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MAJORIZING KERNELS AND STOCHASTIC CASCADES
WITH APPLICATIONS TO INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

RABI N. BHATTACHARYA, LARRY CHEN, SCOTT DOBSON, RONALD B. GUENTHER,
CHRIS ORUM, MINA OSSIANDER, ENRIQUE THOMANN, AND EDWARD C. WAYMIRE

Abstract. A general method is developed to obtain conditions on initial data
and forcing terms for the global existence of unique regular solutions to incom-
pressible 3d Navier-Stokes equations. The basic idea generalizes a probabilistic
approach introduced by LeJan and Sznitman (1997) to obtain weak solutions
whose Fourier transform may be represented by an expected value of a stochas-
tic cascade. A functional analytic framework is also developed which partially
connects stochastic iterations and certain Picard iterates. Some local existence
and uniqueness results are also obtained by contractive mapping conditions on
the Picard iteration.

1. Introduction and preliminaries

We develop two related approaches to obtain global and local existence, unique-
ness and regularity, including spatial analyticity, of solutions to 3-dimensional in-
compressible Navier-Stokes (NS) equations governing fluid velocities

∂u

∂t
+ u · ∇u = ν∆u−∇p+ g, ∇ · u = 0.(1)

One approach is probabilistic and involves the construction of a multiplicative cas-
cade solution to a related stochastic recursion in wave number Fourier space. The
other approach is based on Picard iterations. Each of these approaches involves the
notion of a Fourier multiplier which we formalize as follows.

Definition 1.1. Let h : Wh ⊆ Rn\{0} → (0,∞) be a Lebesgue measurable func-
tion such that the closure of Wh is a semigroup and h = 0 on W c

h with

0 < h ∗ h(ξ) <∞, ξ ∈Wh.(2)

The reciprocal function 1/h is referred to as a Fourier multiplier.

The probabilistic approach is based upon an interpretation of the integral equa-
tion governing Fourier transformed velocities scaled by a multiplier 1/h. This is
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achieved in terms of expectation values of multiplicative cascade solutions to sto-
chastic recursions generated by certain multi-type branching random walks in
Fourier space. The transitions in wave-number are of the form ξ → (ξ1, ξ2), ξ1+ξ2 =
ξ, with a transition probability kernel h(ξ1)h(ξ2)/h ∗ h(ξ). This generalizes branch-
ing random walks in the sense of LeJan and Sznitman [17] for n = 3 dimensions
where h(ξ) = |ξ|−2, ξ ∈ Wh = R3\{0}. The essential requirement for this approach
is that the above indicated expected values exist. Existence of these expected values
is obtained in the present paper by constructions of a particular class of the Fourier
multipliers, referred to as majorizing kernels, defined below.

The second approach is a purely analytic approach in which the Fourier multiplier
1/h is used to identify a Banach space norm for which iterations of the expected
values may, under slightly more restrictive conditions, be interpreted as Picard
iterates of successive approximations on a suitably identified function space defined
via particular control of the Fourier transform by a majorizing Fourier multiplier,
e.g. u ∈ S′ such that |û(ξ, t)| ≤ h(ξ). In particular, the Picard iteration may be
expressed in terms of a contraction operator on such a space. It may be noted that
a different function space for Picard iteration was identified by Kato [15] in efforts
to obtain existence and uniqueness for Navier-Stokes equations.

As noted above, the probabilistic approach gives a representation of the Fourier
transform û(ξ, t) of the solution of the evolution equation in the LeJan-Sznitman
form of an expected value

û(ξ, t) = h(ξ)Eξθ=ξ〉〈 (θ, t).(3)

Here 〉〈 is a random multiplicative functional of scalar values m(·) and Fourier trans-
formed initial data and/or forcing (vector) values over the vertices of a multi-type
branching random walk tree τθ(t) initiated in time t from a single progenitor of type
ξθ = ξ. In general the scalar and vector value factors are evaluated at the wave-
number (type) of the respective vertices appearing in the tree τθ(t), with the initial
and forcing terms appearing at the end-nodes. The holding times between branch-
ings are determined from the principal part of the equation, while the branching
probabilities depend on the lower order and forcing terms of the equation.

The framework developed here is also more generally applicable to diverse classes
of evolution equations, including certain linear parabolic and fractional diffusion
equations, semilinear reaction-diffusions, and some quasilinear equations such as in-
compressible Navier-Stokes equations in dimension n ≥ 2, as well as one-dimensional
Burgers’ equations. The following extremely simple example is selected to illustrate
some of the most basic graph theoretic and probabilistic ideas involved in this ap-
proach. It is so simple, however, that the notion of a Fourier multiplier is not
required. Consider

ut = a∆u+ b · ∇u, u(x, 0) = u0(x),(4)

in n ≥ 1 dimensions, where a > 0, and b ∈ Rn are constants. To quickly get the
flavor of the method, define the spatial Fourier transform of an integrable function
f, or its distributional extension, by f̂(ξ) = (2π)−

n
2
∫ n
R
e−ix·ξf(x)dx, ξ ∈ Rn. Then,

from (4) one has

û(ξ, t) = û0(ξ)e−a|ξ|
2t +

ib · ξ
a|ξ|2

∫ t

0

a|ξ|2e−a|ξ|2sû(ξ, t− s)ds.(5)
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Now consider the random linear tree τθ(t) rooted at a vertex θ of type ξθ = ξ which,
after an exponential length of time, is replaced by a single vertex 〈1〉 of the same
type ξ〈1〉 = ξ. Proceeding in this manner one may calculate that the solution
exp(−a|ξ|2 + ib · ξ)û0(ξ) is the expectation of the random product 〉〈 (θ, t) initial-
ized by ξθ = ξ and consisting of factors m(ξ) = ib · ξ/a|ξ|2 at each vertex until
termination, where one attaches the end factor û0(ξ), i.e. 〉〈 (θ, t) = m(ξ)N(t)û0(ξ),
and

û(ξ, t) = Eξθ=ξ〉〈 (θ, t) = Eξθ=ξm(ξ)N(t)û0(ξ),(6)

where N(t) is the Poisson process with parameter λ(ξ) := a|ξ|2 which counts the
number of times the exponential clocks ring before time t. In particular the Pois-
son process occupies a natural dual role to that played by the standard Brownian
motion in the real space expectation formula. Similarly one may obtain a dual
Feynman-Kac formula under the complex measure condition on coefficients given
by Ito [14]; see Chen, Dobson, Guenther, Orum, Ossiander, Thomann, Waymire
[7]. In particular this approach makes Ito’s complex measure condition completely
natural from a probabilistic point of view. One may also obtain a dual version
of McKean’s [18] branching Brownian motion formula for KPP, as well as other
interesting equations which will be treated in a forthcoming monograph by the au-
thors (in preparation). These also include, for example, the generalized fractional
Burgers’ equation of the type considered by Woyczynski, Biler, and Funaki [22],
and the so-called “cheap Navier-Stokes equation” discussed by Montgomery-Smith
[19] from the point of view of real-space iterative methods.

The primary focus of this paper is the 3d incompressible Navier-Stokes equation
which may be expressed in the Fourier domain as follows:

û(ξ, t) = e−ν|ξ|
2tû0(ξ) +

∫ t

0

e−ν|ξ|
2s
{
|ξ|(2π)−

3
2∫

R3
û(η, t− s)⊗ξ û(ξ − η, t− s)dη + ĝ(ξ, t− s)

}
ds,

(FNS)

where, for complex vectors w, z,

w ⊗ξ z = −i(eξ · z)πξ⊥w, eξ =
ξ

|ξ| , and πξ⊥w = w − (eξ · w)eξ(7)

is the projection of w onto the plane orthogonal to ξ, and ν > 0 is the viscos-
ity parameter. For ξ 6= 0, LeJan and Sznitman [17] rescale the equation (FNS)
to normalize the integrating factor e−ν|ξ|

2s to the exponential probability density
ν|ξ|2e−ν|ξ|2s. Then they observe that the resulting equation is precisely the form for
a branching random walk recursion for χ(ξ, t) := ν|ξ|2û(ξ, t), for which the tran-
sition kernel |ξ − η|−2|η|−2 is naturally constrained by integrability to dimensions
d ≥ 3 for normalization to a probability.

Given a Fourier multiplier 1/h we consider the Fourier transformed equation
(FNS) rescaled by factors 1/h(ξ), for ξ ∈ Wh. Namely, we consider the equation
(FNS)h defined by

χ(ξ, t) = e−νt|ξ|
2
χ0(ξ) +

∫ t

0

ν|ξ|2e−ν|ξ|
2s
{1

2
m(ξ)

∫
Wh×Wh

χ(η1, t− s)

⊗ξ χ(η2, t− s)H(ξ, dη1 × dη2) +
1
2
ϕ(ξ, t− s)

}
ds, ξ ∈ Wh.

(FNS)h
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Here

m(ξ) =
2h ∗ h(ξ)

ν(2π)
3
2 |ξ|h(ξ)

, χ0(ξ) =
û0(ξ)
h(ξ)

, ϕ(ξ, t) =
2ĝ(ξ, t)
ν|ξ|2h(ξ)

,(8)

and H(ξ, dη1 × dη2) is for ξ ∈ Wh the transition probability kernel, with support
contained in the set {(η1, η2) ∈Wh ×Wh : η1 + η2 = ξ}, defined by∫

Wh×Wh

f(η1, η2)H(ξ, dη1 × dη2) =
∫
Wh

f(ξ − η, η)
h(ξ − η)h(η)
h ∗ h(ξ)

dη(9)

for bounded, Borel measurable f : Wh×Wh → R. Finally we include the following
additional exterior condition in defining (FNS)h :

χ(ξ, t) = 0, ξ ∈W c
h , t ≥ 0.(10)

Remark 1.1. One may easily check, using the semigroup requirement on Wh, that
the exterior condition makes the equations (FNS) and (FNS)h equivalent if and only
if û0(ξ) = 0 and ϕ(ξ, t) = 0 for a.e. ξ ∈ W c

h, t ≥ 0. In many examples of interest to
the present paper one has Wh = Rn\{0}. It should also be noted that the re-scaled
functions χ(ξ, t), ϕ(ξ, t) provide a convenient notational device for presenting the
essential calculations. However, in the end the conditions and results are stated in
terms of the respective functions û(ξ, t) = h(ξ)χ(ξ, t), and ĝ(ξ, t) = ν

2 |ξ|2h(ξ)ϕ(ξ, t).

A first order approach to obtain finite expected values of the branching random
walk cascade will be seen to result from the observation that the product ⊗ξ satisfies
|w⊗ξ z| ≤ |w||z|, w, z ∈ Cn, and the coefficients m(ξ) may be controlled by selecting
Fourier multipliers such that m(ξ) ≤ 1. We refer to such a Fourier multiplier h as

a majorizing kernel (with exponent one and constant B = ν(2π)
3
2

2 ). The following
slightly more general definition is suitable for extensions to generalized Navier-
Stokes equations with fractional Laplacian and, as will be seen more fully in Section
4, for considerations of local solutions.

Definition 1.2. A positive locally integrable function h on Wh ⊂ Rn\{0} whose
closure Wh is a semigroup and such that (i) h is continuous on Wh, (ii) h ∗ h > 0
a.e. on Wh, and (iii) h ∗ h(ξ) ≤ B|ξ|θh(ξ), for ξ ∈ Wh and some real exponent θ
and some B > 0, will be referred to as an FNS-admissible majorizing kernel with
constant B and exponent θ. Majorizing kernels with a unit constant will be called
standard kernels. We define h = 0 on W c

h and refer to Wh as the support of h.

Since the focus of this paper is exclusively the Navier-Stokes equations, we will
drop the prefix FNS-admissible in reference to majorizing kernels. Note that if h
is a majorizing kernel with constant B, then h

B is a standard majorizing kernel.
Alternatively, if h is a standard majorizing kernel, then h = Bh has constant B. If
h is a majorizing kernel, then h/B, where B = sup{h∗h(ξ)/|ξ|θh(ξ) : ξ ∈ Wh}, will
be referred to as the standardized choice of h. Those majorizing kernels h(ξ) which
are defined and positive for all ξ 6= 0 are said to be fully supported. Some sense of
the class of majorizing kernels may be derived by noting from Hölder’s inequality
that the set of fully supported majorizing kernels with a given exponent is a log-
convex set. Also if h(ξ) is a majorizing kernel, then so is cea·ξh(ξ) for arbitrary
fixed vector a and positive scalar c; note Theorems 2.1-2.4 in the next section in
this general regard. Finally let us note that an exceptional role of ξ = 0 is linked to
the use of the wave number ξ in defining the exponential waiting time distribution
with mean 1/ν|ξ|2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAJORIZING KERNELS AND STOCHASTIC CASCADES 5007

Formulated in these terms, the results of LeJan and Sznitman [17] may be inter-
preted in terms of two exponent one, standardized majorizing kernels, π3/|ξ|2 and
αe−α|ξ|/2π|ξ|. These kernels are respectively non-integrable and integrable, with
equality in (iii) of Definition 1.2. One may check that the only fully supported
homogeneous majorizing kernels in n ≥ 3 dimensions are those of degree n − 1.
Development of majorizing kernels is somewhat generally treated in Section 2. As
will be demonstrated in subsequent Sections 3 and 4, apart from their role in ex-
istence, uniqueness and expected value representations, the majorizing kernels also
play a role in constraining such structure of the solutions as regularity, support
size, complexification, etc.

Now let us define a Banach space Fh,γ,T with a norm that depends on a Fourier
multiplier 1/h as the completion of the set

{v ∈ S′ : v̂(ξ, t) = 0, ξ ∈W c
h , ||v||Fh,γ,T = sup

ξ∈Wh
0≤t<T

|v̂(ξ, t)|
e−γ
√
t|ξ|h(ξ)

<∞}(11)

under the indicated norm, where γ ∈ {0, 1} serves to conveniently index two differ-
ent norms we wish to consider. Here S′ is the space of tempered distributions on
Rn. Also, implicit to the definition of the Banach space Fh,γ,T is the requirement
that tempered distributions belonging to this space have Fourier transforms which
are functions. In the case h(ξ) = |ξ|−2, Fh,0,T is the Besov type space introduced
by Cannone and Planchon [4]. We will refer to such spaces Fh,γ,T as majorizing
spaces in the case when h is a majorizing kernel. The spaces Fh,1,T generalize those
introduced by Lemarié-Rieusset [16] to obtain conditions for spatial analyticity of
solutions found by LeJan and Sznitman [17].

Note that if h is a majorizing kernel of exponent θ ≤ 1 and u(x, t) ∈ Fh,γ,T ∩
C1([0, T ],S′) is such that û(ξ, t) is a solution of the (FNS), u = ˇ̂u is a mild solu-
tion of the Navier-Stokes. Indeed, the definition of majorizing kernel and of the
function spaces Fh,γ,T imply that the product of distributions in Fh,γ,T is itself a
distribution. To see this, note that if u and v are elements of Fh,γ,T for a stan-
dard majorizing kernel h of exponent θ, |û ∗ v̂(ξ)| ≤Mh ∗ h(ξ) ≤M |ξ|θh(ξ), where
M = ||u||Fh,γ,T ||v||Fh,γ,T . Using the definition of a majorizing kernel, it follows that

û∗ v̂(ξ) is locally integrable. Thus, in particular one has B̂(u, u)(ξ, t) = B̂(û, û)(ξ, t)
as needed, where B(u, v) =

∫ t
0
eν∆sP (u · ∇v)ds for the Leray projection P on

divergence-free vector fields and

B̂(û, v̂)(ξ, t) :=
∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2

∫ {
û(ξ − η, t− s)⊗ξ v̂(η, t− s)

}
dηds;

see Galdi [12], Temam [21]. Consequently, working in these function spaces, a direct
relation between solutions obtained using the stochastic representation of Section
3 and the solutions obtained using Picard iteration methods can be seen. This is
described in Section 4.

Remark 1.2. In order to restrict the solutions to correspond to (real) vector-valued
incompressible flows, one may simply replace the Banach space Fh,γ,T by the closed
subset

Gh,γ,T = {v ∈ Fh,γ,T : ξ · v̂(ξ, t) = 0, v̂(−ξ, t) = v̂(ξ, t), ξ ∈Wh, 0 ≤ t ≤ T }.
(12)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5008 RABI N. BHATTACHARYA ET AL.

The main results of the paper use majorizing kernels of different exponents to
establish existence, uniqueness and regularity properties of the solutions of the
(FNS). Moreover these solutions have an expected value representation in terms of a
suitably defined multiplicative stochastic functional 〉〈 (θ, t) of a multitype branching
random walk in Fourier wavenumber space. In the statements of these results,
(−∆)α denotes the fractional power of the Laplacian defined as the singular integral
operator with symbol |ξ|2α. For example, using a majorizing kernel h of exponent
1, and working on the space Fh,0,T , existence of solutions can be obtained for small
enough initial data and forcing on a time interval that is solely constrained by the
length of time for which the forcing remains small. Specifically one has the following
theorem.

Theorem 1.1. Let h(ξ) be a standard majorizing kernel with exponent θ = 1.
Fix 0 < T ≤ +∞. Suppose that ||u0||Fh,0,T ≤ (

√
2π)3ν/2 and ||(−∆)−1g||Fh,0,T ≤

(
√

2π)3ν2/4. Then there is a unique solution u in the ball B0(0, R) centered at 0 of
radius R = (

√
2π)3ν/2 in the space Fh,0,T . Moreover the Fourier transform of the

solution is given by û(ξ, t) = h(ξ)Eξθ=ξ〉〈 (θ, t), ξ ∈ Wh.

It should be remarked that regularity properties of the solutions can be inferred
from the particular majorizing kernel being used. For example, note that the ma-
jorizing kernel h0(ξ) = π3/|ξ|2 gives existence and uniqueness, but no control over
regularity of the solution. However, solutions obtained using the majorizing kernels
h

(α)
β = |ξ|β−2e−α|ξ|

β

, 0 < β ≤ 1, α > 0, maintain the same C∞-regularity of the
initial data, as can be seen from the bound on the Fourier transform of the solution.
Moreover β < 1 permits smooth compactly supported initial data.

On the other hand, working in the function spaces Fh,1,T it is possible to use
majorizing kernels to obtain spatial analyticity of the solution. However, it should
be remarked that the size constraints imposed on the initial data and forcing are
substantially more severe that those required in Theorem 1.1. Specifically one has

Theorem 1.2. Let h(ξ) be a standard majorizing kernel with exponent θ = 1. Fix
0 < T ≤ +∞. Assume that

||eνt∆u0(x)||Fh,1,T ≤
(
√

2π)3

2
ρνe−1/2ν

and that

||(−∆)−1g(x, t)||Fh,1,T ≤
(
√

2π)3

4
ρν2e−1/2ν

for some 0 ≤ ρ < 1. Then there is a unique solution u in the ball B1(0, R) centered
at 0 of radius R = (ρ/2)(

√
2π)3νe−

1
2ν in the space Fh,1,T .

Under the conditions of Theorem 1.2 the asserted solution satisfies the following
decay condition:

sup
0≤t<T

sup
ξ∈R3

e
√
t|ξ||û(ξ, t)|
h(ξ)

<∞.(13)

Thus Theorem 1.2 provides another approach generalizing that of Lemarié-Rieusset
[16] to obtain conditions for regularity in the stronger form of spatial analyticity.
More specifically, for example, if exp(−d|ξ|)h(ξ) ∈ L1 for some d ∈ R, then one may
conclude that u(x+ iy, t) is complex analytic for |y| <

√
t−d. Thus the generalized

Lemarié-Rieusset estimate (13) may be applied to obtain spatial analyticity for
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suitable majorizing kernels with exponent 1. In particular, Theorem 1.2 extends
the results of Lemarié-Rieusset since there are majorizing kernels that are larger
than h0(ξ) = π3/|ξ|2 as (26) shows.

One may also obtain local existence and uniqueness from more relaxed conditions
on the majorizing kernels as illustrated by the following.

Theorem 1.3. Let h(ξ) be a standard majorizing kernel with exponent θ < 1. Fix
0 < T ≤ +∞, γ ∈ {0, 1}. Assume eνt∆u0(x) ∈ Fh,γ,T and for some 1 ≤ β ≤ 2,
(−∆)−

β
2 g(x, t) ∈ Fh,γ,T . Then there is a 0 < T∗ ≤ T for which one has a unique

solution u ∈ Fh,γ,T∗.

Remark 1.3. Fujita and Kato [11] obtain global smooth solutions for initial veloc-
ities in L2 with sufficiently small norm. In particular these results require finite
energy conditions. Majorizing kernels can permit infinite energy and provide global
smooth solutions if the initial data is sufficiently small in the norm | · |h. Kato [15]
assumes initial velocity fields in L3, and proves existence of smooth global solu-
tions if the L3 norm of the initial velocity is suitably small. While these results
allow infinite energy, they do not cover the cases obtained under majorization by
hαβ , 0 ≤ β ≤ 1.

Remark 1.4. Another variation on the general approach presented here leads to
conditions for a local existence and uniqueness theory in all dimensions. Here one
can use a particular perturbation to obtain results as follows: For a given ν > 0
there is a time T∗, depending on ν, such that one has existence and uniqueness in
a ball of Gh,T∗ which does not otherwise depend on ν; see Orum [20].

The organization of this paper is as follows. In Section 2 we identify various
majorizing kernels, including kernels applicable to Navier-Stokes in n ≥ 2 dimen-
sions. In Section 3 the stochastic recursion is defined and Theorem 1.1 is proved.
In Section 4 the Picard iteration is defined and proofs of Theorems 1.2 and 1.3 are
given. Conclusions and final remarks are presented in Section 5.

2. FNS-majorizing kernels

The FNS-admissible majorizing kernels play an important role in the develop-
ment of our results. Recall that h : Wh → (0,∞) is a standardized majorizing
kernel with support Wh ⊂ Rn of exponent θ ≥ 0 if

h ∗ h(ξ) ≤ |ξ|θh(ξ) for all ξ ∈ Wh.

The family of standard majorizing kernels of exponent θ on Rn is denoted by

Hn,θ = {h : Wh → (0,∞) : h ∗ h(ξ) ≤ |ξ|θh(ξ) for all ξ ∈Wh ⊂ Rn}.

The first part of this section gives some building block structure of the sets Hn,θ of
majorizing kernels. The second part provides constructions of useful sub-families
of Hn,θ. The main emphasis is on examples in H3,θ for θ = 0, 1, although some
examples are given in a more general setting. The section will close with some
classes of examples of divergence-free vector fields which are majorized by specific
kernels.

We begin by showing that the Hn,θ’s are logarithmically convex for fixed dimen-
sion n.
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Theorem 2.1. Suppose that {qj : 1 ≤ j ≤ m} satisfies qj > 0, and
∑m

1 qj = 1.
Then for hj ∈ Hn,θj , j = 1, ...,m,

h(ξ) =
m∏
j=1

h
qj
j (ξ) ∈ Hn,∑m

j=1 qjθj

with support Wh =
⋂m
j=1 Whj .

Corollary 2.1. Suppose that {qj : 1 ≤ j ≤ m} satisfies qj > 0, and
∑m

1 qj = 1.
Then for hj ∈ Hn,θ, j = 1, ...,m,

h(ξ) =
m∏
j=1

h
qj
j (ξ) ∈ Hn,θ

with support Wh =
⋂m
j=1 Whj .

Proof. Take q1, q2 > 0 with q1 + q2 = 1. Take h1 ∈ Hn,θ1 and h2 ∈ Hn,θ2 and let
h(ξ) = hq11 (ξ)hq22 (ξ). Using Hölder’s inequality,

h ∗ h(ξ) =
∫
η

(h1(η)h1(ξ − η))q1(h2(η)h2(ξ − η))q2 dη

≤ (h1 ∗ h1)q1(ξ)(h2 ∗ h2)q2(ξ)

≤ |ξ|q1θ1+q2θ2hq11 (ξ)hq22 (ξ) = |ξ|q1θ1+q2θ2h(ξ).

The complete result follows by induction. �

In addition, relationships between the Hn,θ’s as both n and θ vary are governed
by a similar logarithmic convexity.

Theorem 2.2. Fix n ≥ 1. Suppose that k1, . . . , km is a partition of n and for each
j = 1, . . . ,m, hj is in Hkj ,θj . Then

h(ξ) =
m∏
j=1

hj(ξj), ξ = (ξ1, . . . , ξm) for ξj ∈ Rkj ,

is in Hn,∑m
j=1 θj

with Wh = Wh1 × ...×Whm .

Proof. For h as defined, taking η = (η1, ..., ηm) with ηj ∈ Rkj ,

h ∗ h(ξ) =
∫
η∈Rn

m∏
j=1

hj(ηj)hj(ξj − ηj) dη

=
m∏
j=1

∫
ηj∈Rkj

hj(ηj)hj(ξj − ηj) dηj

≤
m∏
j=1

|ξj |θjhj(ξj)

=
m∏
j=1

|ξj |θjh(ξ)

≤ |ξ|
∑m
j=1 θjh(ξ).

�
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Theorem 2.3. If A is an n × n invertible matrix and h ∈ Hn,θ, then defining
||A|| = sup{|Ax| : |x| = 1},

hA(ξ) := |detA| · ||A||−θh(Aξ) ∈ Hn,θ
with support WhA = {A−1ξ : ξ ∈Wh}.
Proof. Take A and h as given and define hA as above. Then WhA = {ξ : 0 <
h(Aξ) <∞} = {A−1ξ : 0 < h(ξ) <∞} and

hA ∗ hA(ξ) = |detA|2||A||−2θ

∫
Rn

h(Aη)h(A(ξ − η))dη

= |detA| · ||A||−2θ

∫
Rn

h(η)h(Aξ − η)dη

≤ |detA| · ||A||−2θ|Aξ|θh(Aξ)

≤ |detA| · ||A||−θ|ξ|θh(Aξ)

= |ξ|θhA(ξ).

�
The Hn,θ’s are also closed under logarithmic translation both linearly and in

norm.

Theorem 2.4. If h ∈ Hn,θ and ψ : Rn → [0,∞) satisfies ψ(ξ) ≤ ψ(η) + ψ(ξ − η)
for all η, ξ ∈ Wh, then

hψ(ξ) = e−ψ(ξ)h(ξ) ∈ Hn,θ.

Proof. hψ ∗ hψ(ξ) ≤ e−ψ(ξ)h ∗ h(ξ) ≤ |ξ|θhψ(ξ). �
Corollary 2.2. If h ∈ Hn,θ, then

(i) ea·ξh(ξ) ∈ Hn,θ for any fixed a ∈ Rn,
and, for any pseudo-metric ρ on a subset of R3 containing Wh,

(ii) e−aρ(ξ0,ξ)h(ξ) ∈ Hn,θ for any a > 0 and ξ0 fixed.

Note. The example e−a|ξ|
β

h(ξ) ∈ Hn,θ for any a > 0 and 0 < β ≤ 1 is a noteworthy
special case of part (ii) of Corollary 2.2.

The question of existence of majorizing kernels is non-trivial. For example, it
can be shown that any piecewise continuous h ∈ H1,1 must have Wh = (0,∞) or
Wh = (−∞, 0). This illustrates the tradeoff between n and θ; if exponent θ > 0,
the existence of majorizing kernels with support Rn\{0} is problematic for smaller
values of n. There are however fully supported majorizing kernels of exponent θ = 0
for all n ≥ 1.

Example 2.1. Let

h1(ξ) =
1

2π(1 + ξ2)
for ξ ∈ R.

Then
h1 ∗ h1(ξ) =

1
2π(4 + ξ2)

≤ h1(ξ)

for all ξ ∈ R, so h1 ∈ H1,0 with Wh1 = R. Using Theorem 2.2, it is easy to see
that for n > 1,

hn(ξ) = (2π)−n
n∏
j=1

(1 + ξ2
j )−1 ∈ Hn,0
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with Wh = Rn. The following rotationally invariant extension of h1 is often more
attractive:

h̃n(ξ) =
Γ(n+1

2 )

2π
n+1

2 (1 + |ξ|2)
n+1

2
.

Then again
h̃n ∗ h̃n(ξ) ≤ h̃n(ξ) for all ξ ∈ Rn, n ≥ 1.

(See Folland [9], page 247, for an indication of the necessary computation.)

Propositions 2.1 and 2.2 below provide some examples of majorizing kernels in
H3,1.

Proposition 2.1. Suitably normalized, each of the following kernels h(α)
β are in

H3,1 with support W = R3\{0}:

h
(α)
β (ξ) = |ξ|β−2e−α|ξ|

β

, ξ 6= 0, 0 ≤ β ≤ 1, α > 0.

Using Theorem 2.1 the following is immediate.

Corollary 2.3. Suitably normalized, for each θ ∈ (0, 1), 0 ≤ β ≤ 1, and α > 0,

h
(α)
θ,β(ξ) =

|ξ|θ(β−2)e−αθ|ξ|
β

(2π)3(1−θ)∏3
j=1(1 + ξ2

j )(1−θ)
, ξ 6= 0,

and

h̃
(α)
θ,β(ξ) =

|ξ|θ(β−2)e−αθ|ξ|
β

(1 + |ξ|2)2(1−θ) , ξ 6= 0,

are both in H3,θ with support W = R3\{0}.

The following lemma is sometimes useful for computing the convolution of two
radially symmetric (rotationally invariant) functions, especially in dimension 3, due
to the simplification of the integrand. It will be used in the proof of Proposition
2.1 below. Let σn = 2π(n+1)/2/Γ(n+1

2 ) be the n-dimensional surface volume of a
unit sphere Sn, and let

k(x, y, |ξ|) =
√

(x+ y + |ξ|)(−x+ y + |ξ|)(x − y + |ξ|)(x + y − |ξ|)

be 4 times the area of a triangle with side lengths x, y, and |ξ|.

Lemma 2.1. Suppose n ≥ 2, and that h1, h2 : Rn → C are each rotationally
invariant, i.e. h1(ξ) = g1(|ξ|) and h2(ξ) = g2(|ξ|). Then the convolution h1∗h2(ξ),
if it exists, may be computed for |ξ| 6= 0 as

h1∗h2(ξ) =
σn−2

2n−3|ξ|n−2

∫∫
T|ξ|

g1(x)g2(y)xy [k(x, y, |ξ|)]n−3 dxdy,(14)

where T|ξ| =
{

(x, y) ∈ R2 : y ≥ −x+ |ξ|, x − |ξ| ≤ y ≤ x+ |ξ|
}

.

Proof. The integrand in h1 ∗h2(ξ) =
∫
h1(η)h2(ξ − η)dη is invariant under rota-

tions around the axis defined by ξ (or reflection if n = 2). Such rotations leave
invariant the unit sphere Sn−2 centered at the origin in the hyperplane orthogo-
nal to ξ. The following coordinates are therefore natural: x = |η|, y = |ξ − η|,
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ω ∈ Sn−2. We transform to this coordinate system by first passing to ordinary
spherical coordinates:

η1 = r cos θ1, 0 ≤ θ1 ≤ π,
η2 = r sin θ1 cos θ2, 0 ≤ θ2 ≤ π,
η3 = r sin θ1 sin θ2 cos θ3, 0 ≤ θ3 ≤ π,

...
...

ηn−1 = r sin θ1 · · · sin θn−2 sin θn−1, 0 ≤ θn−2 ≤ π,
ηn = r sin θ1 · · · sin θn−2 cos θn−1, 0 ≤ θn−1 < 2π.

(15)

Here r = |η|, and θ1 is the angle between η and ξ. The n-dimensional volume
element is

dη1dη2 · · ·dηn = rn−1dr sinn−2 θ1 sinn−3 θ2 · · · sin θn−2dθ1 · · · dθn−1

= rn−1dr sinn−2 θ1dθ1dω

where dω is the surface element for the sphere Sn−2. Using spherical coordinates
and performing the integration over Sn−2 gives, with θ = θ1,

h1∗h2(ξ) = σn−2

∫ π

0

∫ ∞
0

g1(r)g2

(√
r2 + |ξ|2 − 2r|ξ| cos θ

)
rn−1 sinn−2 θdrdθ.

Let x = r = |η| and y =
√
r2 + |ξ|2 − 2r|ξ| cos θ = |ξ − η|. The new region of

integration becomes the set T|ξ| of all possible ordered pairs of triangle side lengths
when the third side of the triangle has length |ξ|. The Jacobian is∣∣∣∣ ∂(r, θ)

∂(x, y)

∣∣∣∣ =
∣∣∣∣∂(x, y)
∂(r, θ)

∣∣∣∣−1

=
∣∣∣∣ ∂x/∂r 0
∗ ∂y/∂θ

∣∣∣∣−1

=
y

x|ξ| sin θ ;

hence,

h1∗h2(ξ) =
σn−2

|ξ|

∫∫
T|ξ|

g1(x)g2(y)xy [x sin θ]n−3
dxdy.(16)

Expressed in terms of x and y, x sin θ = |2ξ|−1k(x, y, |ξ|), giving (14). �

Proof of Proposition 2.1. The cases β = 0 and β = 1 are treated by LeJan and
Sznitman [17]. They are included for completeness here. The case β = 0 is treated
first. Clearly h(α)

0 ∗ h(α)
0 (ξ) is finite for all |ξ| 6= 0. From Lemma 2.1,

h
(α)
0 ∗ h(α)

0 (ξ) = 2πe−2α|ξ|−1

∫∫
T|ξ|

1
xy

dx dy

= 2πe−2α|ξ|−1

∫∫
T1

1
xy

dx dy

= 2πe−α
∫∫
T1

1
xy

dx dy |ξ| h(α)
0 (ξ).

For α > 0 and β ∈ (0, 1] fixed we have h(α)
β (ξ) = g(|ξ|) where g(r) = rβ−2e−αr

β

.

Note that for r, x > 0, (x+ r)β−1−xβ−1 ≤ 0 and for 0 ≤ x ≤ r, xβ +(r−x)β ≥ rβ .
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For |ξ| = r then

h ∗ h(ξ) = 2πr−1

∫∫
Tr

xg(x)yg(y) dx dy

=
2πr−1

αβ

∫ ∞
x=0

xβ−1e−αx
β

∫ r+x

y=|r−x|
αβyβ−1e−αy

β

dy dx

=
2πr−1

αβ

∫ ∞
x=0

xβ−1e−αx
β

(e−α|r−x|
β − e−α(r+x)β ) dx

≤ 2πr−1

αβ
(
∫ r

x=0

xβ−1e−αx
β−α(r−x)β dx

+
∫ ∞
x=0

(x+ r)β−1e−α(x+r)β−αxβ dx −
∫ ∞
x=0

xβ−1e−αx
β−α(x+r)β dx)

≤ 2πr−1

αβ
e−αr

β

∫ r

x=0

xβ−1 dx

=
2πrβ−1

αβ2
e−αr

β

.

�

One may also show that certain Bessel kernels and similar transforms provide
further interesting examples of majorizing kernels in Hn,1 for n ≥ 3, as in the
following proposition. These kernels are closely related to the Bessel kernels of
Aronszajn and Smith [2]. They can also be combined with the kernels of Example
2.1 to construct kernels in Hn,θ for 0 < θ < 1.

Proposition 2.2. For n ≥ 3 and (β, γ) with 0 ≤ β ≤ 1 and 1 ≤ γ ≤ 1 + β,
suitably normalized, each of the following radially symmetric functions is in Hn,1
with support Rn\{0}:

hn,β,γ(ξ) =
∫
t>0

t
γ−n

2 −1e−t
β−|ξ|2/t dt, ξ ∈ Rn.

Remark 2.1. One may apply the Laplace method for estimating integrals to show
that the Bessel type kernels h = hn,β,γ are also regularizing kernels in the sense
that the distributions in the corresponding function space Fh,0,T are C∞-functions.

The following lemma provides a comparison between the kernels of Propositions
2.1 and 2.2.

Lemma 2.2. (i) For each α ∈ (0, 1), there exists a constant c(α) with

h3,1,2(
ξ

2
) ≤ c(α)h

(α)
1 (ξ).

(ii) For each α > 0 and β ∈ [0, 1], there exists a constant c(α)
β with

h3,1,1+β(
ξ

2
) ≤ c(α)

β h
(α)
β (ξ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAJORIZING KERNELS AND STOCHASTIC CASCADES 5015

Proof. Fix β ∈ (0, 1] and choose δ ∈ (0, 1). Then

h3,1,1+β(
ξ

2
) =

∫
t>0

t
β
2−2e−

|ξ|2
4t −t dt

= e−δ|ξ|
∫
t>0

t
β
2−2e−

(1−δ2)|ξ|2
4t −(

√
t− δ|ξ|

2
√
t
)2

dt

≤ e−δ|ξ|
∫
t>0

t
β
2−2e−

(1−δ2)|ξ|2
4t dt

= (
(1 − δ2)|ξ|2

4
)
β
2−1e−δ|ξ|

∫
s>0

s−β/2e−s ds

= (
(1 − δ2)

4
)
β
2−1Γ(1− β/2)|ξ|β−2e−δ|ξ|.

For |ξ| ≥ 1, trivially e−δ|ξ| ≤ e−δ|ξ|β . For |ξ| < 1, |ξ|β − |ξ| ≤ (1− β)β
β

1−β . Taking
δ = α, this gives, for 0 < β ≤ 1 and 0 < α < 1,

h3,1,1+β(
ξ

2
) ≤ C(α)

β h
(α)
β (ξ)

for C(α)
β = 22−βΓ(1− β

2 )(1− α2)
β
2−1eα(1−β)β

β
1−β

.
For 0 < β < 1, 0 < δ < 1 and α ≥ 1,

e−δ|ξ| ≤ e−α|ξ|β for |ξ| ≥ (
α

δ
)

1
1−β .

For |ξ| < (αδ )
1

1−δ , −δ|ξ|+α|ξ|β is maximized at |ξ| = (αβδ )
1

1−β with a maximum of

(1− β)α
1

1−β (βδ )
β

1−β . This gives

h3,1,1+β(
ξ

2
) ≤ C(α)

β h
(α)
β (ξ)

for C(α)
β = 22−βΓ(1− β

2 ) inf0<δ<1(1 − δ2)
β
2−1e(1−β)α

1
1−β (βδ )

β
1−β . �

The majorizing kernels of Proposition 2.2 arise as weighted integrals of the func-
tion t−

n
2 e−

|ξ|2
t . The method of deriving these kernels can also be used to derive

families of non-radial kernels as follows. Fix α ∈ (0, 2] and define

fα(x) =
1

2π

∫
λ∈R

e−|λ|
α+iλx dλ for x ∈ R.

These fα’s correspond to the symmetric stable densities; for example, f1(x) =
(π(1 + x2))−1 and f2(x) = 1

2
√
π
e−x

2/4. The convolution and scaling properties of
the fα’s give

(s+ t)−
1
α fα((s+ t)−1/αx) =

∫
y∈R

(st)−1/αfα(s−1/α(x− y))fα(t−1/αy) dy

(17)

for s, t > 0, x ∈ R.
For n ≥ 1, 0 < α ≤ 2, and g : R+ → R define

Tn,αg(x) =
∫
s>0

g(s)s−n/α
n∏
i=1

fα(s−1/αxi) ds

for all x ∈ Rn such that this integral converges.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5016 RABI N. BHATTACHARYA ET AL.

Lemma 2.3. Suppose g1, g2 : R+ → R such that Tn,α g1, Tn,α g2, g1 ∗ g2 and
Tn,αg1 ∗ Tn,αg2 each exist a.e. with respect to Lebesgue measure. Then

Tn,α g1 ∗ Tn,α g2(x) = Tn,α(g1 ∗ g2)(x) a.e.

Proof. Use Fubini’s Theorem and (17) above to check the result. �

Proof of Proposition 2.2. For ξ ∈ Rn, hn,β,γ(ξ) = 2nπn/2Tn,2hβ,γ(ξ) where

hβ,γ(t) = t
γ
2−1e−t

β

· 1(0,∞)(t).

Note that since uβ + (1 − u)β ≥ 1 for 0 ≤ u ≤ 1 and 0 ≤ β ≤ 1,

hβ,γ ∗ hβ,γ(t) =
∫ t

s=0

s
γ
2−1(t− s)

γ
2−1e−s

β−(t−s)β ds

= tγ−1

∫ 1

u=0

u
γ
2−1(1 − u)

γ
2−1e−t

β(uβ+(1−u)β) du

≤ tγ−1e−t
β

∫ 1

u=0

u
γ
2−1(1− u)

γ
2−1 du

= B(
γ

2
,
γ

2
)hβ,2γ(t).

This gives, for β ∈ [0, 1] and γ > 0,

hn,β,γ ∗ hn,β,γ(ξ) ≤ B(
γ

2
,
γ

2
)hn,β,2γ(ξ)

for all ξ such that hn,β,γ(ξ) exists.
We proceed by showing that, for (β, γ) in the range given, the hn,β,γ’s exist and

the ratio
hn,β,2γ(ξ)
|ξ|hn,β,γ(ξ)

(18)

is bounded uniformly in ξ ∈ Rn. For z > 0 and β ∈ [0, 1] define

gβ,α(z) =
∫ ∞

0

tα−1e−
z2
t −t

β

dt.

For |ξ| = z we have
hn,β,γ(ξ) = gβ,γ−n2

(z)

and
hn,β,2γ(ξ) = gβ,γ−n2 (z).

The following lemma is useful.

Lemma 2.4. For β ∈ (0, 1] and z > 0,
(i) For α > 0, gβ,α(z) ≤ 1

βΓ(αβ ).
(ii) For α = 0, gβ,0(z) ≤ 1

β e
−1 +

∫∞
s=z2 s

−1e−s ds.
(iii) For α < 0, z−2αgβ,α(z) ≤ Γ(−α) with limz↓0 z

−2αgβ,α(z) = Γ(−α).

Proof of Lemma 2.4. Both gβ,γ−n2
and gβ,γ−n2 are continuous functions on (0,∞)

for all (β, γ) with 0 ≤ β ≤ 1 and 1 ≤ γ ≤ 1 + β. For any α ∈ R and 0 < β ≤ 1, the
charge of variables x = z2

t gives

gβ,α(z) = z2α

∫ ∞
0

s−α−1e−s−s
−βz2β

ds.(19)
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In particular z−2αgβ,α(z) is continuous and strictly decreasing in z > 0. For α <
0, limz↘0 z

−2αgβ,α(z) = Γ(−α). Thus we see immediately that gβ,γ−n2
is a contin-

uous and decreasing function of z specified by β and γ, and gβ,γ−n2 is a continuous
and decreasing function of z for γ < n

2 . Next consider the case n = 3, β ∈ [1
2 , 1]

and γ = 3
2 :

gβ,0(z) ≤
∫ ∞

1

tβ−1e−t
β

dt+
∫ 1

0

t−1e−
z2
t dt

=
1
β
e−1 +

∫ ∞
z2

s−1e−s ds.

The case n = 3, γ ∈ (3
2 , 1 + β) for β ∈ (1

2 , 1] is handled as follows. For α > 0,
the change of variables s = tβ gives

gβ,α(z) =
1
β

∫ ∞
0

s
α
β−1e−s−z

2s
− 1
β
ds

≤ 1
β

Γ(
α

β
).

�

Returning to the proof of Proposition 2.2 we see that the key to bounding (18)
uniformly in ξ ∈ Rn is showing that

lim sup
z↘0

gβ,γ−n2 (z)
zgβ,γ−n2

(z)

and

lim sup
z↗∞

gβ,γ−n2 (z)
zgβ,γ−n2

(z)

are both finite.
First consider the case (β, γ) = (0, 1). From (19), for all n ≥ 3,

g0,1−n2 (z)
zg0, 1−n2

(z)
=

Γ(n2 − 1)
Γ(n−1

2 )
<∞.

Next consider β ∈ (1, 2] and γ ∈ [1, 1 + β] ∩ [1, n2 ). From (iii) of Lemma 2.4

lim sup
z↘0

gβ,γ−n2 (z)
zgβ,γ−n2

(z)
= lim sup

z↘0
zγ−1

zn−2γgβ,γ−n2 (z)
zn−γgβ,γ−n2

(z)

=

{
Γ(n2−1)

Γ(n−1
2 )

, γ = 1,

0, γ ∈ (1, 1 + β] ∩ (1, n2 ).

For n = 3, γ = 3
2 , and β ∈ [1

2 , 1], using (ii) and (iii) of Lemma 2.4,

lim sup
z↘0

gβ,0(z)
zgβ,−3

4
(z)

=
1

Γ(3
4 )

lim
z↘0

z
1
2 gβ,0(z)

≤ 1
Γ(3

4 )
lim sup
z↘0

(z
1
2

∫ 1

z2
s−1 ds+ z

1
2

∫ ∞
1

e−s ds)

≤ 2
Γ(3

4 )
lim
z↘0

z
1
2 ln z = 0.
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For n = 4, γ = 2 and β = 1, again using (ii) and (iii) of Lemma 2.4

lim sup
z↘0

g1,0(z)
zg1,−1(z)

≤ lim
z↘0

zg1,0(z) = 0.

For n = 3, β ∈ (1
2 , 1] and γ ∈ (3

2 , 1 + β],

lim sup
z↘0

gβ,γ−3
2
(z)

zgβ,γ−3
2

(z)
≤

Γ(γ−
3
2

β )

βΓ(3−γ
2 )

lim
z↘0

z2−γ ,

=

{
1 for β = 1, γ = 2,
0 for β ∈ (1

2 , 1], γ ∈ (3
2 , 1 + β] ∩ (3

2 , 2).

Now consider the limit of the ratio as z ↗ ∞. Fix β ∈ (0, 1] and γ ∈ [1, 1 + β].
For the minute fix z ≥ 1 and consider f(t) = z2

t + tβ . Then f is minimized at
t0 = ( z

2

β )
1

β+1 , decreases on (0, t0) and increases to∞ on (t0,∞). Fix r ≥ 2
2

n−γ β−
1

β+1

sufficiently large to satisfy
1
r

+ rβ ≤ 1
2

(
1
r2

+ r2β).

In particular this gives

f(rz
2

β+1 ) ≤ 1
2
f(r2z

2
β+1 )(20)

and rz
2

β+1 ≥ t0. Then

gβ,γ−n2
(z) ≥

∫ rz
2

β+1

t0

t
γ−n

2 −1e−f(t) dt

≥ e−f(rz
2

β+1 ) · 2
n− γ (t

γ−n
2

0 − (rz
2
β+1 )

γ−n
2 )

=
2z

γ−n
β+1

n− γ e
−f(rz

2
β+1 )(β

n−γ
2(β+1) − r

γ−n
2 )

≥ β
n−γ

2(β+1)

n− γ z
γ−n
β+1 e−f(rz

2
β+1 )(21)

and ∫ ∞
r2z

2
β+1

tγ−
n
2−1e−f(t) dt ≤ e−

1
2 f(r2z

2
β+1 )

∫ ∞
r2z

2
β+1

tγ−
n
2−1e−

1
2 t
β

dt

= e−
1
2 f(r2z

2
β+1 )z

2γ−n
β+1

∫ ∞
r2

sγ−
n
2−1e−

z

2β
β+1
2 sβ ds.(22)

Combining (20), (21) and (22),

∫∞
r2z

2
β+1

tγ−
n
2−1e−f(t) dt

zgβ,γ−n2
(z)

≤ (n− γ)β
γ−n

2(β+1) z
γ
β+1−1

∫ ∞
r2

sγ−
n
2−1e

−z
2β
β+1
2 sβ ds.

(23)

For γ ≤ 1 + β, this goes to 0 as z →∞.
For z ≥ 1, t ≤ r2z

2
β+1 gives

t
γ
2 ≤ rγz

γ
β+1 ≤ rγz,
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so that

z−1

∫ r2z
2

β+1

0

tγ−
n
2−1e−f(t) dt ≤ rγ

∫ r2z
2

β+1

0

t
γ−n

2 −1e−f(t) dt ≤ rγgβ,γ−n2
(z).

(24)

Using (23) and (24), for β ∈ (0, 1] and γ ∈ [1, 1 + β],

lim sup
z↗∞

gβ,γ−n2 (z)
zgβ,γ−n2

(z)
≤ rγ <∞.

�

The same general technique that gave the kernels of Proposition 2.2 gives families
of non-radial kernels that are not fully supported. These are the larger kernels that
permit broader existence and uniqueness results for given initial data uλ0 of (FNS);
see Remark 2.2 below.

Proposition 2.3. For each α ∈ (0, 1] and n ≥ 3,

Hn,α(ξ) =
∫
t>0

t−
n−1+α
α

n∏
i=1

fα(t−
1
α ξi) dt

is suitably normalized in Hn,1 with support Wn,α = {ξ ∈ Rn :
∑n

1 1[ξi=0] <
nα+1
α+1 }.

Proof. Fix α ∈ (0, 1] and n ≥ 3. Let gγ(t) = tγ−1 for γ, t > 0 and set

Hn,α(ξ) = Tn,αg 1
α

(ξ)

for all ξ ∈ Rn for which Tn,αg 1
α

(ξ) converges. The convolution gγ ∗ gγ(t) =
B(γ, γ)g2γ(t), so from Lemma 2.3,

Hn,α ∗Hn,α(ξ) = B(
1
γ
,

1
γ

)Tn,αg 2
α

(ξ).

In order to check convergence of Tn,αgγ(ξ) for γ = 1
α ,

2
α , α ∈ (0, 1], we rely on a

series expansion of fα(x) for α ∈ (0, 1] and |x| large given by Feller [8], p. 583:

fα(x) =
1
π|x|

∑
k≥1

Γ(kα+ 1)
k!

(−1)k+1|x|−αk sin(
kαπ

2
).

In particular, using this expansion it is straightforward to show that for α ∈ (0, 1]
and |x| > 2

1
α , fα(x) < cα|x|−1−α where cα is a constant depending on α. In

addition, it is easy to see that fα(x) is maximized at x = 0.
Fix n ≥ 3 and x ∈ Rn with |x| > 0. The change of variables s = t|x|−α gives

Tn,αgγ(x) = |x|γα−nTn,αgγ(
x

|x| ).(25)
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Let J(x) = {i : xi 6= 0}, j = j(x) =
∑n

1 1[xi=0] and r(x) = min{ 1
2 ( |xj ||x| )

α : j ∈
J(x)}. Then∫ r(x)

s=0

sγ−
n
α−1

n∏
1

fα(
xi
|x|s

− 1
α ) ds ≤ f jα(0)

∫ r(x)

s=0

sγ−
n
α−1

∏
i∈J(x)

cα(
|xi|
|x| s

− 1
α )−1−α ds

= f jα(0)cn−jα

∏
i∈J(x)

(
|xi|
|x| )

−1−α

·
∫ r(x)

s=0

sγ−
n−(n−j)(1+α)

α −1 ds.

For γ = 1
α ,

2
α this integral converges for j < nα+1

α+1 . Also for γ < n
α ,∫ ∞

r(x)

sγ−
n
α−1

n∏
1

fα(
xi
|x|s

− 1
α ) ds < fnα (0)

∫ ∞
r(x)

sγ−
n
α−1 ds <∞.

Together these give
Tn,αgγ(

x

|x| ) <∞

for γ = 1
α ,

2
α and

∑n
1 1[xi=0] <

nα+1
α+1 . From (25) we see that to verify that Hn,α is

a majorizing kernel, we need to show that for a constant cn,α ∈ (0,∞),

Tn,αg 2
α

(
x

|x| ) ≤ cn,αTn,αg 1
α

(
x

|x| )

for all x with
∑n

1 1[xi=0] <
nα+1
α+1 . Fix n ≥ 3, α ∈ (0, 1], and y ∈ Rn with |y| = 1

and
∑n

1 1[yi=0] <
nα+1
α+1 . For γ = 1

α ,
2
α let

I(1)
γ (y) =

∫ 1

s=0

sγ−
n
α−1

n∏
1

fα(yis−
1
α ) ds

and

I(2)
γ (y) =

∫ ∞
s=1

sγ−
n
α−1

n∏
1

fα(yis−
1
α ) ds.

Immediately
I

(1)
2
α

(y) ≤ I(1)
1
α

(y).

Using Yamazato [23] we see that fα(x) is uni-modal and strictly decreasing on
(0,∞). This gives

I
(2)
1
α

(y) ≥
∫
s>1

s
1−n
α −1

n∏
1

fα(1) ds =
α

n− 1
fnα (1)

and

Tn,αg 2
α

(x) ≤ cn,α|x|Tn,αg 1
α

(x) for cn,α =
n− 1
n− 2

(
fα(0)
fα(1)

)nB(
1
γ
,

1
γ

).

�

Remark 2.2. In the case n = 3, α = 1 the kernel H3,1 can be written as

H3,1(ξ) =
1
|ξ|2G(

ξ

|ξ| ),(26)
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whereG is defined a.e. on the unit sphere withG(θ)→∞ as θ approaches the points
(0, 0,±1), (0,±1, 0), and (±1, 0, 0), respectively. In particular the growth of H3,1

along particular directions is much larger than h0(ξ) = 1/|ξ|2. Transforming H3,1

via a rotation as suggested in Theorem 2.3 permits such growth in any direction.

In view of the role of majorizing kernels in providing bounds on the Fourier
transformed forcing and/or initial data, the theory contains a dual problem which
is to identify classes of divergence-free vector fields in physical space which are so
dominated.

The first example is a class of divergence-free vector fields on R3 whose Fourier
transforms are dominated by h3,β,γ(ξ).

Example 2.2. Fix 0 ≤ β ≤ 1 and 1 ≤ γ ≤ 1+β. For 1 ≤ j ≤ 3 let mj(t) be measur-
able functions on [0,∞) such that |mj(t)| ≤ t

γ
2−1e−t

β

and
∫
t>0

t−3/2|mj(t)|dt <∞.
Let v(x) be the vector field whose components vj(x) are the Laplace transforms of
mj(t) evaluated at |x|2/4; that is,

vj(x) =
∫ ∞

0

e−t|x|
2/4mj(t)dt.

Let u(x) be the divergence-free projection of v(x). Then the following calculation
shows that

|û(ξ)| ≤ ch3,β,γ(ξ).

After using Tonelli’s Theorem to check integrability, Fubini’s Theorem gives

|v̂j(ξ)| = c |
∫
t>0

∫
R3
e−iξ·xe

−t|x|2
4 mj(t)dx dt|

≤ c

∫
t>0

t−3/2|mj(t)|e−|ξ|
2/tdt

≤ c h3,β,γ(ξ).

The projection of the vector field v(x) onto the divergence-free component u(x)
becomes, on the Fourier side, û(ξ) = v̂(ξ)− ξ

|ξ| (v̂(ξ)· ξ|ξ| ) = πξ⊥ v̂(ξ). This contraction
gives

|û(ξ)| ≤ |v̂(ξ)| ≤ ch3,β,γ(ξ) for all ξ ∈ R3\{0}.

For the next example we consider majorization by the kernels h(α)
β .

Example 2.3. LetM denote the space of finite signed measures on R3 with total
variation norm || ||. Let 0 < β ≤ 1 and denote the “Fourier transformed Bessel
kernel” of order β by Gβ(x) = (1 + |x|2)−

1+β
2 . Then for each g = Gβ ∗ µ, µ ∈ M,

one has for β = 1, α ∈ (0, 1) and for β ∈ (0, 1), α > 0,

|ĝ(ξ)| ≤ C(α)
β h

(α)
β (ξ)||µ||, ξ 6= 0,

for a constant C(α)
β > 0. In particular, if v ∈ L1 is a divergence-free vector field,

then g = Gβ ∗ v is also a divergence-free vector field whose Fourier transform is
dominated by h(α)

β . To verify this class of examples it suffices to check that

|Ĝβ(ξ)| ≤ C(α)
β h

(α)
β (ξ),(27)
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for some constant C(α)
β . For this we take the Fourier transform of (1 + |x|2)−

1+β
2

and then use Lemma 2.2. First notice that for any a > 0,

Γ(
β + 1

2
) = a

β+1
2

∫ ∞
0

t
β−1

2 e−at dt.

Solving for a−
β+1

2 and then taking a = 1 + |x|2, we obtain

Gβ(x) =
1

Γ(β+1
2 )

∫ ∞
0

t
β−1

2 e−(1+|x|2)t dt

and

Ĝβ(ξ) =
(2π)−

3
2

Γ(β+1
2 )

∫ ∞
0

t
β−1

2 e−t
∫
x∈R3

e−ix·ξ−|x|
2t dx dt

=
2−

3
2

Γ(β+1
2 )

∫ ∞
0

t
β−2

2 −1e−t−
|ξ|2
4t dt

=
2−

3
2

Γ(β+1
2 )

h3,1,β+1(
ξ

2
).

Then (27) follows from Lemma 2.2 with C
(α)
β = 2−

3
2

Γ( β+1
2 )

c
(α)
β .

The following example uses the h(α)
β majorizing kernels to give smooth divergence-

free vector fields, including some with compact support.

Example 2.4. Let mj(t), t > 0, j = 1, 2, 3, be measurable functions such that∫∞
0
e−|x|

2t|mj(t)|dt <∞, x ∈ R3, j = 1, 2, 3. Define a vector field with components
vj , j = 1, 2, 3, by

vj(x) =
∫ ∞

0

e−|x|
2tmj(t)dt, x ∈ R3.

Let u be the divergence-free projection of v. Then,

(i) If |mj(t)| ≤ ct−
1
2 , then |ûj(ξ)| ≤ c′h(α)

0 (ξ) for some c′ > 0, j = 1, 2, 3.
(ii) If |mj(t)| ≤ ce−2α2t, then |ûj(ξ)| ≤ c′h(α)

1 (ξ) for some c′ > 0, j = 1, 2, 3.
(iii) For arbitrary ε > 0 there is a smooth probability density function kε sup-

ported on [−ε, ε]3 such that

|k̂ε(ξ)| ≤ c(β, ε) exp{−|εξ|β}, ξ ∈ R3, c(β, ε) > 0.

Let v be any divergence-free integrable vector field such that |v̂(ξ)| ≤ c|ξ|−2, ξ 6= 0.
Then the componentwise perturbation u = kε ∗ v is a divergence-free infinitely
differentiable vector field such that |ûj(ξ)| ≤ c′h

(α)
β (ξ), for α = εβ and some c′ >

0, j = 1, 2, 3.
To verify (i) and (ii) first recall that

(2π)−
3
2

∫
R3
e−ix·ξ−|x|

2t dx = (2t)−
3
2 e−

|ξ|2
4t ,

and therefore

|ûj(ξ)| ≤ 2−
3
2

∫
t>0

t−
3
2 |mj(t)|e−

|ξ|2
4t dt.
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For |mj(t)| ≤ ct−
1
2 ,

|ûj(ξ)| ≤ c2−
3
2

∫
t>0

t−2e−
|ξ|2
4t dt

= c2
1
2 |ξ|−2

= c2
1
2 eαh

(α)
0 (ξ)

for j = 1, 2, 3. For |mj(t)| ≤ ce−2α2t, using the change of variables s = |ξ|2
8t ,

|ûj(ξ)| ≤ c2−
3
2

∫
t>0

t−
3
2 e−2α2t− |ξ|

2

4t dt

= c|ξ|−1

∫
s>0

s−
1
2 e−2s−α

2|ξ|2
4s ds

= c|ξ|−1e−α|ξ|
∫
s>0

s−
1
2 e−s−(

√
s−α|ξ|2

√
s

)2

ds

≤ cΓ(
1
2

)h(α)
1 (ξ).

To check (iii) one may apply Theorem 10.2 of Bhattacharya and Rao [3] to see that
for any fixed β ∈ (0, 1) there exists a probability measure on (R,B) with density k
whose support is contained in [−1, 1] and

|k̂(ξ)| ≤ c(β) exp{−3
β
2−1|ξ|β} for ξ ∈ R.

Without loss of generality we can assume that k is symmetric and infinitely differ-
entiable. Fix ε > 0 and take kε to be the density of the probability measure on R3

given by

Kε(A) =
∫∫∫
Aε

k(x1)k(x2)k(x3) dx1 dx2 dx3

where Aε = {xε : x ∈ A}. Then kε has support contained in [−ε, ε]3 and

|k̂ε(ξ)| ≤ c3(β)e−3
β
2 −1εβ

∑3
i=1|ξi|

β

≤ c3(β)e−ε
β |ξ|β

using Jensen’s inequality in the exponent. If v is an integrable divergence-free
vector field on R3 with |v̂(ξ)| ≤ c|ξ|−2, then u = kε ∗ v is both divergence-free and
infinitely differentiable with

|ûj(ξ)| = |k̂ε| |v̂j(ξ)|
≤ c3(β)e−ε

β |ξ|β min{c|ξ|−2, |v̂j(ξ)|}.

For |ξ| ≥ 1 then

|ûj(ξ)| ≤ c′(β)h(εβ)
β (ξ)

with c′(β) = c · c3(β). For |ξ| ≤ 1,

|ûj(ξ)| ≤ c′′(β)h(εβ)
β (ξ)

for c′′(β) = c3(β)||vj ||, where ||vj || denotes the L1-norm of vj .
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θ

〈1〉
• •

〈2〉

•
〈11〉

•

↑
•

〈112〉 〈212〉 〈222〉
• • •

〈21〉

• •

〈22〉

• •

••

v = (2, 1, 2, . . . ) ∈ ∂V

Figure 1. Full binary tree with index set V and boundary ∂V .
The path v = (2, 1, 2, . . . ) ∈ ∂V is indicated in bold, with v|0 = θ,
v|1 = 〈2〉, v|2 = 〈21〉, and v|3 = 〈212〉.

3. Stochastic recursion

The vertex set V of a complete binary tree rooted at θ may be coded as (see
Figure 1)

V =
∞⋃
=0

{1, 2}j = {θ, 〈1〉, 〈2〉, 〈11〉, . . . },(28)

where {1, 2}0 = {θ}. Also let ∂V =
∏∞
=0{1, 2} = {1, 2}N.

A stochastic model consistent with (FNS)h is obtained by consideration of a
multitype branching random walk of non-zero Fourier wavenumbers ξ, thought of
as particle types , as follows: A particle of type ξ 6= 0 initially at the root θ holds for
an exponentially distributed length of time Sθ with holding time parameter λ(ξ) =
ν|ξ|2; i.e. ESθ = 1

ν|ξ|2 . When this exponential clock rings, a coin κθ is tossed and
either with probability 1

2 the event [κθ = 0] occurs and the particle is terminated,
or with probability 1

2 one has [κθ = 1] and the particle is replaced by two offspring
particles of types η1, η2 selected from the set η1+η2 = ξ according to the probability
kernel H(ξ, dη1 × dη2) defined by (9). This process is repeated independently for
the particle types η1, η2 rooted at the vertices 〈1〉, 〈2〉, respectively.

A more precise mathematical description of the stochastic model requires a bit
more notation. For v = (v1, v2, . . . , vk) ∈ V , let v|j = (v1, . . . , vj), j ≤ k. Also
let |v| = k, |θ| = 0, denote the geneological length of the vertex v ∈ V . For
v = (v1, v2, . . . ) ∈ ∂V , and  = 0, 1, 2, . . . let v|j = (v1, . . . vj), v|0 = θ. That is,
for v ∈ ∂V , v|0,v|1,v|2, . . . may be viewed as a non-terminating path through
vertices of the tree starting from the root v|0 = θ. For u,v ∈ ∂V , or in V , let
|u ∧ v| = inf {m ≥ 1 : u|m 6= v|m}.
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The following requirements provide the defining properties of the underlying
stochastic model. The model depends on the initial frequency (wave number) ξ and
the choice of majorizing kernel h. Fix h and let Wh ⊆ R3\{0} denote the support of
h. Let Bh denote the Borel subsets of Wh. For fixed ξ ∈ Wh, let {(ξv, κv) : v ∈ V}
be the tree-indexed stochastic process starting at (ξθ, κθ) with ξθ = ξ ∈ Wh, κθ ∈
{0, 1}, taking values in the state space Wh × {0, 1}, and defined on a probability
space (Ω,F , Pξ) by the following properties:

(1) Pξ(ξθ ∈ B, κθ = κ) = 1
2δξ(B), B ∈ Bh, κ ∈ {0, 1}.

(2) For any fixed v ∈ ∂V , the sequence (ξv|0, κv|0), (ξv|1, κv|1), (ξv|2, κv|2), . . .
is a Markov chain with transition probabilities

Pξ(ξv|n+1 ∈ B, κv|n+1 = κ|σ({(ξu, κu) : |u| ≤ n}))

=
1
2

∫
B

h(ξv|n − η)h(η)
h ∗ h(ξv|n)

dη(29)

for B ∈ Bh, κ ∈ {0, 1}. In particular, for v ∈ V , ξv1 + ξv2 = ξv Pξ-a.s.,
where vj = (v1 . . . vn)j := (v1 · · · vn, j), j = 1, 2, . . . is the concatenation
operation.

(3) For any u,v,∈ ∂V , {(ξu|m, κu|m)}∞m=0 and {(ξv|m, κv|m)}∞m=0 are condi-
tionally independent given σ({(ξw, κw) : |w| ≤ |u ∧ v|}).

(4) Let {Sv : v ∈ V} be a sequence of iid mean one exponentially distributed
random variables defined on (Ω,F , Pξ) and independent of {(ξv, κv) : v ∈
V}. Define λ(η) = ν|η|2 for η ∈ Wh and

Sv = λ(ξv)−1 · Sv, v ∈ V .

Conditionally given {ξv : v ∈ V}, the collection {Sv : v ∈ V} consists of inde-
pendent exponentially distributed random variables having respective conditional
means {λ(ξv)−1 : v ∈ V}.

Remark 3.1. The above properties, although not an explicit construction, define the
stochastic model; see Harris [13] for an approach to construction of the underlying
probability space.

Our objective now is to use the stochastic branching model represented by the
collection of random variables {ξv, κv, Sv : v ∈ V} to recursively define a random
functional related to (FNS) through its expected value. Namely, for measurable
functions χ0 : Wh → C3 and ϕ : Wh × [0,∞) → C3, and for ξθ = ξ ∈ Wh, t ≥ 0,
the stochastic functional 〉〈 (θ, t) is recursively defined by

〉〈 (θ, t) =

 χ0(ξθ), if Sθ > t,
ϕ(ξθ , t− Sθ), if Sθ ≤ t, κθ = 0,
m(ξθ)〉〈 (〈1〉, t− Sθ)⊗ξθ 〉〈 (〈2〉, t− Sθ), otherwise,

(30)

where the product ⊗ξ and factors m(ξ) are defined in (7) and (8), respectively, and
where 〈1〉 and 〈2〉 are root vertices of the shifted full binary trees

V〈i〉 := {〈i〉, 〈i, 1〉, 〈i, 2〉, 〈i, 1, 1〉, 〈i, 1, 2〉, 〈i, 2, 1〉, . . .},(31)

types ξ〈i〉, i = 1, 2, respectively.
For evaluation of the stochastic functional 〉〈 (θ, t), for a given ξθ = ξ, it is useful

to identify a particular tree structure intrinsic to the stochastic branching model
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↑

t

R3ξθ = ξ

τθ(t)

Sθ, κθ = 1
•...

ξ〈1〉

〈1〉 •...

ξ〈2〉

〈2〉

κ〈1〉 = 0

S〈1〉

S〈2〉

κ〈2〉 = 1

•〈21〉 • 〈22〉

Figure 2. Schematic of a tree indexed branching random walk
with τθ(< t) denoted in bold lines

by (see Figure 2)

τθ(t) = {v ∈ V :
|v|−1∏
=0

kv| = 1, Bv ≤ t}(32)

where

Bθ = 0, Bv =
|v|−1∑
=0

Sv|, θ 6= v ∈ V .(33)

It is helpful to have a bit more notation and further decompose τθ(t) into sets of
vertices of two types. We say that v ∈ V , born at time Bv, survives for a time
Sv until the clock ring at time Rv := Bv + Sv =

∑|v|
=0 Sv|j . In this way we can

partition τθ(t) into the vertices born before time t with clock rings before and after
time t; see Figure 2. Namely,

τθ(t) = τθ(< t) ∪ τθ(> t)

where

τθ(< t) = {v ∈ τθ(t) : Rv ≤ t},
τθ(> t) = {v ∈ τθ(t) : Bv ≤ t < Rv}.
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Since the discrete branching process defined by {v ∈ V :
∏|v|
=0 κv| = 1} is

a critical binary Galton-Watson process, the recursion will terminate in a finite
number of iterations with probability one. In particular, 〉〈 (θ, t) is simply a finite
product of values of χ0 and/or ϕ. For example, the functional evaluation of the
sample tree in Figure 2 is given by

〉〈 (θ, t) = m(ξθ)m(ξ〈2〉)ϕ(ξ〈1〉, t−R〈1〉)⊗ξθ [χ0(ξ〈21〉)⊗ξ〈2〉 χ0(ξ〈22〉)].

In particular, the product is over vertices v ∈ τθ(t) with evaluations of factors at
the leaves v of τθ(< t) as ϕ(ξv, t − Rv) and at the leaves v of τθ(> t) as χ0(ξv);
here a leaf refers to a terminal vertex, while a non-terminating vertex is referred
to as a branch point. No essential use of graph theoretic notions is made beyond
their descriptive role in this development.

Remark 3.2. The branching random walk constructed here differs from that intro-
duced by LeJan and Sznitman [17] in that by constructing the process forward in
time we eliminate the dependence of the model (Ω,F , Pξ) on t. Secondly, a larger
class of transition probabilities is furnished by the respective class of majorizing
kernels. In order to relate the stochastic framework to (FNS) and/or (FNS)h, we
require a notion of solution. The first is a variant on one formulated by LeJan and
Sznitman [17] for solutions to (FNS)h in the special case h = h

(α)
0 . Since we do not

wish to exclude the analysis of complex valued solutions, we do not include their
condition h(ξ)χ(ξ, t) = h(−ξ)χ(−ξ, t) in the definition of solution, but choose to
consider it as a possible subsequent property of solutions.

Definition 3.1. A function χ : Wh × [0, T ]→ C3 which is
(1) continuous in t ∈ [0, T ] for each fixed ξ ∈ Wh,
(2) measurable in ξ ∈Wh for each fixed t ∈ [0, T ],

and satisfies
(3)

∫ T
0

∫
Wh×Wh

|χ(ξ1, s) · eξ| · |πξ⊥χ(ξ2, s)|H(ξ, dξ1× dξ2) <∞ for a.e. ξ ∈ Wh,

and
(4) χ(ξ, t) · ξ = 0, 0 ≤ t ≤ T,

will be called a solution to (FNS)h for initial data χ0 : Wh → C3, χ0(ξ) ·ξ = 0, and
forcing ϕ : Wh × [0, T ]→ C3,

∫ T
0
|ϕ(ξ, t)|dt <∞, ϕ(ξ, t) · ξ = 0, provided (FNS)h

holds for a.e. ξ ∈ Wh.

Remark 3.3. Global solutions are defined by requiring the conditions of the defini-
tion for all T > 0. In the case that a solution to (FNS)h also satisfies

h(ξ)χ(ξ, t) = h(−ξ)χ(−ξ, t),
we will say that χ(ξ, t) is a solution in the sense of LeJan-Sznitman.

Although our focus is on majorizing kernels, the stochastic model may be con-
structed for any measurable h : Wh → (0,∞) such that h ∗ h(ξ) <∞. With this in
mind we make the following definition.

Definition 3.2. Let 1/h be a Fourier multiplier on Wh. We say that the pair (u0, g)
is (FNS)h-admissible if

(1) û0(ξ) = ĝ(ξ, t) = 0 for a.e. ξ ∈ W c
h, t ≥ 0.

(2) Eξθ=ξ|〉〈 (θ, t)| <∞ for a.e. ξ ∈Wh, t ≥ 0,
where χ0(ξ) = û0(ξ)/h(ξ), and ϕ(ξ, t) = 2ĝ(ξ, t)/(ν|ξ|2h(ξ)), t ≥ 0, as in (8).
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Theorem 3.1 (Existence). If (u0, g) is (FNS)h-admissible for a given Fourier
multiplier 1/h, then

û(ξ, t) =
{
h(ξ)Eξθ=ξ〉〈 (θ, t), if ξ ∈ Wh, t ≥ 0,
0, if ξ ∈ W c

h, t ≥ 0,

is a solution to (FNS).

Proof. As noted in Remark 1.1, it suffices to consider (FNS)h. To verify that
(FNS)h is satisfied, decompose 〉〈 (θ, t) as

〉〈 (θ, t) = 〉〈 (θ, t)1[Sθ > t] + 〉〈 (θ, t)1[Sθ ≤ t, κθ = 0]
+〉〈 (θ, t)1[Sθ ≤ t, κθ = 1],

take expectation starting at ξ, and use the strong Markov property and conditional
independence in the recursive definition of 〉〈 (θ, t) on [Sθ ≤ t, κθ = 1]. Specifically,

Eξθ=ξ{m(ξθ)〉〈 (〈1〉, t− Sθ)⊗ξθ 〉〈 (〈2〉, t− Sθ)1[Sθ ≤ t, κ = 1]}
= m(ξ)Eξθ=ξ{1[Sθ ≤ t, κθ = 1]E{〉〈 (〈1〉, t− Sθ)

⊗ξθ〉〈 (〈2〉, t− Sθ)|ξ〈1〉, ξ〈2〉, Sθ, κθ}}
= m(ξ)Eξθ=ξ{1[Sθ ≤ t, κθ = 1]χ(ξ〈1〉, t− Sθ)⊗ξθ χ(ξ〈2〉, t− Sθ)}

=
1
2
m(ξ)

∫ t

0

λ(ξ)e−λ(ξ)s

∫
Wh×Wh

χ(η1, t− s)⊗ξ χ(η2, t− s)H(ξ, dη1 × dη2)ds.

The continuity requirement in (1) of Definition 3.1 is evident in the representation
of χ(ξ, t) by (FNS)h. The measurability (2) may be obtained from the measure
theoretic construction of the stochastic branching model. The condition (3) is
contained in the (FNS)h-admissibility definition. To check the incompressibility
condition (4) simply observe that samplepointwise one has

〉〈 (θ, t) · ξθ = 0

by the definition of 〉〈 (θ, t), orthogonality of πξ⊥, and corresponding hypothesis on
χ0(ξ) and ϕ(ξ, t). �

The proof of the existence part of Theorem 1.1 stated in the Introduction now
follows as a corollary to Theorem 3.1 as follows:

Proof of existence in Theorem 1.1. Defining cν = ν(2π)
3
2 /2, the conditions of The-

orem 1.1 state that

(i) h ∗ h(ξ) ≤ |ξ|h(ξ), (ii) |û0(ξ)| ≤ cνh(ξ), (iii) |ĝ(ξ, t)| ≤ νcν |ξ|2h(ξ)/2.

Thus one may define a majorizing kernel hν with constant cν by

hν(ξ) = cνh(ξ), ξ ∈ Whν = Wh.

The conditions (i)-(iii) may then be expressed with respect to the majorizing kernel
hν as

(i) m(ξ) = hν ∗ hν(ξ)/(cν |ξ|hν(ξ)) ≤ 1, (ii) |χ0(ξ)| ≤ 1, (iii) |ϕ(ξ, t)| ≤ 1,

where χ0(ξ) = û0(ξ)/hν(ξ), and ϕ(ξ, t) = 2ĝ(ξ, t)/ν|ξ|2hν(ξ). In particular it follows
that |〉〈 (θ, t)| ≤ 1 for this choice of majorizing kernel, and hence Theorem 3.1 applies.
Now one may check that cancellations make the formula defining the solution û(ξ, t)
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invariant under rescalings of h by constants. Specifically, it follows from the defining
stochastic recursion (30) that for any positive constant c > 0 one has

c〉〈 ch(θ, t) = 〉〈 h(θ, t) a.s.,(34)

where 〉〈 h denotes the functional corresponding to the Fourier multiplier h. Note
that the stochastic functional is always a.s. finite since the stochastic recursion
terminates in a finite number of steps a.s. �

Remark 3.4. Note that for a Fourier multiplier 1/h induced by a majorizing kernel
h with constant B > 0, the corresponding factor m(ξ) is bounded by one provided
that this constant is sufficiently small, i.e. B ≤ cν = ν(2π)

3
2 /2. In this case one

sees that (u0, g) is (FNS)h-admissible under the condition that |û0(ξ)| ≤ Bh(ξ), and
|ĝ(ξ, t)| ≤ Bν|ξ|2h(ξ)/2 by virtue of the implied a.s. unit bound on the functional
〉〈 . In particular there is an implied competition over the size of the majorizing
constant B in this approach. Recently Chris Orum [20] has shown that one may
further exploit incompressibility as reflected in the geometry of the product ⊗ξ
to obtain (FNS)h-admissible majorizing kernels with constants which are twice as
large as these.

Under the additional hypothesis that h(ξ) = h(−ξ) one may check that

〉〈 (θ, t)|ξθ=ξ
dist= 〉〈 (θ, t)|ξθ=−ξ.

As a result it will follow that χ(ξ, t) = Eξθ=ξ〉〈 (θ, t) is also a solution in the sense
of LeJan-Sznitman under this additional condition. However, we shall also see in a
later section that this assumption is not necessary for the expected value.

The above proof of the existence part of Theorem 1.1 provides a global solution
in the ball B0(0, R) in the space Fh,0,T , T > 0, of radius R = cν = ν(2π)

3
2 /2. For

uniqueness of solutions within this ball an argument along the lines of that used by
LeJan and Sznitman [17] may be applied to obtain the following.

Theorem 3.2 (Uniqueness). Let h(ξ) be a standard majorizing kernel with ex-
ponent θ = 1. Fix 0 < T ≤ +∞. Suppose that ||u0||Fh,0,T ≤ ν(

√
2π)3/2 and

||∆−1g||Fh,0,T ≤ ν2(
√

2π)3/4. Then the solution

û(ξ, t) =
{
h(ξ)Eξθ=ξ〉〈 (θ, t), if ξ ∈ Wh, t ≥ 0,
0, if ξ ∈ W c

h, t ≥ 0,

is unique in the ball B0(0, R) centered at 0 of radius R = ν(
√

2π)3/2 in the space
Fh,0,T .

Proof. Suppose that ŵ(ξ, t) is another solution to (FNS) with |ŵ(ξ, t)| ≤ Rh(ξ).
As in the proof of Theorem 1.1, without loss of generality one may replace h by
hν = cνh, where cν ≡ R = ν(2π)

3
2 /2 and define

γ(ξ, t) = ŵ(ξ, t)/hν(ξ).

Then
sup
ξ∈Wh
0≤t≤T

|γ(ξ, t)| ≤ 1.

Define a truncation of τθ(t) by

τ
(n)
θ (t) = {v ∈ τθ(t) : |v| ≤ n}, n = 0, 1, 2, . . . .
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Let Y (τ (n)
θ (t)) be the recursively defined random functional given by

Y (τ (n)
θ (t)) =


χ0(ξθ) if Sθ > t,
ϕ(ξθ, t− Sθ) if Sθ ≤ t, κθ = 0,
m(ξθ)Y (τ (n−1)

〈1〉 (t− Sθ))⊗ξθ Y (τ (n−1)
〈2〉 (t− Sθ)), otherwise,

for n = 1, 2, . . . , where χ0(ξ) = û0(ξ)/hν(ξ), ϕ(ξ, t) = 2ĝ(ξ, t)/(ν|ξ|2hν(ξ)), m(ξ) =
2hν ∗ hν(ξ)/(ν(2π)3/2|ξ|hν(ξ)) ≤ 1, and

Y (τ (0)
θ (t)) =

 χ0(ξθ) if Sθ > t,
ϕ(ξθ, t− Sθ) if Sθ ≤ t, κθ = 0,
m(ξθ)γ(ξ〈1〉, t− Sθ)⊗ξθ γ(ξ〈2〉, t− Sθ), otherwise.

Observe that since ŵ(ξ, t) is an assumed solution to (FNS) it follows directly from
(FNS)hν that

Eξθ=ξY (τ (0)
θ (t)) = γ(ξ, t).

Moreover, using (FNS)hν and conditioning on

Fn = σ({Sv, ξv, κv : |v| ≤ n}),
this extends by induction to yield

γ(ξ, t) = Eξθ=ξY (τ (n)
θ (t)) for n = 0, 1, 2, . . . .

Specifically, one has

Eξθ=ξY (τ (n+1)
θ (t))

= χ0(ξ)e−λ(ξ)t +
1
2

∫ t

0

λ(ξ)e−λ(ξ)sϕ(ξ, t− s)ds

+m(ξ)Eξθ=ξ{Y (τ (n)
〈1〉 (t− Sθ))⊗ξ Y (τ (n)

〈2〉 (t− Sθ))1[Sθ ≤ t, κθ = 1]}

= χ0(ξ)e−λ(ξ)t +
1
2

∫ t

0

ϕ(ξ, t− s)λ(ξ)e−λ(ξ)sds+m(ξ)
1
2

∫ t

0

λ(ξ)e−λ(ξ)s

·
∫

Eξ〈1〉Y (τ (n)
〈1〉 (t− s))⊗ξ Eξ〈2〉Y (τ (n)

〈2〉 (t− s))H(ξ, dξ〈1〉 × dξ〈2〉) ds.

Now observe that

Y (τ (0)
θ (t)) = 〉〈 (θ, t) on [τ (0)

θ (t) = τθ(t)],

and more generally, since the terms γ(ξv, t − Rv) appear in Y only at truncated
vertices,

Y (τ (n)
θ (t)) = 〉〈 (θ, t) on [τ (n)

θ (t) = τθ(t)].

Thus, since
E|Y (τ (n)

θ (t))| ≤ 1 for all n

and
E|〉〈 (θ, t)| ≤ 1 for all n

we have

|γ(ξ, t)−E〉〈 (θ, t)| = |E{Y (τ (n)
θ (t))− 〉〈 (θ, t)1[τ (n)

θ (t) 6= τθ(t)]}|
≤ 2P (τ (n)

θ (t) 6= τθ(t))→ 0 as n→∞.
�
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Corollary 3.1. Under the conditions of the theorem one has

Y (τ (n)
θ (t)) = Eξθ=ξ{〉〈 (θ, t)|Fn}, n = 0, 1, 2, . . . ,

where
(1) Fn = σ({Sv, ξv1, ξv2, κv : |v| ≤ n}),
(2)

Y (τ (0)
θ (t)) =


χ0(ξθ) if Sθ > t,
ϕ(ξθ, t− Sθ) if Sθ ≤ t, κθ = 0,
m(ξθ)Eξ〈1〉〉〈 (〈1〉, t− Sθ)
⊗ξθEξ〈2〉〉〈 (〈2〉, t− Sθ), otherwise.

In particular, {Y (τ (n)
θ (t)) : n = 0, 1, 2, . . .} is a martingale with respect to the

filtration {Fn : n ≥ 0}.

Proof. First note from the recursive definition of the functional Y (τ (n)
θ (t)) that for

any N ≥ n,
E(Y (τ (N)

θ (t))|Fn) = Y (τ (n)
θ (t)), N ≥ n.

Let G = G(Sv, ξv1, ξv2, κv : |v| ≤ n) be a bounded Fn-measurable function. Then,
for N ≥ n,

E{G · Y (τ (n)
θ (t))} = E{G ·E{Y (τ (N)

θ (t))|Fn}}
= E{E{G · Y (τ (N)

θ (t))|Fn}}
= E{G · Y (τ (N)

θ (t))}
= lim

N→∞
E{GY (τ (N)

θ (t))}

= E{ lim
N→∞

GY (τ (N)
θ (t))1[τ (N)

θ (t) = τθ(t)]}

= E{G〉〈 (θ, t)}.

�

4. Picard iterations of a contraction map

In this section we show how majorizing kernels can be used to obtain local or
global solutions of the Navier-Stokes equations following a contraction mapping
argument. At the same time, relations of the stochastic cascade theory with a
Picard iteration scheme are established.

Recall that the (FNS) equations are

û(ξ, t) = e−ν|ξ|
2tû0(ξ) + B̂(û, û)(ξ, t)

+
∫ t

0

e−ν|ξ|
2sĝ(ξ, t− s)ds := Q̂[û; û0, ĝ](ξ, t)(35)

where

B̂(û, v̂)(ξ, t) :=
∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2∫ {

û(ξ − η, t− s)⊗ξ v̂(η, t− s)
}
dηds.
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Consider the Picard iteration scheme naturally associated with the (projected)
Navier-Stokes equation

un+1(x, t) = F (x, t) +B(un, un)(x, t)(36)

where F (x, t) = etν∆u0(x)+
∫ t

0 e
sν∆g(x, t−s)ds, u(0)(x, t) = etν∆u0(x) and u1(x, t)

= F (x, t) +B(u(0), u(0))(x, t). The convergence of the iterates follows from showing
that Q is a contraction in an appropriate ball in Fh,γ,T .
Remark 4.1. In the case γ = 1 the smaller ball for existence and uniqueness is
related to the increased regularity, namely spatial analyticity, implied by the decay
on the Fourier transform in this case. Existence and uniqueness results in the larger
balls obtained with γ = 0 are aimed at C∞-smoothness.

The following lemmas summarize some of the technical details.

Lemma 4.1. Let 0 ≤ β ≤ 2, µ > 0 and M(β) = supλ>0
1−e−λ
λ(2−β)/2 . Then∫ t

0

|ξ|βe−µ|ξ|2sds ≤ t(2−β)/2µ−β/2M(β).

Proof. A direct calculation gives for 0 ≤ β ≤ 2,∫ t

0

|ξ|βe−µ|ξ|
2sds =

1− e−µ|ξ|2t
µ|ξ|2−β =

t(2−β)/2

µβ/2
1− e−λ
λ(2−β)/2

where λ = µ|ξ|2t and the result follows immediately. �
In the spirit of Foias and Temam [10] and Lemarié-Rieusset [16], one has the

following estimate.

Lemma 4.2. Let ξ, η ∈ Rn, 0 ≤ s ≤ t. Then

e−νs|ξ|
2−
√
t−s|ξ−η|−

√
t−s|η| ≤ e1/(2ν)e−

√
t|ξ|e−νs|ξ|

2/2.

Proof. Using the triangle inequality, it suffices to show that

f(|ξ|) :=
1
2ν

+
1
2
ν|ξ|2s+

√
t− s|ξ| −

√
t|ξ| ≥ 0.

A simple calculation shows that f(r) achieves its minimum value at

r = (
√
t−
√
t− s)/(νs) = 1/[ν(

√
t+
√
t− s)]

of
1
ν

√
t− s√

t+
√
t− s

which is non-negative for 0 ≤ s ≤ t. �
Using the above lemmas, it is possible to estimate the bilinear form B(u, v).

When considering the majorizing kernel of exponent 1, it is the size of the data
that is used to show that Q is a contraction on a small ball centered at the origin.
For this pointwise estimates of B̂ will be needed.

Proposition 4.1. Let h be a standard majorizing kernel of exponent θ = 1. For
γ = 0 or 1, let C(1, γ) = (2π)−3/22γ . Then for u(x, t), v(x, t) ∈ Fh,γ,T , and 0 ≤ t ≤
T,

|B̂(û, v̂)(ξ, t)| ≤ ||u||Fh,γ,T ||v||Fh,γ,T h(ξ)e−γ
√
t|ξ|C(1, γ)

1− e−ν|ξ|2t/2γ

ν
eγ/(2ν).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAJORIZING KERNELS AND STOCHASTIC CASCADES 5033

Proof. Considering the case γ = 0 first one has

|B̂(û, v̂)(ξ, t)| ≤ ||u||Fh,0,T ||v||Fh,0,T
∫ t

0

[e−ν|ξ|
2s|ξ|(2π)−

3
2

∫
h(ξ − η)h(η)dη]ds

≤ ||u||Fh,0,T ||v||Fh,0,T h(ξ)(2π)−
3
2

∫ t

0

e−ν|ξ|
2s|ξ|2ds

≤ ||u||Fh,0,T ||v||Fh,0,T h(ξ)(2π)−
3
2

1
ν

(1− e−ν|ξ|2t).

Similarly, for γ = 1 and using Lemma 4.2,

|B̂(û, v̂)(ξ, t)| ≤ ||u||Fh,1,T ||v||Fh,1,T
∫ t

0

[
e−ν|ξ|

2s|ξ|(2π)−
3
2∫

h(ξ − η)h(η)e−
√
t−s|ξ−η|e−

√
t−s|η|dη

]
ds

≤ ||u||Fh,1,T ||v||Fh,1,T h(ξ)e−
√
t|ξ|e1/(2ν)(2π)−

3
2

∫ t

0

e−ν|ξ|
2s/2|ξ|2ds

≤ ||u||Fh,1,T ||v||Fh,1,T h(ξ)e−
√
t|ξ|e1/(2ν)(2π)−

3
2

2
ν

(1− e−ν|ξ|
2t/2).

�

When using majorizing kernels of exponent θ < 1, estimates on the norm of the
bilinear form B(u, v) are obtained using the time integral as follows.

Proposition 4.2. Let h be a standard majorizing kernel of exponent θ < 1 and
let C(θ, γ) = M(θ + 1)(2π)−3/22γ(θ+1)/2 where M(θ + 1) is defined in Lemma 4.1.
Then for u, v ∈ Fh,γ,T ,

||B(u, v)||Fh,γ,T ≤ ||u||Fh,γ,T ||v||Fh,γ,TC(θ, γ)T (1−θ)/2
(

1
ν

)(θ+1)/2

eγ/(2ν).

Proof. Considering γ = 0 one has

|B̂(û, v̂)|(ξ, t) ≤ (2π)−3/2||u||Fh,0,T ||v||Fh,0,T
∫ t

0

|ξ|
[
e−ν|ξ|

2s

∫
h(ξ − η)h(η)dη

]
ds

≤ (2π)−3/2||u||Fh,0,T ||v||Fh,0,T h(ξ)
∫ T

0

|ξ|1+θe−ν|ξ|
2sds

≤ (2π)−3/2||u||Fh,0,T ||v||Fh,0,T h(ξ)M(1 + θ)
(

1
ν

)(θ+1)/2

T (1−θ)/2.

Similarly, for γ = 1 use Lemma 4.1 and Lemma 4.2 to get

|B̂(û, v̂)|(ξ, t) ≤ (2π)−3/2||u||Fh,1,T ||v||Fh,1,T
∫ t

0

|ξ|e−ν|ξ|
2s

∫
e−
√
t−s|ξ−η|e−

√
t−s|η|

h(ξ − η)h(η)dηds

≤ (2π)−3/2e1/(2ν)||u||Fh,1,T ||v||Fh,1,T h(ξ)e−
√
t|ξ|
∫ t

0

|ξ|1+θe−ν|ξ|
2s/2ds

≤ (2π)−3/2e1/(2ν)||u||Fh,1,T ||v||Fh,1,T h(ξ)e−
√
t|ξ|

·M(1 + θ)
(

2
ν

)(θ+1)/2

T (1−θ)/2. �
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The first result on global existence is an immediate consequence of these propo-
sitions assuming that the initial data and forcing are small. As noted in the Intro-
duction, the solution determined by this theorem exists for the same time interval
on which the forcing remains small.

Theorem 4.1. Let h be a standard majorizing kernel of exponent θ = 1. For
γ = 0 or 1, let ργ = ργ(ν) < min{1, (ν/2)(1/C(1, γ))} where C(1, γ) is defined in
Proposition 4.1. Then, if ||eνt∆u0(x)||Fh,γ,T ≤ ργe

−γ/(2ν) and ||(∆)−1g(x, t)||Fh,γ,T ≤
ργ(ν/2)e−γ/(2ν)2−γ , the Navier-Stokes equations have a unique solution u(x, t) ∈
Fh,γ,T satisfying ||u||Fh,γ,T ≤ ργ .

Proof. Let F̂ (ξ, t) = e−ν|ξ|
2tû0(ξ) +

∫ t
0
e−ν|ξ|

2sĝ(ξ, t− s)ds.
Consider the case γ = 0 first. Then

|F̂ (ξ, t)| ≤ ρ0h(ξ)
(
e−ν|ξ|

2t +
1
2

(1− e−ν|ξ|2t)
)
.(37)

Also, if ||u||Fh,0,T ≤ ρ0, it follows from the choice of ρ0 and Proposition 4.1 that

|B̂(û, û)(ξ, t)| ≤ ρ0h(ξ)
1
2

(1 − e−ν|ξ|2t).(38)

Thus, using (37) and (38), one has

|Q̂[û; û0, ĝ](ξ, t)| ≤ |F̂ (ξ, t)|+ |B̂(û, û)(ξ, t)| ≤ ρ0h(ξ).

Also if ||v||Fh,0,T ≤ ρ0, using Proposition 4.1 one has

||B(u, u)−B(v, v)||Fh,0,T = ||B(u, u − v) +B(u− v, v)||Fh,0,T
≤ ρ0C(1, 0)(2/ν)(||u− v||Fh,0,T ).

The result follows by the contraction mapping theorem since ρ0C(1, 0)(2/ν) < 1.
Considering γ = 1, note that |û0(ξ)|/h(ξ) ≤ ρ1e

−1/(2ν) so

e−ν|ξ|
2t|û0(ξ)| ≤ ρ1h(ξ)e−1/(2ν)e−ν|ξ|

2t ≤ ρ1h(ξ)e−
√
t|ξ|e−ν|ξ|

2t/2(39)

where in the last step, Lemma 4.2 with s = t was used. Similarly,

|
∫ t

0

e−ν|ξ|
2sĝ(ξ, t− s)ds| ≤ ρ1h(ξ)

1
2
ν

2
e−1/(2ν)

∫ t

0

e−ν|ξ|
2s|ξ|2e−

√
t−s|ξ|ds

≤ ρ1h(ξ)e−
√
t|ξ| 1

2
ν

2

∫ t

0

e−ν|ξ|
2s/2|ξ|2ds

≤ ρ1h(ξ)e−
√
t|ξ| 1

2
(1− e−ν|ξ|

2t/2)(40)

where in the last step, Lemma 4.2 with η = 0 was used. Thus, from (39) and (40)
it follows that

|F̂ (ξ, t)| ≤ ρ1h(ξ)e−
√
t|ξ|
[
e−ν|ξ|

2t/2 +
1
2

(1− e−ν|ξ|
2t/2)

]
.(41)

As before, if ||u||Fh,1,T ≤ ρ1, it follows from the choice of ρ1 and Proposition 4.1
that

|B̂(û, û)(ξ, t)| ≤ ρ1h(ξ)e−
√
t|ξ| 1

2
(1− e−ν|ξ|

2t/2).(42)
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Thus, using (41) and (42), one has for ||u||Fh,1,T ≤ ρ1,

|Q̂[û; û0, ĝ](ξ, t)| ≤ ρ1h(ξ)e−
√
t|ξ|.

Also if ||v||Fh,1,T ≤ ρ1,

||Q̂[û; û0, ĝ](ξ, t)− Q̂[v̂; û0, ĝ](ξ, t)||Fh,1,T = ||B(u, u)−B(v, v)||Fh,1,T
= ||B(u, u− v) +B(u − v, v)||Fh,1,T

≤ ρ1C(1, 1)
2
ν

(||u − v||Fh,0,T ),

and as before the proposition follows by the contraction mapping theorem. �

It is possible to show that solutions exist locally in time when the forcing satisfies
a bound involving fractional powers of the Laplace operator. A result along this
line is given by the following theorem.

Theorem 4.2. Let h be a standard majorizing kernel of exponent θ = 1 and let
ργ be as in Theorem 4.1. Then if ||eνt∆u0(x)||Fh,γ,T ≤ ργ and for some 0 ≤ β < 2,
(−∆)−β/2g(x, t) ∈ Fh,γ,T , then there exists T∗ and u(x, t) ∈ Fh,γ,T∗ satisfying the
Navier-Stokes equation and ||u||Fh,γ,T∗ ≤ ργ .

Proof. New estimates are required for the forcing term. Considering γ = 0 first,
note that 0 ≤ t ≤ T :

|
∫ t

0

e−ν|ξ|
2sĝ(ξ, t− s)ds| ≤ ||g||Fh,0,T h(ξ)

∫ t

0

e−ν|ξ|
2s|ξ|βds

≤ ||g||Fh,0,T h(ξ)M(β)t(2−β)/2ν−β/2

where in the last step, Lemma 4.1 was used.
As in the proof of Theorem 4.1 one has for 0 ≤ t ≤ T

|Q̂[û; û0, ĝ](ξ, t)| ≤ h(ξ)
[
||eνt∆u0||Fh,0,T e−ν|ξ|

2t

+||g||Fh,0,TM(β)t(2−β)/2ν−β/2 + ||u||2Fh,0,T (2π)−3/2 1
ν

(1− e−ν|ξ|2t)
]
.

The result follows by choosing T∗ small enough so that Q̂ is a contraction of the
ball of radius ργ centered at the origin into itself.

Similarly, for γ = 1, one has

|
∫ t

0

e−ν|ξ|
2sĝ(ξ, t− s)ds| ≤ ||g||Fh,1,T h(ξ)

∫ t

0

e−ν|ξ|
2s|ξ|βe−

√
t−s|ξ|ds

≤ ||g||Fh,1,T h(ξ)e−
√
t|ξ|e1/(2ν)

∫ t

0

e−ν|ξ|
2s/2|ξ|βds

≤ ||g||Fh,1,T h(ξ)e−
√
t|ξ|M(β)t(2−β)/2(ν/2)−β/2.

Thus,

|Q̂[û; û0, ĝ](ξ, t)| ≤ h(ξ)e−
√
t|ξ|
[
||eνt∆u0||Fh,1,T e−ν|ξ|

2t

+||g||Fh,1,TM(β)t(2−β)/2ν−β/2 + ||u||2Fh,1,T (2π)−3/2 1
ν

(1− e−ν|ξ|2t)
]
.
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As before, the result follows by choosing T∗ small enough so that the contraction
mapping theorem can be applied to Q̂ as a mapping on the ball or radius ργ centered
at the origin. �

Finally, a further local existence result can be obtained if majorizing kernels of
exponent θ < 1 are considered.

Theorem 4.3. Let h be a standard majorizing kernel of exponent θ < 1. Assume
that for some 1 ≤ β ≤ 2,

(∆)−β/2g(x, t) ∈ Fh,γ,T .(43)

Then, for any initial data such that eνt∆u0(x) ∈ Fh,γ,T and forcing satisfying (43)
there exists T∗ ≤ T and a unique u(x, t) ∈ Fh,γ,T∗ satisfying the Navier-Stokes
equation.

Proof. A straightforward calculation shows that

F̂ (ξ, t) = e−ν|ξ|
2tû0(ξ) +

∫ t

0

e−ν|ξ|
2sĝ(ξ, t− s)ds

satisfies
||F ||Fh,γ,T ≤M

for an appropriate M .
Using Proposition 4.2, it follows for suitable constants C, independent of T ,

||Q[û; û0, ĝ]− F ||Fh,γ,T ≤ ||B(u, u)||Fh,γ,T
≤

[
||u− F ||Fh,γ,T + ||F ||Fh,γ,T

]2
CT (1−θ)/2.(44)

Similarly,

||Q[û; û0, ĝ]−Q[v̂; û0, ĝ]||Fh,γ,T ≤ ||B(u, u)−B(v, v)||Fh,γ,T
≤ ||B(u, (u − v)) +B(u − v, v)||Fh,γ,T
≤ C(||u||Fh,γ,T + ||v||Fh,γ,T )

· ||u− v||Fh,γ,T T (1−θ)/2.(45)

Now, use (44) and (45) to choose T∗ ≤ T such that if for some ρ > 0,

||u− F ||Fh,γ,T∗ < ρ,

Q is a contraction in the ball centered at F of radius ρ. �

Remark 4.2. Theorem 4.3 establishes uniqueness and regularity for solutions to
(FNS) on a finite time interval [0, T∗) for all initial u0 ∈ Fh,γ,T∗ without further
restricting ||u0||Fh,γ,T∗ . Here T∗ → 0 as ν → 0. This is consistent with other known
local existence and uniqueness theorems; e.g. see Temam [21] and Kato [15].

Remark 4.3. Recall that a Banach space X is called a limit space for the Navier-
Stokes equations iff ||u||X = ||uλ||X where uλ = λu(λx, λ2t). If h is a majorizing kernel
with exponent θ = 1, then hλ(ξ) = λ−2h(ξ/λ) is also a majorizing kernel of the
same exponent. Moreover, if u ∈ Fh,γ,T , uλ ∈ Fhλ,γ,T and ||u||Fh,γ,T = ||uλ||Fhλ,γ,T .
Thus an exponent one majorizing kernel h such that h = hλ defines a limit space
X = Fh,γ,T in the usual sense, whereas the relation ||u||Fh,γ,T = ||uλ||Fhλ,γ,T defines a
slightly more general version of this notion. Nonetheless the global existence result
of Theorem 4.1 is in agreement with the similar results known for the usual limit
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spaces; cf. Cannone and Meyer [5], Cannone and Planchon [4], and Chen and Xin
[6].

Finally, the relation between the iteration scheme and the expected value rep-
resentation of the solution obtained in Section 3 is established in the following
proposition. For reference, recall that the replacement time of a vertex v is defined
as

Rv =
|v|∑
k=0

Sv|k.

Introduce

An(θ, t) = [|v| ≤ n ∀v ∈ τθ(t)] ∩ [Rv > t ∀v ∈ {u ∈ τθ(t) : |u| = n}],

and let 1[n; θ, t] be the indicator of the event An(θ, t). Observe that the definition
of the event An(θ, t) and its indicator extends to An(〈i〉, t − Sθ), i = 1, 2, and
inductively to An(v, t−Bv), using the shifted binary tree defined by (31) and the
time shift t− Sθ.

Proposition 4.3. Let

vk(ξ, t) = h(ξ)χk(ξ, t)
= h(ξ)Eξ{1[k; ξ, t]〉〈 (θ, t)}

and denote by ûk(ξ, t) the Fourier transform of the kth iterate of the iteration
scheme defined in (36). Then vk(ξ, t) = ûk(ξ, t).

Proof. The proof is by induction on k. Note that

v0(ξ, t) = h(ξ)Eξθ=ξ{1[0; θ, t]〉〈 (θ, t)}
= h(ξ)Eξθ=ξ{〉〈 (θ, t)|Sθ > t}P[Sθ > t]

= h(ξ)χ0(ξ)e−ν|ξ|
2t

= û(0)(ξ).

The proof for the general case rests on the following identity:

(46)
h(ξ)Eξθ=ξ {Eξθ=ξ {1[k + 1; θ, t]1[κθ = 1]1[Sθ < t]m(ξθ)

· 〉〈 (〈1〉, t− Sθ)⊗ξθ 〉〈 (〈2〉, t− Sθ)|ξ〈1〉, ξ〈2〉, Sθ
}}

=
∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2

∫
R3
χk(η, t− s)⊗ξ χk(ξ − η, t− s)h(η)h(ξ − η)dη.

To see this, recall that P[κθ = 1] = 1/2 as well as both the recursive definition of the
〉〈 functional together with the following factorization on the event [κθ = 1, Sθ < t]:

1[k + 1; θ, t] = 1[k; 〈1〉, t− Sθ]1[k; 〈2〉, t− Sθ].(47)

Also recall the exterior condition (10) and the definitions of m given in (8) and of
the transition probability kernel given in (9). With these in mind, the left-hand
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side of (46) can be computed as

h(ξ)
1
2

∫ t

0

e−ν|ξ|
2sν|ξ|2 2h ∗ h(ξ)

ν(2π)
3
2 |ξ|h(ξ)

∫
R3

Eξθ=ξ {1[k; 〈1〉, t− s]〉〈 (〈1〉, t− s)

⊗ξ1[k; 〈2〉, t− s]〉〈 (〈2〉, t− s)|ξ〈1〉 = η, ξ〈2〉 = ξ − η
} h(ξ − η)h(η)

h ∗ h(ξ)
dηds

=
∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2 Eξθ=ξ{

∫
R3

1[k; 〈1〉, t− s]〉〈 (〈1〉, t− s)

⊗ξ1[k; 〈2〉, t− s]〉〈 (〈2〉, t− s)|ξ〈1〉 = η, ξ〈2〉 = ξ − η}h(η)h(ξ − η)dηds.

Thus, using the conditional independence of the recursive functional it follows that
the last equation can be written as∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2

∫
R3

[
h(η)Eξ〈1〉=η {〉〈 (〈1〉, t− s)1[k; 〈1〉, t− s]}

]
⊗ξ
[
h(ξ − η)Eξ〈2〉=ξ−η {〉〈 (〈2〉, t− s)1[k; 〈2〉, t− s]}

]
dηds

as needed to establish (46).
To complete the proof, with condition on the value of the first clock ring Sθ,

recall the definitions of m and ϕ given in (8) and use (46) to get

vk+1(ξ, t) = h(ξ)Eξθ=ξ{Eξθ=ξ{1[k + 1; θ, t]〉〈 (θ, t)|ξ〈1〉, ξ〈2〉, Sθ}}

= h(ξ)
[
χ0(ξ)e−ν|ξ|

2t +
1
2

∫ t

0

e−ν|ξ|
2sν|ξ|2ϕ(ξ, t− s)ds

]
+ h(ξ)Eξθ=ξ {Eξθ=ξ {1[k + 1; θ, t]1[κθ = 1]1[Sθ < t]m(ξ)〉〈 (〈1〉, t− Sθ)
⊗ξθ〉〈 (〈2〉, t− Sθ)|ξ〈1〉, ξ〈2〉, Sθ

}}
= û(0)(ξ) +

∫ t

0

e−ν|ξ|
2sĝ(ξ, t− s)ds

+
∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2

∫
R3
vk(η, t− s)⊗ξ vk(ξ − η, t− s)dηds

= F̂ (ξ, t) +
∫ t

0

e−ν|ξ|
2s|ξ|(2π)−

3
2

∫
R3
ûk(η, t− s)⊗ξ ûk(ξ − η, t− s)dηds

by the induction hypothesis and the definition of F̂ . This last equation is ûk+1(ξ, t)
as claimed. �

A consequence of the proposition is that the convergence of the iteration scheme
(36) and the existence of the expected value in Theorem 3.1 are essentially equiva-
lent.

5. Conclusions and remarks

The Introduction and identification of majorizing kernels provides a way to ob-
tain existence and uniqueness of mild solutions of Navier-Stokes equations and track
regularity of initial data to solutions. The same methods may be applied to the
Fourier coefficients in the case of periodic initial data and forcing. In fact the iden-
tification of majorizing kernels is somewhat simpler here due to the fact that on
the integer lattice the origin need not be a singularity of the majorizing kernel.
One may use a lattice version of the theory for constructions of majorizing kernels
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(e.g. Theorems 2.1-2.2) to construct fully supported majorizing kernels on the in-
teger lattice in all dimensions d ≥ 2. In the case d = 1 one also obtains cascade
representations of solutions to Burgers’ equation by these techniques. For example
majorizing kernels supported on the positive half-line, h(ξ) = 1[ξ > 0], also appear
naturally and yield an existence/uniqueness theory for complex-valued solutions in
Hardy spaces Hp.

As emphasized in the Introduction, in principle the theory may be approached
from the perspective of identifying Fourier multipliers for which Eξθ=ξ|〉〈 (θ, t)| <∞.
While majorizing kernels are sufficient for this purpose, this neither exploits the
geometric structure of the product ⊗ξ nor the “size”(number of vertices) of the
underlying stochastic tree structure beyond simple first order considerations.
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