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Abstract
A new Levenberg–Marquardt (LM) method for solving nonlinear least squares prob-
lems with convex constraints is described. Various versions of the LM method have 
been proposed, their main differences being in the choice of a damping parameter. 
In this paper, we propose a new rule for updating the parameter so as to achieve both 
global and local convergence even under the presence of a convex constraint set. 
The key to our results is a new perspective of the LM method from majorization-
minimization methods. Specifically, we show that if the damping parameter is set 
in a specific way, the objective function of the standard subproblem in LM methods 
becomes an upper bound on the original objective function under certain standard 
assumptions. Our method solves a sequence of the subproblems approximately using 
an (accelerated) projected gradient method. It finds an �-stationary point after O(�−2) 
computation and achieves local quadratic convergence for zero-residual problems 
under a local error bound condition. Numerical results on compressed sensing and 
matrix factorization show that our method converges faster in many cases than exist-
ing methods.

Keywords  Nonconvex optimization · Constrained optimization · Nonlinear least 
squares · Levenberg–Marquardt method · Iteration complexity · Local quadratic 
convergence

1  Introduction

In this study, we consider the constrained nonlinear least-squares problem:
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where ‖ ⋅ ‖ denotes the �2-norm, F ∶ ℝ
d
→ ℝ

n is a continuously differentiable 
function, and C ⊆ ℝ

d is a closed convex set. If there exists a point x ∈ C such that 
F(x) = 0 , the problem is said to be zero-residual, and is reduced to the constrained 
nonlinear equation:

Such problems cover a wide range of applications, including chemical equilibrium 
systems [48], economic equilibrium problems [20], power flow equations [61], non-
negative matrix factorization [7, 42], phase retrieval [11, 63], nonlinear compressed 
sensing [8], and learning constrained neural networks [17].

Levenberg–Marquardt (LM) methods [43, 47] are efficient iterative algorithms 
for solving problem (1); they were originally developed for unconstrained cases 
(i.e., C = ℝ

d ) and later extended to constrained cases by [40]. Given a current point 
xk ∈ C , an LM method defines a model function mk

λ
∶ ℝ

d
→ ℝ with a damping 

parameter λ > 0:

where Fk ∶= F(xk) ∈ ℝ
d and Jk ∶= J(xk) ∈ ℝ

n×d with J ∶ ℝ
d
→ ℝ

n×d being the Jac-
obian matrix function of F. The next point xk+1 ∈ C is set to an exact or approximate 
solution to the convex subproblem:

for some λ = λk . Various versions of this method have been proposed, and their the-
oretical and practical performances largely depend on how the damping parameter 
λk is updated.

1.1 � Our contribution

We propose an LM method with a new rule for updating λk . Our method is based on 
majorization-minimization (MM) methods, which successively minimize a majori-
zation or, in other words, an upper bound on the objective function. The key to our 
method is the fact that the model mk

λ
 defined in (2) is a majorization of the objec-

tive f under certain standard assumptions. This MM perspective enables us to create 
an LM method with desirable properties, including global and local convergence 
guarantees. Although there exist several MM methods for problem (1) and relevant 
problems [3, 4, 38, 50, 53], as far as we know, no studies have elucidated that the 
model in (2) is a majorization of f. Another feature of our LM method is the way of 
generating an approximate solution of subproblem (3). It is sufficient to apply one 
iteration of a projected gradient method to (3) for deriving the iteration complexity 
of our LM method, which leads to an overall complexity bound.

(1)min
x∈ℝd

f (x) ∶=
1

2
‖F(x)‖2 subject to x ∈ C,

find x ∈ C such that F(x) = 0.

(2)mk
λ
(x) ∶=

1

2
‖Fk + Jk(x − xk)‖2 +

λ

2
‖x − xk‖2,

(3)min
x∈ℝd

mk
λ
(x) subject to x ∈ C
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Our contributions are summarized as follows: 

	 (i)	 A new MM-based LM method We prove that the LM model defined in (2) is a 
majorization of f if the damping parameter λ is sufficiently large. See Lemma 
1 for a precise statement. This result provides us with a new update rule of λ , 
bringing about a new LM method for solving problem (1).

	 (ii)	 Iteration and overall complexity for finding a stationary point The iteration 
complexity of our LM method for finding an �-stationary point (see Definition 
1) is proved to be O(�−2) under mild assumptions on the Jacobian. Because the 
computational complexity per iteration of our method does not depend on � , 
the overall complexity is also evaluated as O(�−2) through 

 See Corollaries 1 and 2 for a precise statement.
	 (iii)	 Local quadratic convergence For zero-residual problems, assume that a start-

ing point x0 ∈ C is sufficiently close to an optimal solution, and assume stand-
ard conditions, including a local error bound condition. Then, if the subprob-
lems are solved with sufficient accuracy, a solution sequence (xk) generated 
by our method converges quadratically to an optimal solution. See Theorem 2 
for a precise statement.

	 (iv)	 Improved convergence results even for unconstrained problems Our method 
achieves both the O(�−2) iteration complexity bound and local quadratic con-
vergence. An LM method having such global and local convergence results is 
new for unconstrained and constrained problems, as shown in Table 1.

Numerical results show that our method converges faster and is more robust than 
existing LM-type methods [22, 26, 36, 40], a projected gradient method, and a trust-
region reflective method [10, 58].

1.2 � Oracle model for overall complexity bounds

To evaluate the overall complexity of LM methods, we count the number of basic 
operations—evaluation of F(x), Jacobian-vector multiplications J(x)u and J(x)⊤v , 
and projection onto C—required to find an �-stationary point, following [21, Sect. 6]. 
The important point is that we do not assume an evaluation of Jk ∶= J(xk) but access 
the Jacobian only through products Jku and J⊤

k
v to solve subproblem (3). Computing 

vectors Jku and J⊤
k
v for given u ∈ ℝ

d and v ∈ ℝ
n is much cheaper than evaluating 

the matrix Jk.1 Avoiding the computation of the n × d matrix Jk makes algorithms 
practical for large-scale problems where n and d amount to thousands or millions. 

(Overall complexity) = (Iteration complexity) × (Complexity per iteration).

1  Automatic differentiation libraries such as JAX [9] compute the Jacobian-vector products at several 
times the cost of evaluating F(x). See, e.g., the JAX documentation [60].
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We note that some existing LM-type methods [3, 4, 12–16, 36] compute the Jaco-
bian explicitly.

1.3 � Paper organization

In Sect. 2, we review LM methods and related algorithms for problem (1). In Sect. 3, 
a key lemma is presented and the LM method (Algorithm 1) is derived based on the 
lemma. Sections  4 and 5 show theoretical results for Algorithm  1: iteration com-
plexity, overall complexity, and local quadratic convergence. In Sect. 6, we general-
ize Algorithm 1 and present a more practical variant of Algorithm 1. This variant 
also achieves the theoretical guarantees given for Algorithm 1 in Sects. 4 and 5. Sec-
tion 7 provides some numerical results and Sect. 8 concludes the paper.

1.4 � Notation

Let ℝd denote a d-dimensional Euclidean space equipped with the �2-norm ‖ ⋅ ‖ and 
the standard inner product ⟨⋅, ⋅⟩ . For a matrix A ∈ ℝ

m×n , let ‖A‖ denote its spectral 
norm, or its largest singular value. For a ∈ ℝ , let ⌈a⌉ denote the least integer greater 
than or equal to a.

2 � Comparison with related works

We review existing methods for problem (1) and compare them with our work.

2.1 � General methods

Algorithms for general nonconvex optimization problems, not just for least-squares 
problems, also solve problem (1). For example, the projected gradient method have 
an overall complexity bound of O(�−2) ; our LM method enjoys local quadratic con-
vergence in addition to that bound, which seems difficult to achieve with general 
first-order methods. Figure  1 illustrates that our LM successfully minimizes the 
Rosenbrock function, a valley-like function that is notoriously difficult to minimize 
numerically. Although quadratic convergence is proved only locally around an opti-
mal solution, in practice, the LM method may perform considerably better than gen-
eral first-order methods, even when started far from the optimum.

Some methods, such as the Newton method, achieve local quadratic convergence 
using second-order or higher-order derivatives of f; our LM achieves it without the 
second-order derivative. Besides the fact that our LM does not require a computa-
tionally demanding Hessian matrix, it has another advantage: subproblem (3) is very 
tractable. Whereas our subproblem is smooth and strongly convex, those in sec-
ond- or higher-order methods are nonconvex in general. The matter becomes more 
severe under the presence of constraints because the subproblems may be NP-hard, 
as pointed out in [15].
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2.2 � Specialized methods for least squares

Several methods, including the LM method, utilize the least-squares structure of 
problem  (1). Focusing on those algorithms without second-order derivatives, we 
review them from three points of view: (i) subproblem, (ii) complexity for finding 
a stationary point, and (iii) local superlinear convergence. Most of the methods dis-
cussed in this section are summarized in Table 1. The table shows the following:

•	 Our method can achieve an overall computational complexity bound, 
O(�−2) × O(1) = O(�−2) , for finding an �-stationary point for constrained prob-
lems.

•	 To the best of our knowledge, this is the first LM that achieves such a complexity 
bound with local quadratic convergence, even for unconstrained problems.

2.2.1 � Subproblems

Most algorithms for the nonlinear least-squares problem  (1) generate a solu-
tion sequence (xk)k∈ℕ by repeatedly solving convex subproblems, and we focus 
on such algorithms. There are three popular subproblems, in addition to the LM 
subproblem (3):

(4)min
x∈ℝd

‖Fk + Jk(x − xk)‖ +
λ

2
‖x − xk‖2 subject to x ∈ C,

(5)min
x∈ℝd

‖Fk + Jk(x − xk)‖2 +
λ

2
‖x − xk‖3 subject to x ∈ C,

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

y

GD
LM

Fig. 1   Minimization of the Rosenbrock function [56], f (x, y) = (x − 1)2 + 100(y − x2)2 . Both the gradi-
ent descent (GD) and our LM start from (−1, 1) and converge to the optimal solution, (1, 1). One marker 
corresponds to one iteration, and the GD and LM are truncated after 1000 and 20 iterations, respectively
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where λ,Δ > 0 are properly defined constants. Methods using subproblems (4), (5), 
and (6) have been proposed and analyzed in [3, 4, 16, 50], [3], and [12, 24, 32, 64], 
respectively. Other works [13–15] propose methods with a more general version of 
(5). These four subproblems (3)–(6) are closely related in theory; one subproblem 
becomes equivalent to the others with specific choices of the parameters λ and Δ.

In practice, these four subproblems are quite different, and the LM subprob-
lem (3) is the most tractable one because the objective function mk

λ
 is smooth and 

strongly convex. Thanks to smoothness and strong convexity, we can efficiently 
solve subproblem (3) with linearly convergent methods such as the projected gradi-
ent method. Note that the objective function of (4) is nonsmooth, and (5) and (6) are 
not necessarily strongly convex. Although some algorithms for subproblems (4)–(6) 

(6)min
x∈ℝd

‖Fk + Jk(x − xk)‖2 subject to x ∈ C, ‖x − xk‖ ≤ Δ,

Table 1   Comparison of methods for problem (1)

1 The complexity analysis in [6] assumes the iterates not to converge to a zero-residual solution. 
If the solution sequence converges to a zero-residual solution, then f̄  defined in [6, Sect.  3] is f̄ = 0 . 
Then, �max defined in [6, Lemma 3.2] becomes �max = Θ(�−2) , resulting in the iteration complexity of 
O(�−4 log �−1).
2 The complexity analysis in [50] assumes that rank J(x) = n for all x, which is quite restrictive because 
such an assumption implies that all stationary points are global optima. The local convergence analysis 
in [50] assumes that the solution sequence (xk) is in the neighborhood of a solution x∗ such that F(x∗) = 0 
and rank J(x∗) = n

Subproblem References Constr. Complexity Local conv.

#Iterations Complexity/iter. Order Inexact

(3) (LM) [55, 57, 66] O(�−2)

[5] O(�−2) O(1)

[6]1 O(�−2 log �−1) O(1) 2
[23, 30, 33, 34, 62] 2
[19, 29, 31, 35] 2 ✓

[26, 40] ✓ 2
[1, 22] ✓ 2 ✓

This work ✓ O(�−2) O(1) 2 ✓

(4) [50]2 O(�−2) 2
[12] O(�−2)

[16] ✓ O(�−2)

[3, 4] 2 ✓

(5) and its generaliza-
tion

[13, 14] O(�−2) O(1)

[15] ✓ O(�−2) O(1)
[3] 2 ✓

(6) [12] O(�−2)

[24, 64] < 2

[32] 2
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without constraints have been proposed [4, 13, 64], efficient algorithms are nontriv-
ial under the presence of constraints. Hence, the LM method is more practical than 
methods using other subproblems.

2.2.2 � Complexity for finding a stationary point

For unconstrained zero-residual problems, Nesterov [50] proposed a method with 
subproblem (4) and showed that the method finds an �-stationary point after O(�−2) 
iterations under a strong assumption (see footnote 2 of Table 1 for details). After 
that, for unconstrained (possibly) nonzero-residual problems, several methods with 
subproblems (3), (4), and (6) have been proposed [12, 57, 66], and they achieve the 
same iteration complexity bound under weaker assumptions such as the Lipschitz 
continuity of J or ∇f  . The method of [12] has been extended for constrained prob-
lems [16].2 These methods [12, 16, 50, 57, 66] have the iteration complexity bound, 
but computational complexity per iteration, i.e., complexity for a subproblem, is 
unclear.

The key to bounding complexity per iteration is that we do not need to solve 
subproblems so accurately to derive the iteration complexity bound. Several algo-
rithms have been proposed based on this fact for both unconstrained [5, 6, 13, 14] 
and constrained [15] problems. They use a point that decreases the model function 
value sufficiently compared to the value at the current iterate xk . Such a point can 
be computed with an �-independent number of basic operations: evaluation of F(x), 
Jacobian-vector multiplications J(x)u and J(x)⊤v , and projection onto C . Thus, the 
methods in [5, 13–15] achieve the overall complexity O(�−2) × O(1) = O(�−2).

Our LM method also finds an �-stationary point within O(�−2) iterations, and the 
complexity per iteration is O(1) when subproblems are solved approximately like [5, 
6, 13–15]. Thus, the overall complexity amounts to O(�−2) same as [5, 13–15].

2.2.3 � Local superlinear convergence

For unconstrained zero-residual problems, many methods with subproblems (3)–(6) 
have achieved local quadratic convergence under a local error bound condition [3, 
19, 23, 29–35, 62]. These local convergence results have been extended to con-
strained problems [1, 22, 26, 40]. Some methods [24, 64] have local convergence 
of an arbitrarily order less than 2. Other methods [25, 27, 28] achieve local (nearly) 
cubic convergence by solving two subproblems in one iteration. We note that the 
local convergence analyses in [4, 50] assume the solution sequence (xk) is in the 
neighborhood of a solution x∗ such that F(x∗) = 0 and rank J(x∗) = n , which is a 
stronger assumption than the local error bound.

Among these methods, some [1, 3, 4, 19, 22, 29, 31, 35] use an approximate solu-
tion to subproblems while preserving local quadratic convergence. The approximate 
solution is more accurate than that used to derive the global complexity mentioned 

2  More precisely, [16] proposed a framework for arbitrary-order methods and it includes a method with 
subproblem (4) as a special case.
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in the previous section. We also use the same kind of approximate solution as [1, 19, 
29, 31, 35] to prove local quadratic convergence. See Condition 2 in Sect. 6 for the 
details of the approximate solution.

3 � Majorization lemma and proposed method

Here, we will prove a majorization lemma that shows that the LM model mk
λ
 defined 

in (2) is an upper bound on the objective function. In view of this lemma, we can 
characterize our LM method as a majorization-minimization (MM) method.

For a, b ∈ ℝ
d , we denote the sublevel set and the line segment by

3.1 � LM method as majorization‑minimization

MM is a framework for nonconvex optimization that successively performs (approx-
imate) minimization of an upper bound on the objective function. The following 
lemma, a majorization lemma, shows that the model mk

λ
 defined in (2) is an upper 

bound on the objective f over some region under certain assumptions.

Lemma 1  Let X ⊆ ℝ
d be any closed convex set, and suppose xk ∈ X  . Moreover, 

assume that for some constant L > 0,

Then for any λ > 0 and x ∈ X  such that

the following bound holds:

The proof is given in Sect. A.2.
The assumption in (9) is the Lipschitz continuity of J and is analogous to the 

Lipschitz continuity of ∇f  , which is often used in the analysis of first-order methods. 
Equation (10) requires a sufficiently large damping parameter, which corresponds to 
a sufficiently small step-size for first-order methods. Equation (11) requires the point 

(7)S(a) ∶= {x ∈ ℝ
d | f (x) ≤ f (a)},

(8)L(a, b) ∶= {(1 − �)a + �b ∈ ℝ
d | � ∈ [0, 1]}.

(9)‖J(y) − J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ S(xk).

(10)λ ≥ L‖Fk‖ and

(11)mk
λ
(x) ≤ mk

λ
(xk),

(12)f (x) ≤ mk
λ
(x).
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x ∈ X  to be a solution that is at least as good as the current point xk ∈ X  in terms of 
the model function value.

3.2 � Proposed LM method

Based on Lemma 1, we propose an LM method that solves problem (1). The pro-
posed LM is formally described in Algorithm 1 and is outlined below. First, in Line 
1, three parameters are initialized: an estimate M of the Lipschitz constant L of J, a 
parameter � used for solving subproblems, and the iteration counter k. Line 3 sets 
λ using M as an estimate of L based on (10). Then, the inner loop of Lines 4-10 
solves subproblem  (3) approximately by a projected gradient method. The details 
of the inner loop will be described later. Lines 12–15 check if the current λ and the 
computed solution x are acceptable. If λ and x satisfy (12), they are accepted as λk 
and xk+1 . Otherwise, the current value of M is judged to be small as an estimate of 
L in light of Lemma 1 and is increased. We refer to the former case as a “success-
ful” iteration and the latter as an “unsuccessful” iteration. Note that k represents not 
the number of outer iterations but that of only successful iterations. As shown later 
in Lemma 5(ii) and Theorem 2(i), the number of unsuccessful iterations is upper-
bounded by a constant under certain assumptions.

Inner loop for subproblem In the inner loop of Lines 4-10, subproblem  (3) is 
solved approximately by the projected gradient method. Here, the operator proj C in 
Line 5 is the projection operator defined by

The parameter t is the inner iteration counter, and the parameter � is the inverse step-
size that is adaptively chosen by a standard backtracking technique in Lines 6-9. 

proj C(x) ∶= argmin
y∈C

‖y − x‖.
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As shown in Lemma 6(ii) later, Line 9 is executed a finite number of times under 
certain standard assumptions. Hence, the inner loop must stop after a finite number 
of iterations.

Input parameters Algorithm 1 has several input parameters. The parameters M0 
and � are used to estimate the Lipschitz constant of the Jacobian J, and the param-
eters �0 and �in are used to control the step-size in the inner loop. The parameters 
T and c control how accurately the subproblems are solved through the stopping 
criteria of the inner loop. Here, note that we allow for T = ∞ . As we will prove in 
Sect.  4, the algorithm has an iteration complexity bound for an �-stationary point 
regardless of the choice of the input parameters. However, to obtain an overall com-
plexity bound or local quadratic convergence, there are restrictions on the choice of 
T, as explained in the next paragraph.

Stopping criteria for inner loop There are two types of stopping criteria as in Line 
10, and the inner loop terminates when at least one of them is satisfied. If T < ∞ , 
the projected gradient method stops after executing Line 7 at most T times, and then 
the overall complexity for an �-stationary point is guaranteed to be O(�−2) . If T = ∞ , 
we have to solve subproblems more accurately to find a (cλ‖Fk‖)-stationary point of 
the subproblem, and then Algorithm 1 achieves local quadratic convergence.

Remark 1  To make the algorithm more practical, we can introduce other parameters 
0 < 𝛽 < 1 and Mmin > 0 , and update M ← max{�M,Mmin} after every successful 
iteration. As with the gradient descent method, such an operation prevents the esti-
mate M from being too large and eliminates the need to choose M0 carefully. Insert-
ing this operation never deteriorates the complexity bounds described in Sect. 4 and 
the local quadratic convergence in Sect. 5.

Remark 2  Some methods (e.g., [57, 66]) use the condition

with some 0 < 𝜃 < 1 to determine whether the computed solution x to the subprob-
lem is acceptable. Our acceptance condition (12) is stronger than the classical one 
since (12) is equivalent to

under condition  (11). Therefore, Lemma 1 is stronger than the classical statement 
that condition (13) holds if λ is sufficiently large.

(13)
mk

λ
(xk) − f (x)

mk
λ
(xk) − mk

λ
(x)

≥ �

mk
λ
(xk) − f (x)

mk
λ
(xk) − mk

λ
(x)

≥ 1
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4 � Iteration complexity and overall complexity

We will prove that Algorithm 1 finds an �-stationary point of problem  (1) within 
O(�−2) outer iterations. Futhermore, we will prove that under T < ∞ , the overall 
complexity for an �-stationary point is also O(�−2) . Throughout this section, (xk) and 
(λk) denote the sequences generated by the algorithm.

4.1 � Assumptions

We make the following assumptions to derive the complexity bound. Recall that the 
sublevel set S(a) and the line segment L(a, b) are defined in (7) and (8) and that 
x0 ∈ C denotes the starting point of Algorithm 1.

Assumption 1  For some constants 𝜎, L > 0 , 

	 (i)	 ‖J(x)‖ ≤ � , ∀x ∈ C ∩ S(x0),
	 (ii)	 ‖J(y) − J(x)‖ ≤ L‖y − x‖ , ∀x, y ∈ C s.t.  L(x, y) ⊆ S(x0).

Assumption 1(i) means the �-boundedness of J on C ∩ S(x0) . Assumption 1(ii) is 
similar to the L-Lipschitz continuity of J on C ∩ S(x0) but weaker due to the condi-
tion of L(x, y) ⊆ S(x0) . Assumption 1 is milder than the assumptions in the previous 
work that discussed the iteration complexity, even when C = ℝ

d . For example, the 
analysis in [66] assumes f and J to be Lipschitz continuous on ℝd , which implies the 
boundedness of J on ℝd.

4.2 � Approximate stationary point

Before analyzing the algorithm, we define an �-stationary point for constrained opti-
mization problems. Let �C ∶ ℝ

d
→ ℝ ∪ {+∞} be the indicator function of the closed 

convex set C ⊆ ℝ
d . For a convex function g ∶ ℝ

d
→ ℝ ∪ {+∞} , its subdifferential at 

x ∈ ℝ
d is the set defined by �g(x) ∶= {p ∈ ℝ

d � g(y) ≥ g(x) + ⟨p, y − x⟩, ∀y ∈ ℝ
d}.

Definition 1  (see, e.g., Definition 1 in [51]) For 𝜀 > 0 , a point x ∈ C is said to be an 
�-stationary point of the problem minx∈C f (x) if

This definition is consistent with the unconstrained case; the above inequalities 
are equivalent to ‖∇f (x)‖ ≤ � when C = ℝ

d . There is another equivalent definition 
of an �-stationary point, which we will also use.

Lemma 2  For x ∈ C and 𝜀 > 0 , condition (14) is equivalent to

Proof  The tangent cone T(x) of C at x ∈ C is defined by

(14)min
p∈��C(x)

‖∇f (x) + p‖ ≤ �.

(15)⟨∇f (x), y − x⟩ ≥ −�‖y − x‖, ∀y ∈ C.
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Note that

because C is a closed convex set and ��C(x) is the normal cone of C . We have

Therefore, condition (14) is equivalent to

which is also equivalent to (15). 	�  ◻

A useful tool for deriving iteration complexity bounds is gradient mapping 
(see, e.g., [49]), also known as projected gradient [41] or reduced gradient [52]. 
For 𝜂 > 0 , the projected gradient operator P

�
∶ C → C and the gradient mapping 

G
�
∶ C → ℝ

d for problem (1) are defined by

The following lemma shows the relationship between an �-stationary point and the 
gradient mapping.

Lemma 3  Suppose that Assumption 1 holds, and let

Then, for any x ∈ C ∩ S(x0) and � ≥ Lf  , the point P
�
(x) is a (2‖G

�
(x)‖)-stationary 

point of problem (1).

The proof is given in Sect.  A.4. This lemma will be used for the proof of 
Theorem 1(ii).

(16)T(x) ∶= {�(y − x) | y ∈ C, � ≥ 0}.

(17)T(x) = {z ∈ ℝ
d � ⟨y, z⟩ ≤ 0, ∀y ∈ ��C(x)}

min
p∈��C(x)

‖∇f (x) + p‖

= min
p∈��C(x)

max
u∶‖u‖≤1

⟨−∇f (x) − p, u⟩

= max
u∶‖u‖≤1

inf
p∈��C(x)

�
⟨−∇f (x), u⟩ − ⟨p, u⟩

�
(by a minimax theorem)

= max
u∈T(x), ‖u‖≤1

⟨−∇f (x), u⟩ (by (17))

= sup
y∈C⧵{x}

⟨−∇f (x), y − x⟩
‖y − x‖ (by (16)).

sup
y∈C⧵{x}

⟨−∇f (x), y − x⟩
‖y − x‖ ≤ �,

(18)P
�
(x) ∶= argmin

y∈C

�
⟨∇f (x), y − x⟩ + �

2
‖y − x‖2

�
= proj C

�
x −

1

�

∇f (x)
�
,

(19)G
�
(x) ∶= �(x − P

�
(x)).

(20)Lf ∶= �
2 + L‖F0‖.
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Although Lemma 3 looks quite similar to [51, Corollary 1], there exists a sig-
nificant difference in their assumptions. Indeed, Lemma 3 assumes the bounded-
ness and the Lipschitz property of J only on a (possibly) nonconvex set C ∩ S(x0) , 
whereas [51, Corollary 1] assumes the Lipschitz continuity on the whole space 
ℝ

d . This makes our proof more complicated than in [51, Corollary 1].

4.3 � Preliminary lemmas

First, we bound the decrease in the model function value due to the inner loop. 
For 𝜂 > 0 , we define the function D

�
∶ C → ℝ by

We see that D
�
(x) ≥ −⟨∇f (x), x − x⟩ − �

2
‖x − x‖2 = 0 for all x ∈ C . In addition, 

D
�
(x) is decreasing with respect to �.

Lemma 4  The solution x obtained in Line 11 of Algorithm 1 satisfies

where k, λ , and � are parameters in Algorithm 1.

Proof  The second inequality in (22) follows from the nonnegativity of D
�
(x) , and 

therefore we will prove the first one. Let T ′ denote the value of t when the inner 
loop is completed, and for each 0 ≤ t ≤ T ′ , let �k,t denote the values of � when xk,t 
is obtained through Line 7. Our aim is to prove the first inequality in (22) with 
(x, �) = (xk,T � , �k,T � ) . We have

Since D
�
(xk) is decreasing in � and �k,1 ≤ �k,2 ≤ ⋯ ≤ �k,T ′ , we have 

D
�k,1

(xk) ≥ D
�k,T�

(xk) . On the other hand, we have mk
λ
(xk,1) ≥ ⋯ ≥ mk

λ
(xk,T � ) . Combin-

ing these inequalities, we obtain the desired result. 	�  ◻

From the above lemma and Line 12, it follows that for all k,

This monotonicity of f (xk) in k is an important property of the majorization-minimi-
zation and will be used in our analysis.

The following two lemmas show that the parameters M and � in the algorithm 
are upper-bounded, and hence Lines 9 and 15 are executed only a finite number of 
times per single run.

(21)D
�
(x) ∶= −min

y∈C

�
⟨∇f (x), y − x⟩ + �

2
‖y − x‖2

�
.

(22)mk
λ
(x) ≤ mk

λ
(xk) −D

�
(xk) ≤ mk

λ
(xk),

mk
λ
(xk,1) ≤ mk

λ
(xk) + ⟨∇mk

λ
(xk), xk,1 − xk⟩ +

�k,1

2
‖xk,1 − xk‖2 (by Line 6)

= mk
λ
(xk) +min

z∈C

�
⟨∇mk

λ
(xk), z − xk⟩ +

�k,1

2
‖z − xk‖2

�
(by the definition ofxk,1)

= mk
λ
(xk) −D

�k,1
(xk) (by∇mk

λ
(xk) = ∇f (xk)).

(23)f (xk+1) ≤ mk
λk
(xk+1) ≤ mk

λk
(xk) = f (xk).



846	 N. Marumo et al.

1 3

Lemma 5  Suppose that Assumption 1(ii) holds, and let

where M0 and � are the inputs of Algorithm 1. Then,

	 (i)	 The parameter M in Algorithm 1 always satisfies M ≤ M̄;
	 (ii)	 Throughout the algorithm, the number of unsuccessful iterations is at most 

⌈log
𝛼
(M̄∕M0)⌉ = O(1).

Proof  We have S(xk) ⊆ S(x0) from (23), and therefore Assumption 1(ii) implies (9) 
with X = C . On the other hand, (22) directly implies (11). Hence, by Lemma 1 with 
X = C and Lemma 4, if M ≥ L holds at Line 3, the condition in Line 12 must be true. 
Therefore, if M0 ≥ L , no unsuccessful iterations occur and the parameter M always 
satisfies M = M0 . Otherwise, there exists an integer l ≥ 1 such that L ≤ 𝛼

lM0 < 𝛼L . 
Since M = �

lM0 after l unsuccessful iterations, the parameter M always satisfies 
M < 𝛼L . Consequently, we obtain the first result, and the second follows from the 
first. 	�  ◻

Lemma 6  Suppose that Assumption 1 holds, and let

where �0 and �in are the inputs of Algorithm 1 and M̄ is defined in (24). Then, 

	 (i)	 the parameter � in Algorithm 1 always satisfies 𝜂 ≤ 𝜂̄;
	 (ii)	 throughout the algorithm, Line 9 will be executed at most ⌈log

𝛼in
(𝜂̄∕𝜂0)⌉ = O(1) 

times.

Proof  Since the function mk
λ
 defined by (2) has the (‖Jk‖2 + λ)-Lipschitz continuous 

gradient, we have

(see, e.g., [52, Eq. (2.1.9)]). We also have ‖Jk‖2 + λ ≤ 𝜎
2 + M̄‖F0‖ from Assumption 

1(i) and Lemma 5. Therefore, the inequality in Line 6 must hold if 𝜂 ≥ 𝜎
2 + M̄‖F0‖ . 

With the same arguments as in Lemma 5, we obtain the desired results. 	� ◻

As we can see from the proofs of Lemmas 5 and 6, if M0 ≥ L and 
�0 ≥ �

2 +M0‖F0‖ , then no unsuccessful iterations occur in both outer and inner 
loops. Adjusting M and � adaptively as in the presented algorithm avoids a too small 
step-size in practice.

(24)M̄ ∶= max{M0, 𝛼L},

(25)𝜂̄ ∶= max{𝜂0, 𝛼in(𝜎
2 + M̄‖F0‖)},

mk
λ
(y) ≤ mk

λ
(x) + ⟨∇mk

λ
(x), y − x⟩ +

‖Jk‖2 + λ

2
‖y − x‖2, ∀x, y ∈ ℝ

d



847

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

4.4 � Iteration complexity and overall complexity

We use the following lemma for the analysis.

Lemma 7 
Proof  By the first-order optimality condition on (18) and the convexity of C , we 
have

Using this inequality, we obtain

	�  ◻

We show the asymptotic global convergence and the iteration complexity 
bound of Algorithm 1.

Theorem 1  Suppose that Assumption 1 holds, and define 𝜂̄ by (25). Then, 

	 (i)	 lim
k→∞

‖G
𝜂̄
(xk)‖ = 0 , and therefore, any accumulation point of (xk) is a stationary 

point of problem (1);
	 (ii)	 P

𝜂̄
(xk) is an �-stationary point of problem (1) for some k = O(�−2).

Proof  We have

Summing up this inequality for k = 0, 1,… ,K − 1 , we obtain

for all K ≥ 0 . Therefore, we also have 
∑∞

k=0
‖G

𝜂̄
(xk)‖2 ≤ 2𝜂̄f (x0) , yielding 

limk→∞ ‖G
𝜂̄
(xk)‖ = 0 , the first result.

D
𝜂
(x) ≥

1

2𝜂
‖G

𝜂
(x)‖2, ∀x ∈ C, 𝜂 > 0.

(26)⟨∇f (x) + �(P
�
(x) − x), y − P

�
(x)⟩ ≥ 0, ∀y ∈ C.

D
�
(x) = ⟨∇f (x), x − P

�
(x)⟩ − �

2
‖x − P

�
(x)‖2 (by (18) and (21))

≥
�

2
‖x − P

�
(x)‖2 (by (26)with y = x)

=
1

2�
‖G

�
(x)‖2 (by (19)).

f (xk+1) − f (xk) ≤ mk
λk
(xk+1) − mk

λk
(xk) (by Line 12 andmk

λk
(xk) = f (xk))

≤ −D
𝜂̄
(xk) (by Lemmas 6(i) and 4)

≤ −
1

2𝜂̄
‖G

𝜂̄
(xk)‖2 (by Lemma 7).

(27)
K−1�

k=0

‖G
𝜂̄
(xk)‖2 ≤ 2𝜂̄(f (x0) − f (xK)) ≤ 2𝜂̄f (x0)
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Combining (27) with min0≤k<K ‖G
𝜂̄
(xk)‖2 ≤

1

K

∑K−1

k=0
‖G

𝜂̄
(xk)‖2 , we have 

‖G
𝜂̄
(xk)‖ ≤ 𝜀∕2 for some k = O(�−2) . For such xk , the point P

𝜂̄
(xk) is an �-stationary 

point from Lemma 3 and 𝜂̄ ≥ Lf  . Thus, we have obtained the second result. 	�  ◻

From Lemma 5(ii) and Theorem  1(ii), we obtain the iteration complexity 
bound of our algorithm as follows.

Corollary 1  Under Assumption 1, Algorithm  1 finds an �-stationary point within 
O(�−2) outer iterations, namely, O(�−2) successful and unsuccessful iterations.

From this iteration complexity bound and Lemma 6(ii), we also obtain the overall 
complexity bound.

Corollary 2  Suppose that Assumption 1 holds. Then, Algorithm 1 with T < ∞ finds 
an �-stationary point after O(�−2T) basic operations.

We use the term basic operations to refer to evaluation of F(x), Jacobian-vector 
multiplications J(x)u and J(x)⊤v , and projection onto C as in Sect. 1.2.

In order to compute an �-stationary point based on Theorem 1(ii), knowledge of 
the value of 𝜂̄ is required. However, this requirement can be circumvented with a 
slight modification of the algorithm. See Sect. A.5 for the details.

5 � Local quadratic convergence

For zero-residual problems, we will prove that the sequence (xk) generated by Algo-
rithm 1 with T = ∞ converges locally quadratically to an optimal solution. Let us 
denote the set of optimal solutions to problem (1) by X∗ ∶= {x ∈ C |F(x) = 0} 
and the distance between x ∈ ℝ

d and X∗ simply by dist (x) ∶= miny∈X∗ ‖y − x‖ . 
Throughout this section, we fix a point x∗ ∈ X∗ and denote a neighborhood of x∗ by 
B(r) ∶= {x ∈ ℝ

d � ‖x − x∗‖ ≤ r} for r > 0.3 As in the previous section, we denote 
the sequences generated by Algorithm 1 with T = ∞ by (xk) and (λk).

5.1 � Assumptions

We make the following assumptions to prove local quadratic convergence.

Assumption 2 

(i)	 There exists x ∈ C such that F(x) = 0.

3  If x∗ is an interior point of the constraint C , the problem can be regarded as an unconstrained one, and 
the quadratic convergence is easier to prove. We do not assume this, i.e., x∗ may be on the boundary of C.
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For some constants 𝜌, L, r > 0 , 

	 (ii)	 � dist (x) ≤ ‖F(x)‖ , ∀x ∈ C ∩ B(r),
	 (iii)	 ‖J(y) − J(x)‖ ≤ L‖y − x‖ , ∀x, y ∈ C ∩ B(r).

Assumption 2(i) requires the problem to be zero-residual, Assumption 2(ii) is 
called a local error bound condition, and Assumption 2(iii) is the local Lipschitz 
continuity of J. These assumptions are used in the previous analyses of LM meth-
ods [1, 3, 19, 22, 23, 29, 30, 33, 34, 40, 62].

5.2 � Fundamental inequalities for analysis

Since C ∩ B(r) is compact, there exists a constant 𝜎 > 0 such that

which implies

Let � denote such a constant in the rest of this section.
For a point x ∈ ℝ

d , let x̃ ∈ X∗ denote an optimal solution closest to x; 
‖x̃ − x‖ = dist (x) . In particular, x̃k denotes one of the closest solutions to xk for 
each k ≥ 0 . Since ‖ã − x∗‖ ≤ ‖ã − a‖ + ‖a − x∗‖ ≤ 2‖a − x∗‖ , we have

Therefore, (29) with y ∶= x̃ implies

From the stopping criterion in Line 10 of Algorithm 1 with T = ∞ and Definition 1, 
the solution x obtained in Line 11 satisfies

From the definition of xk+1 and λk , we also have the inequality with (x, λ) = (xk+1, λk) , 
i.e.,

5.3 � Preliminary lemma

Lemma 8  Suppose that Assumption 2 holds, and define M̄ by (24). Define the con-
stants C1,C2, 𝛿 > 0 by

(28)‖J(x)‖ ≤ �, ∀x ∈ C ∩ B(r),

(29)‖F(y) − F(x)‖ ≤ �‖y − x‖, ∀x, y ∈ C ∩ B(r).

(30)a ∈ B(r∕2) ⟹ ã ∈ B(r).

(31)‖F(x)‖ ≤ 𝜎‖x − x̃‖ = 𝜎 dist (x), ∀x ∈ C ∩ B(r∕2).

(32)⟨∇mk
λ
(x), y − x⟩ ≥ −cλ‖Fk‖‖y − x‖, ∀y ∈ C.

(33)⟨∇mk
λk
(xk+1), y − xk+1⟩ ≥ −cλk‖Fk‖‖y − xk+1‖, ∀y ∈ C.
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where M0 and c are the inputs of Algorithm 1. Assume that xk ∈ B(�) and M ≤ M̄ 
hold at Line 3. Then,

	 (i)	 The solution x obtained in Line 11 satisfies

	 (ii)	 M ≤ M̄ holds when xk+1 is obtained;
	 (iii)	 The following hold: 

Proof of Lemma 8(i)  From xk ∈ B(�) , � ≤ r∕2 , and (30), we have

Moreover, we have from ∇mk
λ
(x) = J⊤

k
(Fk + Jk(x − xk)) + λ(x − xk) that

We bound the terms (A)–(C) as follows:

where the first and second inequalities follow from (32) and (31), respectively, and 
the last inequality follows from the arithmetic and geometric means;

(34a)C1 ∶=

√
1 + c2�2 +

L2r

16�M0

,

(34b)C2 ∶=
1

c2

(
𝜎
2
(
cM̄ +

L

2𝜌

)
+

L𝜎C2
1

2
+ (L + M̄)𝜎C1

)
,

(34c)� ∶=
r

2(1 + C1)
,

(35)‖x − xk‖ ≤ C1 dist (xk);

(36)‖xk+1 − xk‖ ≤ C1 dist (xk),

(37)dist (xk+1) ≤ C2 dist (xk)
2.

(38)xk ∈ B(r∕2) and x̃k ∈ B(r).

⟨∇mk
λ
(x), x − x̃k⟩

�������������������

(A)

= ⟨Fk + Jk(x − xk), Jk(x − x̃k)⟩
���������������������������������������

(B)

+λ ⟨x − xk, x − x̃k⟩
���������������

(C)

.

(A) ≤ cλ‖Fk‖‖x − x̃k‖ ≤ c𝜎λ‖xk − x̃k‖‖x − x̃k‖

≤
c2𝜎2λ

2
‖xk − x̃k‖2 +

λ

2
‖x − x̃k‖2,

(B) ≥ −
1

4
‖Fk + Jk(x̃k − xk)‖2 ≥ −

L2

16
‖x̃k − xk‖4,
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where the first inequality follows from 4⟨a, b⟩ = ‖a + b‖2 − ‖a − b‖2 ≥ −‖a − b‖2 
and the second inequality from Lemma 9(ii), (38), and Assumption 2(iii);

Combining these bounds and rearranging terms yield

From (38), Assumption 2(ii), and λ = M‖Fk‖ ≥ M0‖Fk‖ , we have

Applying this bound to the second term on the right-hand side of (39), we obtain the 
desired result (35). 	�  ◻

Proof of Lemma 8(ii)  As in Lemma 8(i), let x denote the x obtained in Line 11. By 
(34c), (35), and xk ∈ B(�) , we have

i.e.,

We now have xk, x ∈ C ∩ B(r) . As in the proof of Lemma 5(i), by using Lemma 1 
with X ∶= C ∩ B(r) , we see that if M ≥ L holds at Line 3, the outer iteration must be 
successful. This leads to the desired result. 	�  ◻

Proof of Lemma 8(iii)  Equation (36) follows from Lemmas 8(i) and 8(ii). We prove 
(37) below. From (30) and (40), we have xk+1, x̃k+1 ∈ B(r) . Moreover, we have

and bound the terms (D)–(F) as follows:

(C) =
1

2

�
‖x − xk‖2 + ‖x − x̃k‖2 − ‖x̃k − xk‖2

�
.

(39)‖x − xk‖2 ≤ (1 + c2𝜎2)‖x̃k − xk‖2 +
L2

8λ
‖x̃k − xk‖4.

‖x̃k − xk‖2 ≤
r

2
×
‖Fk‖
𝜌

≤
rλ

2𝜌M0

.

‖x − x∗‖ ≤ ‖xk − x∗‖ + ‖x − xk‖
≤ ‖xk − x∗‖ + C1 dist (xk)

≤ (1 + C1)‖xk − x∗‖ ≤ (1 + C1)� = r∕2,

(40)x ∈ B(r∕2).

‖Fk+1‖2 −

(D)

�����������������������������������

⟨∇mk
λk
(xk+1), xk+1 − x̃k+1⟩

= ⟨Fk+1,Fk+1 + Jk+1(x̃k+1 − xk+1)⟩ + ⟨J⊤
k+1

Fk+1 − ∇mk
λk
(xk+1), xk+1 − x̃k+1⟩

≤ ‖Fk+1‖‖Fk+1 + Jk+1(x̃k+1 − xk+1)‖
�������������������������������������������������

(E)

+ ‖J⊤
k+1

Fk+1 − ∇mk
λk
(xk+1)‖

�����������������������������������

(F)

dist (xk+1)
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by (33) and Lemma 8(ii);

by Lemma 9(ii), Assumption 2(ii), and ‖Fk+1‖ ≤ ‖Fk‖ from (23); and

Combining these bounds yields

We bound ‖Fk‖ and ‖Fk+1‖ in the above inequality by using Assumption 2(ii) and 
(31), yielding

which implies the desired result (37). 	�  ◻

5.4 � Local quadratic convergence

Let us state the local quadratic convergence result of Algorithm 1.

Theorem 2  Suppose that Assumption 2 holds, and define M̄ by (24). Set x0 ∈ B(�0) 
for a sufficiently small constant 𝛿0 > 0 such that

(D) ≤ cλk‖Fk‖ dist (xk+1) ≤ cM̄‖Fk‖2 dist (xk+1)

(E) ≤
L

2
‖Fk+1‖ dist (xk+1)2 ≤

L

2�
‖Fk+1‖2 dist (xk+1) ≤

L

2�
‖Fk‖2 dist (xk+1)

(F) = ‖J⊤
k+1

Fk+1 − J⊤
k
(Fk + Jku) − λku‖ (by letting u ∶= xk+1 − xk)

≤ ‖J⊤
k
(Fk+1 − Fk − Jku)‖

+ ‖(Jk+1 − Jk)
⊤Fk+1‖ + λk‖u‖

≤
L𝜎

2
‖u‖2 + L‖Fk+1‖‖u‖ + λk‖u‖ (by (28), Lemma 9(ii),

and Assumption 2(iii))

≤
L𝜎

2
‖u‖2 + (L + M̄)‖Fk‖‖u‖ (by ‖Fk+1‖ ≤ ‖Fk‖ and Lemma 8(ii))

≤

�L𝜎C2
1

2
+ (L + M̄)𝜎C1

�
dist (xk)

2 (by (31) and (36))

‖Fk+1‖2 ≤
��

cM̄ +
L

2𝜌

�
‖Fk‖2 +

�L𝜎C2
1

2
+ (L + M̄)𝜎C1

�
dist (xk)

2

�
dist (xk+1).

𝜌
2 dist (xk+1)

2
≤

(
𝜎
2
(
cM̄ +

L

2𝜌

)
+

L𝜎C2
1

2
+ (L + M̄)𝜎C1

)
dist (xk)

2 dist (xk+1),
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where C1 , C2 , and � are the constants defined in (34a)–(34c). Then, 

	 (i)	 The number of unsuccessful iterations is at most ⌈log
𝛼
(M̄∕M0)⌉ = O(1) , and

	 (ii)	 The sequence (xk) converges quadratically to an optimal solution x̂ ∈ X∗.

Proof  First, we will prove that 

 for all k ≥ 0 by induction. For k = 0 , (42a) and (42b) are obvious. For a fixed 
K ≥ 0 , assume (42a) and (42b) for all k ≤ K . We then have (36), (37) and (42b) for 
k ≤ K + 1 by Lemma 8. To complete the induction, we prove (42a) for k = K + 1 . 
Solving the recursion of (37) and using dist (x0) ≤ �0 , we have

for all k ≤ K + 1 . We obtain (42a) for k = K + 1 as follows:

Now, we have proved (42a) and (42b) for all k ≥ 0 . 	�  ◻

Proof of Theorem 2(ii)  Note that we have proved (37) and (43) for all k ≥ 0 in the 
proof of Theorem 2(i). By (43) and C2𝛿0 < 1 in (41), we have

As with (43), we have for i ≥ k,

Using this bound and (35), we obtain

(41)C2𝛿0 < 1, 𝛿0 +
C1𝛿0

1 − C2𝛿0

≤ 𝛿,

(42a)xk ∈ B(�), and

(42b)M ≤ M̄ holds when xk is obtained

(43)dist (xk) ≤ dist (x0)(C2 dist (x0))
2k−1

≤ �0(C2�0)
2k−1

≤ �0(C2�0)
k

‖xK+1 − x∗‖ ≤ ‖x0 − x∗‖ +
K�

k=0

‖xk+1 − xk‖ (by the triangle inequality)

≤ �0 + C1

K�

k=0

dist (xk) (by (36))

≤ �0 +
C1�0

1 − C2�0

≤ � (by (41) and (43)).

(44)lim
k→∞

dist (xk) = 0.

dist (xi) ≤ dist (xk)(C2 dist (xk))
2i−k−1

≤ dist (xk)(C2�0)
i−k.
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for all k, l such that 0 ≤ k < l . Equations (45) and (44) imply that (xk) is a Cauchy 
sequence. Accordingly, the sequence (xk) converges to a point x̂ ∈ X∗ by (44). Thus, 
we obtain

which implies Theorem 2(ii). 	�  ◻

6 � Practical variant of the proposed method

We present a more practical variant (Algorithm 3) of Algorithm 1, which also achieves 
the theoretical guarantees given for Algorithm 1 in Sects. 4 and 5.

6.1 � Generalized version of Algorithm 1

To obtain the practical variant, we first present a generalized framework of Algo-
rithm 1. Algorithm 1 runs the vanilla projected gradient (PG) method in the inner loop. 
This PG can be replaced with other algorithms keeping O(�−2) iteration complexity 
and quadratic convergence that were gained for Algorithm 1. Indeed, these theoretical 
results rely on the fact that the x obtained in Line 11 of Algorithm 1 satisfies the follow-
ing conditions:

Condition 1  (for O(�−2) iteration complexity bound) There exists a constant 𝛾 > 0 
such that for all k,

Condition 2  (for local quadratic convergence) Both of the following hold:

	 (i)	 mk
λ
(x) ≤ mk

λ
(xk) for all k;

	 (ii)	 There exists a constant c > 0 such that x is a (cλ‖Fk‖)-stationary point of 
subproblem (3) for all k.

(45)‖xk − xl‖ ≤

l−1�

i=k

‖xi+1 − xi‖ ≤ C1

l−1�

i=k

dist (xi) ≤
C1

1 − C2�0

dist (xk)

‖xk+1 − x̂‖ = lim
l→∞

‖xk+1 − xl‖ (by the continuity of ‖ ⋅ ‖)

≤
C1

1 − C2𝛿0

dist (xk+1) (by (45))

≤
C1C2

1 − C2𝛿0

dist (xk)
2 (by (37))

≤
C1C2

1 − C2𝛿0

‖xk − x̂‖2 (by x̂ ∈ X∗),

mk
λ
(x) − mk

λ
(xk) ≤ −D

�
(xk).
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This fact yields a general algorithmic framework that achieves the O(�−2) iteration 
complexity bound together with the quadratic convergence as in Algorithm 2.

In Line 4 of Algorithm 2, any globally convergent algorithm for subproblem (3) 
can be employed. For example, we may use (block) coordinate descent methods, 
Frank-Wolfe methods, interior point methods, active set methods, or augmented 
Lagrangian methods. For unconstrained cases, since the subproblem reduces to solv-
ing a system of linear equations, we may use conjugate gradient methods or direct 
methods, including Gaussian elimination.
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6.2 � Proposed method with an accelerated projected gradient

A practical example of Algorithm  2 is presented in Algorithm  3. This algorithm 
employs the accelerated projected gradient (APG) method [45, Algorithm 1] with 
the adaptive restarting technique [54, Sect. 3.2] to solve subproblems and adopts the 
additional parameters mentioned in Remark 1. Since the solution x obtained in Line 
19 of Algorithm 3 satisfies Condition 1, this algorithm enjoys the O(�−2) iteration 
complexity bound. In addition, it also achieves the O(�−2) overall complexity bound 
if T < ∞ as with Corollary 2, and it achieves local quadratic convergence if T = ∞ . 
Algorithm 3 will be used for the numerical experiments in the next section.

7 � Numerical experiments

We examine the practical performance of the proposed method. We implemented all 
methods in Python with SciPy [58] and JAX [9] and executed them on a computer 
with Apple M1 Chip (8 cores, 3.2 GHz) and 16 GB RAM.

7.1 � Problem setting

We consider three types of instances: (i) compressed sensing with quadratic meas-
urement, (ii) nonnegative matrix factorization with missing values, and (iii) autoen-
coder with MNIST dataset.

7.1.1 � Compressed sensing with quadratic measurement

Given A1,… ,An ∈ ℝ
r×d , b1,… , bn ∈ ℝ

d , and c1,… , cn,R ∈ ℝ , we consider the 
following problem:

where ‖ ⋅ ‖1 denotes  the �1-norm. Problem (46) formulates the situation where a 
sparse vector x∗ ∈ ℝ

d is recovered from a small number (i.e., n < d ) of quadratic 
observations, 1

2r
‖Aix

∗‖2 + ⟨bi, x∗⟩ for i = 1,… , n . Such a problem arises in the con-
text of compressed sensing [8, 44] and phase retrieval [11, 63]. Problem (46) can be 
transformed into the form of problem (1).

Generating instances First, we generate the optimal solution x∗ ∈ ℝ
d with only 

dnnz (< d) nonzero entries. The indexes of the nonzero entries are chosen uni-
formly randomly, and the value of those elements are independently drawn from 
the uniform distribution on [−xmax, xmax] . Each entry of Ai ’s and bi ’s is drawn inde-
pendently from the standard normal distribution N(0, 1) . Then, we set R = ‖x∗‖1 
and ci =

1

2r
‖Aix

∗‖2 + ⟨bi, x∗⟩ for all i. We fix d = 200 , r = 10 , and n = 50 , and set 
dnnz ∈ {5, 10, 20} and xmax ∈ {0.1, 1} . We set the starting point for each algorithm 
as x0 = 0.

(46)min
x∈ℝd

n�

i=1

�
1

2r
‖Aix‖2 + ⟨bi, x⟩ − ci

�2

subject to ‖x‖1 ≤ R,
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7.1.2 � Nonnegative matrix factorization with missing values

Given A ∈ ℝ
m×n and H ∈ {0, 1}m×n , we consider the following problem:

where ⊙ denotes the elementwise product, X ≥ O and Y ≥ O denote elementwise 
inequalities, and ‖ ⋅ ‖F denotes the Frobenius norm. Problem  (47) formulates the 
situation where a data matrix A with some missing entries is approximated by the 
product XY⊤ of two nonnegative matrices. Such a problem is called nonnegative 
matrix factorization (NMF) with missing values and is widely used for nonnegative 
data analysis, especially for collaborative filtering [46, 65]. For more information 
on NMF, see [7, 59] and the references therein. Problem (47) can also be written as 
problem (1).

Generating instances To generate A and H, we introduce two parameters: � ≥ 1 
and 0 < p ≤ 1 . The parameters � and p control the condition number of A and the 
number of 1’s in H, respectively. Let l ∶= min{m, n} . First, a matrix Ã ∈ ℝ

m×n is gen-
erated by Ã = UDV⊤ , and then the matrix A is obtained by normalizing Ã = (ãij)i,j as 
A = Ã∕maxi,j ãij . Here, each entry of U ∈ ℝ

m×l and V ∈ ℝ
n×l follows independently 

the uniform distribution on [0, 1], and D = diag (�0, �−1∕l, �−2∕l,… , �−(l−1)∕l) ∈ ℝ
l×l 

is a diagonal matrix. H is a random matrix whose entries follow independently the 
Bernoulli distribution with parameter p, i.e., each entry of H is 1 with probability p. 
We fix m = n = 50 and � = 105 , and set r ∈ {10, 40} and p ∈ {0.02, 0.1, 0.5} . Since 
(X, Y) = (O,O) is a stationary point of problem  (47), we set the starting point to 
random matrices whose entries independently follow the uniform distribution on 
[0, 10−3].

7.1.3 � Autoencoder with MNIST dataset

The third instance is highly nonlinear and large-scale. In machine learning, autoen-
coders (see, e.g., [37, Section  14]) are a popular model to compress real-world 
data, represented as high-dimensional vectors, into low-dimensional vectors. 
Given p-dimensional data a1,… , aN ∈ ℝ

p , autoencoders try to learn an encoder 
�
enc
x

∶ ℝ
p
→ ℝ

q and a decoder �dec
y

∶ ℝ
q
→ ℝ

p , where q < p . Here, x and y are 
parameters to be learned by solving the following optimization problem:

As we see from the optimization problem above, the autoencoder aims to extract 
latent features that can be used to reconstruct the original data.

For this experiment, we use the MNIST hand-written digit dataset. Each data is 
a 28 × 28 pixel grayscale image, which is represented as a vector ai ∈ [0, 1]p with 
p = 28 × 28 = 728 . The dataset contains 60,000 training data, of which N = 1000 
were randomly chosen for use. We set q = 16 ; our model encodes 728-dimensional 

(47)min
X∈ℝm×r , Y∈ℝn×r

‖H ⊙ (XY⊤ − A)‖2
F

subject to X ≥ O, Y ≥ O,

(48)min
x,y

N�

i=1

‖ai − �
dec
y

(�enc
x

(ai))‖2.
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data into 16 dimensions. Both encoder and decoder are two-layer neural networks 
with a hidden layer of size 64 and logistic sigmoid activation functions. Specifically, 
the encoder �enc

x
 is written as

Here, S is the elementwise logistic sigmoid function, and W1 ∈ ℝ
728×64 , b1 ∈ ℝ

64 , 
W2 ∈ ℝ

64×16 , and b2 ∈ ℝ
16 are parameters of the network; x = ((Wi, bi))

2
i=1

 . The 
decoder �dec

y
 is formulated in a similar way. When we rewrite problem  (48) in 

the form of (1), the dimension of the function F ∶ ℝ
d
→ ℝ

n is d = 96,104 and 
n = Np = 728,000.

7.2 � Algorithms and implementation

We compare the proposed method with six existing methods. The details are below.
Proposed (Algorithm  3) and Proposed-NA (Algorithm  1) method To see the 

effect of acceleration for subproblems, we implemented both Algorithms 1 and 3; 
Algorithm 3 is expected to be faster, of course. In Line 10 of Algorithm 1 and Line 
18 of Algorithm 3, we have to check if xk,t is a (cλ‖Fk‖)-stationary point, but it is 
not very easy. We thus replace the criterion with one using gradient mapping, i.e., 
check if �‖xk,t − y‖ ≤ cλ‖Fk‖ . The input parameters of Algorithm 1 and 3 are set to 
M0 = �0 = 1 , � = �in = 2 , � = �in = 0.9 , Mmin = 10−10 , T = 100 , and c = 1.

Fan method [26, Algorithm 2.1] and KYF method [40, Algorithm 2.12] The Fan 
and KYF methods are constrained LM methods with a global convergence guaran-
tee. To solve subproblem (3), an APG method is used as well as Algorithm 3 for a 
fair comparison. The difference from the APG in Algorithm 3 is in the stopping cri-
terion; the condition “ xk,t is a (cλ‖Fk‖)-stationary point” in Line 18 of Algorithm 3 
is replaced with �‖xk,t − y‖ ≤ 10−9.4 The input parameters in [26, 40] are set to 
� = 10−4 , � = 0.9 , � = 10−4 , � = 0.99995 , and � ∈ {1, 2} , following the recommen-
dations of [26, 40].5

Facchinei method [22, Algorithm 3] This is a constrained LM method that allows 
subproblems to be solved inexactly. We solve the subproblems in almost the same 
way as the Fan and KYF methods. The input parameters in [22] are set to �0 = 1 and 
S = 2.

GGO method [36, Algorithm G-LMA-IP] This is an LM-type method that requires 
the solution of a linear system at each iteration. The main advantage of this algorithm 
is that it does not require exact projection and can be applied to problems with a com-
plex feasible region. Still, it is reported to perform well even when the projection is 
easy to compute exactly [36]. The linear systems are solved via QR decomposition 

�
enc
x

(a) = �
2
x
◦�

1
x
(a), where �

i
x
(a) ∶= S(Wia + bi).

4  Since cλ‖Fk‖ in Algorithm  3 derives from our update rule of λ and our analysis, it does not seem 
appropriate to use a criterion with cλ‖Fk‖ directly in another algorithm. We thus use �‖xk,t − y‖ ≤ 10

−9 
instead of �‖xk,t − y‖ ≤ cλ‖Fk‖ here.
5  � = 1 and � = 2 correspond to the Fan method and the KYF method, respectively.
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(scipy.linalg.qr [58]) and the input parameters in [36] are set to M ∈ {1, 15} , 
�1 = 10−4 , �2 = 10−2 , �3 = 1010 , � = 10−3 , � = 1∕2 , and �k = 0 , following [36].6

Projected gradient (PG) method The PG method is one of the most standard first-
order methods for problem (1). The step-size is adaptively chosen in a similar way to 
the APG in Algorithm 3 with �0 = 1 , �in = 2 , and �in = 0.9.

Trust-region reflective (TRF) method This is an interior trust-region method for 
box-constrained nonlinear optimization. It was proposed in [10] and is implemented 
in SciPy [58] with several improvements. For the TRF method, we call scipy.
optimize.least_squares [58] with a gtol=1e-5 option to avoid the long 
execution time caused by searching for too precise a solution.

Proposed Proposed-NA Fan KYF Facchinei GGO PG
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(a) xmax = 0.1, dnnz = 5
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(b) xmax = 0.1, dnnz = 10
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(c) xmax = 0.1, dnnz = 20
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(d) xmax = 1, dnnz = 5
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(e) xmax = 1, dnnz = 10
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(f) xmax = 1, dnnz = 20

Fig. 2   Results of compressed sensing (problem (46))

6  Because the algorithm with M = 1 outperformed M = 15 in our experiments, we omit the results with 
M = 15.
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Other information As mentioned in Sect. 1.2, there are two ways to handle Jaco-
bian matrices: explicitly computing Jk ∶= J(xk) or using Jacobian-vector products 
Jku and J⊤

k
v . In our experiments, the latter implementation outperformed the former, 

so we adopted the latter if possible (i.e., for Proposed, Proposed-NA, Fan, KYF, 
Facchinei, and PG).7 We note that GGO is based on QR decomposition, which is 
probably impossible to implement using Jacobian-vector products.

For projection onto the feasible region of problem (46), we employ [18, Algo-
rithm 1], whose time complexity is O(d log d).
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(a) r = 10, p = 0.02
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(b) r = 10, p = 0.1
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(c) r = 10, p = 0.5
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(d) r = 40, p = 0.02
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(e) r = 40, p = 0.1
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(f) r = 40, p = 0.5

Fig. 3   Results of NMF (problem (47))

7  When using the Jacobian-vector products, i.e., not computing the Jacobian explicitly, almost all of the 
algorithm’s runtime is spent solving subproblems.
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Table 2   Results of compressed sensing (problem (46))

Objective GM norm Time (s) #Iter #Evaluations Success (%)

F JVP proj C

(a) xmax = 0.1 , dnnz = 5

 Proposed 3.5 ×10−14 1.4 ×10−6 0.55 3.4 7.8 343.2 117.8 100
 Proposed-

NA
1.7 ×10−12 1.6 ×10−6 1.06 4.3 9.6 787.9 295.8 100

 Fan 1.0 ×10−17 2.9 ×10−8 1.03 3.1 7.2 832.5 280.6 100
 KYF 1.7 ×10−17 3.9 ×10−8 0.95 3.2 7.4 861.0 290.2 100
 Facchinei 6.7 ×10−14 1.3 ×10−6 0.38 4.9 10.8 278.7 97.8 100
 GGO 2.2 ×10−13 9.4 ×10−6 3.31 258.5 1461.8 0.0 775.5 100
 PG 1.1 ×10−11 9.1 ×10−6 0.59 181.2 397.5 181.2 396.5 100

(b) xmax = 0.1 , dnnz = 10

 Proposed 7.6 ×10−13 2.1 ×10−6 1.11 5.0 11.1 978.6 331.2 100
 Proposed-

NA
3.2 ×10−7 7.0 ×10−5 4.35 13.6 28.6 3934.7 1455.3 80

 Fan 7.2 ×10−14 4.3 ×10−7 1.69 4.2 9.4 1497.0 503.2 100
 KYF 6.2 ×10−12 1.1 ×10−6 1.55 4.1 9.2 1469.4 493.9 100
 Facchinei 2.2 ×10−13 2.0 ×10−6 1.29 6.4 13.8 1167.0 395.4 100
 GGO 4.9 ×10−6 1.5 ×10−2 8.87 594.1 3807.1 0.0 1782.3 40
 PG 1.4 ×10−7 5.4 ×10−5 3.93 1244.6 2686.0 1244.6 2685.0 80

(c) xmax = 0.1 , dnnz = 20

 Proposed 3.9 ×10−14 1.6 ×10−6 0.25 3.8 8.6 286.2 99.2 100
 Proposed-

NA
4.5 ×10−12 3.1 ×10−6 1.38 5.8 12.6 1246.6 464.8 100

 Fan 7.0 ×10−15 8.1 ×10−7 0.64 3.1 7.2 914.4 307.9 100
 KYF 1.9 ×10−15 4.8 ×10−7 0.66 3.1 7.2 940.2 316.5 100
 Facchinei 1.9 ×10−14 8.5 ×10−7 0.24 6.9 14.8 239.1 86.6 100
 GGO 1.3 ×10−13 8.5 ×10−6 2.07 168.9 1158.6 0.0 506.7 100
 PG 1.6 ×10−11 9.7 ×10−6 1.05 329.8 717.7 329.8 716.7 100

(d) xmax = 1 , dnnz = 5

 Proposed 1.1 ×10−14 8.6 ×10−7 0.35 8.7 18.4 310.8 112.3 100
 Proposed-

NA
3.6 ×10−14 1.4 ×10−6 0.47 9.6 20.2 409.5 160.1 100

 Fan 2.1 ×10−14 1.0 ×10−6 1.41 5.5 16.1 1227.4 418.6 100
 KYF 1.9 ×10−14 7.5 ×10−7 1.41 5.7 20.6 1295.3 445.4 100
 Facchinei 3.0 ×10−14 7.1 ×10−7 0.66 78.1 157.2 449.4 227.9 100
 GGO 1.6 ×10−13 9.7 ×10−6 5.62 469.4 2897.9 0.0 1408.2 100
 PG 3.3 ×10−12 9.2 ×10−6 0.28 82.4 184.3 82.4 183.3 100

(e) xmax = 1 , dnnz = 10

 Proposed 9.4 ×10−15 1.2 ×10−6 0.91 23.4 48.1 789.0 286.4 100
 Proposed-

NA
1.2 ×10−12 2.4 ×10−6 1.80 25.5 52.3 1626.4 619.3 100

 Fan 4.0 ×10−1 8.4 ×10−1 3.74 12.2 25.4 3465.3 1167.3 90
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7.3 � Results

7.3.1 � Compressed sensing and NMF

Figures 2 and 3 show the results of compressed sensing in (46) and NMF in (47). 
Each figure consists of six subfigures, and they consist of two plots; the upper one 
shows the worst case among ten randomly generated instances, and the lower one 
shows the best case.8

Tables 2 and 3 provide more detailed information. For the tables, each algorithm 
is stopped when either of the following conditions is fulfilled: (i) the algorithm finds 
a point where the norm of the gradient mapping is less than 10−5 ; (ii) the execu-
tion time exceeds 10 seconds. The “Success” column indicates the percentage of 
instances (out of 10) that ended up satisfying condition (i). The other columns show 
the averages of the following values: the objective function value reached, the gradi-
ent-mapping norm, the execution time, the number of iterations, and the number of 
basic operations. JVP stands for Jacobian-vector products.

A remarkable feature of our method is its stability in addition to fast conver-
gence. For example, while the Fan and KYF methods perform well in most cases, 

Table 2   (continued)

Objective GM norm Time (s) #Iter #Evaluations Success (%)

F JVP proj C

 KYF 8.0 ×10−1 2.5 ×10−1 3.74 14.9 241.5 3190.4 1283.2 90
 Facchinei 1.7 ×10−1 2.6 ×10−1 3.25 675.5 1352.0 2371.2 1465.9 90
 GGO 1.4 1.2 ×101 8.68 673.8 4538.9 0.0 2021.4 50
 PG 7.7 ×10−12 9.5 ×10−6 0.98 305.2 665.2 305.2 664.2 100

(f) xmax = 1 , dnnz = 20

 Proposed 1.1 ×10−1 4.9 ×10−5 5.97 94.2 195.0 5390.1 1890.9 80
 Proposed-

NA
1.1 ×10−1 1.6 ×10−2 9.73 59.5 120.7 8925.8 3319.3 20

 Fan 4.6 ×10−1 2.3 9.47 23.3 479.6 8310.6 3214.7 10
 KYF 4.7 ×10−1 2.4 9.24 22.6 484.0 8091.7 3146.7 20
 Facchinei 2.6 ×10−1 4.1 ×10−1 9.24 1806.5 3614.0 6916.2 4111.9 20
 GGO 1.4 1.8 ×101 9.47 820.6 6427.6 0.0 2461.8 10
 PG 1.9 ×10−1 6.2 ×10−3 8.53 2737.1 5899.1 2737.1 5898.1 30

8  Here, for each method, we determine the best and worst cases out of ten instances as follows. Each 
algorithm is stopped when either of the following conditions is fulfilled: (i) the objective function value 
falls below 10−10 ; (ii) the execution time exceeds 10 seconds. First, we define that the case stopped by 
condition (i) is better than that stopped by condition (ii). Then, among the cases stopped by condition (i), 
the case with a shorter execution time is defined as better. Similarly, among the cases stopped by condi-
tion (ii), the case with a smaller objective value is defined as better. Note that from the above definition, 
the instances corresponding to plots in the same figure may be distinct.
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Table 3   Results of NMF (problem (47))

Objective GM norm Time (s) #iter #Evaluations Success (%)

F JVP proj C

(a) r = 10 , p = 0.02

 Proposed 3.1 ×10−13 1.6 ×10−7 0.46 36.4 75.0 908.4 339.2 100

 Proposed-
NA

3.6 ×10−10 3.7 ×10−6 0.65 36.8 75.3 1414.3 549.1 100

 Fan 2.3 ×10−11 3.0 ×10−6 3.77 25.6 116.3 8170.9 2785.2 100

 KYF 2.4 ×10−11 3.1 ×10−6 3.84 25.6 116.3 8528.8 2904.5 100

 Facchinei 1.2 ×10−1 1.6 ×10−1 6.08 2650.4 5301.8 8645.7 5532.3 50

 GGO 2.1 ×10−11 2.8 ×10−6 6.90 85.0 86.0 0.0 170.0 100

 PG 1.3 ×10−9 9.8 ×10−6 0.25 256.2 552.8 256.2 551.8 100

(b) r = 10 , p = 0.1

 Proposed 7.8 ×10−12 1.3 ×10−6 0.69 36.0 73.1 1383.9 497.3 100

 Proposed-
NA

1.3 ×10−9 6.7 ×10−6 1.68 42.2 85.4 3785.0 1421.6 100

 Fan 1.8 ×10−11 2.1 ×10−6 1.72 10.4 35.1 3619.9 1223.4 100

 KYF 9.1 ×10−12 1.2 ×10−6 1.62 10.4 34.4 3579.9 1209.5 100

 Facchinei 1.7 ×10−1 1.8 ×10−1 10.00 4520.2 9041.4 13,965.0 9175.2 0

 GGO 2.2 ×101 3.7 10.06 89.2 90.2 0.0 178.4 0

 PG 2.8 ×10−9 9.9 ×10−6 0.85 883.1 1903.2 883.1 1902.2 100

(c) r = 10 , p = 0.5

 Proposed 3.8 ×10−3 1.0 ×10−4 9.71 174.7 368.2 20,065.2 6863.1 20

 Proposed-
NA

4.0 ×10−3 8.3 ×10−4 10.07 120.2 242.4 22,780.5 8440.7 0

 Fan 9.4 ×10−2 4.6 ×10−1 10.07 62.6 1380.9 21,825.5 8522.6 0

 KYF 2.2 ×10−1 9.0 ×10−1 10.12 62.8 1646.0 21,834.9 8778.1 0

 Facchinei 8.9 ×10−1 3.8 ×10−1 10.00 4587.8 9176.6 13,808.1 9190.5 0

 GGO 6.4 ×10−1 4.5 ×10−1 10.17 28.0 32.7 0.0 59.9 0

 PG 4.0 ×10−3 3.7 ×10−4 10.00 10,338.3 22,252.0 10,338.3 22,251.0 0

(d) r = 40 , p = 0.02

 Proposed 1.3 ×10−10 2.3 ×10−6 0.41 33.8 69.7 765.3 288.9 100

 Proposed-
NA

3.5 ×10−10 3.0 ×10−6 0.67 34.5 70.5 1409.4 545.7 100

 Fan 1.8 ×10−11 1.6 ×10−6 3.58 22.9 99.3 7309.7 2487.7 100

 KYF 1.8 ×10−11 1.6 ×10−6 3.59 22.9 99.3 7534.4 2562.6 100

 Facchinei 1.6 ×10−1 2.2 ×10−1 7.29 3119.5 6240.0 9808.5 6389.0 30

 GGO 5.5 3.1 ×10−2 11.30 4.0 5.0 0.0 8.0 0

 PG 1.6 ×10−9 9.6 ×10−6 0.26 254.8 549.9 254.8 548.9 100

(e) r = 40 , p = 0.1

 Proposed 1.7 ×10−11 1.4 ×10−6 0.63 33.3 67.7 1187.4 429.1 100

 Proposed-
NA

1.3 ×10−9 7.1 ×10−6 1.45 38.0 77.0 3102.2 1168.2 100

 Fan 2.8 ×10−12 1.2 ×10−6 1.69 9.7 33.8 3356.5 1135.4 100

 KYF 5.4 ×10−12 1.3 ×10−6 1.49 9.1 29.1 3105.2 1048.2 100
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they sometimes do not converge fast, as shown in Table 2(e) and (f). The proposed 
method shows the best or comparable performance in all our settings compared to 
the other methods. This suggests that our method is stable without careful parameter 
tuning.

As seen from Tables  3(d)–(f), the Facchinei and GGO methods do not work 
well in some cases. As for the Facchinei method, the reason is presumably that the 
method does not guarantee global convergence. For GGO, it is observed from the 

Table 3   (continued)

Objective GM norm Time (s) #iter #Evaluations Success (%)

F JVP proj C

 Facchinei 1.8 ×10−1 1.8 ×10−1 9.27 3971.2 7943.4 12,461.4 8125.0 10

 GGO 2.6 ×101 9.4 ×10−2 12.53 3.9 4.9 0.0 7.8 0

 PG 2.2 ×10−9 9.9 ×10−6 0.73 715.5 1542.4 715.5 1541.4 100

(f) r = 40 , p = 0.5

 Proposed 5.9 ×10−10 5.4 ×10−6 1.67 56.0 115.8 3066.0 1078.0 100

 Proposed-
NA

8.0 ×10−9 1.1 ×10−5 9.51 109.6 220.5 20514.7 7602.7 80

 Fan 4.6 ×10−11 2.6 ×10−6 1.38 8.1 22.3 2863.2 964.8 100

 KYF 4.5 ×10−11 1.6 ×10−6 1.36 8.1 21.2 2835.5 954.6 100

 Facchinei 7.8 ×10−1 4.1 ×10−1 10.00 4402.4 8805.8 13,251.9 8819.7 0

 GGO 2.7 ×101 2.3 ×101 13.74 2.8 3.8 0.0 7.6 0

 PG 7.3 ×10−9 1.0 ×10−5 6.83 6750.1 14,531.0 6750.1 14,530.0 100
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(f) r = 40, p = 0.5

Fig. 4   Results of NMF (problem (47)) by the TRF method
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tables that the number of iterations performed within the time limit is small, say 3 
or 4. It is because the method at each iteration computes a Jacobian explicitly and 
solves a linear system, resulting in a high cost per iteration for large-scale problems. 
Our method guarantees global convergence and repeats relatively low-cost iterations 
without Jacobian computation, which also leads to a stable performance.

Figure 4 shows the results of the TRF method. Since this method can only han-
dle box constraints, the results only of problem (47) are presented. One marker cor-
responds to one instance, representing the elapsed time and the obtained objective 
value.9 TRF takes more time to converge than the proposed method; in particular, 
comparing Table 3(f) and Fig. 4f, we see that the elapsed time is about 1000 times 
longer than ours. This result may be due to the difference in how TRF and ours han-
dle the constraint. When the optimal solution or a stationary point is at the boundary 
of the constraint set, our method can reach the boundary in a finite number of itera-
tions. However, TRF does not, as it is an interior point method.

7.3.2 � Autoencoder with MNIST

Figure  5 shows the results of problem  (48). The results of the GGO method are 
omitted because the method explicitly computes the Jacobian, but it was infeasible 
in this large-scale setting, where d = 96,104 and n = 728,000 . Among the existing 
methods, the PG method converges the fastest, but the proposed method converges 
about five times faster than PG. This result suggests that our method is also effective 
for large-scale and highly nonlinear problems.

Proposed Proposed-NA Fan KYF Facchinei GGO PG
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Fig. 5   Results of autoencoder with MNIST (problem (48))

9  We ran the TRF method for ten instances for each (r, p), but Fig. 4f has only nine markers because the 
algorithm stopped with the error “SVD did not converge” for one instance.
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8 � Conclusion and future work

We proposed an LM method for solving constrained least-squares problems. Our 
method finds an �-stationary point of (possibly) nonzero-residual problems after 
O(�−2) computation, and also achieves local quadratic convergence for zero-residual 
problems. There are few LM methods having both overall complexity bounds and 
local quadratic convergence even for unconstrained problems; in fact, our investiga-
tion yielded only one such algorithm [6]. The key to our analysis is a simple update 
rule for (λk) and the majorization lemma (Lemma 1).

We may be able to extend the convergence analysis shown in this paper to dif-
ferent problem settings. For example, it would be interesting to derive an overall 
complexity bound of LM methods for a nonsmooth function F. It would be also 
interesting to integrate a stochastic technique into our LM method against prob-
lems with F of a huge size. Finally, in recent years, studies on local convergence 
analysis for non-zero residual problems are progressive [2, 6, 39]. It is important 
to research our LM method further in this line.

Lemmas and proofs

Lemma on Lipschitz‑like properties

Recall that the line segment L(a, b) is defined in (8).

Lemma 9  Let X ⊆ ℝ
d be any (possibly nonconvex) set. For some constants 𝜎, L > 0 , 

consider the following two sets of conditions: 

and

Then,

	 (i)	 (49a)    ⟹   (50a),
	 (ii)	 (49b)    ⟹   (50b),

(49a)‖J(x)‖ ≤ �, ∀x ∈ X,

(49b)‖J(y) − J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X,

(50a)‖F(y) − F(x)‖ ≤ 𝜎‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X,

(50b)
‖F(y) − F(x) − J(x)(y − x)‖ ≤

L

2
‖y − x‖2, ∀x, y ∈ X s.t. L(x, y) ⊆ X,

(50c)
‖∇f (y) − ∇f (x)‖ ≤ (𝜎2 + L‖F(x)‖)‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X.
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	 (iii)	 (49a) and (49b)    ⟹   (50c).

Proof  By applying the multivariate mean value theorem, i.e.,

we can easily obtain Lemma 9(i) and (ii). Lemma 9(iii) is obtained as follows:

The last inequality follows from (49a), (49b), and Lemma 9(i). 	�  ◻

Remark 3  By replacing (F, J) with (f ,∇f ) in Lemma 9(ii),

implies

Proof of Lemma 1

The proof requires the following lemma, which is useful for deriving the majori-
zation lemma for (general) MM-based algorithms under the assumption of Lip-
schitz continuity only on a sublevel set. We will use this lemma to prove Lemma 
1 as well as Proposition 1.

Lemma 10  Let X ⊆ ℝ
d be any convex set. Fix a point xk ∈ X  , and a strictly con-

vex function m̃ ∶ ℝ
d
→ ℝ such that m̃(xk) = f (xk) and ∇m̃(xk) = ∇f (xk) . We consider 

three subsets of X :

If

then R1 ⊆ R2 , and therefore R1 ⊆ R2 ⊆ R3.

F(y) − F(x) =
∫

1

0

J((1 − �)x + �y)(y − x) d�,

‖∇f (y) − ∇f (x)‖ = ‖J(y)⊤F(y) − J(x)⊤F(x)‖
≤ ‖J(y)⊤F(y) − J(y)⊤F(x)‖ + ‖J(y)⊤F(x) − J(x)⊤F(x)‖
≤ ‖J(y)‖‖F(y) − F(x)‖ + ‖J(y) − J(x)‖‖F(x)‖
≤ (𝜎2 + L‖F(x)‖)‖y − x‖.

‖∇f (y) − ∇f (x)‖ ≤ Lf‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X

�f (y) − f (x) − ⟨∇f (x), y − x⟩� ≤
Lf

2
‖y − x‖2, ∀x, y ∈ X s.t. L(x, y) ⊆ X.

(51)
R1 ∶= {x ∈ X | m̃(x) ≤ m̃(xk)},

R2 ∶= {x ∈ X |L(xk, x) ⊆ S(xk)},

R3 ∶= {x ∈ X | f (x) ≤ m̃(x)}.

(52)(R1 ∩R2) ⊆ R3,
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Proof  We fix x ∈ R1 arbitrarily and will show x ∈ R2 . This is obvious if x = xk , and 
thus, let x ≠ xk below. Accordingly, we have

since

By the Taylor expansion

together with (53), there exists 𝜃1 > 0 such that

We will prove x ∈ R2 by contradiction; assume x ∉ R2 , i.e., there exists �2 ∈ [0, 1] 
such that

Combining (55) and (54) with the intermediate value theorem yields that there exists 
�3 ∈ (�1, �2) such that 

 Note that (56b) is equivalent to (1 − �3)xk + �3x ∈ R2 . On the other hand, we also 
have (1 − �3)xk + �3x ∈ R1 by the convexity of R1 and xk, x ∈ R1 . Thus, we have

by (52). Therefore, we obtain

which is a contradiction. 	�  ◻

Now, we prove Lemma 1.

(53)⟨∇f (xk), x − xk⟩ < 0

⟨∇f (xk), x − xk⟩ = ⟨∇m̃(xk), x − xk⟩ (by∇m̃(xk) = ∇f (xk))

< m̃(x) − m̃(xk) (by the strictly convexity of m̃ and x ≠ xk)

≤ 0 (by x ∈ R1).

f ((1 − �)xk + �x) = f (xk) + �⟨∇f (xk), x − xk⟩ + o(�)

(54)f ((1 − 𝜃)xk + 𝜃x) < f (xk), for all 𝜃 ∈ (0, 𝜃1].

(55)f ((1 − 𝜃2)xk + 𝜃2x) > f (xk).

(56a)f ((1 − �)xk + �x) = f (xk), for � = �3

(56b)f ((1 − �)xk + �x) ≤ f (xk), for all � ∈ [0, �3].

(57)(1 − �3)xk + �3x ∈ R3

f (xk) = f ((1 − 𝜃3)xk + 𝜃3x) (by (56a))

≤ m̃((1 − 𝜃3)xk + 𝜃3x) (by (57))

< (1 − 𝜃3)m̃(xk) + 𝜃3m̃(x) (by the strictly convexity of m̃)

≤ m̃(xk) (by x ∈ R1)

= f (xk) (by the assumption on m̃),
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Proof of Lemma 1  The model function mk
λ
 is strictly convex and satisfies 

mk
λ
(xk) = f (xk) and ∇mk

λ
(xk) = ∇f (xk) . We use Lemma 10 with m̃ ∶= mk

λ
 . Note that 

(11) and (12) correspond to x ∈ R1 and x ∈ R3 , respectively, where R1 and R3 are 
defined in (51). Thus, by Lemma 10, it suffices to prove (52). We fix x ∈ R1 ∩R2 
arbitrarily and will show x ∈ R3 . Let u ∶= x − xk . From the convexity of X  , x ∈ R2 , 
(9), and Lemma 9(ii), we have

From the inequality of arithmetic and geometric means, we have

Furthermore, by (2) and x ∈ R1 , we have

Using these inequalities, we obtain x ∈ R3 as follows:

	�  ◻

The proof of Lemma 1 is a little complicated mainly because x and y in (9) are restricted 
on the sublevel set S(xk) . If we assume the Lipschitz continuity of J on the convex set X as 
in [66], Lemma 10 is unnecessary and the proof of Lemma 1 can be simplified.

Proposition on projected gradient methods

Proposition 1  Fix a point xk ∈ C . For some constant Lf > 0 , assume that

(58)‖F(x) − Fk − Jku‖ ≤
L

2
‖u‖2.

(59)λ

2
‖u‖2 + L2

2λ
‖u‖2‖Fk + Jku‖2 ≥ L‖u‖2‖Fk + Jku‖.

(60)‖Fk + Jku‖2 + λ‖u‖2 = 2mk
λ
(x) ≤ 2mk

λ
(xk) = 2f (xk) = ‖Fk‖2.

f (x) − mk
λ
(x) =

1

2
‖F(x)‖2 − mk

λ
(x)

≤
1

2

�
‖Fk + Jku‖ + ‖F(x) − Fk − Jku‖

�2

− mk
λ
(x)

≤
1

2

�
‖Fk + Jku‖ +

L

2
‖u‖2

�2

− mk
λ
(x) (by (58))

=
L2

8
‖u‖4 − λ

2
‖u‖2 + L

2
‖u‖2‖Fk + Jku‖ (by (2))

≤
L2

8
‖u‖4 − λ

4
‖u‖2 + L2

4λ
‖u‖2‖Fk + Jku‖2 (by (59))

≤
L2

8
‖u‖4 − λ

4
‖u‖2 + L2

4λ
‖u‖2

�
‖Fk‖2 − λ‖u‖2

�
(by (60))

= −
L2

8
‖u‖4 − 1

4λ
‖u‖2

�
λ2 − L2‖Fk‖2

�

≤ 0 (by (10)).
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Then, for � ≥ Lf ,

Proof  For � ≥ Lf  , we define

and use Lemma 10 with this function and X = C . Note that this m̃ is strictly con-
vex and satisfies that m̃(xk) = f (xk) and ∇m̃(xk) = ∇f (xk) . By (61), Remark 3, and 
� ≥ Lf  , we have R2 ⊆ R3 , where R2 and R3 are defined in (51), and we there-
fore have (52). Thus, by Lemma 10, we obtain R1 ⊆ R2 ⊆ R3 , which yields 
P
𝜂
(xk) = argminx∈C m̃(x) ∈ R1 ⊆ R2 ⊆ R3 . The first result (62) is equiva-

lent to P
�
(xk) ∈ R2 , and the second (63) is equivalent to P

�
(xk) ∈ R3 since 

m̃(P
𝜂
(xk)) = f (xk) −D

𝜂
(xk) . 	�  ◻

Proof of Lemma 3

To prove Lemma 3, we first show the following Lipschitz-like property on ∇f .

Lemma 11  Let Assumption 1 hold and define Lf  by (20). Then, for � ≥ Lf  , we have

Proof  Fix a point x� ∈ C ∩ S(x0) arbitrarily. Since ‖F(x�)‖ ≤ ‖F(x0)‖ = ‖F0‖ , 
Assumption 1 and Lemma 9(iii) with X = C ∩ S(x�) imply

By Proposition 1 and (64), we have L(x�,P
𝜂
(x�)) ⊆ S(x�) for � ≥ Lf  . Therefore, by 

using (64) again, we obtain

which is the desired result. 	�  ◻

Now, we prove Lemma 3.

Proof of Lemma 3  Since

from the definitions of P
�
 and G

�
 in (18) and (19), we obtain

(61)‖∇f (y) − ∇f (x)‖ ≤ Lf‖y − x‖, ∀x, y ∈ C s.t. L(x, y) ⊆ S(xk).

(62)L(xk,P𝜂
(xk)) ⊆ S(xk),

(63)f (P
�
(xk)) − f (xk) ≤ −D

�
(xk).

m̃(x) ∶= f (xk) + ⟨∇f (xk), x − xk⟩ +
𝜂

2
‖x − xk‖2,

‖∇f (P
�
(x)) − ∇f (x)‖ ≤ �‖P

�
(x) − x‖, ∀x ∈ C ∩ S(x0).

(64)‖∇f (y) − ∇f (x)‖ ≤ Lf‖y − x‖, ∀x, y ∈ C s.t. L(x, y) ⊆ S(x�).

‖∇f (P
�
(x�)) − ∇f (x�)‖ ≤ Lf‖P�

(x�) − x�‖ ≤ �‖P
�
(x�) − x�‖,

(65)G
�
(x) = �(x − P

�
(x)) ∈ ∇f (x) + ��C(P�

(x))
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	�  ◻

Relaxing an assumption in Theorem 1(ii)

In order to compute an �-stationary point based on Theorem 1(ii), knowledge of 
the value of 𝜂̄ is required. However, this requirement can be circumvented with a 
slight modification of the algorithm. We show it in this section.

Let �k be the value of � when xk is obtained in Algorithm 1. As with the proof 
of Theorem 1(ii), we can show that

for some k = O(�−2) . If (66) and �k+1 ≥ Lf  hold, then P
�k+1

(xk) is an �-stationary 
point by Lemma 3, but �k+1 ≥ Lf  is not necessarily true. To address this issue, we 
modify Algorithm 1 a little.

As can be seen from the proof of Lemma 3, even if 𝜂 < Lf  , the point P
�
(xk) is 

an �-stationary point of problem (1) as long as ‖G
�
(xk)‖ ≤ �∕2 and the following 

hold:

Thus, by updating � by � ← �in� until (67) is satisfied when xk is obtained in Algo-
rithm 1, we can guarantee that P

�k+1
(xk) is an �-stationary point for some k = O(�−2) . 

Since (67) must hold for � ≥ Lf  by Lemma 11, this modification of the algorithm 
does not sacrifice Lemma 6 and other convergence guarantees. The important point 
here is that we can check if (67) holds with no prior knowledge of constants (e.g., 
� , L, and Lf  ) of the problem. We have obtained the modified algorithm that does not 
require the knowledge of the constants.
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min
g∈��C(P�

(x))
‖∇f (P

�
(x)) + g‖

≤ min
g∈��C(P�

(x))
‖∇f (x) + g‖ + ‖∇f (P

�
(x)) − ∇f (x)‖

≤ ‖G
�
(x)‖ + �‖P

�
(x) − x‖ (by (65) and Lemma 11)

= 2‖G
�
(x)‖ (by (19)).

(66)‖G
�k+1

(xk)‖ ≤ �∕2

(67)‖∇f (P
�
(xk)) − ∇f (xk)‖ ≤ �‖P

�
(xk) − xk‖.
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