
Alea 2, 267–277 (2006)

Majorizing multiplicative cascades for directed

polymers in random media

Francis Comets and Vincent Vargas
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Abstract. In this note we give upper bounds for the free energy of discrete directed
polymers in random media. The bounds are given by the so-called generalized
multiplicative cascades from the statistical theory of turbulence. For the polymer
model, we derive that the quenched free energy is different from the annealed one
in dimension 1, for any finite temperature and general environment. This implies
localization of the polymer.

1. Introduction

Let ω = (ωn)n∈N be the simple random walk on the d-dimensional integer lat-
tice Z

d starting at 0, defined on a probability space (Ω,F , P ). We also consider
a sequence η = (η(n, x))(n,x)∈N×Zd of real valued, non-constant and i.i.d. random
variables defined on another probability space (H,G, Q) with finite exponential mo-
ments. The path ω represents the directed polymer and η the random environment.

For any n > 0, we define the (random) polymer measure µn on the path space
(Ω,F) by:

µn(dω) =
1

Zn

exp(βHn(ω))P (dω)

where β ∈ R
+ is the inverse temperature, where

Hn(ω)
def.
=

n∑

j=1

η(j, ωj)

and where

Zn = P [exp(βHn(ω))]
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is the partition function. We use the notation P [X ] for the expectation of a random
variable X . By symmetry, we can – and we will – restrict to β > 0.

The free energy of the polymer is defined as the limit

p(β) = lim
n→∞

1

n
ln(Zn(β)/Q[Zn(β)]), (1.1)

where the limit exists Q-a.s. and in Lp for all p > 1 and is non-random (cf. Comets
et al., 2003). An application of Jensen’s inequality to the concave function ln(·)
yields p(β) 6 0. As shown in theorem 3.2 (b) in Comets and Yoshida (2006), there
exists a βc ∈ [0,∞] such that

p(β)

{
= 0 if β ∈ [0, βc],

< 0 if β > βc.

Determining the critical value βc is an important question in the study of directed
polymers. Indeed, one can show that the negativity of p(β) is equivalent to a
localization property for (ωn)n∈N,(ω̃n)n∈N two independent random walks under
the polymer measure µn (cf Corollary 2.2 in Comets et al. (2003)):

p(β) < 0 ⇐⇒ ∃c > 0 : lim
n→∞

1

n

n∑

k=1

µ⊗2
k−1(ωk = ω̃k) > c Q − a.s.

The statement in the right-hand side means that the polymer localizes in narrow
corridors with positive probability. It is easily seen to be equivalent to

∃c > 0 : lim
n→∞

1

n

n∑

k=1

max
x∈Zd

µk−1(ωk = x) > c Q − a.s. (1.2)

It is not known how to characterize directly these corridors, and therefore this
criterion for the transition localization/delocalization is rather efficient since it does
not require any knowledge on them. Hence, it is of primer importance to get good
upper bounds on p in order to spot the transition. Our main result is the following.

Theorem 1.1. In dimension d = 1, βc = 0.

There is a clear consensus on this fact in the physics literature, but no proof
for it, except via the replica method or in the (different) case of a space-periodic
environment where much more computations can be performed Brunet and Derrida
(2000).

This result follows from a family of upper bounds, given by the free energies
ptree

m (β) of models on trees depending on an integer parameter m (m > 1). These
trees are deterministic and regular, with random weights, they fall in the scope
of the generalized multiplicative cascades Liu (2000) or smoothing transformations
Durrett and Liggett (1983) which are well known generalizations of the random
cascades introduced in Mandelbrot (1974) for a statistical description of turbu-
lence. When the environment variables have nice concentration properties – e.g.,
gaussian or bounded η’s –, we prove in theorem 3.6 that the polymer free energy
is the infimum over m of the one of the m-tree model. For general environmental
distribution we only have an upper bound from theorem 3.3, but it is enough to
show the above theorem. This also explains the title of the present paper. In order
to highlight our results, we summarize theorems 3.3 and 3.6.
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Theorem 1.2. Let d > 1 and ptree
m (β) be given by (3.1–3.2). We have

p(β) 6 inf
m > 1

1

m
ptree

m (β).

If the environment η is bounded or gaussian, the equality holds.

Recall at this point that directed polymers in a Bernoulli random environment
are positive temperature versions of oriented percolation. Our bounds here have a
flavor similar to the lower bounds for the critical threshold in 2-dimensional oriented
percolation (i.e., d = 1 in our notations) in section 6 of Durrett Durrett (1984).
In that paper, percolation is compared to Galton-Watson processes obtained in
running oriented percolation for m steps (m > 1), and then using the distribution
of wet sites as offspring distribution.

We now analyse the localization phenomenon in terms of energy-entropy balance,
in the framework of supercritical 1-dimensional oriented percolation. Assume that
η is Bernoulli distributed with parameter p > ~pc(1). The infinite cluster is the set
of points (t, x) with t ∈ N, x ∈ Z, P (ωt = x) > 0, which are connected to ∞ by an
open oriented path – i.e., a path ω with η(s, ωs) = 1 ∀s > t. It is known that this
cluster, at large scale, is approximatively a cone with vertex (0, 0), direction [0, x)
and positive angle, and it has a positive density. In words, there is a huge number of
oriented paths of length n with energy Hn = n−O(1). Also, there is an even larger
number of paths with energy Hn ∼ cn for c ∈ [p, 1), which are of interest when
we move to non-zero temperature, i.e., when we consider the polymer measure µn.
With exponentially many suitable paths on the energetic level, one could expect
the polymer endpoint to be more or less uniformly distributed in a large interval.
However, according to theorem 1.1, the polymer measure has a strong localization
property (1.2). Hence, localization is essentially an entropic phenomenon, due to
large spatial fluctuations in the number of paths with suitable energy.

For numerics, our upper bounds do not seem very efficient: on the basis of
preliminary numerical simulations they converge quite slowly as m → ∞. Finally
we mention that lower bounds for the polymer free energy can be obtained from a
well-known super-additivity property, see formula (2.3).

2. Notations and preliminaries

We first introduce some further notations.
Let ((ωn)n∈N, (P x)x∈Zd) denote the simple random walk on the d-dimensional

integer lattice Z
d, defined on a probability space (Ω,F): for x in Z

d, under the
measure P x, (ωn − ωn−1)n > 1 are independent and

P x(ω0 = x) = 1, P x(ωn − ωn−1 = ±δj) =
1

2d
, j = 1, . . . , d,

where (δj)1 6 j 6 d is the j-th vector of the canonical basis of Z
d. Like in the

introduction, we will use the notation P for P 0.
For the environment, we assume that for all β ∈ R,

λ(β)
def.
= ln Q(eβη(n,x)) < ∞.

It is convenient to consider the normalized partition function

Wn = Zn/Q[Zn] = P [exp(βHn(ω) − nλ(β))].
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We define for k < n, x, y ∈ Z
d,

Hk,n(ω) =
n−k∑

j=1

η(k + j, ωj)

and

W x
k,n(y) = P x(eβHk,n(ω)−(n−k)λ(β)1ωn−k=y). (2.1)

In the sequel, Wn(x) will stand for W 0
0,n(x). The Markov property of the simple

random walk yields

Wn =
∑

x,y∈Zd

Wk(x)W x
k,n(y). (2.2)

This identity will be extensively used in the sequel.
Finally, we recall (Comets et al., 2003) that with p defined by (1.1) it holds

p(β) = lim
n→∞

1

n
Q(ln(Wn(β))) = sup

n > 1

1

n
Q(ln(Wn(β))), (2.3)

where the last equality is a consequence of super-additivity arguments.

2.1. Definition and well known facts on generalized multiplicative cascades. In this
section, we introduce a model of generalized multiplicative cascades on a tree. For
an overview of results, we refer to Liu (2000). Let N > 2 be a fixed integer and

U =
⋃

k∈N

[| 1, N |]k

be the set of all finite sequences u = u1 . . . uk of elements in [| 1, N |]. With the
previous notation, we write | u |= k for its length. For u = u1 . . . uk,v = v1 . . . vk

two finite sequences, let uv denote the sequence u1 . . . ukv1 . . . vk. Let q be a non
degenerate probability distribution on (R∗

+)N . It is known (cf. Liu, 2000) that there
exist a probability space with probability measure denoted by P (and expectation E),
and random variables (Au)u∈U defined on this space, such that the random vectors
(Au1, . . . , AuN )u∈U form an i.i.d. sequence with common distribution q. We set
the root variable A∅ constant and equal to 1. We assume that the (Ai)1 6 i 6 N

are normalized:

E(

N∑

i=1

Ai) = 1

and that they have moments of all order: E[
∑N

i=1 Ap
i ] < ∞ ∀p ∈ R. Consider the

process (W casc
n )n∈N defined by

W casc
n =

∑

u1,...,un∈[|1,N |]

Au1Au1u2 . . . Au1...un
(2.4)

and the filtration

Gn := σ{Au; | u | 6 n}, n > 1.

Then (W casc
n ,Gn)n > 1 is a non negative martingale so the limit

W casc
∞ = lim

n→∞
W casc

n

exists. We are interested in the behavior of the associated free energy:

pn =
1

n
ln W casc

n .
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In the case where the (Ai)i 6 N are i.i.d, the exact limit of pn as n goes to infinity
was derived in Franchi (2000). In the general case, the proofs in Franchi (2000) can
easily be adapted to show the following result.

Theorem 2.1. The following convergence holds P-a.s. and in Lp for all p > 1:

pn −→
n→∞

inf
θ∈]0,1]

1

θ
ln(E

N∑

i=1

Aθ
i ) 6 0.

The above inequality is a consequence of the normalization. Finding the limit of
pn as n tends to infinity amounts to studying the function v defined by

∀θ ∈]0, 1], v(θ) =
1

θ
ln(E

N∑

i=1

Aθ
i ) ,

which has derivative

v′(1) = E

N∑

i=1

Ai ln(Ai) .

Lemma 2.2. If E
∑N

i=1 Ai ln(Ai) 6 0, the function v is strictly decreasing on ]0, 1]
and thus

inf
θ∈]0,1]

v(θ) = v(1) = 0.

If E
∑N

i=1 Ai ln(Ai) > 0, there exists a unique θ∗ ∈]0, 1[ such that

inf
θ∈]0,1]

v(θ) = v(θ∗) < 0.

Proof : For all θ ∈]0, 1], we have the following expression for the derivative of v:

v′(θ) =
g(θ)

θ2

where g is given by

g(θ) = θ
E
∑N

i=1 Aθ
i ln(Ai)

E
∑N

i=1 Aθ
i

− ln(E
N∑

i=1

Aθ
i ).

In particular, we obtain the value of v′(1) given above. By direct computation, one
can obtain the following expression for g′

∀θ > 0 g′(θ) = θ
E(
∑N

i=1 Aθ
i (ln(Ai) − E(ln(A) | Aθ))2)

E(
∑N

i=1 Aθ
i )

where E(ln(A) | Aθ) is a notation for

E(ln(A) | Aθ) =
E(
∑N

i=1 Aθ
i ln(Ai))

E(
∑N

i=1 Aθ
i )

.

In particular, g is strictly increasing and we have

g(1) = E(

N∑

i=1

Ai ln(Ai)).

By considering the two cases g(1) 6 0 and g(1) > 0, we can easily conclude. �



272 Francis Comets and Vincent Vargas

3. Majorizing polymers with cascades

Let us fix an integer m > 1 and define Lm to be the set of points visited by the
simple random walk at time m:

Lm
def
= {x ∈ Z

d; P (wm = x) > 0}.
We introduce (W tree

m,n)n > 1 ≡ (W casc
n )n > 1 the martingale of the multiplicative cas-

cade associated to the random vector (Wm(x))x∈Lm
, i.e., defined by (2.4) when

N = |Lm| and q is the law of (Wm(x))x∈Lm
; we remind that Wm(x) stands for

W 0
0,m(x) with W 0

0,m(x) given by (2.1). Let ptree
m (β) denote the associated free en-

ergy. In view of theorem 2.1, ptree
m (β) is given by

ptree
m (β) = inf

θ∈]0,1]
vm(θ) (3.1)

where vm is given by the expression

∀θ ∈]0, 1] vm(θ) =
1

θ
ln(Q

∑

x∈Lm

Wm(x)θ). (3.2)

We will first need the following monotonicity lemma.

Lemma 3.1. Assume that φ :]0,∞[−→ R is C1 and that there are constants C, p ∈
[1,∞[ such that

∀u > 0 | φ′(u) | 6 Cup + Cu−p.

Then for all x ∈ Lm φ(Wm(x)), ∂φ(Wm(x))
∂β

∈ L1(Q), Qφ(Wm(x)) is C1 in β ∈ R

and
∂

∂β
Qφ(Wm(x)) = Q

∂

∂β
φ(Wm(x)).

Suppose in addition that φ is concave. Then ,

∀β > 0 Q
∂

∂β
φ(Wm(x)) 6 0.

Proof : The proof is an immediate adaptation of the proof of lemma 3.3 in Comets
and Yoshida (2006). �

As a consequence we can define the following

Proposition 3.2. The function ptree
m is non-increasing in β. There exists a critical

value βm
c ∈ (0,∞] such that

ptree
m (β)

{
= 0 if β ∈ [0, βm

c ],

< 0 if β > βm
c .

Proof : For all θ ∈]0, 1], the function x → xθ is concave so by lemma 3.1, we see
from expression (3.2) that vm(θ) is non-increasing as a function of β. Therefore,
we see from (3.1) that ptree

m is itself non-increasing in β and we obtain the existence
of βm

c (βm
c ∈ [0,∞]). Since

v′m(1) = Q
∑

x∈Lm

Wm(x) ln Wm(x)

−→
∑

x∈Lm

P (ωm = x) ln P (ωm = x) < 0
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as β ↘ 0, we conclude that βm
c is strictly positive by continuity of ∂θvm(θ, β)|θ=1

in β and by lemma 3.1.
�

Theorem 3.3. We have the following inequality

p(β) 6 inf
m > 1

1

m
ptree

m (β). (3.3)

Proof : Let θ ∈ (0, 1) and m be a positive integer. By using the subadditive
estimate

∀u, v > 0, (u + v)θ < uθ + vθ, (3.4)

we have for all n > 1

Q
1

n
ln Wnm = Q

1

θn
ln W θ

nm

(2.2)
= Q

1

θn
ln

(
∑

x1,...,xn

Wm(x1) . . . W
xn−1

(n−1)m,nm
(xn)

)θ

(3.4)

6 Q
1

θn
ln

∑

x1,...,xn

Wm(x1)
θ . . .W

xn−1

(n−1)m,nm
(xn)θ

(Jensen)

6
1

θn
ln Q

∑

x1,...,xn

Wm(x1)
θ . . . W

xn−1

(n−1)m,nm
(xn)θ

=
1

θn
ln

(
Q
∑

x

Wm(x)θ

)n

=
1

θ
ln Q

∑

x

Wm(x)θ .

The proof is complete by taking the limit as n → ∞ and then by taking the infimum
over all θ ∈]0, 1] and m > 1. �

In particular, to prove p(β) < 0 it suffices to find m > 1 (in fact, m > 2) and
θ ∈ (0, 1) such that Q

∑
x Wm(x)θ < 1. The theorem is a handy way to obtain

upper bounds on the critical β.

Remark 3.4. For the sequence of cascade models, the authors do not know if the
sequence (ptree

m (β))m > 1 is subadditive. However we can show that:

inf
m > 1

1

m
ptree

m (β) = lim
m→∞

1

m
ptree

m (β). (3.5)

Proof : Let θ ∈]0, 1[ and m > 1. Using (3.4), we find by a similar computation that
for all k > 2

Q
∑

y

Wkm(y)θ = Q
∑

y

( ∑

x1,...,xk−1

Wm(x1) . . . W
xk−1

(k−1)m,km
(y)
)θ

< Q
∑

y

∑

x1,...,xk−1

Wm(x1)
θ . . . W

xk−1

(k−1)m,km
(y)θ

=
(
Q
∑

x

Wm(x)θ
)k

. (3.6)
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In view of (3.1) and of the smoothness of vm(·), we conclude that

1

km
ptree

km (β) 6
1

m
ptree

m (β).

Observe that when ptree
m (β) < 0, the infimum in (3.1) is achieved for some θ ∈ (0, 1),

and therefore the above inequality is strict. In particular,

inf
m > 1

1

m
ptree

m (β) = lim
m→∞

1

m
ptree

m (β). (3.7)

By repeating the steps in (3.6), we see that, for 0 6 ` < m, k > 1 and θ ∈ (0, 1],

vkm+`(θ) 6 kvm(θ) + v`(θ) ,

whereas, by concavity,

v`(θ) 6
1

θ

∑

x

(
QW`(θ)

)θ
= v`(θ, 0) ,

where v`(θ, 0) = v`(θ, β)|β=0 ∈ (0,∞). Therefore,

max
km 6 n<(k+1)m

vn(θ)

n
6

k

(k + ε)m
vm(θ) +

1

km
v`(θ, 0) ,

where ε = 0 or 1 according to the sign of vm(θ). Now, recalling that vm(θ) > ptree
m (β)

and taking the limit k → ∞, leads to

lim sup
n

ptree
n (β)

n
6

vm(θ)

m
, m > 1, θ ∈ (0, 1].

Combined with (3.7), this implies (3.5). �

We add another

Remark 3.5. Suppose that there exists m > 1 such that

Q
∑

x

Wm(x) ln Wm(x) = 0,

then we have p(β) < 0.

Proof : We have

Q
∑

y

W2m(y) ln W2m(y) = Q
∑

x,y

Wm(x)W x
m,2m(y) ln W2m(y)

>
∑

x,y

QWm(x)W x
m,2m(y) ln

(
Wm(x)W x

m,2m(y)
)

=
∑

x

(
QWm(x) ln Wm(x)

)∑

y

QW x
m,2m(y)

+
∑

x

(
QWm(x)

)∑

y

QW x
m,2m(y) ln W x

m,2m(y)

= 2
∑

x

QWm(x) ln Wm(x)

= 0.

Hence, by lemma 2.2, ptree
2m (β) < 0 and finally p(β) < 0. �

As a consequence of theorem 3.3, we get our main result
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Proof of theorem 1.1: Let d = 1, θ ∈]0, 1] and β > 0. By using lemma 4.1 in Comets
et al. (2003), there exists a c(θ) > 0 such that

∀m > 1 Q(W θ
m) 6 e−c(θ)m

1
3 .

Therefore

Q(
∑

x∈Lm

(Wm(x))θ) 6 | Lm | Q(W θ
m)

6 | Lm | e−c(θ)m
1
3 −→

m→∞
0,

where we have used the fact that | Lm |= O(m). In particular, there exists m > 1
such that

Q(
∑

x∈Lm

(Wm(x))θ) < 1.

We have ptree
m (β) < 0 and so by theorem 3.3 p(β) < 0. �

Theorem 3.6. Suppose the environment η is bounded or gaussian. Then the in-
equality (3.3) is in fact an equality

p(β) = inf
m > 1

1

m
ptree

m (β).

Proof : The inequality p(β) 6 infm > 1
1
m

ptree
m (β) is in fact the conclusion of theo-

rem 3.3 and thus is true for all environments.
We must show that infm > 1

1
m

ptree
m (β) 6 p(β). We treat the gaussian case, the

bounded case being similar. If β 6 βc, we have by definition p(β) = 0 and since for
all m > 1, ptree

m (β) 6 0, the result is obvious. Suppose that β is such that β > βc.
By definition of βc, p(β) < 0. Let θ ∈]0, 1]. We have by the concentration result
(4.5)

Q(W θ
m) = eθQ(ln(Wm))Q(eθ(lnWm−Q(ln(Wm)))

6 eθp(β)m+β2θ2m
2 .

For all m > 1,

1

m
ptree

m (β) 6
1

θm
ln(Q(

∑

x∈Lm

(Wm(x))θ))

6
1

θm
ln(| Lm |) +

1

θm
ln(Q(W θ

m))

6
1

θm
ln(| Lm |) + p(β) +

β2θ

2

−→
m→∞

p(β) +
β2θ

2
,

where we have used the fact that | Lm |= O(md). Thus, by remark 3.4

inf
m > 1

1

m
ptree

m (β) = lim
m→∞

1

m
ptree

m (β) 6 p(β) +
β2θ

2
.

The proof is complete by letting θ ↓ 0. �
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4. Appendix

In this appendix, we recall concentration of measure results we used in the proof
of theorem 3.6. For a complete survey on the concentration of measure phenomenon,
we refer to Ledoux (1999). In the gaussian case, we have

Theorem 4.1. Let M > 1 be an integer. We consider R
M equipped with the usual

euclidian norm ‖ · ‖. If XM is a standard gaussian vector on some probability
space (with a probability measure P) and F is a C-lipschitzian function (|F (x) −
F (y)| 6 C‖x − y‖) from R

M to R then

E(eλ(F (XM )−E(F (XM )))) 6 e
C2λ2

2 . (4.1)

Therefore, we have the following concentration result

P(| F (XM ) − E(F (XM )) | > r) 6 2e−
r2

2C2 . (4.2)

In the bounded case, we get a similar concentration result (cf. Corollary 3.3 in
Ledoux, 1999) .

Theorem 4.2. Let M > 1 be an integer and a < b be two real numbers. If XM is
a random vector in [a, b]M with i.i.d. components on some probability space and F
is a convex and C-lipschitzian function from [a, b]M to R for the euclidian norm,
then

E(eλ(F (XM )−E(F (XM )))) 6 eC2(b−a)2λ2

. (4.3)

Therefore, we have the following concentration result

P(F (XM ) − E(F (XM )) > r) 6 e
− r2

4C2(b−a)2 (4.4)

We can derive from the above theorems a concentration result for the free energy
at time n:

Corollary 4.3. If the environment η is standard gaussian then for all λ > 0,

Q(eλ(ln(Wn)−Q(ln(Wn)))) 6 e
β2λ2n

2 . (4.5)

If the environment η belongs to [a, b] for a < b two real numbers, then for all λ > 0,

Q(eλ(ln(Wn)−Q(ln(Wn)))) 6 eβ2(b−a)2λ2n. (4.6)

Proof : As a function of the environment, ln(Wn) is convex and β
√

n-lipschitzian
(cf. the proof of proposition 1.4 in Carmona and Hu, 2002). Therefore, in the
gaussian case, the result is a direct application of (4.1) and, in the bounded case,
simply (4.3). �
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