are placed in
the environment. For simplicity, we did not simulate the physics involved in the process that
ensures that team formation occurs with randomly picked robots. However, in an experiment
with real robots any mechanism that allows robots to be well-mixed in the location where
teams are formed (e.g., a random walk) could be used to obtain results similar to those
reported in this paper.

We believe future work should focus on the implementation of the proposed mechanism
with real robots as well as on its combination with other approaches. Future work should
aim to:

– Devise collective decision-making mechanisms that work well with large as well as with
small populations. The achievement of this goal would enable experimentation with real
robots.

– Relax some of the assumptions made in this work, such as robots knowing the number of
alternative actions, the decision points in the environment, and the association between
opinions and actions. Also of interest would be relaxing the assumption of a static envi-
ronment.

– Integrate opinion dynamics with task allocation methods in order to tackle problems for
which consensus is a suboptimal solution.

– Extend the proposed mechanism to situations in which the desired collective decision is
not based on action execution time but on other aspects. Translating these aspects into
latencies of different duration would be a first approach toward a more general collective
decision-making mechanism; however, other approaches should be explored.

– Extend the proposed mechanism to situations in which robots need to solve tasks indi-
vidually and not as part of a team. Our own ongoing work is following this direction.
Roughly speaking, the idea is to simulate team formations by making robots memorize
observed actions and apply the majority rule on these observations.

To conclude, we believe that collective decision-making in swarms based on opinion for-
mation models is a new and exciting research direction with the potential of cross-pollinating
the fields of swarm robotics and statistical physics. On the one hand, the field of swarm
robotics may greatly benefit from ideas and tools developed in the statistical physics litera-
ture. On the other hand, physicists may regard swarm robotics as a rich source of interesting
problems waiting to be modeled and solved.
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