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Abstract: In this paper,we consider the definition of "useful" Csiszár divergence and "useful" Zipf-Mandelbrot

law associated with the real utility distribution to give the results for majorization inequalities by using

monotonic sequences.We obtain the equivalent statements between continuous convex functions and Green

functions via majorization inequalities, "useful" Csiszár functional and "useful" Zipf-Mandelbrot law. By

considering "useful" Csiszár divergence in the integral case, we give the results for integral majorization

inequality. Towards the end, some applications are given.
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1 Introduction and Preliminaries

Zipf’s law [1-3] and the power laws in general [4-6] have and continue to attract considerable attention in a

wide variety of disciplines from astronomy to demographics to software structure to economics to zoology,

and even to warfare [7]. Typically one is dealing with integer-valued observables (number of objects, people,

cities, words, animals, corpses), with n ∈ {1, 2, 3, ...}. As given in [8], sometimes the range of values is

allowed to be infinite (at least in principle), sometimes a hard upper bound N is fixed (e.g., total population

if one is interested in subdividing a fixed population into sub-classes). Particularly interesting probability

distributions are the probability laws of the form:

● Zipf’s law: pn ∝ 1/n;
● power laws: pn ∝ 1/nz;
● hybrid geometric/power laws: pn ∝ wn/nz.
Distance or divergence measures are of key importance in different fields like theoretical and applied sta-

tistical inference and data processing problems such as estimation, detection, classification, compression,

recognition, indexation, diagnosis and model selection etc. Traditionally, the information conveyed by

observing X is measured by the entropy which is defined as (see [9, p.111])

H(p) ∶= n

∑
i=1

pi log2 1/pi ,
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and is associated with the distribution p, pi > 0 (1 ≤ i ≤ n), where∑n
i=1 pi = 1. A generalization of this is to

attach a utility qi > 0 to the outcome xi (1 ≤ i ≤ n) and speak of the "useful" information measure

H(p;q) ∶= n

∑
i=1

qipi log2 1/pi ,
which is associated with the utility distribution q = (q1, ..., qn).

Bhaker and Hooda [10] (see also [9, p.112]) introduced the measures

E(p;q) ∶= ∑n
k=1 qkpk log2 1/pk
∑n

k=1 qkpk
(1)

and

Eα(p;q) ∶= 1

1 − α
log2

∑n
k=1 qkp

α

k

∑n
k=1 qkpk

, 0 < α ≠ 1, (2)

which have a number of useful properties. It is readily verified that these alternations leave intact the property

that (2) reduces to (1) when α → 1. Also, if u ≡ 1 so that there are effectively no utilities, (1) and (2) reduce to

Renyi’s entropies of order 1 and α, respectively.

Csiszár introduced the functional in [11] and later discussed it in [12]. Here, we consider "useful" Csiszár

divergence (see [13, p.3], [9, 14, 15]):

Definition 1.1 ("Useful" Csiszár divergence). Assume J ⊂ R be an interval, and let f ∶ J → R be a function

with distribution p ∶= (p1, ..., pn), associated with the utility distribution u ∶= (u1, ..., un), where pi , ui ∈ R for

1 ≤ i ≤ n, and q ∶= (q1, ..., qn) ∈ ]0,∞[n be such that
pi

qi
∈ J, i = 1, ..., n, (3)

then we denote the "useful" Csiszár divergence

If (p, q,u) ∶= n

∑
i=1

uiqi f (pi
qi
) . (4)

Remark 1.2. One can easily seen that if we substitute u = 1, then (4) becomes

If (p, q, 1) ∶= If (p, q) = n

∑
i=1

qi f (pi
qi
) .

One can see the various results in information theory in [3, 16, 17].

The following theorem is a generalization of the Classical Majorization Theorem known as Weighted

Majorization Theorem and was proved by Fuchs in [19] (see also [20], [21, p.323]):

Theorem 1.3 (Weighted Majorization Theorem). Let x = (x1, ..., xn) , y = (y1, ..., yn) be two decreasing real
n-tuples such that xi, yi ∈ J for i = 1, ..., n. Letw = (w1, ...,wn) be a real n-tuple such that

j

∑
i=1

wi yi ≤
j

∑
i=1

wi xi , (5)

for j = 1, 2, ..., n − 1 and
n

∑
i=1

wi yi =
n

∑
i=1

wi xi . (6)

Then for every continuous convex function f ∶ J → R, we have the following inequality

n

∑
i=1

wi f (yi) ≤ n

∑
i=1

wi f (xi) . (7)
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The following theorem is valid ([22, p.32]):

Theorem 1.4. Let f ∶ J → R be a continuous convex function on an interval J,w be a positive n-tuple and x, y

∈ Jn satisfying
k

∑
i=1

wi yi ≤
k

∑
i=1

wi xi for k = 1, ..., n − 1, (8)

and
n

∑
i=1

wi yi =
n

∑
i=1

wi xi . (9)

(a) If y is a decreasing n-tuple, then
n

∑
i=1

wi f (yi) ≤ n

∑
i=1

wi f (xi) . (10)

(b) If x is an increasing n-tuple, then
n

∑
i=1

wi f (xi) ≤ n

∑
i=1

wi f (yi) . (11)

If f is strictly convex and x ≠ y, then (10) and (11) are strict.
One can see the various generalizations of the majorization inequality and bounds for Zipf-Mandelbrot

entropy in [23-25].

BenoitMandelbrot in [26] gave generalization of Zipf’s law, nowknown as the Zipf-Mandelbrot lawwhich

gave improvement in account for the low-rank words in corpus where k < 100 [27]:

f(k) = C(k + q)s ,
and when q = 0, we get Zipf’s law.

For n ∈ N, q ≥ 0, s > 0, k ∈ {1, 2, ..., n}, in a more clear form, the Zipf-Mandelbrot law (probability mass

function) is defined with

f (k, n, q, s) ∶= 1/(k + q)s
Hn,q,s

, where Hn,q,s ∶=

n

∑
i=1

1(i + q)s ,
n ∈ N, q ≥ 0, s > 0, k ∈ {1, 2, ..., n}.

Application of the Zipf-Mandelbrot law can also be found in linguistics [27], information sciences [28, 29]

and ecological field studies [30].

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random

variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less

than or equal to x and we often denote CDF as the following ratio:

CDF ∶=
Hk,t,s

Hn,t,s
. (12)

The cumulative distribution function is an important application of majorization.

We consider the following definition of "useful" Zipf-Mandelbrot law (see [9, 11, 12, 14, 15]):

Definition 1.5 ("Useful" Zipf-Mandelbrotl law). Assume J ⊂ R be an interval, and f ∶ J → R be a function with

n ∈ {1, 2, 3, ...}, t1 ≥ 0. Let also distribution q i > 0 and associated with the utility distribution ui ∈ R for(i = 1, ..., n) such that
1

qi(i + t1)s1Hn,t1 ,s1

∈ J, i = 1, ..., n, (13)

then we denote "useful" Zipf-Mandelbrot law as

If (i, n, t1, s1, q,u) ∶= n

∑
i=1

uiqi f ( 1

q i(i + t1)s1Hn,t1 ,s1

) .
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Remark 1.6. One can easily seen that for u = 1, then

If (i, n, t1, s1, q, 1) = If (i, n, t1, s1, q) ∶= n

∑
i=1

qi f ( 1

q i(i + t1)s1Hn,t1 ,s1

) .
If we substitute qi =

1
(i+t3)

s3Hn,t3 ,s3

, then

If (i, n, t1, t3, s1, s3) ∶= n

∑
i=1

1(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t1)s1Hn,t1 ,s1

) .
This paper is oragnised as follows. In section 2, we give the results as the connection between useful Csisár

divergence, useful Zipf-Mandelbrot law and majorization inequality for one monotonic sequence or both of

them. We obtain some corollaries for our obtained results. In section 3, we present the equivalent statements

between continuous convex functions and defined Green functions. In section 4, we give the results for

integral majorization inequality for considering the integral form of useful Csisár divergence. Finally, in

section 5 we give some applications for obtained results.

2 Main results

Assume p and q be n-tuples such that qi > 0 (i = 1, ..., n) and define
p

q
∶= (p1

q1
,
p2

q2
, ...,

pn

qn
) .

We start with the following theoremwhich provides the connection between "useful" Csiszár divergence and

weighted majorization as one sequence is monotonic:

Theorem 2.1. Assume J ⊂ R be an interval, f ∶ J → R be a continuous convex function, pi, ri (i = 1, ..., n) be
real numbers and qi , ui (i = 1, ..., n) be positive real numbers such that

k

∑
i=1

uiri ≤
k

∑
i=1

uipi for k = 1, ..., n − 1, (14)

and
n

∑
i=1

uiri =
n

∑
i=1

uipi , (15)

with pi
qi
,

ri
qi
∈ J (i = 1, ..., n).

(a) If r
q
is decreasing, then

If (r, q,u) ≤ If (p, q,u) . (16)

(b) If p

q
is increasing, then

If (r, q,u) ≥ If (p, q,u) . (17)

If f is a continuous concave function, then the reverse inequalities hold in (16) and (17).

Proof. (a): We use Theorem 1.4 (a) with substitutions xi ∶=
pi
qi
, yi ∶=

ri
qi
, wi = uiqi as qi > 0, (i = 1, ..., n) then

we get (16).

We can prove part (b) with the similar substitutions in Theorem 1.4 (b).

We present the following theorem as the connection between "useful" Csiszár divergence and weighted

majorization theorem as both sequences are decreasing:

Theorem 2.2. Assume J ⊂ R be an interval, f ∶ J → R be a continuous convex function, pi, ri, ui (i = 1, ..., n)
be real numbers and qi (i = 1, ..., n) be positive real numbers such that p

q
and r

q
be decreasing satisfying (14)

and (15) with pi
qi
,

ri
qi
∈ J (i = 1, ..., n), then

If (r, q,u) ≤ If (p, q,u) . (18)
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Proof. We use Theorem 1.3 with substitutions xi ∶=
pi
qi
, yi ∶=

ri
qi
and wi = uiqi as qi > 0 (i = 1, ..., n) then we

get (18).

The following two theorem gives the connection between "useful" Zipf-Mandelbrot law and weighted ma-

jorization inequality:

Theorem 2.3. Assume J ⊂ R be an interval, f ∶ J → R be a continuous convex function with ui > 0, n ∈{1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying
k

∑
i=1

ui(i + t2)s2 ≤ Hn,t2 ,s2

Hn,t1 ,s1

k

∑
i=1

ui(i + t1)s1 , k = 1, ..., n − 1, (19)

and

n

∑
i=1

ui(i + t2)s2 = Hn,t2 ,s2

Hn,t1 ,s1

n

∑
i=1

ui(i + t1)s1 , (20)

and also let qi > 0, (i = 1, ..., n) with
1

qi(i + t1)s1Hn,t1 ,s1

,
1

qi(i + t2)s2Hn,t2 ,s2

∈ J (i = 1, ..., n).
(a) If

(i+t2)
s2

(i+1+t2)
s2
≤

qi+1
qi
(i = 1, ..., n), then

If (i, n, t2, s2, q,u) ∶= n

∑
i=1

uiqi f ( 1

qi(i + t2)s2Hn,t2 ,s2

)
≤ If (i, n, t1, s1, q,u) ∶= n

∑
i=1

uiqi f ( 1

qi(i + t1)s1Hn,t1 ,s1

) . (21)

(b) If
(i+t1)

s1

(i+1+t1)
s1
≥

qi+1
qi
(i = 1, ..., n), then

n

∑
i=1

uiqi f ( 1

qi(i + t2)s2Hn,t2 ,s2

)
≥

n

∑
i=1

uiqi f ( 1

qi(i + t1)s1Hn,t1 ,s1

) . (22)

If f is continuous concave function, then the reverse inequalities hold in (21) and (22).

Proof. (a) Let us consider that pi ∶=
1

(i+t1)
s1Hn,t1 ,s1

and ri ∶=
1

(i+t2)
s2Hn,t2 ,s2

, then

k

∑
i=1

uipi ∶=
k

∑
i=1

ui(i + t1)s1Hn,t1 ,s1

=
1

Hn,t1 ,s1

k

∑
i=1

ui(i + t1)s1 , k = 1, ..., n − 1,
and similarly

k

∑
i=1

uiri ∶=
1

Hn,t2 ,s2

k

∑
i=1

ui(i + t2)s2 , k = 1, ..., n − 1,
leading to

k

∑
i=1

uiri ≤
k

∑
i=1

uipi ⇔

k

∑
i=1

ui(i + t2)s2 ≤ Hn,t2 ,s2

Hn,t1 ,s1

k

∑
i=1

ui(i + t1)s1 , k = 1, ..., n − 1.

One can see easily that 1
(i+t1)

s1Hn,t1 ,s1

is decreasing over i = 1, ..., n and similarly ri too. Now, we find the

behaviour of r
q
for qi > 0 (i = 1, 2, ..., n), take

ri

qi
=

1

qi(i + t2)s2Hn,t2 ,s2

and
ri+1

qi+1
=

1

qi+1(i + 1 + t2)s2Hn,t2 ,s2

,
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ri+1

qi+1
−
ri

qi
=

1

Hn,t2 ,s2

[ 1

qi+1(i + 1 + t2)s2 − 1

qi(i + t2)s2 ] ≤ 0,

⇔

(i + t2)s2(i + 1 + t2)s2 ≤ qi+1

qi
,

which shows that r
q
is decreasing. So, all the assumptions of Theorem 2.1 (a) are true, then by using (16) we

get (21).

(b) If we switch the role of ri to pi in the first part (a), then by using (17) in Theorem 2.1 (b) we get (22).

Theorem 2.4. Assume J ⊂ R be an interval, f ∶ J → R be a continuous convex function with ui ∈ R, n ∈{1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0, such that satisfying (19), (20) and
●

(i+t1)
s1

(i+1+t1)
s1
≤

qi+1
qi
(i = 1, ..., n),

●
(i+t2)

s2

(i+1+t2)
s2
≤

qi+1
qi
(i = 1, ..., n),

hold and also let qi > 0, (i = 1, ..., n) with
1

qi(i + t1)s1Hn,t1 ,s1

,
1

qi(i + t2)s2Hn,t2 ,s2

∈ J (i = 1, ..., n),
then the following inequality holds

If (i, n, t2, s2, q,u) ∶= n

∑
i=1

uiqi f ( 1

qi(i + t2)s2Hn,t2 ,s2

)
≤ If (i, n, t1, s1, q,u) ∶= n

∑
i=1

uiqi f ( 1

qi(i + t1)s1Hn,t1 ,s1

) . (23)

Proof. Let us consider that pi ∶=
1

(i+t1)
s1Hn,t1 ,s1

and ri ∶=
1

(i+t2)
s2Hn,t2 ,s2

, so as given in the proof of Theorem 2.3,

we get y = r/q is decreasing⇔
(i+t2)

s2

(i+1+t2)
s2
≤

qi+1
qi
, for (i = 1, ..., n), similarly we can prove that x = p/q is also

decreasing⇔
(i+t1)

s1

(i+1+t1)
s1
≤

qi+1
qi

for (i = 1, ..., n). So, all the assumptions of Theorem 2.2 are true, then by using

(18) we get (23).

The following two corollaries obtain form Theorem 5 and Theorem 6 respectively but we use three the Zipf-

Mandelbrot laws for different parameters:

Corollary 2.5. Assume J ⊂ R be an interval, f ∶ J → R be a continuous convex function with ui > 0, n ∈{1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (19) and (20) and
(i + t3)s3Hn,t3 ,s3(i + t1)s1Hn,t1 ,s1

,
(i + t3)s3Hn,t3 ,s3(i + t2)s2Hn,t2 ,s2

∈ J (i = 1, ..., n).
(a) If

(i+1+t2)
s2

(i+1+t3)
s3
≤
(i+t2)

s2

(i+t3)
s3
(i = 1, ..., n), then

If (i, n, t2, s2, t3, s3,u) ∶= n

∑
i=1

ui(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t2)s2Hn,t2 ,s2

)
≤ If (i, n, t1, s1, t3, s3,u) ∶= n

∑
i=1

ui(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t1)s1Hn,t1 ,s1

) . (24)

(b) If
(i+1+t2)

s2

(i+1+t3)
s3
≥
(i+t2)

s2

(i+t3)
s3
(i = 1, ..., n), then

n

∑
i=1

ui(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t2)s2Hn,t2 ,s2

)
≥

n

∑
i=1

ui(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t1)s1Hn,t1 ,s1

) . (25)
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If f is continuous concave function, then the reverse inequalities hold in (24) and (25).

Proof. (a) Let pi ∶=
1

(i+t1)
s1Hn,t1 ,s1

, qi ∶=
1

(i+t2)
s2Hn,t2 ,s2

and ri ∶=
1

(i+t3)
s3Hn,t3 ,s3

, here pi , qi and ri are decreasing

over i = 1, ..., n. Now, we investigate the behaviour of r
q
, take

ri

qi
=
(i + t2)s2Hn,t2 ,s2(i + t3)s3Hn,t3 ,s3

and
ri+1

qi+1
=
(i + 1 + t2)s2Hn,t2 ,s2(i + 1 + t3)s3Hn,t3 ,s3

,

ri+1

qi+1
−
ri

qi
=
(i + 1 + t2)s2Hn,t2 ,s2(i + 1 + t3)s3Hn,t3 ,s3

−
(i + t2)s2Hn,t2 ,s2(i + t3)s3Hn,t3 ,s3

,

ri+1

qi+1
−
ri

qi
=
Hn,t2 ,s2

Hn,t3 ,s3

[(i + 1 + t2)s2(i + 1 + t3)s3 − (i + t2)
s2

(i + t3)s3 ] ,
the R. H. S. is non-positive by using the assumption, which shows that r

q
is decreasing, therefore using

Theorem 5(a) we get (24).

(b) If we switch the role of r
q
with p

q
in the part (a) and using Theorem 5(b), we get (25).

Corollary 2.6. Assume J ⊂ R be an interval, f ∶ J → R be a continuous convex function with ui ∈ R, n ∈{1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0, such that satisfying (19) and (20) and
●

(i+t1)
s1

(i+1+t1)
s1
≤
(i+t3)

s3

(i+1+t3)
s3
(i = 1, ..., n),

●
(i+t2)

s2

(i+1+t2)
s2
≤
(i+t3)

s3

(i+1+t3)
s3
(i = 1, ..., n),

hold with

(i + t3)s3Hn,t3 ,s3(i + t1)s1Hn,t1 ,s1

,
(i + t3)s3Hn,t3 ,s3(i + t2)s2Hn,t2 ,s2

∈ J (i = 1, ..., n),
then the following inequality holds

If (i, n, t2, s2, t3, s3,u) ∶= n

∑
i=1

ui(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t2)s2Hn,t2 ,s2

)
≤ If (i, n, t1, s1, t3, s3,u) ∶= n

∑
i=1

ui(i + t3)s3Hn,t3 ,s3

f ((i + t3)s3Hn,t3 ,s3(i + t1)s1Hn,t1 ,s1

) . (26)

Proof. (a) Let us consider that pi ∶=
1

(i+t1)
s1Hn,t1 ,s1

and ri ∶=
1

(i+t2)
s2Hn,t2 ,s2

, so as given in the proof of Corollary

2.5 for qi > 0 where (i = 1, 2, ...., n), we get y = r/q is decreasing⇔
(i+t2)

s2

(i+1+t2)
s2
≤

(i+t3)
s3

(i+1+t3)
s3
, for (i = 1, ..., n),

similarly we can prove that x = p/q is also decreasing⇔
(i+t1)

s1

(i+1+t1)
s1
≤

(i+t3)
s3

(i+1+t3)
s3
for (i = 1, ..., n). Therefore,

all the assumptions of Theorem 2.4 are true, then by using (23) we get (26).

Remark 2.7. We can give Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Corollary 2.5 and Corollary 2.6

for u ∶= 1 as special case, some of them has been given in [14].

3 "Useful" information measure via Green functions

Consider the Green function G1 defined on [ϑ1, ϑ2] × [ϑ1, ϑ2] by
G1(u, v) = ⎧⎪⎪⎨⎪⎪⎩

(u−ϑ2)(v−ϑ1)
ϑ2−ϑ1

, ϑ1 ≤ u ≤ v;
(v−ϑ2)(u−ϑ1)

ϑ2−ϑ1
, u ≤ v ≤ ϑ2.

(27)

The function G1 is convex in v, it is symmetric, so it is also convex in u. The function G1 is continuous in v

and continuous in u.



1364 | N. Latif et al.

For any function f ∶ [ϑ1, ϑ2] → R, f ∈ C2([ϑ1, ϑ2]), we can easily show by integrating by parts that the

following is valid

f(u) = ϑ2 − u

ϑ2 − ϑ1
f(ϑ1) + u − ϑ1

ϑ2 − ϑ1
f(ϑ2) +

ϑ2

∫
ϑ1

G(u, v)f ′′(v)dv,
where the function G1 is defined as above in (27) ([31]).

Let [ϑ1, ϑ2] ⊂ R and d = 2, 3, 4, 5. Recently in (2017), Mehmood et al. [32] (also see [33]) introduced some

new types of Green functions, Gd ∶ [ϑ1, ϑ2] × [ϑ1, ϑ2]→ R and give Lemma 1, which are defined as follows:

G2(u, v) = ⎧⎪⎪⎨⎪⎪⎩
(ϑ1 − v) , ϑ1 ≤ v ≤ u,

(ϑ1 − u), u ≤ v ≤ ϑ2,
(28)

G3(u, v) = ⎧⎪⎪⎨⎪⎪⎩
(u − ϑ2) , ϑ1 ≤ v ≤ u,

(v − ϑ2), u ≤ v ≤ ϑ2,
(29)

G4(u, v) = ⎧⎪⎪⎨⎪⎪⎩
(u − ϑ1) , ϑ1 ≤ v ≤ u,

(v − ϑ1), u ≤ v ≤ ϑ2,
(30)

G5(u, v) = ⎧⎪⎪⎨⎪⎪⎩
(ϑ2 − v) , ϑ1 ≤ v ≤ u,

(ϑ2 − u), u ≤ v ≤ ϑ2.
(31)

Lemma 3.1. Let f ∶ [ϑ1, ϑ2] → R such that f ∈ C2([ϑ1, ϑ2]) and Gd (d = 2, 3, 4, 5) be Green functions as

defined in (28), (29), (30) and (31), then we have the following identities.
f(u) = f(ϑ1) + (u − ϑ1)f ′(ϑ2) +

ϑ2

∫
ϑ1

G2(u, v)f ′′(v)dv, (32)

f(u) = f(ϑ2) + (u − ϑ2)f ′(ϑ1) +
ϑ2

∫
ϑ1

G3(u, v)f ′′(v)dv, (33)

f(u) = f(ϑ2) − (ϑ2 − ϑ1)f ′(ϑ2) + (u − ϑ1)f ′(ϑ1) +
ϑ2

∫
ϑ1

G4(u, v)f ′′(v)dv, (34)

f(u) = f(ϑ1) + (ϑ2 − ϑ1)f ′(ϑ1) − (ϑ2 − u)f ′(ϑ2) +
ϑ2

∫
ϑ1

G5(u, v)f ′′(v)dv. (35)

The following theorem gives the equivalent statements between continuous convex functions and Green

functions via majorization inequality and "useful" Csiszár divergence.

Theorem 3.2. Assume J ⊂ R be an interval, pi, ri (i = 1, ..., n) be real numbers and qi , ui (i = 1, ..., n) be
positive real numbers such that satisfying

n

∑
i=1

uiri =
n

∑
i=1

uipi , (36)

with pi
qi
,

ri
qi
∈ J (i = 1, ..., n). If r

q
is decreasing and Gd (d = 1, 2, 3, 4, 5) be defined as in (27)-(31), then we

have following equivalent statements.

(i) For every continuous convex function f ∶ [ϑ1, ϑ2]→ R, we have

If (p, q,u) − If (r, q,u) ≥ 0. (37)
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(ii) For all v ∈ [ϑ1, ϑ2], we have
IGd
(p, q,u) − IGd

(r, q,u) ≥ 0, d = 1, 2, 3, 4, 5. (38)

Moreover, if we change the sign of inequality in both inequalities (37) and (38), then the above result still holds.
Proof. The scheme of proof is similar for each d = 1, 2, 3, 4, 5, therefore we will only give the proof for d = 5.(i)⇒ (ii): Let statement (i) holds. As the function G5 ∶ [ϑ1, ϑ2]×[ϑ1, ϑ2]→ R is convex and continuous,

so it will satisfy the condition (37), i.e.,
IG5
(p, q,u) − IG5

(r, q,u) ≥ 0.
(ii)⇒ (i): Let f ∶ [ϑ1, ϑ2] → R be a convex function such that f ∈ C2([ϑ1, ϑ2]), and further, assume that the

statement (ii) holds. Then by Lemma 3.1, we have

f(xi) = f(ϑ1) + (ϑ2 − ϑ1)f ′(ϑ1) − (ϑ2 − xi)f ′(ϑ2) +
ϑ2

∫
ϑ1

G5(xi , v)f ′′(v)dv, (39)

f(yi) = f(ϑ1) + (ϑ2 − ϑ1)f ′(ϑ1) − (ϑ2 − yi)f ′(ϑ2) +
ϑ2

∫
ϑ1

G5(yi , v)f ′′(v)dv. (40)

From (39) and (40), we get
If (p, q,u) − If (r, q,u) = n

∑
i=1

uiqi f (pi
qi
) − n

∑
i=1

uiqi f ( ri
qi
)

= −

n

∑
i=1

uiqi (ϑ2 − pi

qi
) f ′(ϑ2) + n

∑
i=1

uiqi (ϑ2 − ri

qi
) f ′(ϑ2)

+

ϑ2

∫
ϑ1

[ n

∑
i=1

uiqiG5 (pi
qi
, v) − n

∑
i=1

uiqiG5 ( ri
qi
, v)] f ′′(v)dv. (41)

Using (36), we have
If (p, q,u) − If (r, q,u) =

ϑ2

∫
ϑ1

[ n

∑
i=1

uiqiG5 (pi
qi
, v) − n

∑
i=1

uiqiG5 ( ri
qi
, v)] f ′′(v)dv. (42)

As f is convex function, therefore f ′′(v) ≥ 0 for all v ∈ [ϑ1, ϑ2]. Hence using (38) in (42), we get (37).
Note that the condition for the existence of second derivative of f is not necessary ([21, p.172]). As it is

possible to approximate uniformly a continuous convex function by convex polynomials, so we can directly

eliminate this differentiability condition.

The following theorem gives equivalent statements between continuous convex functions and Green func-

tions via majorization inequality and "useful" Zipf-Mandelbrot law.

Theorem 3.3. Assume n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying
n

∑
i=1

ui(i + t2)s2 = Hn,t2 ,s2

Hn,t1 ,s1

n

∑
i=1

ui(i + t1)s1 , (43)

with

1

qi(i + t1)s1Hn,t1 ,s1

,
1

qi(i + t2)s2Hn,t2 ,s2

∈ J (i = 1, ..., n).
If

(i+t2)
s2

(i+1+t2)
s2
≤

qi+1
qi
(i = 1, ..., n) and Gd (d = 1, 2, 3, 4, 5) be defined as in (27)-(31), then we have following

equivalent statements.
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(i) For every continuous convex function f ∶ [ϑ1, ϑ2]→ R, we have

If (i, n, t1, s1, q,u) − If (i, n, t2, s2, q,u) ≥ 0. (44)

(ii) For all v ∈ [ϑ1, ϑ2], we have
IGd
(i, n, t1, s1, q,u) − IGd

(i, n, t2, s2, q,u) ≥ 0, d = 1, 2, 3, 4, 5. (45)

Moreover, if we change the sign of inequality in both inequalities (44) and (45), then the above result still holds.
Proof. (i)⇒ (ii): The proof is similar to the proof of Theorem 3.2.(ii)⇒ (i): Let f ∶ [ϑ1, ϑ2]→ R be a convex function such that f ∈ C2([ϑ1, ϑ2]), and further, assume that

the statement (ii) holds. Then by Lemma 3.1, we have (39) and (40).

From (39) and (40), we get
If (i, n, t1, s1, q,u) − If (i, n, t2, s2, q,u) = n

∑
i=1

uiqi f (λi) − n

∑
i=1

uiqi f (µi)
= −

n

∑
i=1

uiqi (ϑ2 − λi) f ′(ϑ2) + n

∑
i=1

uiqi (ϑ2 − µi) f ′(ϑ2)
+

ϑ2

∫
ϑ1

[ n

∑
i=1

uiqiG5 (λi , v) − n

∑
i=1

uiqiG5 (µi , v)] f ′′(v)dv,
where,

λi ∶=
1

qi(i + t1)s1Hn,t1 ,s1

, and µi ∶=
1

qi(i + t2)s2Hn,t2 ,s2

.

Using (43), we have
If (i, n, t1, s1, q,u) − If (i, n, t2, s2, q,u) =

ϑ2

∫
ϑ1

[ n

∑
i=1

uiqiG5 (λi , v) − n

∑
i=1

uiqiG5 (µi , v)] f ′′(v)dv. (46)

As f is convex function, therefore f ′′(v) ≥ 0 for all v ∈ [ϑ1, ϑ2]. Hence using (45) in (46), we get (44).

4 "Useful" information measure in integral form

The following theorem is a slight extension of Lemma 2 in [34] which is proved by Maligranda et al. (also see

[35]):

Theorem 4.1. Let w, x and y be positive functions on [a, b]. Suppose that f ∶ [0,∞)→ R is a convex function

and that
ν

∫
a

y(t)w(t) dt ≤ ν

∫
a

x(t)w(t) dt, ν ∈ [a, b] and

b

∫
a

y(t)w(t) dt = b

∫
a

x(t)w(t) dt.
(i) If y is a decreasing function on [a, b], then

b

∫
a

f (y(t)) w(t) dt ≤ b

∫
a

f (x(t)) w(t) dt. (47)
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(ii) If x is an increasing function on [a, b], then
b

∫
a

f (x(t)) w(t) dt ≤ b

∫
a

f (y(t)) w(t) dt. (48)

If f is strictly convex function and x ≠ y (a. e.), then (47) and (48) are strict.
We consider "useful" Csiszár functional [11, 12] in integral form:

Definition 4.2 ("Useful" Csiszár divergence as integral form). Assume J ∶= [α, β] ⊂ R be an interval, and let

f ∶ J → R be a function with densities p ∶ [a, b] → J, q ∶ [a, b] → (0,∞) and associated with the utility density
u ∶ [a, b]→ J such that

p(x)
q(x) ∈ J, ∀ x ∈ [a, b],

then we denote "useful" Csiszár divergence in integral form as

Îf (p, q, u) ∶=
b

∫
a

u(t)q(t)f (p(t)
q(t)) dt. (49)

Remark 4.3. One can easily seen that if we substitute u(t) = 1 for all t ∈ [a, b], then (49) becomes
Îf (p, q, 1) ∶= Îf (p, q) =

b

∫
a

q(t)f (p(t)
q(t)) dt.

Theorem 4.4. Assume J ∶= [0,∞) ⊂ R be an interval, f ∶ J → R be a convex function and p, q, r, u ∶ [a, b] →(0,∞) such that
υ

∫
a

u(t)r(t)dt ≤ υ

∫
a

u(t)p(t)dt, υ ∈ [a, b] (50)

and
b

∫
a

u(t)r(t)dt = b

∫
a

u(t)p(t)dt, (51)

with

p(t)
q(t) , r(t)q(t) ∈ J, ∀ t ∈ [a, b].

(i) If
r(t)
q(t)

is a decreasing function on [a, b], then
Îf (r, q, u) ≤ Îf (p, q, u). (52)

(ii) If
p(t)
q(t)

is an increasing function on [a, b], then the inequality is reversed, i.e.
Îf (r, q, u) ≥ Îf (p, q, u). (53)

If f is strictly convex function and p(t) ≠ r(t) (a. e.), then strict inequality holds in (52) and (53).
If f is concave function then the reverse inequalities hold in (52) and (53). If f is strictly concave and p(t) ≠

r(t) (a. e.), then the strict reverse inequalities hold in (52) and (53).
Proof. (i): We use Theorem 4.1 (i) with substitutions x(t) ∶= p(t)

q(t)
, y(t) ∶= r(t)

q(t)
, w(t) ∶= u(t)q(t) > 0∀ t ∈ [a, b]

and also using the fact that
r(t)
q(t)

is a decreasing function then we get (52).

(ii) We can prove with the similar substitutions as in the first part by using Theorem 4.1 (ii) that is the fact

that
p(t)
q(t)

is an increasing function.

Remark 4.5. We can give Theorem 4.4 for u(t) ∶= 1 for all t ∈ [a, b] as special case which has been given in
[36].
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5 Applications

Here, we present several special cases of the previous results as applications.

The first case corresponds to the entropy of a continuous probability density (see [18, p.506]):

Definition 5.1 (Shannon Entropy). Let p ∶ [a, b]→ (0,∞) be a positive probability density, then the Shannon
entropy of p(x) is defined by

H (p(x), u(x)) ∶= − b

∫
a

u(x) p(x) log p(x)dx, (54)

and is associated with the utility density u ∶ [a, b]→ R, whenever the integral exists.

Note that there is no problem with the definition in the case of a zero probability, since

lim
x→0

x log x = 0. (55)

Corollary 5.2. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
(i) If

r(t)
q(t)

is a decreasing function and the base of log is greater than 1, then we have estimates for the Shannon

entropy of q(t) associated with utility density u(t)
b

∫
a

u(t)q(t) log( r(t)
q(t)) ≥ H(q(t), u(t)). (56)

If the base of log is in between 0 and 1, then the reverse inequality holds in (56).

(ii) If
p(t)
q(t)

is an increasing function and the base of log is greater than 1, then we have estimates for the Shannon

entropy of q(t) associated with utility density u(t)
H (q(t), u(t)) ≤ b

∫
a

u(t)q(t) log(p(t)
q(t)) . (57)

If the base of log is in between 0 and 1, then the reverse inequality holds in (57).

Proof. (i): Substitute f(x) ∶= − log x and p(t) ∶= 1, ∀ t ∈ [a, b] in Theorem 4.4 (i) then we get (56).

(ii) We can prove by switching the role of p(t) with r(t) i.e., r(t) ∶= 1∀ t ∈ [a, b] and f(x) ∶= − log x in
Theorem 4.4 (ii) then we get (57).

The second case corresponds to the relative entropy or the Kullback-Leibler divergence between two proba-

bility densities associated with the utility density u(t):
Definition 5.3 (Kullback-Leibler Divergence). Let p, q ∶ [a, b] → (0,∞) be a positive probability densities,

then the Kullback-Leibler (K-L) divergence between p(t) and q(t) is defined by
L (p(t), q(t), u(t)) ∶= b

∫
a

u(t)p(t) log(p(t)
q(t)) dt,

and is associated with the utility density u ∶ [a, b]→ R.

Corollary 5.4. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
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(i) If
r(t)
q(t)

is a decreasing function and the base of log is greater than 1, then

Î(− log x)(r, q, u) ≥ Î(− log x)(p, q, u). (58)

If the base of log is in between 0 and 1, then the reverse inequality holds in (58).

(ii) If
p(t)
q(t)

is an increasing function and the base of log is greater than 1, then

Î(− log x)(r, q, u) ≤ Î(− log x)(p, q, u). (59)

If the base of log is in between 0 and 1 then the reverse inequality holds in (59).

Proof. (i): Substitute f(x) ∶= − log x in Theorem 4.4 (i) then we get (58).

(ii) We can prove with substitution f(x) ∶= − log x in Theorem 4.4 (ii).

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler

divergence.

Definition 5.5 (Variational Distance). Let p, q ∶ [a, b] → (0,∞) be a positive probability densities, then

variation distance between p(t) and q(t) is defined by
Îv (p(t), q(t), u(t)) ∶= b

∫
a

u(t) ∣p(t) − q(t)∣dt,
and associated with the utility density u ∶ [a, b]→ R.

Corollary 5.6. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
(i) If

r(t)
q(t)

is a decreasing function, then

Îv (r(t), q(t), u(t)) ≤ Îv (p(t), q(t), u(t)) . (60)

(ii) If
p(t)
q(t)

is an increasing function, then the inequality is reversed, i.e.

Îv (r(t), q(t), u(t)) ≥ Îv (p(t), q(t), u(t)) . (61)

Proof. (i): Since f(x) ∶= ∣x −1∣ be a convex function for x ∈ R+, therefore substitute f(x) ∶= ∣x −1∣ in Theorem
4.4 (i) then

b

∫
a

u(t)q(t) ∣ r(t)
q(t) − 1∣ dt ≤

b

∫
a

u(t)q(t) ∣p(t)
q(t) − 1∣ dt,

b

∫
a

u(t)q(t) ∣r(t) − q(t)∣∣q(t)∣ dt ≤

b

∫
a

u(t)q(t) ∣p(t) − q(t)∣∣q(t)∣ dt,

since q(t) > 0 then we get (60).
(ii) We can prove with substitution f(x) ∶= ∣x − 1∣ in Theorem 4.4 (ii).

Definition 5.7 (Hellinger Distance). Let p, q ∶ [a, b] → (0,∞) be a positive probability densities, then the

Hellinger distance between p(t) and q(t) is defined by
ÎH (p(t), q(t), u(t)) ∶=

b

∫
a

u(t) [√p(t) −√q(t)]2 dt,
and is associated with the utility density u ∶ [a, b]→ R.
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Corollary 5.8. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
(i) If

r(t)
q(t)

is a decreasing function, then

ÎH (r(t), q(t), u(t)) ≤ ÎH (p(t), q(t), u(t)) . (62)

(ii) If
p(t)
q(t)

is an increasing function, then the inequality is reversed, i.e.

ÎH (r(t), q(t), u(t)) ≥ ÎH (p(t), q(t), u(t)) . (63)

Proof. (i): Since f(x) ∶= (√x − 1)2 is a convex function for x ∈ R+, therefore substituting f(x) ∶= (√x − 1)2
in Theorem 4.4 (i)

b

∫
a

u(t)q(t) ⎡⎢⎢⎢⎢⎣
¿ÁÁÀ r(t)

q(t) − 1
⎤⎥⎥⎥⎥⎦
2

dt ≤

b

∫
a

u(t)q(t) ⎡⎢⎢⎢⎢⎣
¿ÁÁÀp(t)

q(t) − 1
⎤⎥⎥⎥⎥⎦
2

dt,

since q(t) > 0 then we get (62).
(ii) We can prove with substitution f(x) ∶= (√x − 1)2 in Theorem 4.4 (ii).

Definition 5.9 (Bhattacharyya Distance). Let p, q ∶ [a, b] → (0,∞) be a positive probability densities, then
the Bhattacharyya distance between p(t) and q(t) is defined by

ÎB (p(t), q(t), u(t)) ∶=
b

∫
a

u(t)√p(t) q(t)dt,
and associated with the utility density u ∶ [a, b]→ R.

Corollary 5.10. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
(i) If

r(t)
q(t)

is a decreasing function, then

ÎB (p(t), q(t), u(t)) ≤ ÎB (r(t), q(t), u(t)) . (64)

(ii) If
p(t)
q(t)

is an increasing function, then the inequality is reversed, i.e.

ÎB (p(t), q(t), u(t)) ≥ ÎB (r(t), q(t), u(t)) . (65)

Proof. (i): Since f(x) ∶= −√x be a convex function for x ∈ R+, therefore substitute f(x) ∶= −√x in Theorem

4.4 (i) then

b

∫
a

u(t)q(t) ⎛⎜⎝−
¿ÁÁÀ r(t)

q(t)
⎞⎟⎠ dt ≤

b

∫
a

u(t)q(t)⎛⎜⎝−
¿ÁÁÀp(t)

q(t)
⎞⎟⎠ dt,

we get (64).

(ii) We can prove with substitution f(x) ∶= −√x in Theorem 4.4 (ii).

Definition 5.11 (Jeffreys Distance). Let p, q ∶ [a, b] → (0,∞) be a positive probability densities, then the

Jeffreys distance between p(t) and q(t) is defined by
ÎJ (p(t), q(t), u(t)) ∶=

b

∫
a

u(t) [p(t) − q(t)] ln [p(t)
q(t)] dt,

and associated with the utility density u ∶ [a, b]→ R.
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Corollary 5.12. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
(i) If

r(t)
q(t)

is a decreasing function, then

ÎJ (r(t), q(t), u(t)) ≤ ÎJ (p(t), q(t), u(t)) . (66)

(ii) If
p(t)
q(t)

is an increasing function, then the inequality is reversed, i.e.

ÎJ (r(t), q(t), u(t)) ≥ ÎJ (p(t), q(t), u(t)) . (67)

Proof. (i): Since f(x) ∶= (x−1) ln x be a convex function for x ∈ R+, therefore substituting f(x) ∶= (x−1) ln x
in Theorem 4.4 (i)

b

∫
a

u(t)q(t) ( r(t)
q(t) − 1) ln( r(t)q(t)) dt

≤

b

∫
a

u(t)q(t) (p(t)
q(t) − 1) ln(p(t)q(t)) dt,

we get (66).

(ii) We can prove with substitution f(x) ∶= (x − 1) ln x in Theorem 4.4 (ii).

Definition 5.13 (Triangular Discrimination). Let p, q ∶ [a, b] → (0,∞) be a positive probability densities,

then the triangular discrimination between p(t) and q(t) is defined by
Î∆ (p(t), q(t), u(t)) ∶=

b

∫
a

u(t) [p(t) − q(t)]2
p(t) + q(t) dt,

and is associated with the utility density u ∶ [a, b]→ R.

Corollary 5.14. Assume p, q, r, u ∶ [a, b]→ (0,∞) be functions such that satisfying (50) and (51) with
p(t)
q(t) , r(t)

q(t) ∈ J ∶= (0,∞), ∀ t ∈ [a, b].
(i) If

r(t)
q(t)

is a decreasing function, then

Î∆ (r(t), q(t), u(t)) ≤ Î∆ (p(t), q(t), u(t)) . (68)

(ii) If
p(t)
q(t)

is an increasing function, then the inequality is reversed, i.e.

Î∆ (r(t), q(t), u(t)) ≥ Î∆ (p(t), q(t), u(t)) . (69)

Proof. (i): Since f(x) ∶= (x−1)2
x+1

be a convex function for x ≥ 0, therefore substitute f(x) ∶= (x−1)2
x+1

in Theorem

4.4 (i) then

b

∫
a

u(t)q(t) (r(t)/q(t) − 1)2
r(t)/q(t) + 1 dt ≤

b

∫
a

u(t)q(t) (p(t)/q(t) − 1)2
p(t)/q(t) + 1 dt,

b

∫
a

u(t)q(t) ((r(t) − q(t))/q(t))2(r(t) + q(t))/q(t) dt ≤

b

∫
a

u(t)q(t) ((p(t) − q(t))/q(t))2(p(t) + q(t))/q(t) dt,

we get (68).

(ii) We can prove with substitution f(x) ∶= (x−1)2
x+1

in Theorem 4.4 (ii).

Remark 5.15. We can give all the results of section 5 for u(t) = 1 for all t ∈ [a, b] as a special case, which has
been given in [36].
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[17] Matić M., Pearce C. E. M., Pečarić J., On an inequality for the entropy of a probability distribution, Acta Math. Hungar.,

1999, 85, 345-349.
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