
Vol.:(0123456789)

Computational Optimization and Applications (2023) 84:833–874
https://doi.org/10.1007/s10589-022-00447-y

1 3

Majorization‑minimization‑based Levenberg–Marquardt
method for constrained nonlinear least squares

Naoki Marumo1  · Takayuki Okuno2,3 · Akiko Takeda1,3

Received: 2 November 2021 / Accepted: 20 December 2022 / Published online: 17 January 2023
© The Author(s) 2023

Abstract
A new Levenberg–Marquardt (LM) method for solving nonlinear least squares prob-
lems with convex constraints is described. Various versions of the LM method have
been proposed, their main differences being in the choice of a damping parameter.
In this paper, we propose a new rule for updating the parameter so as to achieve both
global and local convergence even under the presence of a convex constraint set.
The key to our results is a new perspective of the LM method from majorization-
minimization methods. Specifically, we show that if the damping parameter is set
in a specific way, the objective function of the standard subproblem in LM methods
becomes an upper bound on the original objective function under certain standard
assumptions. Our method solves a sequence of the subproblems approximately using
an (accelerated) projected gradient method. It finds an �-stationary point after O(�−2)
computation and achieves local quadratic convergence for zero-residual problems
under a local error bound condition. Numerical results on compressed sensing and
matrix factorization show that our method converges faster in many cases than exist-
ing methods.

Keywords  Nonconvex optimization · Constrained optimization · Nonlinear least
squares · Levenberg–Marquardt method · Iteration complexity · Local quadratic
convergence

1  Introduction

In this study, we consider the constrained nonlinear least-squares problem:

 *	 Naoki Marumo
	 marumo-naoki@g.ecc.u-tokyo.ac.jp

1	 Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
2	 Faculty of Science and Technology, Seikei University, Tokyo, Japan
3	 Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

http://orcid.org/0000-0002-7372-4275
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00447-y&domain=pdf

834	 N. Marumo et al.

1 3

where ‖ ⋅ ‖ denotes the �2-norm, F ∶ ℝ
d
→ ℝ

n is a continuously differentiable
function, and C ⊆ ℝ

d is a closed convex set. If there exists a point x ∈ C such that
F(x) = 0 , the problem is said to be zero-residual, and is reduced to the constrained
nonlinear equation:

Such problems cover a wide range of applications, including chemical equilibrium
systems [48], economic equilibrium problems [20], power flow equations [61], non-
negative matrix factorization [7, 42], phase retrieval [11, 63], nonlinear compressed
sensing [8], and learning constrained neural networks [17].

Levenberg–Marquardt (LM) methods [43, 47] are efficient iterative algorithms
for solving problem (1); they were originally developed for unconstrained cases
(i.e., C = ℝ

d ) and later extended to constrained cases by [40]. Given a current point
xk ∈ C , an LM method defines a model function mk

λ
∶ ℝ

d
→ ℝ with a damping

parameter λ > 0:

where Fk ∶= F(xk) ∈ ℝ
d and Jk ∶= J(xk) ∈ ℝ

n×d with J ∶ ℝ
d
→ ℝ

n×d being the Jac-
obian matrix function of F. The next point xk+1 ∈ C is set to an exact or approximate
solution to the convex subproblem:

for some λ = λk . Various versions of this method have been proposed, and their the-
oretical and practical performances largely depend on how the damping parameter
λk is updated.

1.1 � Our contribution

We propose an LM method with a new rule for updating λk . Our method is based on
majorization-minimization (MM) methods, which successively minimize a majori-
zation or, in other words, an upper bound on the objective function. The key to our
method is the fact that the model mk

λ
 defined in (2) is a majorization of the objec-

tive f under certain standard assumptions. This MM perspective enables us to create
an LM method with desirable properties, including global and local convergence
guarantees. Although there exist several MM methods for problem (1) and relevant
problems [3, 4, 38, 50, 53], as far as we know, no studies have elucidated that the
model in (2) is a majorization of f. Another feature of our LM method is the way of
generating an approximate solution of subproblem (3). It is sufficient to apply one
iteration of a projected gradient method to (3) for deriving the iteration complexity
of our LM method, which leads to an overall complexity bound.

(1)min
x∈ℝd

f (x) ∶=
1

2
‖F(x)‖2 subject to x ∈ C,

find x ∈ C such that F(x) = 0.

(2)mk
λ
(x) ∶=

1

2
‖Fk + Jk(x − xk)‖2 +

λ

2
‖x − xk‖2,

(3)min
x∈ℝd

mk
λ
(x) subject to x ∈ C

835

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

Our contributions are summarized as follows:

	 (i)	 A new MM-based LM method We prove that the LM model defined in (2) is a
majorization of f if the damping parameter λ is sufficiently large. See Lemma
1 for a precise statement. This result provides us with a new update rule of λ ,
bringing about a new LM method for solving problem (1).

	 (ii)	 Iteration and overall complexity for finding a stationary point The iteration
complexity of our LM method for finding an �-stationary point (see Definition
1) is proved to be O(�−2) under mild assumptions on the Jacobian. Because the
computational complexity per iteration of our method does not depend on � ,
the overall complexity is also evaluated as O(�−2) through

 See Corollaries 1 and 2 for a precise statement.
	 (iii)	 Local quadratic convergence For zero-residual problems, assume that a start-

ing point x0 ∈ C is sufficiently close to an optimal solution, and assume stand-
ard conditions, including a local error bound condition. Then, if the subprob-
lems are solved with sufficient accuracy, a solution sequence (xk) generated
by our method converges quadratically to an optimal solution. See Theorem 2
for a precise statement.

	 (iv)	 Improved convergence results even for unconstrained problems Our method
achieves both the O(�−2) iteration complexity bound and local quadratic con-
vergence. An LM method having such global and local convergence results is
new for unconstrained and constrained problems, as shown in Table 1.

Numerical results show that our method converges faster and is more robust than
existing LM-type methods [22, 26, 36, 40], a projected gradient method, and a trust-
region reflective method [10, 58].

1.2 � Oracle model for overall complexity bounds

To evaluate the overall complexity of LM methods, we count the number of basic
operations—evaluation of F(x), Jacobian-vector multiplications J(x)u and J(x)⊤v ,
and projection onto C—required to find an �-stationary point, following [21, Sect. 6].
The important point is that we do not assume an evaluation of Jk ∶= J(xk) but access
the Jacobian only through products Jku and J⊤

k
v to solve subproblem (3). Computing

vectors Jku and J⊤
k
v for given u ∈ ℝ

d and v ∈ ℝ
n is much cheaper than evaluating

the matrix Jk.1 Avoiding the computation of the n × d matrix Jk makes algorithms
practical for large-scale problems where n and d amount to thousands or millions.

(Overall complexity) = (Iteration complexity) × (Complexity per iteration).

1  Automatic differentiation libraries such as JAX [9] compute the Jacobian-vector products at several
times the cost of evaluating F(x). See, e.g., the JAX documentation [60].

836	 N. Marumo et al.

1 3

We note that some existing LM-type methods [3, 4, 12–16, 36] compute the Jaco-
bian explicitly.

1.3 � Paper organization

In Sect. 2, we review LM methods and related algorithms for problem (1). In Sect. 3,
a key lemma is presented and the LM method (Algorithm 1) is derived based on the
lemma. Sections 4 and 5 show theoretical results for Algorithm 1: iteration com-
plexity, overall complexity, and local quadratic convergence. In Sect. 6, we general-
ize Algorithm 1 and present a more practical variant of Algorithm 1. This variant
also achieves the theoretical guarantees given for Algorithm 1 in Sects. 4 and 5. Sec-
tion 7 provides some numerical results and Sect. 8 concludes the paper.

1.4 � Notation

Let ℝd denote a d-dimensional Euclidean space equipped with the �2-norm ‖ ⋅ ‖ and
the standard inner product ⟨⋅, ⋅⟩ . For a matrix A ∈ ℝ

m×n , let ‖A‖ denote its spectral
norm, or its largest singular value. For a ∈ ℝ , let ⌈a⌉ denote the least integer greater
than or equal to a.

2 � Comparison with related works

We review existing methods for problem (1) and compare them with our work.

2.1 � General methods

Algorithms for general nonconvex optimization problems, not just for least-squares
problems, also solve problem (1). For example, the projected gradient method have
an overall complexity bound of O(�−2) ; our LM method enjoys local quadratic con-
vergence in addition to that bound, which seems difficult to achieve with general
first-order methods. Figure 1 illustrates that our LM successfully minimizes the
Rosenbrock function, a valley-like function that is notoriously difficult to minimize
numerically. Although quadratic convergence is proved only locally around an opti-
mal solution, in practice, the LM method may perform considerably better than gen-
eral first-order methods, even when started far from the optimum.

Some methods, such as the Newton method, achieve local quadratic convergence
using second-order or higher-order derivatives of f; our LM achieves it without the
second-order derivative. Besides the fact that our LM does not require a computa-
tionally demanding Hessian matrix, it has another advantage: subproblem (3) is very
tractable. Whereas our subproblem is smooth and strongly convex, those in sec-
ond- or higher-order methods are nonconvex in general. The matter becomes more
severe under the presence of constraints because the subproblems may be NP-hard,
as pointed out in [15].

837

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

2.2 � Specialized methods for least squares

Several methods, including the LM method, utilize the least-squares structure of
problem (1). Focusing on those algorithms without second-order derivatives, we
review them from three points of view: (i) subproblem, (ii) complexity for finding
a stationary point, and (iii) local superlinear convergence. Most of the methods dis-
cussed in this section are summarized in Table 1. The table shows the following:

•	 Our method can achieve an overall computational complexity bound,
O(�−2) × O(1) = O(�−2) , for finding an �-stationary point for constrained prob-
lems.

•	 To the best of our knowledge, this is the first LM that achieves such a complexity
bound with local quadratic convergence, even for unconstrained problems.

2.2.1 � Subproblems

Most algorithms for the nonlinear least-squares problem (1) generate a solu-
tion sequence (xk)k∈ℕ by repeatedly solving convex subproblems, and we focus
on such algorithms. There are three popular subproblems, in addition to the LM
subproblem (3):

(4)min
x∈ℝd

‖Fk + Jk(x − xk)‖ +
λ

2
‖x − xk‖2 subject to x ∈ C,

(5)min
x∈ℝd

‖Fk + Jk(x − xk)‖2 +
λ

2
‖x − xk‖3 subject to x ∈ C,

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

y

GD
LM

Fig. 1   Minimization of the Rosenbrock function [56], f (x, y) = (x − 1)2 + 100(y − x2)2 . Both the gradi-
ent descent (GD) and our LM start from (−1, 1) and converge to the optimal solution, (1, 1). One marker
corresponds to one iteration, and the GD and LM are truncated after 1000 and 20 iterations, respectively

838	 N. Marumo et al.

1 3

where λ,Δ > 0 are properly defined constants. Methods using subproblems (4), (5),
and (6) have been proposed and analyzed in [3, 4, 16, 50], [3], and [12, 24, 32, 64],
respectively. Other works [13–15] propose methods with a more general version of
(5). These four subproblems (3)–(6) are closely related in theory; one subproblem
becomes equivalent to the others with specific choices of the parameters λ and Δ.

In practice, these four subproblems are quite different, and the LM subprob-
lem (3) is the most tractable one because the objective function mk

λ
 is smooth and

strongly convex. Thanks to smoothness and strong convexity, we can efficiently
solve subproblem (3) with linearly convergent methods such as the projected gradi-
ent method. Note that the objective function of (4) is nonsmooth, and (5) and (6) are
not necessarily strongly convex. Although some algorithms for subproblems (4)–(6)

(6)min
x∈ℝd

‖Fk + Jk(x − xk)‖2 subject to x ∈ C, ‖x − xk‖ ≤ Δ,

Table 1   Comparison of methods for problem (1)

1 The complexity analysis in [6] assumes the iterates not to converge to a zero-residual solution.
If the solution sequence converges to a zero-residual solution, then f̄ defined in [6, Sect. 3] is f̄ = 0 .
Then, �max defined in [6, Lemma 3.2] becomes �max = Θ(�−2) , resulting in the iteration complexity of
O(�−4 log �−1).
2 The complexity analysis in [50] assumes that rank J(x) = n for all x, which is quite restrictive because
such an assumption implies that all stationary points are global optima. The local convergence analysis
in [50] assumes that the solution sequence (xk) is in the neighborhood of a solution x∗ such that F(x∗) = 0
and rank J(x∗) = n

Subproblem References Constr. Complexity Local conv.

#Iterations Complexity/iter. Order Inexact

(3) (LM) [55, 57, 66] O(�−2)

[5] O(�−2) O(1)

[6]1 O(�−2 log �−1) O(1) 2
[23, 30, 33, 34, 62] 2
[19, 29, 31, 35] 2 ✓

[26, 40] ✓ 2
[1, 22] ✓ 2 ✓

This work ✓ O(�−2) O(1) 2 ✓

(4) [50]2 O(�−2) 2
[12] O(�−2)

[16] ✓ O(�−2)

[3, 4] 2 ✓

(5) and its generaliza-
tion

[13, 14] O(�−2) O(1)

[15] ✓ O(�−2) O(1)
[3] 2 ✓

(6) [12] O(�−2)

[24, 64] < 2

[32] 2

839

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

without constraints have been proposed [4, 13, 64], efficient algorithms are nontriv-
ial under the presence of constraints. Hence, the LM method is more practical than
methods using other subproblems.

2.2.2 � Complexity for finding a stationary point

For unconstrained zero-residual problems, Nesterov [50] proposed a method with
subproblem (4) and showed that the method finds an �-stationary point after O(�−2)
iterations under a strong assumption (see footnote 2 of Table 1 for details). After
that, for unconstrained (possibly) nonzero-residual problems, several methods with
subproblems (3), (4), and (6) have been proposed [12, 57, 66], and they achieve the
same iteration complexity bound under weaker assumptions such as the Lipschitz
continuity of J or ∇f  . The method of [12] has been extended for constrained prob-
lems [16].2 These methods [12, 16, 50, 57, 66] have the iteration complexity bound,
but computational complexity per iteration, i.e., complexity for a subproblem, is
unclear.

The key to bounding complexity per iteration is that we do not need to solve
subproblems so accurately to derive the iteration complexity bound. Several algo-
rithms have been proposed based on this fact for both unconstrained [5, 6, 13, 14]
and constrained [15] problems. They use a point that decreases the model function
value sufficiently compared to the value at the current iterate xk . Such a point can
be computed with an �-independent number of basic operations: evaluation of F(x),
Jacobian-vector multiplications J(x)u and J(x)⊤v , and projection onto C . Thus, the
methods in [5, 13–15] achieve the overall complexity O(�−2) × O(1) = O(�−2).

Our LM method also finds an �-stationary point within O(�−2) iterations, and the
complexity per iteration is O(1) when subproblems are solved approximately like [5,
6, 13–15]. Thus, the overall complexity amounts to O(�−2) same as [5, 13–15].

2.2.3 � Local superlinear convergence

For unconstrained zero-residual problems, many methods with subproblems (3)–(6)
have achieved local quadratic convergence under a local error bound condition [3,
19, 23, 29–35, 62]. These local convergence results have been extended to con-
strained problems [1, 22, 26, 40]. Some methods [24, 64] have local convergence
of an arbitrarily order less than 2. Other methods [25, 27, 28] achieve local (nearly)
cubic convergence by solving two subproblems in one iteration. We note that the
local convergence analyses in [4, 50] assume the solution sequence (xk) is in the
neighborhood of a solution x∗ such that F(x∗) = 0 and rank J(x∗) = n , which is a
stronger assumption than the local error bound.

Among these methods, some [1, 3, 4, 19, 22, 29, 31, 35] use an approximate solu-
tion to subproblems while preserving local quadratic convergence. The approximate
solution is more accurate than that used to derive the global complexity mentioned

2  More precisely, [16] proposed a framework for arbitrary-order methods and it includes a method with
subproblem (4) as a special case.

840	 N. Marumo et al.

1 3

in the previous section. We also use the same kind of approximate solution as [1, 19,
29, 31, 35] to prove local quadratic convergence. See Condition 2 in Sect. 6 for the
details of the approximate solution.

3 � Majorization lemma and proposed method

Here, we will prove a majorization lemma that shows that the LM model mk
λ
 defined

in (2) is an upper bound on the objective function. In view of this lemma, we can
characterize our LM method as a majorization-minimization (MM) method.

For a, b ∈ ℝ
d , we denote the sublevel set and the line segment by

3.1 � LM method as majorization‑minimization

MM is a framework for nonconvex optimization that successively performs (approx-
imate) minimization of an upper bound on the objective function. The following
lemma, a majorization lemma, shows that the model mk

λ
 defined in (2) is an upper

bound on the objective f over some region under certain assumptions.

Lemma 1  Let X ⊆ ℝ
d be any closed convex set, and suppose xk ∈ X  . Moreover,

assume that for some constant L > 0,

Then for any λ > 0 and x ∈ X such that

the following bound holds:

The proof is given in Sect. A.2.
The assumption in (9) is the Lipschitz continuity of J and is analogous to the

Lipschitz continuity of ∇f  , which is often used in the analysis of first-order methods.
Equation (10) requires a sufficiently large damping parameter, which corresponds to
a sufficiently small step-size for first-order methods. Equation (11) requires the point

(7)S(a) ∶= {x ∈ ℝ
d | f (x) ≤ f (a)},

(8)L(a, b) ∶= {(1 − �)a + �b ∈ ℝ
d | � ∈ [0, 1]}.

(9)‖J(y) − J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ S(xk).

(10)λ ≥ L‖Fk‖ and

(11)mk
λ
(x) ≤ mk

λ
(xk),

(12)f (x) ≤ mk
λ
(x).

841

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

x ∈ X to be a solution that is at least as good as the current point xk ∈ X in terms of
the model function value.

3.2 � Proposed LM method

Based on Lemma 1, we propose an LM method that solves problem (1). The pro-
posed LM is formally described in Algorithm 1 and is outlined below. First, in Line
1, three parameters are initialized: an estimate M of the Lipschitz constant L of J, a
parameter � used for solving subproblems, and the iteration counter k. Line 3 sets
λ using M as an estimate of L based on (10). Then, the inner loop of Lines 4-10
solves subproblem (3) approximately by a projected gradient method. The details
of the inner loop will be described later. Lines 12–15 check if the current λ and the
computed solution x are acceptable. If λ and x satisfy (12), they are accepted as λk
and xk+1 . Otherwise, the current value of M is judged to be small as an estimate of
L in light of Lemma 1 and is increased. We refer to the former case as a “success-
ful” iteration and the latter as an “unsuccessful” iteration. Note that k represents not
the number of outer iterations but that of only successful iterations. As shown later
in Lemma 5(ii) and Theorem 2(i), the number of unsuccessful iterations is upper-
bounded by a constant under certain assumptions.

Inner loop for subproblem In the inner loop of Lines 4-10, subproblem (3) is
solved approximately by the projected gradient method. Here, the operator proj C in
Line 5 is the projection operator defined by

The parameter t is the inner iteration counter, and the parameter � is the inverse step-
size that is adaptively chosen by a standard backtracking technique in Lines 6-9.

proj C(x) ∶= argmin
y∈C

‖y − x‖.

842	 N. Marumo et al.

1 3

As shown in Lemma 6(ii) later, Line 9 is executed a finite number of times under
certain standard assumptions. Hence, the inner loop must stop after a finite number
of iterations.

Input parameters Algorithm 1 has several input parameters. The parameters M0
and � are used to estimate the Lipschitz constant of the Jacobian J, and the param-
eters �0 and �in are used to control the step-size in the inner loop. The parameters
T and c control how accurately the subproblems are solved through the stopping
criteria of the inner loop. Here, note that we allow for T = ∞ . As we will prove in
Sect. 4, the algorithm has an iteration complexity bound for an �-stationary point
regardless of the choice of the input parameters. However, to obtain an overall com-
plexity bound or local quadratic convergence, there are restrictions on the choice of
T, as explained in the next paragraph.

Stopping criteria for inner loop There are two types of stopping criteria as in Line
10, and the inner loop terminates when at least one of them is satisfied. If T < ∞ ,
the projected gradient method stops after executing Line 7 at most T times, and then
the overall complexity for an �-stationary point is guaranteed to be O(�−2) . If T = ∞ ,
we have to solve subproblems more accurately to find a (cλ‖Fk‖)-stationary point of
the subproblem, and then Algorithm 1 achieves local quadratic convergence.

Remark 1  To make the algorithm more practical, we can introduce other parameters
0 < 𝛽 < 1 and Mmin > 0 , and update M ← max{�M,Mmin} after every successful
iteration. As with the gradient descent method, such an operation prevents the esti-
mate M from being too large and eliminates the need to choose M0 carefully. Insert-
ing this operation never deteriorates the complexity bounds described in Sect. 4 and
the local quadratic convergence in Sect. 5.

Remark 2  Some methods (e.g., [57, 66]) use the condition

with some 0 < 𝜃 < 1 to determine whether the computed solution x to the subprob-
lem is acceptable. Our acceptance condition (12) is stronger than the classical one
since (12) is equivalent to

under condition (11). Therefore, Lemma 1 is stronger than the classical statement
that condition (13) holds if λ is sufficiently large.

(13)
mk

λ
(xk) − f (x)

mk
λ
(xk) − mk

λ
(x)

≥ �

mk
λ
(xk) − f (x)

mk
λ
(xk) − mk

λ
(x)

≥ 1

843

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

4 � Iteration complexity and overall complexity

We will prove that Algorithm 1 finds an �-stationary point of problem (1) within
O(�−2) outer iterations. Futhermore, we will prove that under T < ∞ , the overall
complexity for an �-stationary point is also O(�−2) . Throughout this section, (xk) and
(λk) denote the sequences generated by the algorithm.

4.1 � Assumptions

We make the following assumptions to derive the complexity bound. Recall that the
sublevel set S(a) and the line segment L(a, b) are defined in (7) and (8) and that
x0 ∈ C denotes the starting point of Algorithm 1.

Assumption 1  For some constants 𝜎, L > 0 ,

	 (i)	 ‖J(x)‖ ≤ � , ∀x ∈ C ∩ S(x0),
	 (ii)	 ‖J(y) − J(x)‖ ≤ L‖y − x‖ , ∀x, y ∈ C s.t. L(x, y) ⊆ S(x0).

Assumption 1(i) means the �-boundedness of J on C ∩ S(x0) . Assumption 1(ii) is
similar to the L-Lipschitz continuity of J on C ∩ S(x0) but weaker due to the condi-
tion of L(x, y) ⊆ S(x0) . Assumption 1 is milder than the assumptions in the previous
work that discussed the iteration complexity, even when C = ℝ

d . For example, the
analysis in [66] assumes f and J to be Lipschitz continuous on ℝd , which implies the
boundedness of J on ℝd.

4.2 � Approximate stationary point

Before analyzing the algorithm, we define an �-stationary point for constrained opti-
mization problems. Let �C ∶ ℝ

d
→ ℝ ∪ {+∞} be the indicator function of the closed

convex set C ⊆ ℝ
d . For a convex function g ∶ ℝ

d
→ ℝ ∪ {+∞} , its subdifferential at

x ∈ ℝ
d is the set defined by �g(x) ∶= {p ∈ ℝ

d � g(y) ≥ g(x) + ⟨p, y − x⟩, ∀y ∈ ℝ
d}.

Definition 1  (see, e.g., Definition 1 in [51]) For 𝜀 > 0 , a point x ∈ C is said to be an
�-stationary point of the problem minx∈C f (x) if

This definition is consistent with the unconstrained case; the above inequalities
are equivalent to ‖∇f (x)‖ ≤ � when C = ℝ

d . There is another equivalent definition
of an �-stationary point, which we will also use.

Lemma 2  For x ∈ C and 𝜀 > 0 , condition (14) is equivalent to

Proof  The tangent cone T(x) of C at x ∈ C is defined by

(14)min
p∈��C(x)

‖∇f (x) + p‖ ≤ �.

(15)⟨∇f (x), y − x⟩ ≥ −�‖y − x‖, ∀y ∈ C.

844	 N. Marumo et al.

1 3

Note that

because C is a closed convex set and ��C(x) is the normal cone of C . We have

Therefore, condition (14) is equivalent to

which is also equivalent to (15). 	� ◻

A useful tool for deriving iteration complexity bounds is gradient mapping
(see, e.g., [49]), also known as projected gradient [41] or reduced gradient [52].
For 𝜂 > 0 , the projected gradient operator P

�
∶ C → C and the gradient mapping

G
�
∶ C → ℝ

d for problem (1) are defined by

The following lemma shows the relationship between an �-stationary point and the
gradient mapping.

Lemma 3  Suppose that Assumption 1 holds, and let

Then, for any x ∈ C ∩ S(x0) and � ≥ Lf  , the point P
�
(x) is a (2‖G

�
(x)‖)-stationary

point of problem (1).

The proof is given in Sect. A.4. This lemma will be used for the proof of
Theorem 1(ii).

(16)T(x) ∶= {�(y − x) | y ∈ C, � ≥ 0}.

(17)T(x) = {z ∈ ℝ
d � ⟨y, z⟩ ≤ 0, ∀y ∈ ��C(x)}

min
p∈��C(x)

‖∇f (x) + p‖

= min
p∈��C(x)

max
u∶‖u‖≤1

⟨−∇f (x) − p, u⟩

= max
u∶‖u‖≤1

inf
p∈��C(x)

�
⟨−∇f (x), u⟩ − ⟨p, u⟩

�
(by a minimax theorem)

= max
u∈T(x), ‖u‖≤1

⟨−∇f (x), u⟩ (by (17))

= sup
y∈C⧵{x}

⟨−∇f (x), y − x⟩
‖y − x‖ (by (16)).

sup
y∈C⧵{x}

⟨−∇f (x), y − x⟩
‖y − x‖ ≤ �,

(18)P
�
(x) ∶= argmin

y∈C

�
⟨∇f (x), y − x⟩ + �

2
‖y − x‖2

�
= proj C

�
x −

1

�

∇f (x)
�
,

(19)G
�
(x) ∶= �(x − P

�
(x)).

(20)Lf ∶= �
2 + L‖F0‖.

845

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

Although Lemma 3 looks quite similar to [51, Corollary 1], there exists a sig-
nificant difference in their assumptions. Indeed, Lemma 3 assumes the bounded-
ness and the Lipschitz property of J only on a (possibly) nonconvex set C ∩ S(x0) ,
whereas [51, Corollary 1] assumes the Lipschitz continuity on the whole space
ℝ

d . This makes our proof more complicated than in [51, Corollary 1].

4.3 � Preliminary lemmas

First, we bound the decrease in the model function value due to the inner loop.
For 𝜂 > 0 , we define the function D

�
∶ C → ℝ by

We see that D
�
(x) ≥ −⟨∇f (x), x − x⟩ − �

2
‖x − x‖2 = 0 for all x ∈ C . In addition,

D
�
(x) is decreasing with respect to �.

Lemma 4  The solution x obtained in Line 11 of Algorithm 1 satisfies

where k, λ , and � are parameters in Algorithm 1.

Proof  The second inequality in (22) follows from the nonnegativity of D
�
(x) , and

therefore we will prove the first one. Let T ′ denote the value of t when the inner
loop is completed, and for each 0 ≤ t ≤ T ′ , let �k,t denote the values of � when xk,t
is obtained through Line 7. Our aim is to prove the first inequality in (22) with
(x, �) = (xk,T � , �k,T �) . We have

Since D
�
(xk) is decreasing in � and �k,1 ≤ �k,2 ≤ ⋯ ≤ �k,T ′ , we have

D
�k,1

(xk) ≥ D
�k,T�

(xk) . On the other hand, we have mk
λ
(xk,1) ≥ ⋯ ≥ mk

λ
(xk,T �) . Combin-

ing these inequalities, we obtain the desired result. 	� ◻

From the above lemma and Line 12, it follows that for all k,

This monotonicity of f (xk) in k is an important property of the majorization-minimi-
zation and will be used in our analysis.

The following two lemmas show that the parameters M and � in the algorithm
are upper-bounded, and hence Lines 9 and 15 are executed only a finite number of
times per single run.

(21)D
�
(x) ∶= −min

y∈C

�
⟨∇f (x), y − x⟩ + �

2
‖y − x‖2

�
.

(22)mk
λ
(x) ≤ mk

λ
(xk) −D

�
(xk) ≤ mk

λ
(xk),

mk
λ
(xk,1) ≤ mk

λ
(xk) + ⟨∇mk

λ
(xk), xk,1 − xk⟩ +

�k,1

2
‖xk,1 − xk‖2 (by Line 6)

= mk
λ
(xk) +min

z∈C

�
⟨∇mk

λ
(xk), z − xk⟩ +

�k,1

2
‖z − xk‖2

�
(by the definition ofxk,1)

= mk
λ
(xk) −D

�k,1
(xk) (by∇mk

λ
(xk) = ∇f (xk)).

(23)f (xk+1) ≤ mk
λk
(xk+1) ≤ mk

λk
(xk) = f (xk).

846	 N. Marumo et al.

1 3

Lemma 5  Suppose that Assumption 1(ii) holds, and let

where M0 and � are the inputs of Algorithm 1. Then,

	 (i)	 The parameter M in Algorithm 1 always satisfies M ≤ M̄;
	 (ii)	 Throughout the algorithm, the number of unsuccessful iterations is at most

⌈log
𝛼
(M̄∕M0)⌉ = O(1).

Proof  We have S(xk) ⊆ S(x0) from (23), and therefore Assumption 1(ii) implies (9)
with X = C . On the other hand, (22) directly implies (11). Hence, by Lemma 1 with
X = C and Lemma 4, if M ≥ L holds at Line 3, the condition in Line 12 must be true.
Therefore, if M0 ≥ L , no unsuccessful iterations occur and the parameter M always
satisfies M = M0 . Otherwise, there exists an integer l ≥ 1 such that L ≤ 𝛼

lM0 < 𝛼L .
Since M = �

lM0 after l unsuccessful iterations, the parameter M always satisfies
M < 𝛼L . Consequently, we obtain the first result, and the second follows from the
first. 	� ◻

Lemma 6  Suppose that Assumption 1 holds, and let

where �0 and �in are the inputs of Algorithm 1 and M̄ is defined in (24). Then,

	 (i)	 the parameter � in Algorithm 1 always satisfies 𝜂 ≤ 𝜂̄;
	 (ii)	 throughout the algorithm, Line 9 will be executed at most ⌈log

𝛼in
(𝜂̄∕𝜂0)⌉ = O(1)

times.

Proof  Since the function mk
λ
 defined by (2) has the (‖Jk‖2 + λ)-Lipschitz continuous

gradient, we have

(see, e.g., [52, Eq. (2.1.9)]). We also have ‖Jk‖2 + λ ≤ 𝜎
2 + M̄‖F0‖ from Assumption

1(i) and Lemma 5. Therefore, the inequality in Line 6 must hold if 𝜂 ≥ 𝜎
2 + M̄‖F0‖ .

With the same arguments as in Lemma 5, we obtain the desired results. 	� ◻

As we can see from the proofs of Lemmas 5 and 6, if M0 ≥ L and
�0 ≥ �

2 +M0‖F0‖ , then no unsuccessful iterations occur in both outer and inner
loops. Adjusting M and � adaptively as in the presented algorithm avoids a too small
step-size in practice.

(24)M̄ ∶= max{M0, 𝛼L},

(25)𝜂̄ ∶= max{𝜂0, 𝛼in(𝜎
2 + M̄‖F0‖)},

mk
λ
(y) ≤ mk

λ
(x) + ⟨∇mk

λ
(x), y − x⟩ +

‖Jk‖2 + λ

2
‖y − x‖2, ∀x, y ∈ ℝ

d

847

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

4.4 � Iteration complexity and overall complexity

We use the following lemma for the analysis.

Lemma 7 
Proof  By the first-order optimality condition on (18) and the convexity of C , we
have

Using this inequality, we obtain

	� ◻

We show the asymptotic global convergence and the iteration complexity
bound of Algorithm 1.

Theorem 1  Suppose that Assumption 1 holds, and define 𝜂̄ by (25). Then,

	 (i)	 lim
k→∞

‖G
𝜂̄
(xk)‖ = 0 , and therefore, any accumulation point of (xk) is a stationary

point of problem (1);
	 (ii)	 P

𝜂̄
(xk) is an �-stationary point of problem (1) for some k = O(�−2).

Proof  We have

Summing up this inequality for k = 0, 1,… ,K − 1 , we obtain

for all K ≥ 0 . Therefore, we also have
∑∞

k=0
‖G

𝜂̄
(xk)‖2 ≤ 2𝜂̄f (x0) , yielding

limk→∞ ‖G
𝜂̄
(xk)‖ = 0 , the first result.

D
𝜂
(x) ≥

1

2𝜂
‖G

𝜂
(x)‖2, ∀x ∈ C, 𝜂 > 0.

(26)⟨∇f (x) + �(P
�
(x) − x), y − P

�
(x)⟩ ≥ 0, ∀y ∈ C.

D
�
(x) = ⟨∇f (x), x − P

�
(x)⟩ − �

2
‖x − P

�
(x)‖2 (by (18) and (21))

≥
�

2
‖x − P

�
(x)‖2 (by (26)with y = x)

=
1

2�
‖G

�
(x)‖2 (by (19)).

f (xk+1) − f (xk) ≤ mk
λk
(xk+1) − mk

λk
(xk) (by Line 12 andmk

λk
(xk) = f (xk))

≤ −D
𝜂̄
(xk) (by Lemmas 6(i) and 4)

≤ −
1

2𝜂̄
‖G

𝜂̄
(xk)‖2 (by Lemma 7).

(27)
K−1�

k=0

‖G
𝜂̄
(xk)‖2 ≤ 2𝜂̄(f (x0) − f (xK)) ≤ 2𝜂̄f (x0)

848	 N. Marumo et al.

1 3

Combining (27) with min0≤k<K ‖G
𝜂̄
(xk)‖2 ≤

1

K

∑K−1

k=0
‖G

𝜂̄
(xk)‖2 , we have

‖G
𝜂̄
(xk)‖ ≤ 𝜀∕2 for some k = O(�−2) . For such xk , the point P

𝜂̄
(xk) is an �-stationary

point from Lemma 3 and 𝜂̄ ≥ Lf  . Thus, we have obtained the second result. 	� ◻

From Lemma 5(ii) and Theorem 1(ii), we obtain the iteration complexity
bound of our algorithm as follows.

Corollary 1  Under Assumption 1, Algorithm 1 finds an �-stationary point within
O(�−2) outer iterations, namely, O(�−2) successful and unsuccessful iterations.

From this iteration complexity bound and Lemma 6(ii), we also obtain the overall
complexity bound.

Corollary 2  Suppose that Assumption 1 holds. Then, Algorithm 1 with T < ∞ finds
an �-stationary point after O(�−2T) basic operations.

We use the term basic operations to refer to evaluation of F(x), Jacobian-vector
multiplications J(x)u and J(x)⊤v , and projection onto C as in Sect. 1.2.

In order to compute an �-stationary point based on Theorem 1(ii), knowledge of
the value of 𝜂̄ is required. However, this requirement can be circumvented with a
slight modification of the algorithm. See Sect. A.5 for the details.

5 � Local quadratic convergence

For zero-residual problems, we will prove that the sequence (xk) generated by Algo-
rithm 1 with T = ∞ converges locally quadratically to an optimal solution. Let us
denote the set of optimal solutions to problem (1) by X∗ ∶= {x ∈ C |F(x) = 0}
and the distance between x ∈ ℝ

d and X∗ simply by dist (x) ∶= miny∈X∗ ‖y − x‖ .
Throughout this section, we fix a point x∗ ∈ X∗ and denote a neighborhood of x∗ by
B(r) ∶= {x ∈ ℝ

d � ‖x − x∗‖ ≤ r} for r > 0.3 As in the previous section, we denote
the sequences generated by Algorithm 1 with T = ∞ by (xk) and (λk).

5.1 � Assumptions

We make the following assumptions to prove local quadratic convergence.

Assumption 2 

(i)	 There exists x ∈ C such that F(x) = 0.

3  If x∗ is an interior point of the constraint C , the problem can be regarded as an unconstrained one, and
the quadratic convergence is easier to prove. We do not assume this, i.e., x∗ may be on the boundary of C.

849

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

For some constants 𝜌, L, r > 0 ,

	 (ii)	 � dist (x) ≤ ‖F(x)‖ , ∀x ∈ C ∩ B(r),
	 (iii)	 ‖J(y) − J(x)‖ ≤ L‖y − x‖ , ∀x, y ∈ C ∩ B(r).

Assumption 2(i) requires the problem to be zero-residual, Assumption 2(ii) is
called a local error bound condition, and Assumption 2(iii) is the local Lipschitz
continuity of J. These assumptions are used in the previous analyses of LM meth-
ods [1, 3, 19, 22, 23, 29, 30, 33, 34, 40, 62].

5.2 � Fundamental inequalities for analysis

Since C ∩ B(r) is compact, there exists a constant 𝜎 > 0 such that

which implies

Let � denote such a constant in the rest of this section.
For a point x ∈ ℝ

d , let x̃ ∈ X∗ denote an optimal solution closest to x;
‖x̃ − x‖ = dist (x) . In particular, x̃k denotes one of the closest solutions to xk for
each k ≥ 0 . Since ‖ã − x∗‖ ≤ ‖ã − a‖ + ‖a − x∗‖ ≤ 2‖a − x∗‖ , we have

Therefore, (29) with y ∶= x̃ implies

From the stopping criterion in Line 10 of Algorithm 1 with T = ∞ and Definition 1,
the solution x obtained in Line 11 satisfies

From the definition of xk+1 and λk , we also have the inequality with (x, λ) = (xk+1, λk) ,
i.e.,

5.3 � Preliminary lemma

Lemma 8  Suppose that Assumption 2 holds, and define M̄ by (24). Define the con-
stants C1,C2, 𝛿 > 0 by

(28)‖J(x)‖ ≤ �, ∀x ∈ C ∩ B(r),

(29)‖F(y) − F(x)‖ ≤ �‖y − x‖, ∀x, y ∈ C ∩ B(r).

(30)a ∈ B(r∕2) ⟹ ã ∈ B(r).

(31)‖F(x)‖ ≤ 𝜎‖x − x̃‖ = 𝜎 dist (x), ∀x ∈ C ∩ B(r∕2).

(32)⟨∇mk
λ
(x), y − x⟩ ≥ −cλ‖Fk‖‖y − x‖, ∀y ∈ C.

(33)⟨∇mk
λk
(xk+1), y − xk+1⟩ ≥ −cλk‖Fk‖‖y − xk+1‖, ∀y ∈ C.

850	 N. Marumo et al.

1 3

where M0 and c are the inputs of Algorithm 1. Assume that xk ∈ B(�) and M ≤ M̄
hold at Line 3. Then,

	 (i)	 The solution x obtained in Line 11 satisfies

	 (ii)	 M ≤ M̄ holds when xk+1 is obtained;
	 (iii)	 The following hold:

Proof of Lemma 8(i)  From xk ∈ B(�) , � ≤ r∕2 , and (30), we have

Moreover, we have from ∇mk
λ
(x) = J⊤

k
(Fk + Jk(x − xk)) + λ(x − xk) that

We bound the terms (A)–(C) as follows:

where the first and second inequalities follow from (32) and (31), respectively, and
the last inequality follows from the arithmetic and geometric means;

(34a)C1 ∶=

√
1 + c2�2 +

L2r

16�M0

,

(34b)C2 ∶=
1

c2

(
𝜎
2
(
cM̄ +

L

2𝜌

)
+

L𝜎C2
1

2
+ (L + M̄)𝜎C1

)
,

(34c)� ∶=
r

2(1 + C1)
,

(35)‖x − xk‖ ≤ C1 dist (xk);

(36)‖xk+1 − xk‖ ≤ C1 dist (xk),

(37)dist (xk+1) ≤ C2 dist (xk)
2.

(38)xk ∈ B(r∕2) and x̃k ∈ B(r).

⟨∇mk
λ
(x), x − x̃k⟩

�������������������

(A)

= ⟨Fk + Jk(x − xk), Jk(x − x̃k)⟩
���������������������������������������

(B)

+λ ⟨x − xk, x − x̃k⟩
���������������

(C)

.

(A) ≤ cλ‖Fk‖‖x − x̃k‖ ≤ c𝜎λ‖xk − x̃k‖‖x − x̃k‖

≤
c2𝜎2λ

2
‖xk − x̃k‖2 +

λ

2
‖x − x̃k‖2,

(B) ≥ −
1

4
‖Fk + Jk(x̃k − xk)‖2 ≥ −

L2

16
‖x̃k − xk‖4,

851

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

where the first inequality follows from 4⟨a, b⟩ = ‖a + b‖2 − ‖a − b‖2 ≥ −‖a − b‖2
and the second inequality from Lemma 9(ii), (38), and Assumption 2(iii);

Combining these bounds and rearranging terms yield

From (38), Assumption 2(ii), and λ = M‖Fk‖ ≥ M0‖Fk‖ , we have

Applying this bound to the second term on the right-hand side of (39), we obtain the
desired result (35). 	� ◻

Proof of Lemma 8(ii)  As in Lemma 8(i), let x denote the x obtained in Line 11. By
(34c), (35), and xk ∈ B(�) , we have

i.e.,

We now have xk, x ∈ C ∩ B(r) . As in the proof of Lemma 5(i), by using Lemma 1
with X ∶= C ∩ B(r) , we see that if M ≥ L holds at Line 3, the outer iteration must be
successful. This leads to the desired result. 	� ◻

Proof of Lemma 8(iii)  Equation (36) follows from Lemmas 8(i) and 8(ii). We prove
(37) below. From (30) and (40), we have xk+1, x̃k+1 ∈ B(r) . Moreover, we have

and bound the terms (D)–(F) as follows:

(C) =
1

2

�
‖x − xk‖2 + ‖x − x̃k‖2 − ‖x̃k − xk‖2

�
.

(39)‖x − xk‖2 ≤ (1 + c2𝜎2)‖x̃k − xk‖2 +
L2

8λ
‖x̃k − xk‖4.

‖x̃k − xk‖2 ≤
r

2
×
‖Fk‖
𝜌

≤
rλ

2𝜌M0

.

‖x − x∗‖ ≤ ‖xk − x∗‖ + ‖x − xk‖
≤ ‖xk − x∗‖ + C1 dist (xk)

≤ (1 + C1)‖xk − x∗‖ ≤ (1 + C1)� = r∕2,

(40)x ∈ B(r∕2).

‖Fk+1‖2 −

(D)

�����������������������������������

⟨∇mk
λk
(xk+1), xk+1 − x̃k+1⟩

= ⟨Fk+1,Fk+1 + Jk+1(x̃k+1 − xk+1)⟩ + ⟨J⊤
k+1

Fk+1 − ∇mk
λk
(xk+1), xk+1 − x̃k+1⟩

≤ ‖Fk+1‖‖Fk+1 + Jk+1(x̃k+1 − xk+1)‖
���

(E)

+ ‖J⊤
k+1

Fk+1 − ∇mk
λk
(xk+1)‖

�����������������������������������

(F)

dist (xk+1)

852	 N. Marumo et al.

1 3

by (33) and Lemma 8(ii);

by Lemma 9(ii), Assumption 2(ii), and ‖Fk+1‖ ≤ ‖Fk‖ from (23); and

Combining these bounds yields

We bound ‖Fk‖ and ‖Fk+1‖ in the above inequality by using Assumption 2(ii) and
(31), yielding

which implies the desired result (37). 	� ◻

5.4 � Local quadratic convergence

Let us state the local quadratic convergence result of Algorithm 1.

Theorem 2  Suppose that Assumption 2 holds, and define M̄ by (24). Set x0 ∈ B(�0)
for a sufficiently small constant 𝛿0 > 0 such that

(D) ≤ cλk‖Fk‖ dist (xk+1) ≤ cM̄‖Fk‖2 dist (xk+1)

(E) ≤
L

2
‖Fk+1‖ dist (xk+1)2 ≤

L

2�
‖Fk+1‖2 dist (xk+1) ≤

L

2�
‖Fk‖2 dist (xk+1)

(F) = ‖J⊤
k+1

Fk+1 − J⊤
k
(Fk + Jku) − λku‖ (by letting u ∶= xk+1 − xk)

≤ ‖J⊤
k
(Fk+1 − Fk − Jku)‖

+ ‖(Jk+1 − Jk)
⊤Fk+1‖ + λk‖u‖

≤
L𝜎

2
‖u‖2 + L‖Fk+1‖‖u‖ + λk‖u‖ (by (28), Lemma 9(ii),

and Assumption 2(iii))

≤
L𝜎

2
‖u‖2 + (L + M̄)‖Fk‖‖u‖ (by ‖Fk+1‖ ≤ ‖Fk‖ and Lemma 8(ii))

≤

�L𝜎C2
1

2
+ (L + M̄)𝜎C1

�
dist (xk)

2 (by (31) and (36))

‖Fk+1‖2 ≤
��

cM̄ +
L

2𝜌

�
‖Fk‖2 +

�L𝜎C2
1

2
+ (L + M̄)𝜎C1

�
dist (xk)

2

�
dist (xk+1).

𝜌
2 dist (xk+1)

2
≤

(
𝜎
2
(
cM̄ +

L

2𝜌

)
+

L𝜎C2
1

2
+ (L + M̄)𝜎C1

)
dist (xk)

2 dist (xk+1),

853

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

where C1 , C2 , and � are the constants defined in (34a)–(34c). Then,

	 (i)	 The number of unsuccessful iterations is at most ⌈log
𝛼
(M̄∕M0)⌉ = O(1) , and

	 (ii)	 The sequence (xk) converges quadratically to an optimal solution x̂ ∈ X∗.

Proof  First, we will prove that

 for all k ≥ 0 by induction. For k = 0 , (42a) and (42b) are obvious. For a fixed
K ≥ 0 , assume (42a) and (42b) for all k ≤ K . We then have (36), (37) and (42b) for
k ≤ K + 1 by Lemma 8. To complete the induction, we prove (42a) for k = K + 1 .
Solving the recursion of (37) and using dist (x0) ≤ �0 , we have

for all k ≤ K + 1 . We obtain (42a) for k = K + 1 as follows:

Now, we have proved (42a) and (42b) for all k ≥ 0 . 	� ◻

Proof of Theorem 2(ii)  Note that we have proved (37) and (43) for all k ≥ 0 in the
proof of Theorem 2(i). By (43) and C2𝛿0 < 1 in (41), we have

As with (43), we have for i ≥ k,

Using this bound and (35), we obtain

(41)C2𝛿0 < 1, 𝛿0 +
C1𝛿0

1 − C2𝛿0

≤ 𝛿,

(42a)xk ∈ B(�), and

(42b)M ≤ M̄ holds when xk is obtained

(43)dist (xk) ≤ dist (x0)(C2 dist (x0))
2k−1

≤ �0(C2�0)
2k−1

≤ �0(C2�0)
k

‖xK+1 − x∗‖ ≤ ‖x0 − x∗‖ +
K�

k=0

‖xk+1 − xk‖ (by the triangle inequality)

≤ �0 + C1

K�

k=0

dist (xk) (by (36))

≤ �0 +
C1�0

1 − C2�0

≤ � (by (41) and (43)).

(44)lim
k→∞

dist (xk) = 0.

dist (xi) ≤ dist (xk)(C2 dist (xk))
2i−k−1

≤ dist (xk)(C2�0)
i−k.

854	 N. Marumo et al.

1 3

for all k, l such that 0 ≤ k < l . Equations (45) and (44) imply that (xk) is a Cauchy
sequence. Accordingly, the sequence (xk) converges to a point x̂ ∈ X∗ by (44). Thus,
we obtain

which implies Theorem 2(ii). 	� ◻

6 � Practical variant of the proposed method

We present a more practical variant (Algorithm 3) of Algorithm 1, which also achieves
the theoretical guarantees given for Algorithm 1 in Sects. 4 and 5.

6.1 � Generalized version of Algorithm 1

To obtain the practical variant, we first present a generalized framework of Algo-
rithm 1. Algorithm 1 runs the vanilla projected gradient (PG) method in the inner loop.
This PG can be replaced with other algorithms keeping O(�−2) iteration complexity
and quadratic convergence that were gained for Algorithm 1. Indeed, these theoretical
results rely on the fact that the x obtained in Line 11 of Algorithm 1 satisfies the follow-
ing conditions:

Condition 1  (for O(�−2) iteration complexity bound) There exists a constant 𝛾 > 0
such that for all k,

Condition 2  (for local quadratic convergence) Both of the following hold:

	 (i)	 mk
λ
(x) ≤ mk

λ
(xk) for all k;

	 (ii)	 There exists a constant c > 0 such that x is a (cλ‖Fk‖)-stationary point of
subproblem (3) for all k.

(45)‖xk − xl‖ ≤

l−1�

i=k

‖xi+1 − xi‖ ≤ C1

l−1�

i=k

dist (xi) ≤
C1

1 − C2�0

dist (xk)

‖xk+1 − x̂‖ = lim
l→∞

‖xk+1 − xl‖ (by the continuity of ‖ ⋅ ‖)

≤
C1

1 − C2𝛿0

dist (xk+1) (by (45))

≤
C1C2

1 − C2𝛿0

dist (xk)
2 (by (37))

≤
C1C2

1 − C2𝛿0

‖xk − x̂‖2 (by x̂ ∈ X∗),

mk
λ
(x) − mk

λ
(xk) ≤ −D

�
(xk).

855

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

This fact yields a general algorithmic framework that achieves the O(�−2) iteration
complexity bound together with the quadratic convergence as in Algorithm 2.

In Line 4 of Algorithm 2, any globally convergent algorithm for subproblem (3)
can be employed. For example, we may use (block) coordinate descent methods,
Frank-Wolfe methods, interior point methods, active set methods, or augmented
Lagrangian methods. For unconstrained cases, since the subproblem reduces to solv-
ing a system of linear equations, we may use conjugate gradient methods or direct
methods, including Gaussian elimination.

856	 N. Marumo et al.

1 3

6.2 � Proposed method with an accelerated projected gradient

A practical example of Algorithm 2 is presented in Algorithm 3. This algorithm
employs the accelerated projected gradient (APG) method [45, Algorithm 1] with
the adaptive restarting technique [54, Sect. 3.2] to solve subproblems and adopts the
additional parameters mentioned in Remark 1. Since the solution x obtained in Line
19 of Algorithm 3 satisfies Condition 1, this algorithm enjoys the O(�−2) iteration
complexity bound. In addition, it also achieves the O(�−2) overall complexity bound
if T < ∞ as with Corollary 2, and it achieves local quadratic convergence if T = ∞ .
Algorithm 3 will be used for the numerical experiments in the next section.

7 � Numerical experiments

We examine the practical performance of the proposed method. We implemented all
methods in Python with SciPy [58] and JAX [9] and executed them on a computer
with Apple M1 Chip (8 cores, 3.2 GHz) and 16 GB RAM.

7.1 � Problem setting

We consider three types of instances: (i) compressed sensing with quadratic meas-
urement, (ii) nonnegative matrix factorization with missing values, and (iii) autoen-
coder with MNIST dataset.

7.1.1 � Compressed sensing with quadratic measurement

Given A1,… ,An ∈ ℝ
r×d , b1,… , bn ∈ ℝ

d , and c1,… , cn,R ∈ ℝ , we consider the
following problem:

where ‖ ⋅ ‖1 denotes the �1-norm. Problem (46) formulates the situation where a
sparse vector x∗ ∈ ℝ

d is recovered from a small number (i.e., n < d ) of quadratic
observations, 1

2r
‖Aix

∗‖2 + ⟨bi, x∗⟩ for i = 1,… , n . Such a problem arises in the con-
text of compressed sensing [8, 44] and phase retrieval [11, 63]. Problem (46) can be
transformed into the form of problem (1).

Generating instances First, we generate the optimal solution x∗ ∈ ℝ
d with only

dnnz (< d) nonzero entries. The indexes of the nonzero entries are chosen uni-
formly randomly, and the value of those elements are independently drawn from
the uniform distribution on [−xmax, xmax] . Each entry of Ai ’s and bi ’s is drawn inde-
pendently from the standard normal distribution N(0, 1) . Then, we set R = ‖x∗‖1
and ci =

1

2r
‖Aix

∗‖2 + ⟨bi, x∗⟩ for all i. We fix d = 200 , r = 10 , and n = 50 , and set
dnnz ∈ {5, 10, 20} and xmax ∈ {0.1, 1} . We set the starting point for each algorithm
as x0 = 0.

(46)min
x∈ℝd

n�

i=1

�
1

2r
‖Aix‖2 + ⟨bi, x⟩ − ci

�2

subject to ‖x‖1 ≤ R,

857

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

7.1.2 � Nonnegative matrix factorization with missing values

Given A ∈ ℝ
m×n and H ∈ {0, 1}m×n , we consider the following problem:

where ⊙ denotes the elementwise product, X ≥ O and Y ≥ O denote elementwise
inequalities, and ‖ ⋅ ‖F denotes the Frobenius norm. Problem (47) formulates the
situation where a data matrix A with some missing entries is approximated by the
product XY⊤ of two nonnegative matrices. Such a problem is called nonnegative
matrix factorization (NMF) with missing values and is widely used for nonnegative
data analysis, especially for collaborative filtering [46, 65]. For more information
on NMF, see [7, 59] and the references therein. Problem (47) can also be written as
problem (1).

Generating instances To generate A and H, we introduce two parameters: � ≥ 1
and 0 < p ≤ 1 . The parameters � and p control the condition number of A and the
number of 1’s in H, respectively. Let l ∶= min{m, n} . First, a matrix Ã ∈ ℝ

m×n is gen-
erated by Ã = UDV⊤ , and then the matrix A is obtained by normalizing Ã = (ãij)i,j as
A = Ã∕maxi,j ãij . Here, each entry of U ∈ ℝ

m×l and V ∈ ℝ
n×l follows independently

the uniform distribution on [0, 1], and D = diag (�0, �−1∕l, �−2∕l,… , �−(l−1)∕l) ∈ ℝ
l×l

is a diagonal matrix. H is a random matrix whose entries follow independently the
Bernoulli distribution with parameter p, i.e., each entry of H is 1 with probability p.
We fix m = n = 50 and � = 105 , and set r ∈ {10, 40} and p ∈ {0.02, 0.1, 0.5} . Since
(X, Y) = (O,O) is a stationary point of problem (47), we set the starting point to
random matrices whose entries independently follow the uniform distribution on
[0, 10−3].

7.1.3 � Autoencoder with MNIST dataset

The third instance is highly nonlinear and large-scale. In machine learning, autoen-
coders (see, e.g., [37, Section 14]) are a popular model to compress real-world
data, represented as high-dimensional vectors, into low-dimensional vectors.
Given p-dimensional data a1,… , aN ∈ ℝ

p , autoencoders try to learn an encoder
�
enc
x

∶ ℝ
p
→ ℝ

q and a decoder �dec
y

∶ ℝ
q
→ ℝ

p , where q < p . Here, x and y are
parameters to be learned by solving the following optimization problem:

As we see from the optimization problem above, the autoencoder aims to extract
latent features that can be used to reconstruct the original data.

For this experiment, we use the MNIST hand-written digit dataset. Each data is
a 28 × 28 pixel grayscale image, which is represented as a vector ai ∈ [0, 1]p with
p = 28 × 28 = 728 . The dataset contains 60,000 training data, of which N = 1000
were randomly chosen for use. We set q = 16 ; our model encodes 728-dimensional

(47)min
X∈ℝm×r , Y∈ℝn×r

‖H ⊙ (XY⊤ − A)‖2
F

subject to X ≥ O, Y ≥ O,

(48)min
x,y

N�

i=1

‖ai − �
dec
y

(�enc
x

(ai))‖2.

858	 N. Marumo et al.

1 3

data into 16 dimensions. Both encoder and decoder are two-layer neural networks
with a hidden layer of size 64 and logistic sigmoid activation functions. Specifically,
the encoder �enc

x
 is written as

Here, S is the elementwise logistic sigmoid function, and W1 ∈ ℝ
728×64 , b1 ∈ ℝ

64 ,
W2 ∈ ℝ

64×16 , and b2 ∈ ℝ
16 are parameters of the network; x = ((Wi, bi))

2
i=1

 . The
decoder �dec

y
 is formulated in a similar way. When we rewrite problem (48) in

the form of (1), the dimension of the function F ∶ ℝ
d
→ ℝ

n is d = 96,104 and
n = Np = 728,000.

7.2 � Algorithms and implementation

We compare the proposed method with six existing methods. The details are below.
Proposed (Algorithm 3) and Proposed-NA (Algorithm 1) method To see the

effect of acceleration for subproblems, we implemented both Algorithms 1 and 3;
Algorithm 3 is expected to be faster, of course. In Line 10 of Algorithm 1 and Line
18 of Algorithm 3, we have to check if xk,t is a (cλ‖Fk‖)-stationary point, but it is
not very easy. We thus replace the criterion with one using gradient mapping, i.e.,
check if �‖xk,t − y‖ ≤ cλ‖Fk‖ . The input parameters of Algorithm 1 and 3 are set to
M0 = �0 = 1 , � = �in = 2 , � = �in = 0.9 , Mmin = 10−10 , T = 100 , and c = 1.

Fan method [26, Algorithm 2.1] and KYF method [40, Algorithm 2.12] The Fan
and KYF methods are constrained LM methods with a global convergence guaran-
tee. To solve subproblem (3), an APG method is used as well as Algorithm 3 for a
fair comparison. The difference from the APG in Algorithm 3 is in the stopping cri-
terion; the condition “ xk,t is a (cλ‖Fk‖)-stationary point” in Line 18 of Algorithm 3
is replaced with �‖xk,t − y‖ ≤ 10−9.4 The input parameters in [26, 40] are set to
� = 10−4 , � = 0.9 , � = 10−4 , � = 0.99995 , and � ∈ {1, 2} , following the recommen-
dations of [26, 40].5

Facchinei method [22, Algorithm 3] This is a constrained LM method that allows
subproblems to be solved inexactly. We solve the subproblems in almost the same
way as the Fan and KYF methods. The input parameters in [22] are set to �0 = 1 and
S = 2.

GGO method [36, Algorithm G-LMA-IP] This is an LM-type method that requires
the solution of a linear system at each iteration. The main advantage of this algorithm
is that it does not require exact projection and can be applied to problems with a com-
plex feasible region. Still, it is reported to perform well even when the projection is
easy to compute exactly [36]. The linear systems are solved via QR decomposition

�
enc
x

(a) = �
2
x
◦�

1
x
(a), where �

i
x
(a) ∶= S(Wia + bi).

4  Since cλ‖Fk‖ in Algorithm 3 derives from our update rule of λ and our analysis, it does not seem
appropriate to use a criterion with cλ‖Fk‖ directly in another algorithm. We thus use �‖xk,t − y‖ ≤ 10

−9
instead of �‖xk,t − y‖ ≤ cλ‖Fk‖ here.
5  � = 1 and � = 2 correspond to the Fan method and the KYF method, respectively.

859

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

(scipy.linalg.qr [58]) and the input parameters in [36] are set to M ∈ {1, 15} ,
�1 = 10−4 , �2 = 10−2 , �3 = 1010 , � = 10−3 , � = 1∕2 , and �k = 0 , following [36].6

Projected gradient (PG) method The PG method is one of the most standard first-
order methods for problem (1). The step-size is adaptively chosen in a similar way to
the APG in Algorithm 3 with �0 = 1 , �in = 2 , and �in = 0.9.

Trust-region reflective (TRF) method This is an interior trust-region method for
box-constrained nonlinear optimization. It was proposed in [10] and is implemented
in SciPy [58] with several improvements. For the TRF method, we call scipy.
optimize.least_squares [58] with a gtol=1e-5 option to avoid the long
execution time caused by searching for too precise a solution.

Proposed Proposed-NA Fan KYF Facchinei GGO PG

0 1 2 3 4 5
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0.0 0.5 1.0 1.5
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(a) xmax = 0.1, dnnz = 5

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 1 2 3
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(b) xmax = 0.1, dnnz = 10

0 1 2 3 4
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(c) xmax = 0.1, dnnz = 20

0 1 2 3 4 5
Wall clock time [sec]

10−10

10−7

10−4

10−1

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0.0 0.5 1.0 1.5 2.0 2.5
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(d) xmax = 1, dnnz = 5

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−7

10−4

10−1

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 1 2 3 4 5
Wall clock time [sec]

10−10

10−7

10−4

10−1

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(e) xmax = 1, dnnz = 10

0 2 4 6 8 10
Wall clock time [sec]

100

101

102

103

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−7

10−4

10−1

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(f) xmax = 1, dnnz = 20

Fig. 2   Results of compressed sensing (problem (46))

6  Because the algorithm with M = 1 outperformed M = 15 in our experiments, we omit the results with
M = 15.

860	 N. Marumo et al.

1 3

Other information As mentioned in Sect. 1.2, there are two ways to handle Jaco-
bian matrices: explicitly computing Jk ∶= J(xk) or using Jacobian-vector products
Jku and J⊤

k
v . In our experiments, the latter implementation outperformed the former,

so we adopted the latter if possible (i.e., for Proposed, Proposed-NA, Fan, KYF,
Facchinei, and PG).7 We note that GGO is based on QR decomposition, which is
probably impossible to implement using Jacobian-vector products.

For projection onto the feasible region of problem (46), we employ [18, Algo-
rithm 1], whose time complexity is O(d log d).

Proposed Proposed-NA Fan KYF Facchinei GGO PG

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 1 2 3 4 5
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(a) r = 10, p = 0.02

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(b) r = 10, p = 0.1

0 2 4 6 8 10
Wall clock time [sec]

10−2

10−1

100

101

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 2 4 6 8 10
Wall clock time [sec]

10−2

10−1

100

101

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(c) r = 10, p = 0.5

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(d) r = 40, p = 0.02

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(e) r = 40, p = 0.1

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−7

10−4

10−1

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

0 2 4 6 8 10
Wall clock time [sec]

10−10

10−8

10−6

10−4

10−2

100

102

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(f) r = 40, p = 0.5

Fig. 3   Results of NMF (problem (47))

7  When using the Jacobian-vector products, i.e., not computing the Jacobian explicitly, almost all of the
algorithm’s runtime is spent solving subproblems.

861

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

Table 2   Results of compressed sensing (problem (46))

Objective GM norm Time (s) #Iter #Evaluations Success (%)

F JVP proj C

(a) xmax = 0.1 , dnnz = 5

 Proposed 3.5 ×10−14 1.4 ×10−6 0.55 3.4 7.8 343.2 117.8 100
 Proposed-

NA
1.7 ×10−12 1.6 ×10−6 1.06 4.3 9.6 787.9 295.8 100

 Fan 1.0 ×10−17 2.9 ×10−8 1.03 3.1 7.2 832.5 280.6 100
 KYF 1.7 ×10−17 3.9 ×10−8 0.95 3.2 7.4 861.0 290.2 100
 Facchinei 6.7 ×10−14 1.3 ×10−6 0.38 4.9 10.8 278.7 97.8 100
 GGO 2.2 ×10−13 9.4 ×10−6 3.31 258.5 1461.8 0.0 775.5 100
 PG 1.1 ×10−11 9.1 ×10−6 0.59 181.2 397.5 181.2 396.5 100

(b) xmax = 0.1 , dnnz = 10

 Proposed 7.6 ×10−13 2.1 ×10−6 1.11 5.0 11.1 978.6 331.2 100
 Proposed-

NA
3.2 ×10−7 7.0 ×10−5 4.35 13.6 28.6 3934.7 1455.3 80

 Fan 7.2 ×10−14 4.3 ×10−7 1.69 4.2 9.4 1497.0 503.2 100
 KYF 6.2 ×10−12 1.1 ×10−6 1.55 4.1 9.2 1469.4 493.9 100
 Facchinei 2.2 ×10−13 2.0 ×10−6 1.29 6.4 13.8 1167.0 395.4 100
 GGO 4.9 ×10−6 1.5 ×10−2 8.87 594.1 3807.1 0.0 1782.3 40
 PG 1.4 ×10−7 5.4 ×10−5 3.93 1244.6 2686.0 1244.6 2685.0 80

(c) xmax = 0.1 , dnnz = 20

 Proposed 3.9 ×10−14 1.6 ×10−6 0.25 3.8 8.6 286.2 99.2 100
 Proposed-

NA
4.5 ×10−12 3.1 ×10−6 1.38 5.8 12.6 1246.6 464.8 100

 Fan 7.0 ×10−15 8.1 ×10−7 0.64 3.1 7.2 914.4 307.9 100
 KYF 1.9 ×10−15 4.8 ×10−7 0.66 3.1 7.2 940.2 316.5 100
 Facchinei 1.9 ×10−14 8.5 ×10−7 0.24 6.9 14.8 239.1 86.6 100
 GGO 1.3 ×10−13 8.5 ×10−6 2.07 168.9 1158.6 0.0 506.7 100
 PG 1.6 ×10−11 9.7 ×10−6 1.05 329.8 717.7 329.8 716.7 100

(d) xmax = 1 , dnnz = 5

 Proposed 1.1 ×10−14 8.6 ×10−7 0.35 8.7 18.4 310.8 112.3 100
 Proposed-

NA
3.6 ×10−14 1.4 ×10−6 0.47 9.6 20.2 409.5 160.1 100

 Fan 2.1 ×10−14 1.0 ×10−6 1.41 5.5 16.1 1227.4 418.6 100
 KYF 1.9 ×10−14 7.5 ×10−7 1.41 5.7 20.6 1295.3 445.4 100
 Facchinei 3.0 ×10−14 7.1 ×10−7 0.66 78.1 157.2 449.4 227.9 100
 GGO 1.6 ×10−13 9.7 ×10−6 5.62 469.4 2897.9 0.0 1408.2 100
 PG 3.3 ×10−12 9.2 ×10−6 0.28 82.4 184.3 82.4 183.3 100

(e) xmax = 1 , dnnz = 10

 Proposed 9.4 ×10−15 1.2 ×10−6 0.91 23.4 48.1 789.0 286.4 100
 Proposed-

NA
1.2 ×10−12 2.4 ×10−6 1.80 25.5 52.3 1626.4 619.3 100

 Fan 4.0 ×10−1 8.4 ×10−1 3.74 12.2 25.4 3465.3 1167.3 90

862	 N. Marumo et al.

1 3

7.3 � Results

7.3.1 � Compressed sensing and NMF

Figures 2 and 3 show the results of compressed sensing in (46) and NMF in (47).
Each figure consists of six subfigures, and they consist of two plots; the upper one
shows the worst case among ten randomly generated instances, and the lower one
shows the best case.8

Tables 2 and 3 provide more detailed information. For the tables, each algorithm
is stopped when either of the following conditions is fulfilled: (i) the algorithm finds
a point where the norm of the gradient mapping is less than 10−5 ; (ii) the execu-
tion time exceeds 10 seconds. The “Success” column indicates the percentage of
instances (out of 10) that ended up satisfying condition (i). The other columns show
the averages of the following values: the objective function value reached, the gradi-
ent-mapping norm, the execution time, the number of iterations, and the number of
basic operations. JVP stands for Jacobian-vector products.

A remarkable feature of our method is its stability in addition to fast conver-
gence. For example, while the Fan and KYF methods perform well in most cases,

Table 2   (continued)

Objective GM norm Time (s) #Iter #Evaluations Success (%)

F JVP proj C

 KYF 8.0 ×10−1 2.5 ×10−1 3.74 14.9 241.5 3190.4 1283.2 90
 Facchinei 1.7 ×10−1 2.6 ×10−1 3.25 675.5 1352.0 2371.2 1465.9 90
 GGO 1.4 1.2 ×101 8.68 673.8 4538.9 0.0 2021.4 50
 PG 7.7 ×10−12 9.5 ×10−6 0.98 305.2 665.2 305.2 664.2 100

(f) xmax = 1 , dnnz = 20

 Proposed 1.1 ×10−1 4.9 ×10−5 5.97 94.2 195.0 5390.1 1890.9 80
 Proposed-

NA
1.1 ×10−1 1.6 ×10−2 9.73 59.5 120.7 8925.8 3319.3 20

 Fan 4.6 ×10−1 2.3 9.47 23.3 479.6 8310.6 3214.7 10
 KYF 4.7 ×10−1 2.4 9.24 22.6 484.0 8091.7 3146.7 20
 Facchinei 2.6 ×10−1 4.1 ×10−1 9.24 1806.5 3614.0 6916.2 4111.9 20
 GGO 1.4 1.8 ×101 9.47 820.6 6427.6 0.0 2461.8 10
 PG 1.9 ×10−1 6.2 ×10−3 8.53 2737.1 5899.1 2737.1 5898.1 30

8  Here, for each method, we determine the best and worst cases out of ten instances as follows. Each
algorithm is stopped when either of the following conditions is fulfilled: (i) the objective function value
falls below 10−10 ; (ii) the execution time exceeds 10 seconds. First, we define that the case stopped by
condition (i) is better than that stopped by condition (ii). Then, among the cases stopped by condition (i),
the case with a shorter execution time is defined as better. Similarly, among the cases stopped by condi-
tion (ii), the case with a smaller objective value is defined as better. Note that from the above definition,
the instances corresponding to plots in the same figure may be distinct.

863

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

Table 3   Results of NMF (problem (47))

Objective GM norm Time (s) #iter #Evaluations Success (%)

F JVP proj C

(a) r = 10 , p = 0.02

 Proposed 3.1 ×10−13 1.6 ×10−7 0.46 36.4 75.0 908.4 339.2 100

 Proposed-
NA

3.6 ×10−10 3.7 ×10−6 0.65 36.8 75.3 1414.3 549.1 100

 Fan 2.3 ×10−11 3.0 ×10−6 3.77 25.6 116.3 8170.9 2785.2 100

 KYF 2.4 ×10−11 3.1 ×10−6 3.84 25.6 116.3 8528.8 2904.5 100

 Facchinei 1.2 ×10−1 1.6 ×10−1 6.08 2650.4 5301.8 8645.7 5532.3 50

 GGO 2.1 ×10−11 2.8 ×10−6 6.90 85.0 86.0 0.0 170.0 100

 PG 1.3 ×10−9 9.8 ×10−6 0.25 256.2 552.8 256.2 551.8 100

(b) r = 10 , p = 0.1

 Proposed 7.8 ×10−12 1.3 ×10−6 0.69 36.0 73.1 1383.9 497.3 100

 Proposed-
NA

1.3 ×10−9 6.7 ×10−6 1.68 42.2 85.4 3785.0 1421.6 100

 Fan 1.8 ×10−11 2.1 ×10−6 1.72 10.4 35.1 3619.9 1223.4 100

 KYF 9.1 ×10−12 1.2 ×10−6 1.62 10.4 34.4 3579.9 1209.5 100

 Facchinei 1.7 ×10−1 1.8 ×10−1 10.00 4520.2 9041.4 13,965.0 9175.2 0

 GGO 2.2 ×101 3.7 10.06 89.2 90.2 0.0 178.4 0

 PG 2.8 ×10−9 9.9 ×10−6 0.85 883.1 1903.2 883.1 1902.2 100

(c) r = 10 , p = 0.5

 Proposed 3.8 ×10−3 1.0 ×10−4 9.71 174.7 368.2 20,065.2 6863.1 20

 Proposed-
NA

4.0 ×10−3 8.3 ×10−4 10.07 120.2 242.4 22,780.5 8440.7 0

 Fan 9.4 ×10−2 4.6 ×10−1 10.07 62.6 1380.9 21,825.5 8522.6 0

 KYF 2.2 ×10−1 9.0 ×10−1 10.12 62.8 1646.0 21,834.9 8778.1 0

 Facchinei 8.9 ×10−1 3.8 ×10−1 10.00 4587.8 9176.6 13,808.1 9190.5 0

 GGO 6.4 ×10−1 4.5 ×10−1 10.17 28.0 32.7 0.0 59.9 0

 PG 4.0 ×10−3 3.7 ×10−4 10.00 10,338.3 22,252.0 10,338.3 22,251.0 0

(d) r = 40 , p = 0.02

 Proposed 1.3 ×10−10 2.3 ×10−6 0.41 33.8 69.7 765.3 288.9 100

 Proposed-
NA

3.5 ×10−10 3.0 ×10−6 0.67 34.5 70.5 1409.4 545.7 100

 Fan 1.8 ×10−11 1.6 ×10−6 3.58 22.9 99.3 7309.7 2487.7 100

 KYF 1.8 ×10−11 1.6 ×10−6 3.59 22.9 99.3 7534.4 2562.6 100

 Facchinei 1.6 ×10−1 2.2 ×10−1 7.29 3119.5 6240.0 9808.5 6389.0 30

 GGO 5.5 3.1 ×10−2 11.30 4.0 5.0 0.0 8.0 0

 PG 1.6 ×10−9 9.6 ×10−6 0.26 254.8 549.9 254.8 548.9 100

(e) r = 40 , p = 0.1

 Proposed 1.7 ×10−11 1.4 ×10−6 0.63 33.3 67.7 1187.4 429.1 100

 Proposed-
NA

1.3 ×10−9 7.1 ×10−6 1.45 38.0 77.0 3102.2 1168.2 100

 Fan 2.8 ×10−12 1.2 ×10−6 1.69 9.7 33.8 3356.5 1135.4 100

 KYF 5.4 ×10−12 1.3 ×10−6 1.49 9.1 29.1 3105.2 1048.2 100

864	 N. Marumo et al.

1 3

they sometimes do not converge fast, as shown in Table 2(e) and (f). The proposed
method shows the best or comparable performance in all our settings compared to
the other methods. This suggests that our method is stable without careful parameter
tuning.

As seen from Tables 3(d)–(f), the Facchinei and GGO methods do not work
well in some cases. As for the Facchinei method, the reason is presumably that the
method does not guarantee global convergence. For GGO, it is observed from the

Table 3   (continued)

Objective GM norm Time (s) #iter #Evaluations Success (%)

F JVP proj C

 Facchinei 1.8 ×10−1 1.8 ×10−1 9.27 3971.2 7943.4 12,461.4 8125.0 10

 GGO 2.6 ×101 9.4 ×10−2 12.53 3.9 4.9 0.0 7.8 0

 PG 2.2 ×10−9 9.9 ×10−6 0.73 715.5 1542.4 715.5 1541.4 100

(f) r = 40 , p = 0.5

 Proposed 5.9 ×10−10 5.4 ×10−6 1.67 56.0 115.8 3066.0 1078.0 100

 Proposed-
NA

8.0 ×10−9 1.1 ×10−5 9.51 109.6 220.5 20514.7 7602.7 80

 Fan 4.6 ×10−11 2.6 ×10−6 1.38 8.1 22.3 2863.2 964.8 100

 KYF 4.5 ×10−11 1.6 ×10−6 1.36 8.1 21.2 2835.5 954.6 100

 Facchinei 7.8 ×10−1 4.1 ×10−1 10.00 4402.4 8805.8 13,251.9 8819.7 0

 GGO 2.7 ×101 2.3 ×101 13.74 2.8 3.8 0.0 7.6 0

 PG 7.3 ×10−9 1.0 ×10−5 6.83 6750.1 14,531.0 6750.1 14,530.0 100

10 15 20 25 30 35

Wall clock time [sec]

10−8

10−7

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(a) r = 10, p = 0.02

15 20 25 30 35 40

Wall clock time [sec]

10−11

10−10

10−9

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(b) r = 10, p = 0.1

50 100 150 200 250

Wall clock time [sec]

3× 10−3

4× 10−3

5× 10−3

6× 10−3
O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(c) r = 10, p = 0.5

500 750 1000 1250 1500 1750 2000

Wall clock time [sec]

10−9

10−8

10−7

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(d) r = 40, p = 0.02

700 800 900 1000 1100 1200 1300 1400

Wall clock time [sec]

10−9

10−8

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(e) r = 40, p = 0.1

1800 2000 2200 2400 2600 2800 3000

Wall clock time [sec]

10−12

10−11

10−10

10−9

10−8

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

(f) r = 40, p = 0.5

Fig. 4   Results of NMF (problem (47)) by the TRF method

865

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

tables that the number of iterations performed within the time limit is small, say 3
or 4. It is because the method at each iteration computes a Jacobian explicitly and
solves a linear system, resulting in a high cost per iteration for large-scale problems.
Our method guarantees global convergence and repeats relatively low-cost iterations
without Jacobian computation, which also leads to a stable performance.

Figure 4 shows the results of the TRF method. Since this method can only han-
dle box constraints, the results only of problem (47) are presented. One marker cor-
responds to one instance, representing the elapsed time and the obtained objective
value.9 TRF takes more time to converge than the proposed method; in particular,
comparing Table 3(f) and Fig. 4f, we see that the elapsed time is about 1000 times
longer than ours. This result may be due to the difference in how TRF and ours han-
dle the constraint. When the optimal solution or a stationary point is at the boundary
of the constraint set, our method can reach the boundary in a finite number of itera-
tions. However, TRF does not, as it is an interior point method.

7.3.2 � Autoencoder with MNIST

Figure 5 shows the results of problem (48). The results of the GGO method are
omitted because the method explicitly computes the Jacobian, but it was infeasible
in this large-scale setting, where d = 96,104 and n = 728,000 . Among the existing
methods, the PG method converges the fastest, but the proposed method converges
about five times faster than PG. This result suggests that our method is also effective
for large-scale and highly nonlinear problems.

Proposed Proposed-NA Fan KYF Facchinei GGO PG

0 200 400 600 800 1000
Wall clock time [sec]

104

105

O
bj
ec
tiv

e
fu
nc
tio

n
va
lu
e

Fig. 5   Results of autoencoder with MNIST (problem (48))

9  We ran the TRF method for ten instances for each (r, p), but Fig. 4f has only nine markers because the
algorithm stopped with the error “SVD did not converge” for one instance.

866	 N. Marumo et al.

1 3

8 � Conclusion and future work

We proposed an LM method for solving constrained least-squares problems. Our
method finds an �-stationary point of (possibly) nonzero-residual problems after
O(�−2) computation, and also achieves local quadratic convergence for zero-residual
problems. There are few LM methods having both overall complexity bounds and
local quadratic convergence even for unconstrained problems; in fact, our investiga-
tion yielded only one such algorithm [6]. The key to our analysis is a simple update
rule for (λk) and the majorization lemma (Lemma 1).

We may be able to extend the convergence analysis shown in this paper to dif-
ferent problem settings. For example, it would be interesting to derive an overall
complexity bound of LM methods for a nonsmooth function F. It would be also
interesting to integrate a stochastic technique into our LM method against prob-
lems with F of a huge size. Finally, in recent years, studies on local convergence
analysis for non-zero residual problems are progressive [2, 6, 39]. It is important
to research our LM method further in this line.

Lemmas and proofs

Lemma on Lipschitz‑like properties

Recall that the line segment L(a, b) is defined in (8).

Lemma 9  Let X ⊆ ℝ
d be any (possibly nonconvex) set. For some constants 𝜎, L > 0 ,

consider the following two sets of conditions:

and

Then,

	 (i)	 (49a) ⟹ (50a),
	 (ii)	 (49b) ⟹ (50b),

(49a)‖J(x)‖ ≤ �, ∀x ∈ X,

(49b)‖J(y) − J(x)‖ ≤ L‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X,

(50a)‖F(y) − F(x)‖ ≤ 𝜎‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X,

(50b)
‖F(y) − F(x) − J(x)(y − x)‖ ≤

L

2
‖y − x‖2, ∀x, y ∈ X s.t. L(x, y) ⊆ X,

(50c)
‖∇f (y) − ∇f (x)‖ ≤ (𝜎2 + L‖F(x)‖)‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X.

867

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

	 (iii)	 (49a) and (49b) ⟹ (50c).

Proof  By applying the multivariate mean value theorem, i.e.,

we can easily obtain Lemma 9(i) and (ii). Lemma 9(iii) is obtained as follows:

The last inequality follows from (49a), (49b), and Lemma 9(i). 	� ◻

Remark 3  By replacing (F, J) with (f ,∇f) in Lemma 9(ii),

implies

Proof of Lemma 1

The proof requires the following lemma, which is useful for deriving the majori-
zation lemma for (general) MM-based algorithms under the assumption of Lip-
schitz continuity only on a sublevel set. We will use this lemma to prove Lemma
1 as well as Proposition 1.

Lemma 10  Let X ⊆ ℝ
d be any convex set. Fix a point xk ∈ X  , and a strictly con-

vex function m̃ ∶ ℝ
d
→ ℝ such that m̃(xk) = f (xk) and ∇m̃(xk) = ∇f (xk) . We consider

three subsets of X :

If

then R1 ⊆ R2 , and therefore R1 ⊆ R2 ⊆ R3.

F(y) − F(x) =
∫

1

0

J((1 − �)x + �y)(y − x) d�,

‖∇f (y) − ∇f (x)‖ = ‖J(y)⊤F(y) − J(x)⊤F(x)‖
≤ ‖J(y)⊤F(y) − J(y)⊤F(x)‖ + ‖J(y)⊤F(x) − J(x)⊤F(x)‖
≤ ‖J(y)‖‖F(y) − F(x)‖ + ‖J(y) − J(x)‖‖F(x)‖
≤ (𝜎2 + L‖F(x)‖)‖y − x‖.

‖∇f (y) − ∇f (x)‖ ≤ Lf‖y − x‖, ∀x, y ∈ X s.t. L(x, y) ⊆ X

�f (y) − f (x) − ⟨∇f (x), y − x⟩� ≤
Lf

2
‖y − x‖2, ∀x, y ∈ X s.t. L(x, y) ⊆ X.

(51)
R1 ∶= {x ∈ X | m̃(x) ≤ m̃(xk)},

R2 ∶= {x ∈ X |L(xk, x) ⊆ S(xk)},

R3 ∶= {x ∈ X | f (x) ≤ m̃(x)}.

(52)(R1 ∩R2) ⊆ R3,

868	 N. Marumo et al.

1 3

Proof  We fix x ∈ R1 arbitrarily and will show x ∈ R2 . This is obvious if x = xk , and
thus, let x ≠ xk below. Accordingly, we have

since

By the Taylor expansion

together with (53), there exists 𝜃1 > 0 such that

We will prove x ∈ R2 by contradiction; assume x ∉ R2 , i.e., there exists �2 ∈ [0, 1]
such that

Combining (55) and (54) with the intermediate value theorem yields that there exists
�3 ∈ (�1, �2) such that

 Note that (56b) is equivalent to (1 − �3)xk + �3x ∈ R2 . On the other hand, we also
have (1 − �3)xk + �3x ∈ R1 by the convexity of R1 and xk, x ∈ R1 . Thus, we have

by (52). Therefore, we obtain

which is a contradiction. 	� ◻

Now, we prove Lemma 1.

(53)⟨∇f (xk), x − xk⟩ < 0

⟨∇f (xk), x − xk⟩ = ⟨∇m̃(xk), x − xk⟩ (by∇m̃(xk) = ∇f (xk))

< m̃(x) − m̃(xk) (by the strictly convexity of m̃ and x ≠ xk)

≤ 0 (by x ∈ R1).

f ((1 − �)xk + �x) = f (xk) + �⟨∇f (xk), x − xk⟩ + o(�)

(54)f ((1 − 𝜃)xk + 𝜃x) < f (xk), for all 𝜃 ∈ (0, 𝜃1].

(55)f ((1 − 𝜃2)xk + 𝜃2x) > f (xk).

(56a)f ((1 − �)xk + �x) = f (xk), for � = �3

(56b)f ((1 − �)xk + �x) ≤ f (xk), for all � ∈ [0, �3].

(57)(1 − �3)xk + �3x ∈ R3

f (xk) = f ((1 − 𝜃3)xk + 𝜃3x) (by (56a))

≤ m̃((1 − 𝜃3)xk + 𝜃3x) (by (57))

< (1 − 𝜃3)m̃(xk) + 𝜃3m̃(x) (by the strictly convexity of m̃)

≤ m̃(xk) (by x ∈ R1)

= f (xk) (by the assumption on m̃),

869

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

Proof of Lemma 1  The model function mk
λ
 is strictly convex and satisfies

mk
λ
(xk) = f (xk) and ∇mk

λ
(xk) = ∇f (xk) . We use Lemma 10 with m̃ ∶= mk

λ
 . Note that

(11) and (12) correspond to x ∈ R1 and x ∈ R3 , respectively, where R1 and R3 are
defined in (51). Thus, by Lemma 10, it suffices to prove (52). We fix x ∈ R1 ∩R2
arbitrarily and will show x ∈ R3 . Let u ∶= x − xk . From the convexity of X  , x ∈ R2 ,
(9), and Lemma 9(ii), we have

From the inequality of arithmetic and geometric means, we have

Furthermore, by (2) and x ∈ R1 , we have

Using these inequalities, we obtain x ∈ R3 as follows:

	� ◻

The proof of Lemma 1 is a little complicated mainly because x and y in (9) are restricted
on the sublevel set S(xk) . If we assume the Lipschitz continuity of J on the convex set X as
in [66], Lemma 10 is unnecessary and the proof of Lemma 1 can be simplified.

Proposition on projected gradient methods

Proposition 1  Fix a point xk ∈ C . For some constant Lf > 0 , assume that

(58)‖F(x) − Fk − Jku‖ ≤
L

2
‖u‖2.

(59)λ

2
‖u‖2 + L2

2λ
‖u‖2‖Fk + Jku‖2 ≥ L‖u‖2‖Fk + Jku‖.

(60)‖Fk + Jku‖2 + λ‖u‖2 = 2mk
λ
(x) ≤ 2mk

λ
(xk) = 2f (xk) = ‖Fk‖2.

f (x) − mk
λ
(x) =

1

2
‖F(x)‖2 − mk

λ
(x)

≤
1

2

�
‖Fk + Jku‖ + ‖F(x) − Fk − Jku‖

�2

− mk
λ
(x)

≤
1

2

�
‖Fk + Jku‖ +

L

2
‖u‖2

�2

− mk
λ
(x) (by (58))

=
L2

8
‖u‖4 − λ

2
‖u‖2 + L

2
‖u‖2‖Fk + Jku‖ (by (2))

≤
L2

8
‖u‖4 − λ

4
‖u‖2 + L2

4λ
‖u‖2‖Fk + Jku‖2 (by (59))

≤
L2

8
‖u‖4 − λ

4
‖u‖2 + L2

4λ
‖u‖2

�
‖Fk‖2 − λ‖u‖2

�
(by (60))

= −
L2

8
‖u‖4 − 1

4λ
‖u‖2

�
λ2 − L2‖Fk‖2

�

≤ 0 (by (10)).

870	 N. Marumo et al.

1 3

Then, for � ≥ Lf ,

Proof  For � ≥ Lf  , we define

and use Lemma 10 with this function and X = C . Note that this m̃ is strictly con-
vex and satisfies that m̃(xk) = f (xk) and ∇m̃(xk) = ∇f (xk) . By (61), Remark 3, and
� ≥ Lf  , we have R2 ⊆ R3 , where R2 and R3 are defined in (51), and we there-
fore have (52). Thus, by Lemma 10, we obtain R1 ⊆ R2 ⊆ R3 , which yields
P
𝜂
(xk) = argminx∈C m̃(x) ∈ R1 ⊆ R2 ⊆ R3 . The first result (62) is equiva-

lent to P
�
(xk) ∈ R2 , and the second (63) is equivalent to P

�
(xk) ∈ R3 since

m̃(P
𝜂
(xk)) = f (xk) −D

𝜂
(xk) . 	� ◻

Proof of Lemma 3

To prove Lemma 3, we first show the following Lipschitz-like property on ∇f .

Lemma 11  Let Assumption 1 hold and define Lf by (20). Then, for � ≥ Lf  , we have

Proof  Fix a point x� ∈ C ∩ S(x0) arbitrarily. Since ‖F(x�)‖ ≤ ‖F(x0)‖ = ‖F0‖ ,
Assumption 1 and Lemma 9(iii) with X = C ∩ S(x�) imply

By Proposition 1 and (64), we have L(x�,P
𝜂
(x�)) ⊆ S(x�) for � ≥ Lf  . Therefore, by

using (64) again, we obtain

which is the desired result. 	� ◻

Now, we prove Lemma 3.

Proof of Lemma 3  Since

from the definitions of P
�
 and G

�
 in (18) and (19), we obtain

(61)‖∇f (y) − ∇f (x)‖ ≤ Lf‖y − x‖, ∀x, y ∈ C s.t. L(x, y) ⊆ S(xk).

(62)L(xk,P𝜂
(xk)) ⊆ S(xk),

(63)f (P
�
(xk)) − f (xk) ≤ −D

�
(xk).

m̃(x) ∶= f (xk) + ⟨∇f (xk), x − xk⟩ +
𝜂

2
‖x − xk‖2,

‖∇f (P
�
(x)) − ∇f (x)‖ ≤ �‖P

�
(x) − x‖, ∀x ∈ C ∩ S(x0).

(64)‖∇f (y) − ∇f (x)‖ ≤ Lf‖y − x‖, ∀x, y ∈ C s.t. L(x, y) ⊆ S(x�).

‖∇f (P
�
(x�)) − ∇f (x�)‖ ≤ Lf‖P�

(x�) − x�‖ ≤ �‖P
�
(x�) − x�‖,

(65)G
�
(x) = �(x − P

�
(x)) ∈ ∇f (x) + ��C(P�

(x))

871

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

	� ◻

Relaxing an assumption in Theorem 1(ii)

In order to compute an �-stationary point based on Theorem 1(ii), knowledge of
the value of 𝜂̄ is required. However, this requirement can be circumvented with a
slight modification of the algorithm. We show it in this section.

Let �k be the value of � when xk is obtained in Algorithm 1. As with the proof
of Theorem 1(ii), we can show that

for some k = O(�−2) . If (66) and �k+1 ≥ Lf hold, then P
�k+1

(xk) is an �-stationary
point by Lemma 3, but �k+1 ≥ Lf is not necessarily true. To address this issue, we
modify Algorithm 1 a little.

As can be seen from the proof of Lemma 3, even if 𝜂 < Lf  , the point P
�
(xk) is

an �-stationary point of problem (1) as long as ‖G
�
(xk)‖ ≤ �∕2 and the following

hold:

Thus, by updating � by � ← �in� until (67) is satisfied when xk is obtained in Algo-
rithm 1, we can guarantee that P

�k+1
(xk) is an �-stationary point for some k = O(�−2) .

Since (67) must hold for � ≥ Lf by Lemma 11, this modification of the algorithm
does not sacrifice Lemma 6 and other convergence guarantees. The important point
here is that we can check if (67) holds with no prior knowledge of constants (e.g.,
� , L, and Lf  ) of the problem. We have obtained the modified algorithm that does not
require the knowledge of the constants.

Acknowledgements  We thank the anonymous referees for their careful reading of our manuscript and
their helpful comments.

Funding  Open access funding provided by University of Tokyo. This work was supported by JSPS KAK-
ENHI Grant Numbers 20K19748 and 19H04069, and JST ERATO Grand Number JPMJER1903.

Code availability  The source code used in our numerical experiments is available on https://​github.​com/
n-​marumo/​const​rained-​lm.

min
g∈��C(P�

(x))
‖∇f (P

�
(x)) + g‖

≤ min
g∈��C(P�

(x))
‖∇f (x) + g‖ + ‖∇f (P

�
(x)) − ∇f (x)‖

≤ ‖G
�
(x)‖ + �‖P

�
(x) − x‖ (by (65) and Lemma 11)

= 2‖G
�
(x)‖ (by (19)).

(66)‖G
�k+1

(xk)‖ ≤ �∕2

(67)‖∇f (P
�
(xk)) − ∇f (xk)‖ ≤ �‖P

�
(xk) − xk‖.

https://github.com/n-marumo/constrained-lm
https://github.com/n-marumo/constrained-lm

872	 N. Marumo et al.

1 3

Declaration 

Competing interests  The authors have no competing interests to declare that are relevant to the content
of this article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Behling, R., Fischer, A.: A unified local convergence analysis of inexact constrained Levenberg–
Marquardt methods. Optim. Lett. 6(5), 927–940 (2012)

	 2.	 Behling, R., Gonçalves, D.S., Santos, S.A.: Local convergence analysis of the Levenberg–Marquardt
framework for nonzero-residue nonlinear least-squares problems under an error bound condition. J.
Optim. Theory Appl. 183(3), 1099–1122 (2019)

	 3.	 Bellavia, S., Morini, B.: Strong local convergence properties of adaptive regularized methods for
nonlinear least squares. IMA J. Numer. Anal. 35(2), 947–968 (2015)

	 4.	 Bellavia, S., Cartis, C., Gould, N.I., Morini, B., Toint, P.L.: Convergence of a regularized Euclidean
residual algorithm for nonlinear least-squares. SIAM J. Numer. Anal. 48(1), 1–29 (2010)

	 5.	 Bellavia, S., Gratton, S., Riccietti, E.: A Levenberg–Marquardt method for large nonlinear least-
squares problems with dynamic accuracy in functions and gradients. Numer. Math. 140(3), 791–825
(2018)

	 6.	 Bergou, E.H., Diouane, Y., Kungurtsev, V.: Convergence and complexity analysis of a Levenberg–
Marquardt algorithm for inverse problems. J. Optim. Theory Appl. 185(3), 927–944 (2020)

	 7.	 Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applica-
tions for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173
(2007)

	 8.	 Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimiza-
tion problems. IEEE Trans. Inf. Theory 59(6), 3466–3474 (2013)

	 9.	 Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX: composable transformations of
Python+NumPy programs (2018). http://​github.​com/​google/​jax

	10.	 Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient method for large-
scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999)

	11.	 Candes, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms.
IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015)

	12.	 Cartis, C., Gould, N.I., Toint, P.L.: On the evaluation complexity of composite function minimi-
zation with applications to nonconvex nonlinear programming. SIAM J. Optim. 21(4), 1721–1739
(2011)

	13.	 Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part I: motivation, convergence and numerical results. Math. Program. 127(2), 245–295
(2011)

	14.	 Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part II: worst-case function-and derivative-evaluation complexity. Math. Program. 130(2),
295–319 (2011)

	15.	 Cartis, C., Gould, N.I.M., Toint, P.L.: An adaptive cubic regularization algorithm for nonconvex
optimization with convex constraints and its function-evaluation complexity. IMA J. Numer. Anal.
32(4), 1662–1695 (2012)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://github.com/google/jax

873

1 3

Majorization‑minimization‑based Levenberg–Marquardt method…

	16.	 Cartis, C., Gould, N., Toint, P.L.: Strong evaluation complexity bounds for arbitrary-order optimiza-
tion of nonconvex nonsmooth composite functions. arXiv preprint arXiv:​2001.​10802 (2020)

	17.	 Chorowski, J., Zurada, J.M.: Learning understandable neural networks with nonnegative weight
constraints. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 62–69 (2014)

	18.	 Condat, L.: Fast projection onto the simplex and the l
1
 ball. Math. Program. 158(1), 575–585 (2016)

	19.	 Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact Levenberg–Mar-
quardt method under local error bound conditions. Optim. Methods Softw. 17(4), 605–626 (2002)

	20.	 Dirkse, S.P., Ferris, M.C.: MCPLIB: a collection of nonlinear mixed complementarity problems.
Optim. Methods Softw. 5(4), 319–345 (1995)

	21.	 Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and
smooth maps. Math. Program. 178(1–2), 503–558 (2019)

	22.	 Facchinei, F., Fischer, A., Herrich, M.: A family of Newton methods for nonsmooth constrained
systems with nonisolated solutions. Math. Methods Oper. Res. 77(3), 433–443 (2013)

	23.	 Fan, J.: A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations. J.
Comput. Math. 21, 625–636 (2003)

	24.	 Fan, J.: Convergence rate of the trust region method for nonlinear equations under local error bound
condition. Comput. Optim. Appl. 34(2), 215–227 (2006)

	25.	 Fan, J.: The modified Levenberg–Marquardt method for nonlinear equations with cubic conver-
gence. Math. Comput. 81(277), 447–466 (2012)

	26.	 Fan, J.: On the Levenberg–Marquardt methods for convex constrained nonlinear equations. J. Ind.
Manag. Optim. 9(1), 227–241 (2013)

	27.	 Fan, J.: Accelerating the modified Levenberg–Marquardt method for nonlinear equations. Math.
Comput. 83(287), 1173–1187 (2014)

	28.	 Fan, J., Lu, N.: On the modified trust region algorithm for nonlinear equations. Optim. Methods
Softw. 30(3), 478–491 (2015)

	29.	 Fan, J., Pan, J.: Inexact Levenberg–Marquardt method for nonlinear equations. Discrete Contin.
Dyn. Syst. Ser. B 4(4), 1223–1232 (2004)

	30.	 Fan, J., Pan, J.: Convergence properties of a self-adaptive Levenberg–Marquardt algorithm under
local error bound condition. Comput. Optim. Appl. 34(1), 47–62 (2006)

	31.	 Fan, J., Pan, J.: On the convergence rate of the inexact Levenberg–Marquardt method. J. Ind. Manag.
Optim. 7(1), 199–210 (2011)

	32.	 Fan, J., Pan, J.: An improved trust region algorithm for nonlinear equations. Comput. Optim. Appl.
48(1), 59–70 (2011)

	33.	 Fan, J., Yuan, Y.: On the convergence of a new Levenberg–Marquardt method. Technical Report
005, AMSS, Chinese Academy of Sciences (2001)

	34.	 Fan, J., Yuan, Y.: On the quadratic convergence of the Levenberg–Marquardt method without
nonsingularity assumption. Computing 74(1), 23–39 (2005)

	35.	 Fischer, A., Shukla, P., Wang, M.: On the inexactness level of robust Levenberg–Marquardt meth-
ods. Optimization 59(2), 273–287 (2010)

	36.	 Gonçalves, D.S., Gonçalves, M.L., Oliveira, F.R.: An inexact projected LM type algorithm for solv-
ing convex constrained nonlinear equations. J. Comput. Appl. Math. 391, 113421 (2021)

	37.	 Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
	38.	 Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding

cubic terms. Technical report, Technical report NA/12, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge (1981)

	39.	 Ipsen, I.C., Kelley, C., Pope, S.: Rank-deficient nonlinear least squares problems and subset selec-
tion. SIAM J. Numer. Anal. 49(3), 1244–1266 (2011)

	40.	 Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods with strong local con-
vergence properties for solving nonlinear equations with convex constraints. J. Comput. Appl. Math.
172(2), 375–397 (2004)

	41.	 Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order penalty methods for convex program-
ming. Math. Program. 138(1–2), 115–139 (2013)

	42.	 Lee, D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen, T., Dietterich,
T., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13. MIT Press, Cam-
bridge https://​proce​edings.​neuri​ps.​cc/​paper/​2000/​file/​f9d11​52547​c0bde​01830​b7e8b​d6002​4c-​Paper.​
pdf (2000)

	43.	 Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl.
Aathematics 2(2), 164–168 (1944)

http://arxiv.org/abs/2001.10802
https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf

874	 N. Marumo et al.

1 3

	44.	 Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex program-
ming. SIAM J. Math. Anal. 45(5), 3019–3033 (2013)

	45.	 Lin, Q., Xiao, L.: An adaptive accelerated proximal gradient method and its homotopy continuation
for sparse optimization. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Con-
ference on Machine Learning, voll. 32, pp. 73–81. PMLR. (2014)

	46.	 Luo, X., Zhou, M., Xia, Y., Zhu, Q.: An efficient non-negative matrix-factorization-based approach
to collaborative filtering for recommender systems. IEEE Trans. Ind. Inf. 10(2), 1273–1284 (2014)

	47.	 Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind.
Appl. Math. 11(2), 431–441 (1963)

	48.	 Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math.
Comput. 22(4), 333–361 (1987)

	49.	 Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, Massachusetts (2004)

	50.	 Nesterov, Y.: Modified Gauss–Newton scheme with worst case guarantees for global performance.
Optimisation Methods and Software 22(3), 469–483 (2007)

	51.	 Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–
161 (2013)

	52.	 Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer, Berlin (2018)
	53.	 Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance.

Math. Program. 108(1), 177–205 (2006)
	54.	 O’donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput.

Math. 15(3), 715–732 (2015)
	55.	 Osborne, M.R.: Nonlinear least squares—the Levenberg algorithm revisited. J. Aust. Math. Soc.

Ser. B. Appl. Math. 19(3), 343–357 (1976)
	56.	 Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput.

J. 3(3), 175–184 (1960)
	57.	 Ueda, K., Yamashita, N.: On a global complexity bound of the Levenberg–Marquardt method. J.

Optim. Theory Appl. 147(3), 443–453 (2010)
	58.	 Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J.,
Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ, Feng, Y., Moore,
E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris,
C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., vanMulbregt, P.: SciPy 1.0 Contributors. SciPy
1.0. Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020)

	59.	 Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans.
Knowl. Data Eng. 25(6), 1336–1353 (2012)

	60.	 Wiltschko, A., Johnson, M.: The Autodiff Cookbook—JAX documentation. https://​jax.​readt​hedocs.​
io/​en/​latest/​noteb​ooks/​autod​iff_​cookb​ook.​html

	61.	 Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Operation, and Control. Wiley, New
York (2013)

	62.	 Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. In:
Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis, pp. 239–249. Springer, Vienna (2001)

	63.	 Zhang, H., Zhou, Y., Liang, Y., Chi, Y.: A nonconvex approach for phase retrieval: reshaped
Wirtinger flow and incremental algorithms. J. Mach. Learn. Res. 18(1), 5164–5198 (2017)

	64.	 Zhang, J.-L., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper.
Res. 58(2), 283–298 (2003)

	65.	 Zhang, S., Wang, W., Ford, J., Makedon, F.: Learning from incomplete ratings using non-negative
matrix factorization. In Proceedings of the 2006 SIAM International Conference on Data Mining,
pp. 549–553. SIAM (2006)

	66.	 Zhao, R., Fan, J.: Global complexity bound of the Levenberg–Marquardt method. Optim. Methods
Softw. 31, 805–814 (2016)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

	Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Oracle model for overall complexity bounds
	1.3 Paper organization
	1.4 Notation

	2 Comparison with related works
	2.1 General methods
	2.2 Specialized methods for least squares
	2.2.1 Subproblems
	2.2.2 Complexity for finding a stationary point
	2.2.3 Local superlinear convergence

	3 Majorization lemma and proposed method
	3.1 LM method as majorization-minimization
	3.2 Proposed LM method

	4 Iteration complexity and overall complexity
	4.1 Assumptions
	4.2 Approximate stationary point
	4.3 Preliminary lemmas
	4.4 Iteration complexity and overall complexity

	5 Local quadratic convergence
	5.1 Assumptions
	5.2 Fundamental inequalities for analysis
	5.3 Preliminary lemma
	5.4 Local quadratic convergence

	6 Practical variant of the proposed method
	6.1 Generalized version of Algorithm 1
	6.2 Proposed method with an accelerated projected gradient

	7 Numerical experiments
	7.1 Problem setting
	7.1.1 Compressed sensing with quadratic measurement
	7.1.2 Nonnegative matrix factorization with missing values
	7.1.3 Autoencoder with MNIST dataset

	7.2 Algorithms and implementation
	7.3 Results
	7.3.1 Compressed sensing and NMF
	7.3.2 Autoencoder with MNIST

	8 Conclusion and future work
	Lemmas and proofs
	Lemma on Lipschitz-like properties
	Proof of Lemma 1
	Proposition on projected gradient methods
	Proof of Lemma 3
	Relaxing an assumption in Theorem 1(ii)

	Acknowledgements
	References

