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Make3D: Learning 3D Scene Structure from a

Single Still Image
Ashutosh Saxena, Min Sun and Andrew Y. Ng

Abstract— We consider the problem of estimating detailed
3-d structure from a single still image of an unstructured
environment. Our goal is to create 3-d models which are both
quantitatively accurate as well as visually pleasing.

For each small homogeneous patch in the image, we use a
Markov Random Field (MRF) to infer a set of “plane parame-
ters” that capture both the 3-d location and 3-d orientation of the
patch. The MRF, trained via supervised learning, models both
image depth cues as well as the relationships between different
parts of the image. Other than assuming that the environment
is made up of a number of small planes, our model makes no
explicit assumptions about the structure of the scene; this enables
the algorithm to capture much more detailed 3-d structure than
does prior art, and also give a much richer experience in the 3-d
flythroughs created using image-based rendering, even for scenes
with significant non-vertical structure.

Using this approach, we have created qualitatively correct 3-d
models for 64.9% of 588 images downloaded from the internet.
We have also extended our model to produce large scale 3d
models from a few images.1

Index Terms— Machine learning, Monocular vision, Learning
depth, Vision and Scene Understanding, Scene Analysis: Depth
cues.

I. INTRODUCTION

Upon seeing an image such as Fig. 1a, a human has no difficulty

understanding its 3-d structure (Fig. 1c,d). However, inferring

such 3-d structure remains extremely challenging for current

computer vision systems. Indeed, in a narrow mathematical sense,

it is impossible to recover 3-d depth from a single image, since

we can never know if it is a picture of a painting (in which case

the depth is flat) or if it is a picture of an actual 3-d environment.

Yet in practice people perceive depth remarkably well given just

one image; we would like our computers to have a similar sense

of depths in a scene.

Understanding 3-d structure is a fundamental problem of

computer vision. For the specific problem of 3-d reconstruction,

most prior work has focused on stereovision [4], structure from

motion [5], and other methods that require two (or more) images.

These geometric algorithms rely on triangulation to estimate

depths. However, algorithms relying only on geometry often end

up ignoring the numerous additional monocular cues that can also

be used to obtain rich 3-d information. In recent work, [6]–[9]

exploited some of these cues to obtain some 3-d information.

Saxena, Chung and Ng [6] presented an algorithm for predicting

depths from monocular image features. [7] used monocular depth

perception to drive a remote-controlled car autonomously. [8], [9]

built models using a strong assumptions that the scene consists

of ground/horizontal planes and vertical walls (and possibly sky);
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Fig. 1. (a) An original image. (b) Oversegmentation of the image to obtain
“superpixels”. (c) The 3-d model predicted by the algorithm. (d) A screenshot
of the textured 3-d model.

these methods therefore do not apply to the many scenes that are

not made up only of vertical surfaces standing on a horizontal

floor. Some examples include images of mountains, trees (e.g.,

Fig. 15b and 13d), staircases (e.g., Fig. 15a), arches (e.g., Fig. 11a

and 15k), rooftops (e.g., Fig. 15m), etc. that often have much

richer 3-d structure.

In this paper, our goal is to infer 3-d models that are both

quantitatively accurate as well as visually pleasing. We use

the insight that most 3-d scenes can be segmented into many

small, approximately planar surfaces. (Indeed, modern computer

graphics using OpenGL or DirectX models extremely complex

scenes this way, using triangular facets to model even very

complex shapes.) Our algorithm begins by taking an image, and

attempting to segment it into many such small planar surfaces.

Using a superpixel segmentation algorithm, [10] we find an over-

segmentation of the image that divides it into many small regions

(superpixels). An example of such a segmentation is shown in

Fig. 1b. Because we use an over-segmentation, planar surfaces

in the world may be broken up into many superpixels; however,

each superpixel is likely to (at least approximately) lie entirely

on only one planar surface.

For each superpixel, our algorithm then tries to infer the 3-

d position and orientation of the 3-d surface that it came from.

This 3-d surface is not restricted to just vertical and horizontal

directions, but can be oriented in any direction. Inferring 3-d

position from a single image is non-trivial, and humans do it using

many different visual depth cues, such as texture (e.g., grass has

a very different texture when viewed close up than when viewed

far away); color (e.g., green patches are more likely to be grass on
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the ground; blue patches are more likely to be sky). Our algorithm

uses supervised learning to learn how different visual cues like

these are associated with different depths. Our learning algorithm

uses a Markov random field model, which is also able to take into

account constraints on the relative depths of nearby superpixels.

For example, it recognizes that two adjacent image patches are

more likely to be at the same depth, or to be even co-planar, than

being very far apart.

Having inferred the 3-d position of each superpixel, we can now

build a 3-d mesh model of a scene (Fig. 1c). We then texture-map

the original image onto it to build a textured 3-d model (Fig. 1d)

that we can fly through and view at different angles.

Other than assuming that the 3-d structure is made up of a

number of small planes, we make no explicit assumptions about

the structure of the scene. This allows our approach to generalize

well, even to scenes with significantly richer structure than only

vertical surfaces standing on a horizontal ground, such as moun-

tains, trees, etc. Our algorithm was able to automatically infer 3-d

models that were both qualitatively correct and visually pleasing

for 64.9% of 588 test images downloaded from the internet.

We further show that our algorithm predicts quantitatively more

accurate depths than both previous work.

Extending these ideas, we also consider the problem of creating

3-d models of large novel environments, given only a small,

sparse, set of images. In this setting, some parts of the scene

may be visible in multiple images, so that triangulation cues

(structure from motion) can be used to help reconstruct them;

but larger parts of the scene may be visible only in one image.

We extend our model to seamlessly combine triangulation cues

and monocular image cues. This allows us to build full, photo-

realistic 3-d models of larger scenes. Finally, we also demonstrate

how we can incorporate object recognition information into our

model. For example, if we detect a standing person, we know

that people usually stand on the floor and thus their feet must

be at ground-level. Knowing approximately how tall people are

also helps us to infer their depth (distance) from the camera; for

example, a person who is 50 pixels tall in the image is likely

about twice as far as one who is 100 pixels tall. (This is also

reminiscent of [11], who used a car and pedestrian detector and

the known size of cars/pedestrians to estimate the position of the

horizon.)

The rest of this paper is organized as follows. Section II

discusses the prior work. Section III describes the intuitions we

draw from human vision. Section IV describes the representation

we choose for the 3-d model. Section V describes our probabilistic

models, and Section VI describes the features used. Section VII

describes the experiments we performed to test our models.

Section VIII extends our model to the case of building large

3-d models from sparse views. Section IX demonstrates how

information from object recognizers can be incorporated into our

models for 3-d reconstruction, and Section X concludes.

II. PRIOR WORK

For a few specific settings, several authors have developed

methods for depth estimation from a single image. Examples in-

clude shape-from-shading [12], [13] and shape-from-texture [14],

[15]; however, these methods are difficult to apply to surfaces

that do not have fairly uniform color and texture. Nagai et al. [16]

used Hidden Markov Models to performing surface reconstruction

from single images for known, fixed objects such as hands and

faces. Hassner and Basri [17] used an example-based approach

to estimate depth of an object from a known object class. Han

and Zhu [18] performed 3-d reconstruction for known specific

classes of objects placed in untextured areas. Criminisi, Reid and

Zisserman [19] provided an interactive method for computing 3-d

geometry, where the user can specify the object segmentation, 3-

d coordinates of some points, and reference height of an object.

Torralba and Oliva [20] studied the relationship between the

Fourier spectrum of an image and its mean depth.

In recent work, Saxena, Chung and Ng (SCN) [6], [21]

presented an algorithm for predicting depth from monocular

image features; this algorithm was also successfully applied for

improving the performance of stereovision [22]. Michels, Saxena

and Ng [7] also used monocular depth perception and reinforce-

ment learning to drive a remote-controlled car autonomously

in unstructured environments. Delage, Lee and Ng (DLN) [8],

[23] and Hoiem, Efros and Hebert (HEH) [9] assumed that the

environment is made of a flat ground with vertical walls. DLN

considered indoor images, while HEH considered outdoor scenes.

They classified the image into horizontal/ground and vertical

regions (also possibly sky) to produce a simple “pop-up” type

fly-through from an image.

Our approach uses a Markov Random Field (MRF) to model

monocular cues and the relations between various parts of the

image. MRFs are a workhorse of machine learning, and have

been applied to various problems in which local features were

insufficient and more contextual information had to be used.

Examples include stereovision [4], [22], image segmentation [10],

and object classification [24].

There is also ample prior work in 3-d reconstruction from

multiple images, as in stereovision and structure from motion.

It is impossible for us to do this literature justice here, but recent

surveys include [4] and [25], and we discuss this work further in

Section VIII.

III. VISUAL CUES FOR SCENE UNDERSTANDING

Images are formed by a projection of the 3-d scene onto two

dimensions. Thus, given only a single image, the true 3-d structure

is ambiguous, in that an image might represent an infinite number

of 3-d structures. However, not all of these possible 3-d structures

are equally likely. The environment we live in is reasonably

structured, and thus humans are usually able to infer a (nearly)

correct 3-d structure, using prior experience.

Given a single image, humans use a variety of monocular

cues to infer the 3-d structure of the scene. Some of these

cues are based on local properties of the image, such as texture

variations and gradients, color, haze, and defocus [6], [26], [27].

For example, the texture of surfaces appears different when

viewed at different distances or orientations. A tiled floor with

parallel lines will also appear to have tilted lines in an image,

such that distant regions will have larger variations in the line

orientations, and nearby regions will have smaller variations in

line orientations. Similarly, a grass field when viewed at different

orientations/distances will appear different. We will capture some

of these cues in our model. However, we note that local image

cues alone are usually insufficient to infer the 3-d structure. For

example, both blue sky and a blue object would give similar local

features; hence it is difficult to estimate depths from local features

alone.
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Fig. 2. (Left) An image of a scene. (Right) Oversegmented image. Each
small segment (superpixel) lies on a plane in the 3d world. (Best viewed in

color.)

The ability of humans to “integrate information” over space,

i.e. understand the relation between different parts of the image,

is crucial to understanding the scene’s 3-d structure. [27, chap.

11] For example, even if part of an image is a homogeneous,

featureless, gray patch, one is often able to infer its depth by

looking at nearby portions of the image, so as to recognize

whether this patch is part of a sidewalk, a wall, etc. Therefore, in

our model we will also capture relations between different parts

of the image.

Humans recognize many visual cues, such that a particular

shape may be a building, that the sky is blue, that grass is green,

that trees grow above the ground and have leaves on top of them,

and so on. In our model, both the relation of monocular cues

to the 3-d structure, as well as relations between various parts of

the image, will be learned using supervised learning. Specifically,

our model will be trained to estimate depths using a training set

in which the ground-truth depths were collected using a laser

scanner.

Fig. 3. A 2-d illustration to explain the plane parameter α and rays R from
the camera.

IV. REPRESENTATION

Our goal is to create a full photo-realistic 3-d model from

an image. Following most work on 3-d models in computer

graphics and other related fields, we will use a polygonal mesh

representation of the 3-d model, in which we assume the world

is made of a set of small planes.2 In detail, given an image of

the scene, we first find small homogeneous regions in the image,

called “Superpixels” [10]. Each such region represents a coherent

region in the scene with all the pixels having similar properties.

(See Fig. 2.) Our basic unit of representation will be these small

planes in the world, and our goal is to infer the location and

orientation of each one.

2This assumption is reasonably accurate for most artificial structures, such
as buildings. Some natural structures such as trees could perhaps be better
represented by a cylinder. However, since our models are quite detailed, e.g.,
about 2000 planes for a small scene, the planar assumption works quite well
in practice.

Fig. 4. (Left) Original image. (Right) Superpixels overlaid with an illustration
of the Markov Random Field (MRF). The MRF models the relations (shown
by the edges) between neighboring superpixels. (Only a subset of nodes and
edges shown.)

More formally, we parametrize both the 3-d location and

orientation of the infinite plane on which a superpixel lies by

using a set of plane parameters α ∈ R
3. (Fig. 3) (Any point

q ∈ R
3 lying on the plane with parameters α satisfies αT q = 1.)

The value 1/|α| is the distance from the camera center to the

closest point on the plane, and the normal vector α̂ = α
|α| gives

the orientation of the plane. If Ri is the unit vector (also called

the ray Ri) from the camera center to a point i lying on a plane

with parameters α, then di = 1/RT
i α is the distance of point i

from the camera center.

V. PROBABILISTIC MODEL

It is difficult to infer 3-d information of a region from local cues

alone (see Section III), and one needs to infer the 3-d information

of a region in relation to the 3-d information of other regions.

In our MRF model, we try to capture the following properties

of the images:

• Image Features and depth: The image features of a super-

pixel bear some relation to the depth (and orientation) of the

superpixel.

• Connected structure: Except in case of occlusion, neigh-

boring superpixels are more likely to be connected to each

other.

• Co-planar structure: Neighboring superpixels are more

likely to belong to the same plane, if they have similar

features and if there are no edges between them.

• Co-linearity: Long straight lines in the image plane are more

likely to be straight lines in the 3-d model. For example,

edges of buildings, sidewalk, windows.

Note that no single one of these four properties is enough, by

itself, to predict the 3-d structure. For example, in some cases,

local image features are not strong indicators of the depth (and

orientation) (e.g., a patch on a blank feature-less wall). Thus, our

approach will combine these properties in an MRF, in a way that

depends on our “confidence” in each of these properties. Here,

the “confidence” is itself estimated from local image cues, and

will vary from region to region in the image.

Our MRF is composed of five types of nodes. The input

to the MRF occurs through two variables, labeled x and ǫ.

These variables correspond to features computed from the image

pixels (see Section VI for details.) and are always observed;

thus the MRF is conditioned on these variables. The variables ν
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Fig. 5. (Left) An image of a scene. (Right) Inferred “soft” values of yij ∈
[0, 1]. (yij = 0 indicates an occlusion boundary/fold, and is shown in black.)
Note that even with the inferred yij being not completely accurate, the plane
parameter MRF will be able to infer “correct” 3-d models.

indicate our degree of confidence in a depth estimate obtained

only from local image features. The variables y indicate the

presence or absence of occlusion boundaries and folds in the

image. These variables are used to selectively enforce coplanarity

and connectivity between superpixels. Finally, the variables α are

the plane parameters that are inferred using the MRF, which we

call “Plane Parameter MRF.”3

Occlusion Boundaries and Folds: We use the variables yij ∈

{0, 1} to indicate whether an “edgel” (the edge between two

neighboring superpixels) is an occlusion boundary/fold or not.

The inference of these boundaries is typically not completely

accurate; therefore we will infer soft values for yij . (See Fig. 5.)

More formally, for an edgel between two superpixels i and j,

yij = 0 indicates an occlusion boundary/fold, and yij = 1

indicates none (i.e., a planar surface).

In many cases, strong image gradients do not correspond to

the occlusion boundary/fold, e.g., a shadow of a building falling

on a ground surface may create an edge between the part with a

shadow and the one without. An edge detector that relies just on

these local image gradients would mistakenly produce an edge.

However, there are other visual cues beyond local image gradients

that better indicate whether two planes are connected/coplanar or

not. Using learning to combine a number of such visual features

makes the inference more accurate. In [28], Martin, Fowlkes

and Malik used local brightness, color and texture for learning

segmentation boundaries. Here, our goal is to learn occlusion

boundaries and folds. In detail, we model yij using a logistic

response as P (yij = 1|ǫij ;ψ) = 1/(1 + exp(−ψT ǫij)). where,

ǫij are features of the superpixels i and j (Section VI-B), and ψ

are the parameters of the model. During inference, we will use

a mean field-like approximation, where we replace yij with its

mean value under the logistic model.

Now, we will describe how we model the distribution of the plane

parameters α, conditioned on y.

Fractional depth error: For 3-d reconstruction, the fractional (or

relative) error in depths is most meaningful; it is used in structure

for motion, stereo reconstruction, etc. [4], [29] For ground-truth

depth d, and estimated depth d̂, fractional error is defined as (d̂−

d)/d = d̂/d−1. Therefore, we will be penalizing fractional errors

in our MRF.

MRF Model: To capture the relation between the plane param-

eters and the image features, and other properties such as co-

3For comparison, we also present an MRF that only models the 3-d location
of the points in the image (“Point-wise MRF,” see Appendix).

Fig. 6. Illustration explaining effect of the choice of si and sj on enforcing
(a) Connected structure and (b) Co-planarity.

planarity, connectedness and co-linearity, we formulate our MRF

as

P (α|X, ν, y,R; θ) =
1

Z

Y

i

f1(αi|Xi, νi, Ri; θ)

Y

i,j

f2(αi, αj |yij , Ri, Rj) (1)

where, αi is the plane parameter of the superpixel i. For a total of

Si points in the superpixel i, we use xi,si
to denote the features for

point si in the superpixel i. Xi = {xi,si
∈ R

524 : si = 1, ..., Si}

are the features for the superpixel i. (Section VI-A) Similarly,

Ri = {Ri,si
: si = 1, ..., Si} is the set of rays for superpixel i.4

ν is the “confidence” in how good the (local) image features are

in predicting depth (more details later).

The first term f1(·) models the plane parameters as a function

of the image features xi,si
. We have RT

i,si
αi = 1/di,si

(where

Ri,si
is the ray that connects the camera to the 3-d location of

point si), and if the estimated depth d̂i,si
= xT

i,si
θr, then the

fractional error would be

d̂i,si
− di,si

di,si

=
1

di,si

(d̂i,si
) − 1 = RT

i,si
αi(x

T
i,si

θr) − 1

Therefore, to minimize the aggregate fractional error over all the

points in the superpixel, we model the relation between the plane

parameters and the image features as

f1(αi|Xi, νi, Ri; θ) = exp

0

@−

Si
X

si=1

νi,si

˛

˛

˛R
T
i,si

αi(x
T
i,si

θr) − 1
˛

˛

˛

1

A

(2)

The parameters of this model are θr ∈ R
524. We use different

parameters (θr) for rows r = 1, ..., 11 in the image, because

the images we consider are roughly aligned upwards (i.e., the

direction of gravity is roughly downwards in the image), and

thus it allows our algorithm to learn some regularities in the

images—that different rows of the image have different statistical

properties. E.g., a blue superpixel might be more likely to be

sky if it is in the upper part of image, or water if it is in the

lower part of the image, or that in the images of environments

available on the internet, the horizon is more likely to be in the

middle one-third of the image. (In our experiments, we obtained

very similar results using a number of rows ranging from 5 to

55.) Here, νi = {νi,si
: si = 1, ..., Si} indicates the confidence

4The rays are obtained by making a reasonable guess on the camera intrinsic
parameters—that the image center is the origin and the pixel-aspect-ratio is
one—unless known otherwise from the image headers.
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Fig. 7. A 2-d illustration to explain the co-planarity term. The distance of
the point sj on superpixel j to the plane on which superpixel i lies along the
ray Rj,sj” is given by d1 − d2.

of the features in predicting the depth d̂i,si
at point si.

5 If the

local image features were not strong enough to predict depth

for point si, then νi,si
= 0 turns off the effect of the term

˛

˛

˛RT
i,si

αi(x
T
i,si

θr) − 1
˛

˛

˛.

The second term f2(·) models the relation between the plane

parameters of two superpixels i and j. It uses pairs of points si
and sj to do so:

f2(·) =
Q

{si,sj}∈N hsi,sj (·) (3)

We will capture co-planarity, connectedness and co-linearity, by

different choices of h(·) and {si, sj}.

Connected structure: We enforce this constraint by choosing

si and sj to be on the boundary of the superpixels i and j. As

shown in Fig. 6a, penalizing the distance between two such points

ensures that they remain fully connected. The relative (fractional)

distance between points si and sj is penalized by

hsi,sj (αi, αj , yij , Ri, Rj) = exp
“

−yij |(R
T
i,si

αi −RT
j,sj

αj)d̂|
”

(4)

In detail, RT
i,si

αi = 1/di,si
and RT

j,sj
αj = 1/dj,sj

; therefore,

the term (RT
i,si

αi − RT
j,sj

αj)d̂ gives the fractional distance

|(di,si
− dj,sj

)/
p

di,si
dj,sj

| for d̂ =
q

d̂si d̂sj . Note that in case

of occlusion, the variables yij = 0, and hence the two superpixels

will not be forced to be connected.

Co-planarity: We enforce the co-planar structure by choosing a

third pair of points s′′i and s′′j in the center of each superpixel

along with ones on the boundary. (Fig. 6b) To enforce co-

planarity, we penalize the relative (fractional) distance of point

s′′j from the plane in which superpixel i lies, along the ray Rj,s′′

j

(See Fig. 7).

h
s
′′

j

(αi, αj , yij , Rj,s′′

j
) = exp

“

−yij |(R
T
j,s′′

j
αi −RT

j,s′′

j
αj)d̂s′′

j
|
”

(5)

with hs′′

i ,s′′

j
(·) = hs′′

i
(·)hs′′

j
(·). Note that if the two superpixels

are coplanar, then hs′′

i
,s′′

j
= 1. To enforce co-planarity between

two distant planes that are not connected, we can choose three

such points and use the above penalty.

Co-linearity: Consider two superpixels i and j lying on a long

straight line in a 2-d image (Fig. 8a). There are an infinite number

5The variable νi,si
is an indicator of how good the image features are

in predicting depth for point si in superpixel i. We learn νi,si
from the

monocular image features, by estimating the expected value of |di−xT
i

θr |/di

as φT
r xi with logistic response, with φr as the parameters of the model,

features xi and di as ground-truth depths.

(a) 2-d image (b) 3-d world, top view

Fig. 8. Co-linearity. (a) Two superpixels i and j lying on a straight line
in the 2-d image, (b) An illustration showing that a long straight line in the
image plane is more likely to be a straight line in 3-d.

of curves that would project to a straight line in the image plane;

however, a straight line in the image plane is more likely to be a

straight one in 3-d as well (Fig. 8b). In our model, therefore, we

will penalize the relative (fractional) distance of a point (such as

sj) from the ideal straight line.

In detail, consider two superpixels i and j that lie on planes

parameterized by αi and αj respectively in 3-d, and that lie on a

straight line in the 2-d image. For a point sj lying on superpixel

j, we will penalize its (fractional) distance along the ray Rj,sj

from the 3-d straight line passing through superpixel i. I.e.,

hsj (αi, αj , yij , Rj,sj
) = exp

“

−yij |(R
T
j,sj

αi −RT
j,sj

αj)d̂|
”

(6)

with hsi,sj (·) = hsi(·)hsj (·). In detail, RT
j,sj

αj = 1/dj,sj
and

RT
j,sj

αi = 1/d′j,sj
; therefore, the term (RT

j,sj
αi − RT

j,sj
αj)d̂

gives the fractional distance
˛

˛

˛(dj,sj
− d′j,sj

)/
q

dj,sj
d′j,sj

˛

˛

˛ for d̂ =
q

d̂j,sj
d̂′j,sj

. The “confidence” yij depends on the length of the

line and its curvature—a long straight line in 2-d is more likely

to be a straight line in 3-d.

Parameter Learning and MAP Inference: Exact parameter

learning of the model is intractable; therefore, we use Multi-

Conditional Learning (MCL) for approximate learning, where the

graphical model is approximated by a product of several marginal

conditional likelihoods [30], [31]. In particular, we estimate the

θr parameters efficiently by solving a Linear Program (LP). (See

Appendix for more details.)

MAP inference of the plane parameters α, i.e., maximizing the

conditional likelihood P (α|X, ν, y,R; θ), is efficiently performed

by solving a LP. We implemented an efficient method that uses

the sparsity in our problem, so that inference can be performed in

about 4-5 seconds for an image having about 2000 superpixels on

a single-core Intel 3.40GHz CPU with 2 GB RAM. (See Appendix

for more details.)

VI. FEATURES

For each superpixel, we compute a battery of features to capture

some of the monocular cues discussed in Section III. We also

compute features to predict meaningful boundaries in the images,

such as occlusion and folds. We rely on a large number of

different types of features to make our algorithm more robust

and to make it generalize even to images that are very different

from the training set.
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Fig. 9. The convolutional filters used for texture energies and gradients. The first 9 are 3x3 Laws’ masks. The last 6 are the oriented edge detectors at 300.
The first nine Law’s masks do local averaging, edge detection and spot detection. The 15 Laws’ mask are applied to the image to the Y channel of the image.
We apply only the first averaging filter to the color channels Cb and Cr; thus obtain 17 filter responses, for each of which we calculate energy and kurtosis
to obtain 34 features of each patch.

(a) (b) (c) (d) (e)

Fig. 10. The feature vector. (a) The original image, (b) Superpixels for the image, (c) An illustration showing the location of the neighbors of superpixel S3C
at multiple scales, (d) Actual neighboring superpixels of S3C at the finest scale, (e) Features from each neighboring superpixel along with the superpixel-shape
features give a total of 524 features for the superpixel S3C. (Best viewed in color.)

A. Monocular Image Features

For each superpixel at location i, we compute both texture-

based summary statistic features and superpixel shape and loca-

tion based features. Similar to SCN, we use the output of 17 filters

(9 Laws masks, 2 color channels in YCbCr space and 6 oriented

edges, see Fig. 10). These are commonly used filters that capture

the texture of a 3x3 patch and the edges at various orientations.

The filters outputs Fn(x, y), n = 1, ..., 17 are incorporated into

Ei(n) =
P

(x,y)∈Si
|I(x, y) ∗Fn(x, y)|k, where k = 2,4 gives the

energy and kurtosis respectively. This gives a total of 34 values

for each superpixel. We compute features for each superpixel to

improve performance over SCN, who computed them only for

fixed rectangular patches. Our superpixel shape and location based

features (14, computed only for the superpixel) included the shape

and location based features in Section 2.2 of [9], and also the

eccentricity of the superpixel. (See Fig. 10.)

We attempt to capture more “contextual” information by also

including features from neighboring superpixels (we pick the

largest four in our experiments), and at multiple spatial scales

(three in our experiments). (See Fig. 10.) The features, therefore,

contain information from a larger portion of the image, and thus

are more expressive than just local features. This makes the

feature vector xi of a superpixel 34 ∗ (4 + 1) ∗ 3 + 14 = 524

dimensional.

B. Features for Boundaries

Another strong cue for 3-d structure perception is boundary

information. If two neighboring superpixels of an image display

different features, humans would often perceive them to be parts

of different objects; therefore an edge between two superpixels

with distinctly different features, is a candidate for a occlusion

boundary or a fold. To compute the features ǫij between su-

perpixels i and j, we first generate 14 different segmentations

for each image for 2 different scales for 7 different properties

based on textures, color, and edges. We modified [10] to create

segmentations based on these properties. Each element of our

14 dimensional feature vector ǫij is then an indicator if two

superpixels i and j lie in the same segmentation. For example,

if two superpixels belong to the same segments in all the 14

segmentations then it is more likely that they are coplanar or

connected. Relying on multiple segmentation hypotheses instead

of one makes the detection of boundaries more robust. The

features ǫij are the input to the classifier for the occlusion

boundaries and folds.

VII. EXPERIMENTS

A. Data collection

We used a custom-built 3-D scanner to collect images (e.g.,

Fig. 11a) and their corresponding depthmaps using lasers (e.g.,

Fig. 11b). We collected a total of 534 images+depthmaps, with

an image resolution of 2272x1704 and a depthmap resolution of

55x305, and used 400 for training our model. These images were

collected during daytime in a diverse set of urban and natural

areas in the city of Palo Alto and its surrounding regions.

We tested our model on rest of the 134 images (collected

using our 3-d scanner), and also on 588 internet images. The

internet images were collected by issuing keywords on Google

image search. To collect data and to perform the evaluation

of the algorithms in a completely unbiased manner, a person

not associated with the project was asked to collect images of

environments (greater than 800x600 size). The person chose the

following keywords to collect the images: campus, garden, park,

house, building, college, university, church, castle, court, square,

lake, temple, scene. The images thus collected were from places

from all over the world, and contained environments that were

significantly different from the training set, e.g. hills, lakes, night

scenes, etc. The person chose only those images which were

of “environments,” i.e. she removed images of the geometrical
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(a) (b) (c) (d) (e)

Fig. 11. (a) Original Image, (b) Ground truth depthmap, (c) Depth from image features only, (d) Point-wise MRF, (e) Plane parameter MRF. (Best viewed

in color.)

Fig. 12. Typical depthmaps predicted by our algorithm on hold-out test set, collected using the laser-scanner. (Best viewed in color.)

Fig. 13. Typical results from our algorithm. (Top row) Original images, (Bottom row) depthmaps (shown in log scale, yellow is closest, followed by red
and then blue) generated from the images using our plane parameter MRF. (Best viewed in color.)

figure ‘square’ when searching for keyword ‘square’; no other

pre-filtering was done on the data.

In addition, we manually labeled 50 images with ‘ground-truth’

boundaries to learn the parameters for occlusion boundaries and

folds.

B. Results and Discussion

We performed an extensive evaluation of our algorithm on 588

internet test images, and 134 test images collected using the laser

scanner.

In Table I, we compare the following algorithms:

(a) Baseline: Both for pointwise MRF (Baseline-1) and plane pa-

rameter MRF (Baseline-2). The Baseline MRF is trained without

any image features, and thus reflects a “prior” depthmap of sorts.

(b) Our Point-wise MRF: with and without constraints (connec-

tivity, co-planar and co-linearity).

(c) Our Plane Parameter MRF (PP-MRF): without any constraint,

with co-planar constraint only, and the full model.

(d) Saxena et al. (SCN), [6], [21] applicable for quantitative errors

only.
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Fig. 14. Typical results from HEH and our algorithm. Row 1: Original Image. Row 2: 3-d model generated by HEH, Row 3 and 4: 3-d model generated by
our algorithm. (Note that the screenshots cannot be simply obtained from the original image by an affine transformation.) In image 1, HEH makes mistakes in
some parts of the foreground rock, while our algorithm predicts the correct model; with the rock occluding the house, giving a novel view. In image 2, HEH
algorithm detects a wrong ground-vertical boundary; while our algorithm not only finds the correct ground, but also captures a lot of non-vertical structure,
such as the blue slide. In image 3, HEH is confused by the reflection; while our algorithm produces a correct 3-d model. In image 4, HEH and our algorithm
produce roughly equivalent results—HEH is a bit more visually pleasing and our model is a bit more detailed. In image 5, both HEH and our algorithm
fail; HEH just predict one vertical plane at a incorrect location. Our algorithm predicts correct depths of the pole and the horse, but is unable to detect their
boundary; hence making it qualitatively incorrect.

TABLE I

RESULTS: QUANTITATIVE COMPARISON OF VARIOUS METHODS.

METHOD CORRECT % PLANES log
10

REL

(%) CORRECT

SCN NA NA 0.198 0.530
HEH 33.1% 50.3% 0.320 1.423

BASELINE-1 0% NA 0.300 0.698
NO PRIORS 0% NA 0.170 0.447
POINT-WISE MRF 23% NA 0.149 0.458

BASELINE-2 0% 0% 0.334 0.516
NO PRIORS 0% 0% 0.205 0.392
CO-PLANAR 45.7% 57.1% 0.191 0.373
PP-MRF 64.9% 71.2% 0.187 0.370

(e) Hoiem et al. (HEH) [9]. For fairness, we scale and shift their

depthmaps before computing the errors to match the global scale

of our test images. Without the scaling and shifting, their error is

much higher (7.533 for relative depth error).

We compare the algorithms on the following metrics: (a) %

of models qualitatively correct, (b) % of major planes correctly

identified,6 (c) Depth error | log d − log d̂| on a log-10 scale,

averaged over all pixels in the hold-out test set, (d) Average

relative depth error
|d−d̂|

d . (We give these two numerical errors on

only the 134 test images that we collected, because ground-truth

laser depths are not available for internet images.)

Table I shows that both of our models (Point-wise MRF

and Plane Parameter MRF) outperform the other algorithms

in quantitative accuracy in depth prediction. Plane Parameter

MRF gives better relative depth accuracy and produces sharper

depthmaps (Fig. 11, 12 and 13). Table I also shows that by

capturing the image properties of connected structure, co-planarity

and co-linearity, the models produced by the algorithm become

significantly better. In addition to reducing quantitative errors, PP-

MRF does indeed produce significantly better 3-d models. When

producing 3-d flythroughs, even a small number of erroneous

planes make the 3-d model visually unacceptable, even though

6For the first two metrics, we define a model as correct when for 70% of
the major planes in the image (major planes occupy more than 15% of the
area), the plane is in correct relationship with its nearest neighbors (i.e., the
relative orientation of the planes is within 30 degrees). Note that changing the
numbers, such as 70% to 50% or 90%, 15% to 10% or 30%, and 30 degrees
to 20 or 45 degrees, gave similar trends in the results.
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TABLE II

PERCENTAGE OF IMAGES FOR WHICH HEH IS BETTER, OUR PP-MRF IS

BETTER, OR IT IS A TIE.

ALGORITHM %BETTER

TIE 15.8%
HEH 22.1%
PP-MRF 62.1%

the quantitative numbers may still show small errors.

Our algorithm gives qualitatively correct models for 64.9% of

images as compared to 33.1% by HEH. The qualitative evaluation

was performed by a person not associated with the project

following the guidelines in Footnote 6. Delage, Lee and Ng [8]

and HEH generate a popup effect by folding the images at

“ground-vertical” boundaries—an assumption which is not true

for a significant number of images; therefore, their method fails in

those images. Some typical examples of the 3-d models are shown

in Fig. 14. (Note that all the test cases shown in Fig. 1, 13, 14

and 15 are from the dataset downloaded from the internet, except

Fig. 15a which is from the laser-test dataset.) These examples

also show that our models are often more detailed, in that they are

often able to model the scene with a multitude (over a hundred)

of planes.

We performed a further comparison. Even when both algo-

rithms are evaluated as qualitatively correct on an image, one

result could still be superior. Therefore, we asked the person to

compare the two methods, and decide which one is better, or is

a tie.7 Table II shows that our algorithm outputs the better model

in 62.1% of the cases, while HEH outputs better model in 22.1%

cases (tied in the rest).

Full documentation describing the details of the unbiased

human judgment process, along with the 3-d flythroughs produced

by our algorithm, is available online at:

http://make3d.stanford.edu/research

Some of our models, e.g. in Fig. 15j, have cosmetic defects—

e.g. stretched texture; better texture rendering techniques would

make the models more visually pleasing. In some cases, a small

mistake (e.g., one person being detected as far-away in Fig. 15h,

and the banner being bent in Fig. 15k) makes the model look bad,

and hence be evaluated as “incorrect.”

Finally, in a large-scale web experiment, we allowed users to

upload their photos on the internet, and view a 3-d flythrough

produced from their image by our algorithm. About 23846

unique users uploaded (and rated) about 26228 images.8 Users

rated 48.1% of the models as good. If we consider the images

of scenes only, i.e., exclude images such as company logos,

cartoon characters, closeups of objects, etc., then this percentage

was 57.3%. We have made the following website available for

downloading datasets/code, and for converting an image to a 3-d

model/flythrough:

7To compare the algorithms, the person was asked to count the number of
errors made by each algorithm. We define an error when a major plane in
the image (occupying more than 15% area in the image) is in wrong location
with respect to its neighbors, or if the orientation of the plane is more than 30
degrees wrong. For example, if HEH fold the image at incorrect place (see
Fig. 14, image 2), then it is counted as an error. Similarly, if we predict top
of a building as far and the bottom part of building near, making the building
tilted—it would count as an error.

8No restrictions were placed on the type of images that users can upload.
Users can rate the models as good (thumbs-up) or bad (thumbs-down).

http://make3d.stanford.edu

Our algorithm, trained on images taken in daylight around

the city of Palo Alto, was able to predict qualitatively correct

3-d models for a large variety of environments—for example,

ones that have hills or lakes, ones taken at night, and even

paintings. (See Fig. 15 and the website.) We believe, based on

our experiments with varying the number of training examples

(not reported here), that having a larger and more diverse set of

training images would improve the algorithm significantly.

VIII. LARGER 3-D MODELS FROM MULTIPLE IMAGES

A 3-d model built from a single image will almost invariably

be an incomplete model of the scene, because many portions of

the scene will be missing or occluded. In this section, we will

use both the monocular cues and multi-view triangulation cues to

create better and larger 3-d models.

Given a sparse set of images of a scene, it is sometimes possible

to construct a 3-d model using techniques such as structure from

motion (SFM) [5], [32], which start by taking two or more

photographs, then find correspondences between the images, and

finally use triangulation to obtain 3-d locations of the points. If

the images are taken from nearby cameras (i.e., if the baseline

distance is small), then these methods often suffer from large

triangulation errors for points far-away from the camera.9 If,

conversely, one chooses images taken far apart, then often the

change of viewpoint causes the images to become very different,

so that finding correspondences becomes difficult, sometimes

leading to spurious or missed correspondences. (Worse, the large

baseline also means that there may be little overlap between

the images, so that few correspondences may even exist.) These

difficulties make purely geometric 3-d reconstruction algorithms

fail in many cases, specifically when given only a small set of

images.

However, when tens of thousands of pictures are available—

for example, for frequently-photographed tourist attractions such

as national monuments—one can use the information present

in many views to reliably discard images that have only few

correspondence matches. Doing so, one can use only a small

subset of the images available (∼15%), and still obtain a “3-

d point cloud” for points that were matched using SFM. This

approach has been very successfully applied to famous buildings

such as the Notre Dame; the computational cost of this algorithm

was significant, and required about a week on a cluster of

computers [33].

The reason that many geometric “triangulation-based” methods

sometimes fail (especially when only a few images of a scene are

available) is that they do not make use of the information present

in a single image. Therefore, we will extend our MRF model

to seamlessly combine triangulation cues and monocular image

cues to build a full photo-realistic 3-d model of the scene. Using

monocular cues will also help us build 3-d model of the parts

that are visible only in one view.

9I.e., the depth estimates will tend to be inaccurate for objects at large
distances, because even small errors in triangulation will result in large errors
in depth.
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Fig. 15. Typical results from our algorithm. Original image (top), and a screenshot of the 3-d flythrough generated from the image (bottom of the image).
The 11 images (a-g,l-t) were evaluated as “correct” and the 4 (h-k) were evaluated as “incorrect.”
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Fig. 16. An illustration of the Markov Random Field (MRF) for inferring
3-d structure. (Only a subset of edges and scales shown.)

A. Representation

Given two small plane (superpixel) segmentations of two

images, there is no guarantee that the two segmentations are

“consistent,” in the sense of the small planes (on a specific object)

in one image having a one-to-one correspondence to the planes in

the second image of the same object. Thus, at first blush it appears

non-trivial to build a 3-d model using these segmentations, since

it is impossible to associate the planes in one image to those in

another. We address this problem by using our MRF to reason

simultaneously about the position and orientation of every plane

in every image. If two planes lie on the same object, then the

MRF will (hopefully) infer that they have exactly the same 3-d

position. More formally, in our model, the plane parameters αn
i

of each small ith plane in the nth image are represented by a

node in our Markov Random Field (MRF). Because our model

uses L1 penalty terms, our algorithm will be able to infer models

for which αn
i = αm

j , which results in the two planes exactly

overlapping each other.

B. Probabilistic Model

In addition to the image features/depth, co-planarity, connected

structure, and co-linearity properties, we will also consider the

depths obtained from triangulation (SFM)—the depth of the point

is more likely to be close to the triangulated depth. Similar to the

probabilistic model for 3-d model from a single image, most of

these cues are noisy indicators of depth; therefore our MRF model

will also reason about our “confidence” in each of them, using

latent variables yT (Section VIII-C).

Let Qn = [Rotation, Translation] ∈ R
3×4 (technically

SE(3)) be the camera pose when image n was taken (w.r.t. a fixed

reference, such as the camera pose of the first image), and let dT

be the depths obtained by triangulation (see Section VIII-C). We

formulate our MRF as

P (α|X,Y, dT ; θ) ∝
Y

n

f1(αn|Xn, νn, Rn, Qn; θn)

Y

n

f2(αn|yn, Rn, Qn)

Y

n

f3(αn|dn
T , y

n
T , R

n, Qn) (7)

where, the superscript n is an index over the images, For an

image n, αn
i is the plane parameter of superpixel i in image n.

Sometimes, we will drop the superscript for brevity, and write α

in place of αn when it is clear that we are referring to a particular

image.

The first term f1(·) and the second term f2(·) capture the

monocular properties, and are same as in Eq. 1. We use f3(·)

to model the errors in the triangulated depths, and penalize

Fig. 17. An image showing a few matches (left), and the resulting 3-d
model (right) without estimating the variables y for confidence in the 3-d
matching. The noisy 3-d matches reduce the quality of the model. (Note the
cones erroneously projecting out from the wall.)

the (fractional) error in the triangulated depths dTi and di =

1/(RT
i αi). For Kn points for which the triangulated depths are

available, we therefore have

f3(α|dT , yT , R,Q) ∝
Kn

Y

i=1

exp
“

−yTi

˛

˛

˛dTiRi
Tαi − 1

˛

˛

˛

”

. (8)

This term places a “soft” constraint on a point in the plane to

have its depth equal to its triangulated depth.

MAP Inference: For MAP inference of the plane param-

eters, we need to maximize the conditional log-likelihood

logP (α|X,Y, dT ; θ). All the terms in Eq. 7 are L1 norm of a

linear function of α; therefore MAP inference is efficiently solved

using a Linear Program (LP).

C. Triangulation Matches

In this section, we will describe how we obtained the corre-

spondences across images, the triangulated depths dT and the

“confidences” yT in the f3(·) term in Section VIII-B.

We start by computing 128 SURF features [34], and then

calculate matches based on the Euclidean distances between

the features found. Then to compute the camera poses Q =

[Rotation, Translation] ∈ R
3×4 and the depths dT of the

points matched, we use bundle adjustment [35] followed by using

monocular approximate depths to remove the scale ambiguity.

However, many of these 3-d correspondences are noisy; for

example, local structures are often repeated across an image (e.g.,

Fig. 17, 19 and 21).10 Therefore, we also model the “confidence”

yTi in the ith match by using logistic regression to estimate the

probability P (yTi = 1) of the match being correct. For this, we

use neighboring 3-d matches as a cue. For example, a group of

spatially consistent 3-d matches is more likely to be correct than

10Increasingly many cameras and camera-phones come equipped with GPS,
and sometimes also accelerometers (which measure gravity/orientation). Many
photo-sharing sites also offer geo-tagging (where a user can specify the
longitude and latitude at which an image was taken). Therefore, we could also
use such geo-tags (together with a rough user-specified estimate of camera
orientation), together with monocular cues, to improve the performance of
correspondence algorithms. In detail, we compute the approximate depths of

the points using monocular image features as d̂ = xT θ; this requires only
computing a dot product and hence is fast. Now, for each point in an image
B for which we are trying to find a correspondence in image A, typically we
would search in a band around the corresponding epipolar line in image A.
However, given an approximate depth estimated from from monocular cues,
we can limit the search to a rectangular window that comprises only a subset
of this band. (See Fig. 18.) This would reduce the time required for matching,
and also improve the accuracy significantly when there are repeated structures
in the scene. (See [2] for more details.)
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a single isolated 3-d match. We capture this by using a feature

vector that counts the number of matches found in the present

superpixel and in larger surrounding regions (i.e., at multiple

spatial scales), as well as measures the relative quality between

the best and second best match.

Fig. 18. Approximate monocular depth estimates help to limit the search
area for finding correspondences. For a point (shown as a red dot) in image
B, the corresponding region to search in image A is now a rectangle (shown
in red) instead of a band around its epipolar line (shown in blue) in image A.

D. Phantom Planes

This cue enforces occlusion constraints across multiple cam-

eras. Concretely, each small plane (superpixel) comes from an

image taken by a specific camera. Therefore, there must be an

unoccluded view between the camera and the 3-d position of that

small plane—i.e., the small plane must be visible from the camera

location where its picture was taken, and it is not plausible for

any other small plane (one from a different image) to have a 3-d

position that occludes this view. This cue is important because

often the connected structure terms, which informally try to “tie”

points in two small planes together, will result in models that are

inconsistent with this occlusion constraint, and result in what we

call “phantom planes”—i.e., planes that are not visible from the

camera that photographed it. We penalize the distance between the

offending phantom plane and the plane that occludes its view from

the camera by finding additional correspondences. This tends to

make the two planes lie in exactly the same location (i.e., have the

same plane parameter), which eliminates the phantom/occlusion

problem.

E. Experiments

In this experiment, we create a photo-realistic 3-d model of

a scene given only a few images (with unknown location/pose),

even ones taken from very different viewpoints or with little

overlap. Fig. 19, 20, 21 and 22 show snapshots of some 3-d

models created by our algorithm. Using monocular cues, our

algorithm is able to create full 3-d models even when large

portions of the images have no overlap (Fig. 19, 20 and 21).

In Fig. 19, monocular predictions (not shown) from a single

image gave approximate 3-d models that failed to capture the

arch structure in the images. However, using both monocular

and triangulation cues, we were able to capture this 3-d arch

structure. The models are available at:

http://make3d.stanford.edu/research

IX. INCORPORATING OBJECT INFORMATION

In this section, we will demonstrate how our model can

also incorporate other information that might be available, for

example, from object recognizers. In prior work, Sudderth et

Fig. 23. (Left) Original Images, (Middle) Snapshot of the 3-d model without
using object information, (Right) Snapshot of the 3-d model that uses object
information.

al. [36] showed that knowledge of objects could be used to get

crude depth estimates, and Hoiem et al. [11] used knowledge of

objects and their location to improve the estimate of the horizon.

In addition to estimating the horizon, the knowledge of objects

and their location in the scene give strong cues regarding the 3-d

structure of the scene. For example, that a person is more likely

to be on top of the ground, rather than under it, places certain

restrictions on the 3-d models that could be valid for a given

image.

Here we give some examples of such cues that arise when

information about objects is available, and describe how we can

encode them in our MRF:

(a) “Object A is on top of object B”

This constraint could be encoded by restricting the points si ∈ R
3

on object A to be on top of the points sj ∈ R
3 on object B, i.e.,

sTi ẑ ≥ sTj ẑ (if ẑ denotes the “up” vector). In practice, we actually

use a probabilistic version of this constraint. We represent this

inequality in plane-parameter space (si = Ridi = Ri/(α
T
i Ri)).

To penalize the fractional error ξ =
“

RT
i ẑR

T
j αj −RT

j ẑRiαi

”

d̂

(the constraint corresponds to ξ ≥ 0), we choose an MRF

potential hsi,sj (.) = exp
`

−yij (ξ + |ξ|)
´

, where yij represents

the uncertainty in the object recognizer output. Note that for

yij → ∞ (corresponding to certainty in the object recognizer),

this becomes a “hard” constraint RT
i ẑ/(α

T
i Ri) ≥ RT

j ẑ/(α
T
j Rj).

In fact, we can also encode other similar spatial-relations by

choosing the vector ẑ appropriately. For example, a constraint

“Object A is in front of Object B” can be encoded by choosing
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(a) (b) (c) (d)

(e) (f)

Fig. 19. (a,b,c) Three original images from different viewpoints; (d,e,f) Snapshots of the 3-d model predicted by our algorithm. (f) shows a top-down view;
the top part of the figure shows portions of the ground correctly modeled as lying either within or beyond the arch.

(a) (b) (c) (d)

Fig. 20. (a,b) Two original images with only a little overlap, taken from the same camera location. (c,d) Snapshots from our inferred 3-d model.

(a) (b) (c) (d)

Fig. 21. (a,b) Two original images with many repeated structures; (c,d) Snapshots of the 3-d model predicted by our algorithm.

ẑ to be the ray from the camera to the object.

(b) “Object A is attached to Object B”

For example, if the ground-plane is known from a recognizer,

then many objects would be more likely to be “attached” to the

ground plane. We easily encode this by using our connected-

structure constraint.

(c) Known plane orientation

If orientation of a plane is roughly known, e.g. that a person

is more likely to be “vertical”, then it can be easily encoded

by adding to Eq. 1 a term f(αi) = exp
“

−wi|α
T
i ẑ|

”

; here, wi

represents the confidence, and ẑ represents the up vector.

We implemented a recognizer (based on the features described

in Section VI) for ground-plane, and used the Dalal-Triggs

Detector [37] to detect pedestrians. For these objects, we encoded

the (a), (b) and (c) constraints described above. Fig. 23 shows that

using the pedestrian and ground detector improves the accuracy of

the 3-d model. Also note that using “soft” constraints in the MRF

(Section IX), instead of “hard” constraints, helps in estimating

correct 3-d models even if the object recognizer makes a mistake.

X. CONCLUSIONS

We presented an algorithm for inferring detailed 3-d structure

from a single still image. Compared to previous approaches, our

algorithm creates detailed 3-d models which are both quantita-

tively more accurate and visually more pleasing. Our approach
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(a) (b) (c) (d)

(e) (f)

Fig. 22. (a,b,c,d) Four original images; (e,f) Two snapshots shown from a larger 3-d model created using our algorithm.

begins by over-segmenting the image into many small homoge-

neous regions called “superpixels” and uses an MRF to infer

the 3-d position and orientation of each. Other than assuming

that the environment is made of a number of small planes, we

do not make any explicit assumptions about the structure of the

scene, such as the assumption by Delage et al. [8] and Hoiem et

al. [9] that the scene comprises vertical surfaces standing on a

horizontal floor. This allows our model to generalize well, even

to scenes with significant non-vertical structure. Our algorithm

gave significantly better results than prior art; both in terms of

quantitative accuracies in predicting depth and in terms of fraction

of qualitatively correct models. Finally, we extended these ideas to

building 3-d models using a sparse set of images, and showed how

to incorporate object recognition information into our method.

The problem of depth perception is fundamental to computer

vision, one that has enjoyed the attention of many researchers and

seen significant progress in the last few decades. However, the

vast majority of this work, such as stereopsis, has used multiple

image geometric cues to infer depth. In contrast, single-image

cues offer a largely orthogonal source of information, one that

has heretofore been relatively underexploited. Given that depth

and shape perception appears to be an important building block

for many other applications, such as object recognition [11], [38],

grasping [39], navigation [7], image compositing [40], and video

retrieval [41], we believe that monocular depth perception has

the potential to improve all of these applications, particularly in

settings where only a single image of a scene is available.
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APPENDIX

A.1 Parameter Learning

Since exact parameter learning based on conditional likelihood

for the Laplacian models is intractable, we use Multi-Conditional

Learning (MCL) [30], [31] to divide the learning problem into

smaller learning problems for each of the individual densities.

MCL is a framework for optimizing graphical models based on a

product of several marginal conditional likelihoods each relying

on common sets of parameters from an underlying joint model

and predicting different subsets of variables conditioned on other

subsets.

In detail, we will first focus on learning θr given the ground-

truth depths d (obtained from our 3-d laser scanner, see Sec-

tion VII-A) and the value of yij and νi,si
. For this, we maximize

the conditional pseudo log-likelihood logP (α|X, ν, y,R; θr) as

θ∗r = arg max
θr

X

i

log f1(αi|Xi, νi, Ri; θr)

+
X

i,j

log f2(αi, αj |yij , Ri, Rj)

Now, from Eq. 1 note that f2(·) does not depend on θr; therefore

the learning problem simplifies to minimizing the L1 norm, i.e.,

θ∗r = arg minθr

P

i

PSi

si=1 νi,si

˛

˛

˛

1
di,si

(xT
i,si

θr) − 1
˛

˛

˛ .

In the next step, we learn the parameters φ of the logistic

regression model for estimating ν in footnote 5. Parameters of

a logistic regression model can be estimated by maximizing the

conditional log-likelihood. [42] Now, the parameters ψ of the

logistic regression model P (yij |ǫij ;ψ) for occlusion boundaries

and folds are similarly estimated using the hand-labeled ground-

truth ground-truth training data by maximizing its conditional log-

likelihood.

A.2 MAP Inference

When given a new test-set image, we find the MAP estimate

of the plane parameters α by maximizing the conditional log-

likelihood logP (α|X, ν, Y,R; θr). Note that we solve for α as a

continuous variable optimization problem, which is unlike many

other techniques where discrete optimization is more popular,

e.g., [4]. From Eq. 1, we have

α∗ = arg max
α

logP (α|X, ν, y,R; θr)

=arg max
α

log
1

Z

Y

i

f1(αi|Xi, νi, Ri; θr)
Y

i,j

f2(αi, αj |yij , Ri, Rj)



15

Note that the partition function Z does not depend on α. There-

fore, from Eq. 2, 4 and 5 and for d̂ = xT θr, we have

= arg minα
PK

i=1

“

PSi

si=1 νi,si

˛

˛

˛(RT
i,si

αi)d̂i,si
− 1

˛

˛

˛

+
X

j∈N(i)

X

si,sj∈Bij

yij

˛

˛

˛(R
T
i,si

αi −RT
j,sj

αj)d̂si,sj

˛

˛

˛

+
X

j∈N(i)

X

sj∈Cj

yij

˛

˛

˛(R
T
j,sj

αi −RT
j,sj

αj)d̂sj

˛

˛

˛

”

where K is the number of superpixels in each image; N(i) is

the set of “neighboring” superpixels—one whose relations are

modeled—of superpixel i; Bij is the set of pair of points on the

boundary of superpixel i and j that model connectivity; Cj is

the center point of superpixel j that model co-linearity and co-

planarity; and d̂si,sj =
q

d̂si d̂sj . Note that each of terms is a

L1 norm of a linear function of α; therefore, this is a L1 norm

minimization problem, [43, chap. 6.1.1] and can be compactly

written as

arg minx ‖Ax− b‖1 + ‖Bx‖1 + ‖Cx‖1

where x ∈ R
3K×1 is a column vector formed by rearranging the

three x-y-z components of αi ∈ R
3 as x3i−2 = αix, x3i−1 =

αiy and x3i = αiz ; A is a block diagonal matrix such that

A

»

(
Pi−1

l=1 Sl) + si, (3i− 2) : 3i

–

= RT
i,si

d̂i,si
νi,si

and b1 ∈

R
3K×1 is a column vector formed from νi,si

. B and C are

all block diagonal matrices composed of rays R, d̂ and y; they

represent the cross terms modeling the connected structure, co-

planarity and co-linearity properties.

In general, finding the global optimum in a loopy MRF is diffi-

cult. However in our case, the minimization problem is an Linear

Program (LP), and therefore can be solved exactly using any

linear programming solver. (In fact, any greedy method including

a loopy belief propagation would reach the global minima.) For

fast inference, we implemented our own optimization method,

one that captures the sparsity pattern in our problem, and by

approximating the L1 norm with a smooth function:

‖x‖1
∼= Υβ(x) = 1

β

ˆ

log (1 + exp(−βx)) + log (1 + exp(βx))
˜

Note that ‖x‖1 = limβ→∞ ‖x‖β , and the approximation can

be made arbitrarily close by increasing β during steps of the

optimization. Then we wrote a customized Newton method based

solver that computes the Hessian efficiently by utilizing the

sparsity. [43]

B. Point-wise MRF

For comparison, we present another MRF, in which we use

points in the image as basic unit, instead of the superpixels;

and infer only their 3-d location. The nodes in this MRF are

a dense grid of points in the image, where the value of each node

represents its depth. The depths in this model are in log scale to

emphasize fractional (relative) errors in depth. Unlike SCN’s fixed

rectangular grid, we use a deformable grid, aligned with structures

in the image such as lines and corners to improve performance.

Further, in addition to using the connected structure property (as

in SCN), our model also captures co-planarity and co-linearity.

Finally, we use logistic response to identify occlusion and folds,

whereas SCN learned the variances.

We formulate our MRF as

P (d|X,Y,R; θ) =
1

Z

Y

i

f1(di|xi, yi; θ)
Y

i,j∈N

f2(di, dj |yij , Ri, Rj)

Y

i,j,k∈N

f3(di, dj , dk|yijk , Ri, Rj , Rk)

where, di ∈ R is the depth (in log scale) at a point i.

xi are the image features at point i. The first term f1(.)

models the relation between depths and the image features as

f1(di|xi, yi; θ) = exp
“

−yi|di − xT
i θr(i)|

”

. The second term

f2(·) models connected structure by penalizing differences in

the depths of neighboring points as f2(di, dj |yij , Ri, Rj) =

exp
`

−yij ||(Ridi −Rjdj)||1
´

. The third term f3(·) depends on

three points i,j and k, and models co-planarity and co-linearity.

For modeling co-linearity, we choose three points qi, qj , and qk
lying on a straight line, and penalize the curvature of the line:

f3(di, dj , dk|yijk , Ri, Rj , Rk) =

exp
`

−yijk||Rjdj − 2Ridi +Rkdk||1
´

where yijk = (yij +yjk +yik)/3. Here, the “confidence” term yij

is similar to the one described for Plane Parameter MRF; except

in cases when the points do not cross an edgel (because nodes in

this MRF are a dense grid), when we set yij to zero.

Fig. 24. Enforcing local co-planarity by using five points.

We also enforce co-planarity by penalizing two terms

h(di,j−1, di,j , di,j+1, yi,(j−1):(j+1), Ri,j−1, Ri,j , Ri,j+1), and

h(di−1,j , di,j , di+1,j , y(i−1):(i+1),j , Ri−1,j , Ri,j , Ri+1,j). Each

term enforces the two sets of three points to lie on the same

line in 3-d; therefore in effect enforcing five points qi−1,j , qi,j ,

qi+1,j , qi,j−1, and qi,j+1 lie on the same plane in 3-d. (See

Fig. 24.)

Parameter learning is done similar to the one in Plane

Parameter MRF. MAP inference of depths, i.e. maximizing

logP (d|X,Y,R; θ) is performed by solving a linear program (LP).

However, the size of LP in this MRF is larger than in the Plane

Parameter MRF.
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