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A long-standing open problem in quantum information theory is to find the classical capacity of an

optical communication link, modeled as a Gaussian bosonic channel. It has been conjectured that this

capacity is achieved by a random coding of coherent states using an isotropic Gaussian distribution in

phase space. We show that proving a Gaussian minimum entropy conjecture for a quantum-limited

amplifier is actually sufficient to confirm this capacity conjecture, and we provide a strong argument

towards this proof by exploiting a connection between quantum entanglement and majorization theory.
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During the 1940s, Shannon developed a mathematical

theory of the ultimate limits on achievable data transmis-

sion rates over a communication channel [1], a work that

has been central to the advent of our information era. Since

information is necessarily encoded in a physical system

and since quantum mechanics is currently our best theory

of the physical world, it is natural to seek the ultimate

limits on communication set by quantum mechanics. Since

the 1970s, scientists started investigating the improve-

ments that quantum technologies may bring to optical

communication systems; see, e.g., [2–4]. Because no

proper quantum generalization of Shannon’s theory existed

at that time, the usual approach was to compare the per-

formance of different encoding and decoding schemes for a

given optical channel. This provides lower bounds but does

not give the ultimate capacity nor the optimal quantum

encoding and decoding techniques.

In the 1990s, Holevo and Schumacher andWestmoreland

[5,6] set the basis for a quantum generalization of

Shannon’s communication theory. Consider a quantum

channel M and a source A ¼ fpa; �ag of independent

and identically distributed (i.i.d.) symbols. For each use of

the channel M, Alice sends the quantum state �a with

probability pa, encoding the letter a. One defines the

Holevo information

�ðA;MÞ ¼ S½Mð�Þ� �
X

a

paS½Mð�aÞ�; (1)

where � ¼ P

apa�a and Sð�Þ is the von Neumann entropy

of the quantum state � [7]. The Holevo information � gives

the highest achievable communication rate over the channel

M for a fixed source A, which may require a collective

quantum measurement over multiple uses of the channel in

order to achieve the optimal decoding operation. By max-

imizing Eq. (1) over the ensemble of i.i.d. sourcesA under

an energy constraint, we obtain the Holevo capacity

CHðMÞ ¼ max
A

�ðA;MÞ: (2)

For some highly symmetric channels, such as the qubit

depolarizing channel, the Holevo capacity actually gives

the ultimate channel capacity. For a long time, it was widely

believed that this situation prevails for all channels; that is, it

was assumed that input entanglement could not improve the

classical communication rate over a quantum channel.

However, this was disproved in Ref. [8], so that the best

definition of the classical capacity that we currently have

requires the regularization

CðMÞ ¼ lim
n!1

1

n
CHðM�nÞ; (3)

whereM�n stands for n uses of the channel.

An important step towards the elucidation of the classi-

cal capacity of an optical quantum memoryless channel

was made in Ref. [9], where the authors showed thatCðMÞ
of a pure-loss channel—a good (but idealized) approxima-

tion of an optical fiber—is achieved by a single-use ran-

dom coding of coherent states using an isotropic Gaussian

distribution. It had long been conjectured that such an

encoding achieves CðMÞ of the whole class of optical

channels called single-mode phase-insensitive Gaussian

bosonic channels [4], including noisy optical fibers and

amplifiers. Actually, proving a slightly stronger result

known as the minimum output-entropy conjecture, namely,

that coherent states minimize the output entropy of single-

mode phase-insensitive channels, would be sufficient to

prove this conjecture on the capacity of such channels [10].

Unfortunately, both conjectures have escaped a proof for

all phase-insensitive channels but the pure-loss one.

In this Letter, we attempt to prove the minimum output-

entropy conjecture for a single use of a single-mode

phase-insensitive Gaussian bosonic channel M, which is

believed to capture the hard part of the conjecture for
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multiple uses of the channel. We show, by using a decom-

position of any phase-insensitive channel into a pure-loss

channel and a quantum-limited amplifier, that solving the

conjecture for a quantum-limited amplifier is sufficient.

This opens a novel way of attacking the conjecture, using

the Stinespring representation of an amplifier channel as a

two-mode squeezer, and exploiting the connection

between entanglement and majorization theory.

Quantum model of optical channels.—Most common

quantum optical single-mode channels can be modeled as

a single-mode Gaussian bosonic channel. It is a trace-

preserving completely positive map fully characterized

by the action on the Weyl operators of two 2� 2 real

matrices, X and Y [11–13]. An intuitive understanding of

X and Y is given by the action of the channel on the mean

vector d and covariance matrix � of the input state:

d ! Xd; � ! X�XT þ Y: (4)

For the map to be completely positive, X and Y must

satisfy [14]

Y � 0; detY � ðdetX � 1Þ2; (5)

where the variance of the vacuum quadratures was normal-

ized to 1 [11]. The map is called quantum-limited when the

second inequality in Eq. (5) is saturated.

Phase-insensitive optical channels, such as optical fibers

or amplifiers [4], correspond to X ¼ diagð ffiffiffi

x
p

;
ffiffiffi

x
p Þ and Y ¼

diagðy; yÞ, with x being either the attenuation 0 � x � 1 or
the amplification 1 � x of the channel and y the added

noise variance. By using the composition rule of Gaussian

bosonic channels [14], it is easy to show that every phase-

insensitive channel M is indistinguishable from the con-

catenation of a pure-loss channel L of transmissivity T
with a quantum-limited amplifier A of gain G; see Fig. 1.

The parameters T and G must satisfy the relations x ¼ TG
and y ¼ Gð1� TÞ þ ðG� 1Þ in order to guarantee M ¼
A �L . Three limiting cases are of particular interest:

(i) the pure-loss channel, corresponding to G ¼ 1 and 0 �
T � 1, having a quantum-limited noise of y ¼ 1� T;
(ii) the quantum-limited amplifier [4] corresponding to

T ¼ 1 and G � 1, with noise y ¼ G� 1 resulting from

spontaneous emission during the amplification process;

(iii) the additive classical noise channel, corresponding to

x ¼ TG ¼ 1 and added thermal noise y ¼ 2ðG� 1Þ.
Reduction of the minimum entropy conjecture.—As

stated earlier, our ultimate goal is to address the following

conjecture.

Conjecture C1.—Coherent input states minimize the

output entropy of any phase-insensitive Gaussian bosonic

channel M.

Three simplifications can be made at this point. First,

due to the concavity of the von Neumann entropy, the

minimization can be reduced to the set of pure input states.

Second, applying a displacement Dð�Þ at the input of the

channel has the same effect as applying Dð ffiffiffi

x
p

�Þ at

the output, i.e., M �Dð�Þ ¼ Dð ffiffiffi

x
p

�Þ �M. So, because

the von Neumann entropy is invariant under unitary evo-

lution, we can restrict our search to zero-mean input states,

that is, states j’i satisfying h’jaj’i ¼ 0, where a is the

modal annihilation operator. Finally, by exploiting the

decomposition M ¼ A �L, it is easy to see, by using

the concavity of the von Neumann entropy, that the mini-

mum output entropy of channel M is lower-bounded by

that of channel A, i.e., min�S½Mð�Þ� � minc S½Aðc Þ�
[15]. Since the vacuum state is invariant under L, we

conclude that proving that vacuum minimizes the output

entropy of channelA implies that vacuum also minimizes

the output entropy of channel M.

The previous straightforward derivation shows that con-

jecture C1 is strictly equivalent to the following one.

Conjecture C2.—Among all zero-mean pure input

states, the vacuum state minimizes the output entropy of

the quantum-limited amplifier A.

Entanglement andmajorization theory.—The Stinespring

dilation of a quantum-limited amplifier of gain G is a two-

mode squeezer of parameter r, with G ¼ cosh2r, which
effects the unitary transformation (see Fig. 1)

UðrÞ ¼ exp½rðaAaE � ayAa
y
EÞ=2�; (6)

between the input mode A and an environmental mode E,

where ayZ and aZ are the creation and annihilation opera-

tors, respectively, of mode Z. Because the entanglement

E½jc iAE� of a pure bipartite state jc iAE is uniquely quan-

tified by the von Neumann entropy of its reduced density

operator �A ¼ TrE½jc iAEhc j�, i.e., E½jc iAE� ¼ Sð�AÞ, we
can equivalently rephrase conjecture C2 as follows.

Conjecture C3.—Among all input states j�iAE � j’i �
j0i of a two-mode squeezer with j’i having a zero mean,

the vacuum state j0iAE � j0i � j0i minimizes the output

entanglement.

FIG. 1 (color online). Any phase-insensitive Gaussian bosonic

channel M is indistinguishable from a composed channel

A �L, where L is a pure-loss channel and A a quantum-

limited amplifier. The Stinespring dilation ofL is a beam splitter

of transmissivity T, while the amplifier A of gain G becomes a

two-mode squeezer of parameter r (G ¼ cosh2r) in which the

input mode A interacts with a vacuum environmental mode E.
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In the remainder of this Letter, we exploit the connection

between entanglement andmajorization theory to attack the

proof of C3. Majorization theory provides a partial order

relation between probability distributions [15,16]. One says

that a probability distribution p ¼ ðp0; p1; . . .ÞT majorizes

another one q (denoted p 	 q) if and only if there exists a

column-stochastic matrix D (a square matrix whose

columns sum to 1) such that q ¼ Dp, showing that q is

more disordered thanp. It implies that all concave functions

of a distribution,most notably the entropy, can only increase

along such a ‘‘disorder-enhancing’’ transformation. From

an operational point of view, an interesting way of proving

majorization is by checking the relations

X

m

n¼0

p#
n �

X

m

n¼0

q#n 8 m 2 N; (7)

where p# and q
# are the original vectors with their compo-

nents rearranged in decreasing order. The notion of majo-

rization can be extended to entangled states [17]: A bipartite

pure state j�i majorizes another one jc i (denoted j�i 	
jc i) if and only if the Schmidt coefficients of j�imajorize

those of jc i. This guarantees the existence of a determinis-

tic protocol involving only ‘‘local operations and classical

communication’’ (LOCC) that maps jc i into j�i, ensuring
the relation E½jc i� � E½j�i�. We are now ready to intro-

duce the following stronger conjecture (it implies C3).

Conjecture C4.—For any zero-mean state j’i, the state
UðrÞðj’i � j0iÞ is majorized by the two-mode squeezed

vacuum state UðrÞðj0i � j0iÞ.
Infinitesimal two-mode squeezer.—Before addressing

the general case, let us prove C4 for an infinitesimal two-

mode squeezer by expanding the unitary transformation (6)

to the first order in the squeezing parameter r:

UðrÞ ¼ I þ r

2
ðaAaE � ayAa

y
EÞ þOðr2Þ; (8)

where I is the identity operator. By defining the state

j’?i � �ayAj’i=ð1þ �n’Þ1=2, where �n’ ¼ h’jayAaAj’i is
the mean photon number of the input state j’i, the output
state becomes

j�outiAE 

ffiffiffiffiffiffi

�’

q

j’i � j0i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �’

q

j’?i � j1i; (9)

with �’ ¼ 1=½1þ r2ð �n’ þ 1Þ=4�. For any physical state

j’i with finite energy �n’, one can choose r small enough

so that the condition r �n1=2’ � 1 is satisfied and the ap-

proximation (9) holds. The key point is to realize that,

since the input state j’i has a zero mean, the states j’?i
and j’i are orthogonal, so that the state (9) is already in

Schmidt form. Therefore, if j’i and j�i are two input

states such that �n’ < �n�, then �’ > ��, implying that

UðrÞðj’i � j0iÞ 	 UðrÞðj�i � j0iÞ as a result of Eq. (7).

In other words, any output state is majorized by the states

having a lower mean input photon number. Finally, since

the vacuum state has the minimum mean photon number

( �n’ ¼ 0), this majorization relation proves conjecture C4

for infinitesimal two-mode squeezers.

Majorization relations in a two-mode squeezer.—In

order to address conjecture C4 for any r, let us consider
the number-state expansion of an arbitrary input state

j’i ¼ P1
k¼0 ckjki, which leads to the output state

UðrÞðj’i � j0iÞ ¼
X

1

k¼0

ckj�ðkÞ
� i; (10)

where � ¼ tanhr and j�ðkÞ
� i stands for the output state

corresponding to an input Fock state j’i ¼ jki. As shown
in Ref. [15], we have

j�ðkÞ
� i ¼

X

1

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðkÞ
n ð�Þ

q

jnþ ki � jni; (11)

with Schmidt coefficients

pðkÞ
n ð�Þ ¼ ð1� �2Þkþ1�2n

nþ k

n

 !

: (12)

We have been able to prove two chains of majorization

relations by considering either different Fock states jki at
the input (for a fixed squeezing parameter r) or different
values of r (for a fixed input Fock state jki). First, when
restricting to Fock states jki, we can prove that

j�ðkÞ
� i 	 j�ðkþ1Þ

� i; (13)

since there exists a column-stochastic matrix

Dnm ¼ ð1� �2Þ�2ðn�mÞHðn�mÞ; (14)

such that p
ðkþ1Þð�Þ ¼ Dp

ðkÞð�Þ, where HðxÞ is the

Heaviside step function defined as HðxÞ ¼ 0 for x < 0
and HðxÞ ¼ 1 for x � 0. The details of the proof are

provided in Ref. [15], where we also give the explicit

form of an LOCC protocol that deterministically maps

j�ðkþ1Þ
� i into j�ðkÞ

� i. Iterating this procedure, we can easily

prove that j�ðkÞ
� i 	 j�ðk0Þ

� i, 8 k0 � k, for which we also

give the corresponding column-stochastic matrix and

deterministic LOCC protocol.

For our matters here, the central consequence is that

j�ð0Þ
� i 	 j�ðkÞ

� i, 8 k � 0; that is, we have proved conjec-

ture C4 for the restricted, but complete, set of input Fock

states. Remarkably, this would be sufficient to prove the

single-use minimum entropy conjecture if it could be

shown that the output-entropy minimizing input state is

isotropic, i.e., its Wigner distribution is rotationally invari-

ant. This is because the Fock states are the only isotropic,

zero-mean pure states.

Second, given an input Fock state jki, one can show that

there exists a majorization relation in the direction of

decreasing squeezing parameter, that is,

j�ðkÞ
�0 i 	 j�ðkÞ

� i 8 �0 < �; (15)

since one can build [15] a column-stochastic matrix
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RðkÞ
nm ¼ mþ k

m

 !�1�1� �2

1� �02

�

Hðn�mÞ

� ½Lðk;mÞ
n�m�2 � Lðk;mþ1Þ

n�m�1�
02��2ðn�m�1Þ; (16)

with

Lðk;nÞ
m ¼ n

nþ k
k

� �

mþ k
k

� �

�0�2nBð�02; n; 1þ kÞ; (17)

and Bðz; a; bÞ ¼ R

z
0 dxx

a�1ð1� xÞb�1 being the incom-

plete beta function, such that pðkÞð�Þ ¼ RðkÞð�; �0ÞpðkÞð�0Þ.
In Ref. [15], we give a deterministic LOCC protocol

performing the transformation j�ðkÞ
� i ! j�ðkÞ

�0 i.
In Fig. 2, we summarize the two chains of majorization

relations and their implications on the output entangle-

ment. From this, as well as the case of the infinitesimal

two-mode squeezer, it is tempting to conclude that

�n’ < �n� always implies UðrÞðj’i � j0iÞ 	 UðrÞ�
ðj�i � j0iÞ. However, we have numerically observed that

this does not hold in general, which probably reflects the

difficulty of proving the conjecture. As a concrete example,

we note that the state UðrÞ½ð
ffiffiffiffiffiffiffi

0:4
p

j1i þ
ffiffiffiffiffiffiffi

0:6
p

j2iÞ � j0i�
has �n ¼ 1:6 mean input photons but is less entangled for

r * 0:75 than j�ð1Þ
� i. Nevertheless, our numerical inves-

tigations have shown that, for an arbitrary input state j’i,
the output states corresponding to different squeezing

parameters satisfy the majorization relation Uðr0Þ�
ðj’i � j0iÞ 	 UðrÞðj’i � j0iÞ for r0 < r. Furthermore, we

have numerically checked that, for a fixed r, the majoriza-

tion relation UðrÞðj0i � j0iÞ 	 UðrÞðj’i � j0iÞ is satisfied

by tens of thousands of random superpositions of the first

21 Fock states, which strongly suggests that conjecture C4

holds.

Conclusion.—Using the decomposition of phase-

insensitive Gaussian bosonic channels into a pure-loss

channel and a quantum-limited amplifier, we have shown

that proving a reduced conjecture for the quantum-limited

amplifier is sufficient to prove the single-use minimum

entropy conjecture. By using Stinespring’s theorem, this

boils down to proving that the vacuum minimizes the out-

put entanglement of a two-mode squeezer. Then, using the

connection between entanglement and majorization theory,

we have provided a partial proof of this conjecture for a

special class of input states, namely, photon number states,

as well as a full solution for the infinitesimal channel. To

prove the conjecture in general, we are left with the (pos-

sibly simpler) task of showing that the output-entropy

minimizing input state is isotropic in phase space; that is,

no symmetry breaking occurs. Thus, apart from reinforcing

the conjecture even further, we believe that our analysis

offers a new possible approach to its proof.
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