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Abstract

Background: Second-generation sequencing technologies are precipitating major shifts with regards to what kinds

of genomes are being sequenced and how they are annotated. While the first generation of genome projects

focused on well-studied model organisms, many of today’s projects involve exotic organisms whose genomes are

largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-

existing ‘gold-standard’ gene-models with which to train gene-finders. Improvements in genome assembly and the

wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published

genome annotations. Today’s genome projects are thus in need of new genome annotation tools that can meet

the challenges and opportunities presented by second-generation sequencing technologies.

Results: We present MAKER2, a genome annotation and data management tool designed for second-generation

genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets

of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-

data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data

to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their

quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize

problematic annotations for manual review.

Conclusions: MAKER2 is the first annotation engine specifically designed for second-generation genome projects.

MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to

improve annotation quality. It can also update and manage legacy genome annotation datasets.

Background
Second-generation sequencing technologies are creating

new opportunities as well as new challenges for geno-

mics research. While first-generation genome projects

focused primarily on established model organisms such

as Drosophila melanogaster[1], Caenorhabditis elegans

[2], and Mus musculus[3], falling sequencing costs are

allowing second-generation genome projects to focus on

more exotic and phylogenetically isolated organisms.

The large volumes of data produced by second-genera-

tion sequencing technologies also create difficulties for

data management not encountered by first-generation

projects. Together, these factors can spell disaster for

second-generation genome projects.

The first-generation of genome projects benefited

greatly from large bodies of pre-existing knowledge

regarding their organisms’ genomes. For D. melanoga-

ster, C. elegans, and Homo sapiens[4,5], for example,

hundreds of published gene models already existed

before these genomes were sequenced. These pre-exist-

ing published gene models were critical for annotation

and analysis, because they allowed researchers to train

and optimize gene prediction and annotation tools for

each genome. They also provided a standard by which

to judge the accuracy of annotations. Second-generation

projects rarely have access to such information. This

severely limits their ability to train ab initio gene-fin-

ders, the result being (as we show below) low-quality
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gene predictions. The lack of pre-existing gene models

also leaves many second-generation projects with no

objective standards with which to gauge annotation

accuracy. Quality control is thus a significant issue for

these projects; data management is another.

New techniques such as high-throughput transcrip-

tome sequencing (mRNA-seq) have great potential to

improve annotation quality, but they produce enormous

amounts of data; likewise, the existence of legacy anno-

tations for a large number of both first and second-gen-

eration genomes is also creating data management

challenges. Thus, it is essential that the output of an

annotation pipeline be easily converted into a genome

database.

MAKER2 builds upon MAKER[6], an easy-to-use gen-

ome annotation pipeline that has seen wide adoption

[7-19]. MAKER2 improves upon the de novo annotation

capabilities of the original MAKER and integrates sup-

port for multiple ab initio prediction tools. Major addi-

tions to MAKER2 include integration of the Annotation

Edit Distance (AED)[20] metric for improved quality

control and downstream database management, support

for mRNA-seq to allow researchers to leverage second

generation sequencing technologies, and gene model

pass-through capability; thus creating a first of it’s kind

tool for updating and reannotating existing model organ-

ism databases. The pipeline also supports distributed par-

allelization on computer clusters via MPI which means

MAKER2 can scale to datasets of virtually any size.

MAKER2 can run on UNIX-like operating systems such

as Linux and Darwin in Mac OS X. MAKER2 thus pro-

vides straightforward solutions to the problems facing

today’s second-generation genome projects. Here, we

demonstrate MAKER2’s ability to overcome handicaps

resulting from a lack of pre-existing gene models with

which to train gene-predictors for use on novel genomes;

its ability to use mRNA-seq data to improve annotation

quality; and its ability to update legacy annotations and

in doing so significantly improve their quality.

MAKER2 is not only an improved annotation engine;

it is also a new kind of annotation management tool.

Throughout these analyses, we measure MAKER2’s per-

formance using the integrated annotation quality-control

measure AED, developed by the Sequence Ontology

project[21]. We show that MAKER2 can both evaluate

the global quality of genome annotations, and identify

and prioritize problematic annotations for manual

review; these are functionalities offered by no other

annotation tool.

Implementation
De novo annotation of first-generation genomes

D. melanogaster chromosome 3R and GFF3 annotations

for release r5.32 were downloaded from FlyBase. C.

elegans chromosome V and GFF3 annotations for

release WS221 were downloaded from WormBase. Ara-

bidopsis thaliana[22] chromosome 4 and GFF3 annota-

tions were downloaded from TAIR. Each set of

reference gene annotations were passed to MAKER2’s

model_gff option with all prediction and evidence align-

ment options turned off. This has the effect of repacka-

ging the reference gene models into more standardized

GFF3 files compatible with downstream analysis scripts.

Ab initio gene predictions were produced by the pro-

grams SNAP[23] version 2010-07-28, Augustus[24]

2.5.5, and GeneMark-ES[25] 2.3a, using the D. melano-

gaster, C. elegans, and A. thaliana parameter files pre-

packaged with each algorithm (GeneMark parameter

files are packaged with the GeneMark.hmm download).

To produce all predictions in standardized GFF3 format,

these algorithms were run through MAKER2 with all

evidence alignments options turned off and the keep_-

preds flag set to 1. This has the effect of only producing

raw ab initio gene predictions in standardized GFF3

format.

Evidence-based gene annotations in MAKER2 were

produced using default settings. The species parameter

files were the same as those used for the ab initio gene-

predictors. EST and protein homology datasets were

provided for each organism. For D. melanogaster, the

EST dataset consisted of all D. melanogaster ESTs avail-

able from dbEST[26], and the protein homology input

consisted of all Anopheles gambiae[27] proteins from

NCBI together with all of the UniProt/Swiss-Prot[28,29]

database proteins (minus Drosophila proteins). For C.

elegans, the EST dataset consisted of all C. elegans

release WS221 ESTs available from WormBase, and pro-

tein homology input consisted of all Caenorhabditis

briggsae[30] WS221 proteins from WormBase together

with all of the UniProt/Swiss-Prot database proteins

(minus Caenorhabditis proteins). The EST dataset for A.

thaliana consisted of all A. thaliana ESTs from dbEST,

and the protein homology dataset consisted of all Oryza

sativa[31] release 6.1 proteins from PlantGDB and all of

the UniProt/Swiss-Prot database proteins (minus Arabi-

dopsis proteins). For A. thaliana, MAKER2 was also

provided with the Arabidopsis transposable element

FASTA file available from TAIR (assists in repeat

masking).

The reference gene models, ab initio gene predictions,

and evidence-based gene annotations were converted to

GTF format using the maker2eval script packaged with

MAKER2. Values for sensitivity and specificity were

then produced using Eval[32].

De novo annotation using unmatched species parameters

To simulate non-optimal training of the ab initio gene-

finders, ab initio predictions and MAKER2 annotations
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were produced for D. melanogaster, C. elegans, and A.

thaliana using unmatched species parameter files. This

was done by running SNAP, Augustus, GeneMark, and

MAKER2 on C. elegans and D. melanogaster using the

A. thaliana parameter files. These programs were then

run on A. thaliana using the C. elegans parameter files.

All other steps and procedures were identical to the pre-

vious analysis.

De novo annotation of second-generation genomes

Schmidtea mediterranea[17] assembly 3.1 and Line-

pithema humile[9] assembly 4.0 were used to evaluate

the performance of the ab initio gene-predictor SNAP

and the annotation pipeline MAKER2 on second-gen-

eration genome projects. To produce SNAP required

parameter files for each species, we first ran CEGMA

[33], which produces gene models that can be used for

training SNAP from a core set of universal genes that

should be found in all eukaryotes. CEGMA gene models

were converted to SNAP’s required ZFF format using

the cegma2zff script that comes bundled with MAKER2.

SNAP was then trained in accordance with its docu-

mentation. To produce all predictions in standardized

GFF3 format, SNAP was run via MAKER2 with all evi-

dence alignments options turned off and the keep_preds

flag set to 1. This has the effect of only producing raw

ab initio gene predictions in standardized GFF3 format.

MAKER2 was run on S. mediterranea using an EST

dataset consisting of all ESTs available for S. mediterra-

nea found in dbEST together with the SmedGD EST

dataset. The protein homology dataset consisted of all

proteins in the UniProt/Swiss-Prot protein database, all

Schistosoma mansoni[34] v4.0 proteins from Sanger, and

all GenBank[35] proteins for Nematostella vectensis, H.

sapiens, C. elegans, and S. mediterranea. The SmedGD

repeat library was also used. Short read mRNA-seq tran-

scriptome datasets for S. mediterranea were downloaded

from the NCBI Sequence Read Archive (SRP006000).

TopHat[36] v1.2.0 and Cufflinks[37] v0.9.3 were used to

align and process these short reads. The script

tophat2gff3 and cufflinks2gff3 were then used to process

the results into GFF3 format. The resulting GFF3 files

were provided to the est_gff option in MAKER2.

MAKER2 was run on L. humile using the published

genome project EST dataset together with all Apocrita

and Formicidae ESTs available from dbEST. The protein

homology dataset consisted of all of the UniProt/Swiss-

Prot protein database, D. melanogaster r5.32 proteins,

Nasonia vitripennis[38] OGS 1.2 proteins, Apis mellifera

[39] OGS 2 proteins, and all Formicidae proteins from

GenBank. A combined repeat FASTA file from the pub-

lished L. humile and Pogonomyrmex barbatus[8] gen-

omes was also provided.

Pfam domain analysis

InterProScan[40] was used to identify Pfam[41] domains

for all gene prediction/annotation datasets. Domains

were filtered to remove reverse transcriptase, integrase,

and virus related protein domains. Any domain listed as

unknown, uncharacterized, or NULL was ignored.

To explore the upper bound of expected Pfam domain

content in a newly annotated genome, we used Inter-

ProScan to identify Pfam protein domains in H. sapiens

release 37.2, M. musculus release 37.1, D. melanogaster

r5.32, C. elegans WS221, and Saccharomyces cerevisiae

[42] (NCBI release). Domains were filtered as before (i.e.

remove reverse transcriptase, integrase, and virus related

domains). The average domain enrichment for these

reference genomes was then calculated for comparison.

Calculating Annotation Edit Distance

Sensitivity, specificity, and accuracy are commonly used

metrics for evaluating the performance of gene predic-

tion algorithms by comparing the resulting gene predic-

tion to a well-supported reference annotation[43].

Sensitivity is defined as the fraction of a reference over-

lapping a prediction; specificity is defined as the fraction

of a prediction overlapping a reference; and accuracy is

commonly defined as the average of sensitivity and spe-

cificity (although several alternate formulations exist).

Both sensitivity and specificity can be calculated for any

feature in the genome at different levels of stringency (i.

e. base pair level, exon level, etc.).

Given a gene prediction i and a reference j, the base

pair level sensitivity can be calculated using the formula

SN = |i∩j|/|j|; where |i∩j| represents the number over-

lapping nucleotides between i and j, and |j| represents

the total number of nucleotides in the reference j. Alter-

natively, specificity is calculated using the formula SP =

|i∩j|/|i|, and accuracy is the average of the two.

When calculating AED, we adapt the calculation of

sensitivity and specificity to account for the fact we do

not have a reference gene model for comparison;

instead, we cluster experimental evidence aligned against

the genome to approximate the reference. So for SN = |

i∩j|/|j|, the value |i∩j| represents the number of nucleo-

tides in a gene prediction overlapped by experimental

evidence, and |j| represents the total base pair count for

experimental evidence in that cluster. Because we are

not comparing to a high quality reference, it is more

correct to refer to the average of sensitivity and specifi-

city as the congruency rather than accuracy; where C =

(SN+SP)/2. The incongruency, or distance between i and

j, then becomes D = 1-C, with a value of 0 indicating

complete agreement of an annotation to the evidence,

and values at or near 1 indicating disagreement or no

evidence support.
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AED evaluation for the human and mouse genomes

H. sapiens annotations for releases 33 and 37.2 as well

as M. musculus annotations for releases 30 and 37.1

were downloaded from NCBI in GenBank file format.

They were converted to GFF3 format using the gen-

bank2gff3 script available in the BioPerl[44] 1.6 distribu-

tion. The resulting GFF3 files were passed to MAKER2’s

model_gff option with all prediction and evidence align-

ment options turned off. This has the effect of repacka-

ging the gene models into more standardized GFF3 files

compatible with downstream analysis scripts.

The standardized GFF3 files were then provided to

MAKER2’s model_gff option once again together with

protein and EST datasets to produce downstream qual-

ity control metrics for each gene model. The human

reference gene annotations were processed using all

human ESTs from dbEST and a protein dataset consist-

ing of all mouse proteins together with all of UniProt/

Swiss-Prot (minus human proteins), and the genome

was masked using the mammal subset of repeats from

RepBase[45]. The mouse reference gene annotations

were processed using all mouse ESTs from dbEST and a

protein dataset consisting of all human proteins together

with all of UniProt/Swiss-Prot (minus mouse proteins),

and the genome was masked using the mammal subset

of repeats from RepBase.

The presence/absence of human release 33 genes in

release 37.2 and mouse release 30 genes in release 37.1

was determined using BLASTP[46] and reciprocal best

hits analysis (where genes from each dataset are each

others best hit). A threshold e-value of 1 × 10-6 was

required for all hits. Pfam domains were also mapped to

all genes using the previously described methodology.

Re-annotation of the maize genome

To demonstrate MAKER2’s ability to re-annotate exist-

ing genomes with respect to legacy annotations, we re-

annotated a 22 megabase region of the Zea mays

(maize) inbred line B73 chromosome 4[47], available

from http://maizesequence.org. We then used the subset

of reference annotations that are also included in the

Maize Classical Gene List[48] as a ‘gold standard’ set to

evaluate MAKER2’s performance.

We first produced a standardized GFF3 file for the

maize reference annotations by using the map2assembly

script bundled with MAKER2 to map maize reference

transcripts onto the genome. We then provided the

resulting GFF3 file to MAKER2 via the model_gff option

and provided an EST dataset consisting of all ESTs/

cDNAs for maize available from the Maize Full Length

cDNA Project[49] and dbEST. The protein homology

dataset we used consisted of the A. thaliana proteome

and all of the UniProt/Swiss-Prot database (minus any

maize proteins). Maize specific repeats were acquired

from the Maize Transposable Element Database[50].

The resulting MAKER2 output was a GFF3 file contain-

ing AED quality control values for all reference tran-

scripts. The AED distribution of the reference was then

graphed together with the AED distribution for the

‘gold standard’ genes identified as overlapping the Maize

Classical Gene List.

Next we produced de novo annotation and a re-anno-

tation dataset using MAKER2. The de novo annotation

dataset was produced using the maize prediction para-

meter file that comes bundled with SNAP. We also pro-

vided MAKER2 with the same EST, protein, and repeat

datasets used in the previous analysis. To produce the

re-annotation dataset, we again used the same EST, pro-

tein, repeat, and SNAP files; however, we also passed

MAKER2 all legacy annotations by indicating the loca-

tion of the reference GFF3 file in the model_gff option.

We then graphed the AED distributions as was done

previously for the reference dataset.

Evidence alignment and analysis of published ant

genomes

To demonstrate how MAKER2 can be used to add

experimental evidence and quality control statistics to

existing genome databases (which can fuel downstream

analyses or be used to improve annotations), we used

MAKER2 to add cross-species homology data to six

published ant genomes. We downloaded annotations for

Atta cephalotes[7] OGS 1.2, L. humile OGS 1.2, P. bar-

batus OGS 1.2, Camponotus floridanus[51] v3.3, Har-

pegnathos saltator[51] v3.3, and Solenopsis invicta[18]

v2.2.0 from the Hymenoptera Genome Database[52].

Most species had GFF3 format annotations that were

passed to MAKER2’s model_gff option, with all predic-

tion and evidence alignment options turned off. This

has the effect of repackaging the gene models into more

standardized GFF3 files compatible with downstream

analysis scripts. For S. invicta, however, we used the

map2assembly script bundled with MAKER2 to map

transcripts onto the genome assembly (thus producing a

standardized GFF3 formatted annotation file).

We next ran MAKER2 on each of the six ant species.

Standardized GFF3 files were passed to MAKER2’s

model_gff option. We used an EST dataset consisting

of all Apocrita and Formicidae ESTs available from

dbEST (filtered to not include ESTs for the species

being analyzed). We used a protein homology dataset

consisting of all of the UniProt/Swiss-Prot protein

database, D. melanogaster r5.32, N. vitripennis OGS

1.2, A. mellifera OGS 2, and all of the published ant

proteomes (always excluding the species being pro-

cessed at the time). A combined ant repeat FASTA file

from the published L. humile and P. barbatus genomes

was also provided.
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Orthology of the six ant species was explored using

BLASTP and reciprocal best hits analysis. A threshold

e-value of 1 × 10-6 was required for all hits. We also

used InterProScan to identify Pfam domains for all pro-

teins using the previously described methodology.

Evaluation of high through-put parallelization

The parallelization performance of MAKER2 was evalu-

ated on a server with four, twelve-core AMD Opteron

6174 Processors (48 total CPU cores) running Red Hat

Enterprise Linux Server release 5.5. MAKER2 was con-

figured with default settings and the NGASP[53] pro-

tein, EST, and genomic sequence datasets available from

WormBase. The NGASP genomic sequence is a selected

10 megabase sampling of the C. elegans genome (release

WS160). We ran MAKER2 (the parallel executable is

mpi_maker) using 1, 4, 8, 16, and 32 CPU cores under

MPICH2 1.3.1. The Linux time command was used to

evaluate process run time.

Results and Discussion
Genome annotation in model organism genomes

The performance of de novo annotation tools such as

HMM based ab initio gene-predictors and evidence

based annotation pipelines have previously been

explored in competitions such as EGASP[54] and

NGASP, which looked at gene prediction and annota-

tion accuracy in the human and C. elegans genomes,

respectively. From these competitions, the metrics sensi-

tivity, specificity, and accuracy have emerged as the

standard methods for evaluating the quality of gene pre-

dictions[55]. These measurements require a set of refer-

ence gene models that are assumed to be correct, as

gene predictions are compared to the reference models

to generate sensitivity, specificity and accuracy values

(see Implementation section).

For reference purposes, we first compared the perfor-

mance of MAKER2 to the ab initio gene prediction pro-

grams SNAP, GeneMark, and Augustus on three

different first-generation genomes. We used the organ-

ism specific parameter files that come bundled with

each of these algorithms to produce ab initio gene pre-

dictions for D. melanogaster chromosome 3R, C. elegans

chromosome 5, and A. thaliana chromosome 4. For

comparison, we then produced evidence-based genome

annotations by running the same three algorithms

(SNAP, GeneMark, and Augustus) inside of the

MAKER2 genome annotation pipeline. Sensitivity, speci-

ficity, and accuracy values were then calculated against

the respective reference genome using the program Eval

(Table 1 and Additional file 1 Table S1).

As seen in Table 1, the base pair and exon level accu-

racy values for ab initio predictions produced by SNAP,

Augustus, and GeneMark are very similar, generally

within a few percentage points of each other. In C. ele-

gans, for example, the difference between low and high

base pair level accuracies is only 3.19% (85.10% for

SNAP vs. 88.29% for Augustus). The corresponding

MAKER2 annotations have similar accuracies relative to

the ab initio gene predictions, and more often than not,

they are slightly improved over the ab initio gene pre-

dictions, but the improvements are small. In C. elegans,

for example, base pair level accuracies in MAKER2

range from 86.29% to 88.48% which is comparable to

the 85.10% to 88.29% range for the ab initio gene pre-

dictions. This is not the first time that this trend has

been observed[53] – given large enough training sets, ab

initio gene prediction programs can match or even out-

perform annotation pipelines. Augustus, for example,

achieved an exon-level accuracy in C. elegans of 74.62%,

compared to MAKER2’s 68.60% (Table 1).

The relative similarity of accuracy measurements for

ab initio prediction methods vs. MAKER2 suggests that

MAKER2 is performing on par with these ab initio tools

(but not greatly improving accuracy). However, as we

show below, such comparisons can be quite misleading

from a second-generation genome perspective. The key

to understanding why is grasping that Table 1 reports

the performance of the ab initio predictors after they

have been trained using each genome’s existing annota-

tions – datasets containing tens of thousands of often

hand-curated gene models. Data such as those shown in

Table 1 Gene model accuracy for gene prediction/annotation programs

Reference
Organism

Performance
Category

Ab Initio Predictions MAKER Annotations

Augustus GeneMark SNAP Augustus GeneMark SNAP

A. thaliana Nucleotide Accuracy 77.04% 74.68% 69.78% 80.53% 79.39% 80.27%

Exon Accuracy 67.03% 61.31% 56.40% 67.81% 69.60% 68.78%

D. melanogaster Nucleotide Accuracy 76.08% 66.54% 69.29% 76.42% 73.66% 74.33%

Exon Accuracy 61.37% 47.31% 47.01% 58.56% 58.03% 58.49%

C. elegans Nucleotide Accuracy 88.29% 88.09% 85.10% 87.14% 86.29% 88.48%

Exon Accuracy 74.62% 68.88% 61.38% 68.60% 65.03% 66.19%

Comparison of gene model accuracies in first-generation genomes for the ab initio gene predictors Augustus, GeneMark, and SNAP in comparison to gene model

accuracies produced by the same predictors when ran as part of the MAKER2 gene annotation pipeline.
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Table 1 thus represent the upper bounds for perfor-

mance of the ab initio prediction algorithms. As we

demonstrate below, when training sets decrease in qual-

ity and/or size, the accuracy of ab initio tools drops dra-

matically; in contrast MAKER2’s accuracy, however,

remains high. This feature of MAKER2 makes it espe-

cially useful for second-generation genome projects as

these projects generally lack large enough training data-

sets for ab initio predictors to achieve accuracies com-

parable to those shown in Table 1.

Genome annotation using unmatched species parameters

To better understand how these algorithms perform

using poor quality training data, we repeated our analy-

sis shown in Table 1 using the same portions of D. mel-

anogaster chromosome 3R, C. elegans chromosome 5,

and A. thaliana chromosome 4; but this time we inten-

tionally ran the gene-predictors using the wrong species

file for each organism. D. melanogaster and C. elegans

were analyzed using the parameter file for A. thaliana,

and A. thaliana was analyzed using the parameter file

from C. elegans. Each ab initio gene prediction program

was then run inside of the MAKER2 annotation pipeline

using the same incorrect parameter files for comparison.

As expected, the accuracy of the ab initio prediction

algorithms is reduced substantially (Table 2 and Addi-

tional file 1 Table S2). The reduction in accuracy is

most notable at the exon level where all accuracies were

approximately half of what was seen in the previous

analysis shown in Table 1. However, when each ab initio

prediction program was run inside of MAKER2, accura-

cies dramatically improved for every organism at both

the base pair and exon levels. The degree of improve-

ment was most notable for SNAP, where exon level

accuracies for A. thaliana increased from 18.58% to

60.11%. In fact, SNAP’s performance inside of MAKER2

using the incorrect parameter files often matched or

even exceeded the levels of performance delivered by all

three ab initio gene-predictors when run using the

correct parameter files. For example for D. melanoga-

ster, when using the incorrect SNAP parameter file,

MAKER2 produces exon level accuracies of 53.69%;

whereas when using the correct parameter files outside

of MAKER2, the programs GeneMark, SNAP, and

Augustus produce exon level accuracies of 47.31%,

47.01%, and 61.37%, respectively. These data show that

MAKER2 can substantially improve the performance of

ab initio gene-predictors in situations where training

data may be of poor quality.

Gene prediction/annotation in second-generation

genomes

When analyzing the performance of gene-predictors in

sequenced second-generation genomes, the same

metrics of sensitivity, specificity, and accuracy used for

first-generation genomes cannot be applied (Table 1 and

Additional file 1 Table S1). This is because second-gen-

eration genomes lack the high-quality reference gene

models required to calculate these values (accuracy mea-

sures the overlap between a prediction and the supposed

correct reference).

In the experiments below, we use Pfam domain con-

tent (mapped using InterProScan) as a proxy metric

for annotation quality. Although expansion and con-

traction of gene families can be an important mode of

organism evolution, previous work has shown that the

high level of domain content of eukaryotic proteomes

is relatively invariant[56]; this fact can be clearly seen

in Additional file 1 Table S3, which documents the

high-level Pfam domain frequencies for six different

well annotated eukaryotic model organisms (H.

sapiens, M. musculus, D. melanogaster, C. elegans, A.

thaliana, and S. cerevisiae). Thus at the grossest level

of resolution, the percentage of annotations containing

one or more Pfam domains provides an indication of

annotation accuracy.

For reference purposes, Figure 1a provides high-level

breakdown of domain contents for six reference

Table 2 Gene model accuracy using unmatched species parameters

Reference
Organism

Performance
Category

Ab Initio Predictions MAKER Annotations

Augustus GeneMark SNAP Augustus GeneMark SNAP

A. thaliana Nucleotide Accuracy 57.85% 48.62% 43.84% 68.56% 57.96% 73.77%

Exon Accuracy 30.71% 16.51% 18.58% 53.31% 28.87% 60.11%

D. melanogaster Nucleotide Accuracy 67.47% 66.51% 48.92% 73.78% 72.83% 74.44%

Exon Accuracy 30.62% 26.25% 19.94% 43.10% 39.74% 53.69%

C. elegans Nucleotide Accuracy 66.18% 67.26% 68.24% 74.32% 71.92% 85.02%

Exon Accuracy 28.33% 30.01% 35.44% 38.52% 39.42% 63.14%

The effect of limited/insufficient training data on ab initio gene prediction is simulated by providing the algorithms Augustus, GeneMark, and SNAP with incorrect

species parameters files (the A. thaliana species parameters were used to produce gene models for C. elegans and D. melanogaster, and the C. elegans

parameters were used to produce gene models in A. thaliana). In comparison, the same predictors, when ran as part of the MAKER2 gene annotation pipeline,

perform substantially better, even with the same incorrect species parameter files.
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genomes. On average, 68% of annotations in these six

genomes contain a Pfam domain. For individual pro-

teomes, the percent enrichment ranges from a low of

57% for C. elegans to a high of 78% for M. musculus.

To compare the performance of ab initio gene predic-

tion algorithms to that of MAKER2 on second-genera-

tion genomes, we performed a proof-of-principle

genome annotation of Linepithema humile (Argentine

ant), and updated the genome-annotations of the

Schmidtea mediterranea (flatworm) genome. For these

analyses, we used the ab initio gene-predictor SNAP

because it can be easily trained for new genomes using

CEGMA (an HMM-based program that identifies and

annotates a subset of highly conserved, universal eukar-

yotic genes). The gene models produced by CEGMA

then serve as the initial training set for SNAP.

Even after training using the CEGMA gene models,

we found that only 15% of SNAP ab initio gene predic-

tions in L. humile contain a Pfam domain (Figure 1b).

The MAKER2-generated proteome, by comparison, is

highly enriched for domains (Figure 1b). In total, 56% of

the L. humile MAKER2-supervised SNAP predictions

contain Pfam domains.

We also performed a proof-of-principle annotation

update of the S. mediterranea (flatworm) genome using

transcriptome (mRNA-seq) data deposited in the NCBI

Sequence Read Archive (SRP006000). MAKER2 uses its

GFF3 pass-through capability to integrate mRNA-seq

data into the annotation process. The mRNA-seq reads

are first pre-processed by the user’s algorithm of choice

(i.e. TopHat, Cufflinks, etc.), and then converted to GFF3

files for use with MAKER2. MAKER2 provides easy to

use utilities for converting the outputs of TopHat and

Cufflinks to GFF3 files. The mRNA-seq data can then be

used by MAKER2 in combination with ab initio gene

predictions, EST and protein alignments to inform

MAKER2’s gene annotations. For S. mediterranea, when

annotated using a version of SNAP that was trained

using the CEGMA S. mediterranea gene models, only 6%

of the SNAP gene predictions encode a Pfam domain

(Figure 1c). By comparison, using the same version of

SNAP, in conjunction with mRNA-seq data, 47% of the

MAKER2 supervised SNAP gene predictions encoded a

domain, demonstrating the ability of MAKER2 to use

mRNA-seq data to improve the quality of the predictions.

Transcriptome data alone, however, is unlikely to cap-

ture all protein coding genes, and the 13,934 genes

models produced by MAKER2 using only mRNA-seq

data likely represent around 80% of all genes within this

genome. When using all available ESTs together with

mRNA-seq reads and the Uniprot/Swiss-Prot protein

database (after excluding any existing S. mediterranea

proteins), MAKER2 produced 17,883 gene models, 52%

of which encode Pfam domains and have overlapping

support from multiple data sources, indicating that that

these 17,883 gene models represent a more complete

model of the genome than can be obtained from tran-

scriptome data alone.
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Figure 1 MAKER2 vs. ab initio predictors on second-generation

genomes. We compared the performance of the ab initio predictor

SNAP to the annotation pipeline MAKER2 on two second-

generation genomes: L. humile (Argentine ant) and S. mediterranea

(flatworm). Pfam domain content was used as a means to evaluate

the performance of these algorithms, under the assumption that a

poorly annotated genome will be globally depleted for domains

relative to well-annotated genomes. (A) The average Pfam domain

contents for six well annotated eukaryotic reference proteomes: H.

sapiens, M. musculus, D. melanogaster, C. elegans, A. thaliana, and S.

cerevisiae. These data provide an upper bound for the expected

domain content of a newly sequenced genome. The region of the

pie chart outlined in red indicates the percentage of genes

containing a Pfam domain; these are further subdivided by GO

molecular function. (B) The Pfam domain content of SNAP

produced ab initio predictions compared to MAKER2-SNAP gene

annotations for the L. humile genome. (C) The Pfam domain

content of SNAP ab initio gene predictions and MAKER2-SNAP

annotations in the S. mediterranea genome.
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Interestingly, not only are domain enrichments low for

the L. humile and S. mediterranea SNAP ab initio pre-

dictions, the gene counts are also greatly inflated.

Approximately 15,000 genes are expected for S. mediter-

ranea and approximately 17,000 are expected for L.

humile [6,9], both values well below the 63,622 and

420,224 gene predictions produced (respectively) when

running SNAP on its own (outside of MAKER2). Ab

initio gene-predictors have a recognized tendency to

over predict[53], and as these results demonstrate, this

tendency can be greatly exacerbated by the limited

training data usually available for second generation

genomes. In contrast, MAKER2’s supervised SNAP-

based gene counts are dramatically more consistent with

the published expected counts. MAKER2 produced

13,785 gene annotations for L. humile and 17,883 for S.

mediterranea (Note this is without further optimization

and training of the gene-predictor SNAP).

These results stand in stark contrast to the great accu-

racy obtained by SNAP on model organism genomes

presented in Table 1. They also make it clear that when

training data are limited or of low quality, ab initio

gene-predictors produce much more reliable results

when supervised by MAKER2. This conclusion is also

consistent with our earlier analyses where we annotated

three model organism genomes using unmatched spe-

cies parameter files (Table 2). Additionally MAKER2’s

use of mRNA-seq reads for annotating S. mediterranea

demonstrates that these next-generation data can be

effectively utilized by MAKER2 to greatly improve the

final gene models.

Annotation Edit Distance as a quality control metric

As the number of published genomes continues to

expand, manual curation and validation of every annota-

tion in every genome is simply infeasible. A more practi-

cal approach is to dedicate limited resources and

manpower to curation and validation of only those gene

annotations most in need of improvement. As we

demonstrate below, MAKER2 provides an effective

means for automated quality control of genome annota-

tions. Even in cases where the administrators of genome

databases have no plans to undertake manual curation,

quality control measures are still desirable, as they pro-

vide a means for downstream users to judge the quality

of an annotation before proceeding with experiments

that depend upon the annotation’s accuracy for success.

Identifying low quality gene annotations is a challenge

not well addressed by existing annotation tools. While

quality metrics such as sensitivity, specificity, and accu-

racy are convenient for evaluating the performance of

gene-predictors, they presuppose the existence of refer-

ence gene models, which are not available for many

newly sequenced genomes. Researchers working with

second-generation annotations are thus in need of new

quality control measures and annotation management

tools.

To address this issue, we have adapted the Annotation

Edit Distance (AED) measurement, developed by the

Sequence Ontology, for use in MAKER2 as an annota-

tion quality-control metric. AED is similar to the sensi-

tivity and specificity measures used to judge gene-finder

performance[55], but it differs in that no reference

gene-model is used. Instead AED measures the distance

between two annotations (each from a different releases

of the same genome), and it makes no assumptions as

to which one is the more correct. As originally formu-

lated, AED provides a means to measures changes to a

gene annotation from release to release. We have

adapted AED for use in MAKER2 as a means to quan-

tify the congruency between a gene annotation and its

supporting evidence - EST, protein, and mRNA-seq

alignments (see Implementation section for details). As

we show in the analyses presented below, MAKER2’s

AED values provide a very useful measure for annota-

tion quality control.

AED values are bounded between 0 and 1, with a

value of 0 indicating an exact match between the intron

exon coordinates of an annotation and its aligned evi-

dence and 1 indicating no evidence support. Thus, data-

base managers can use AED to sort gene models from

best supported to worst in order to prioritize them for

downstream manual review; MAKER2’s AED values can

also provide a rational basis for how much faith a

researcher should put in an annotation before proceed-

ing with downstream bench experiments where success

will hinge upon the gene model being correct.

As proof-of-principle, we compared MAKER2 pro-

duced AED scores for every annotation in release 30 of

the M. musculus reference annotations (2003) to those

of release 37.1 (2007) (Figure 2). We also performed the

same analysis using reference annotations from human

release 33 (2003) compared to human release 37.2

(2010) (Additional file 1 Figure S1). In order to perform

these analyses, we first used MAKER2 to align EST and

protein homology evidence against reference genome

assemblies, and then compared these data to the mouse

30 and 37.1 and human 33 and 37.2 gene-models (thus

producing AED scores for all annotations in the two

datasets). We then plotted the cumulative distribution

of AED for each dataset (Figure 2c and Additional file 1

Figure S1c).

As can be seen in mouse release 30 (Figure 2), there

exists an abundance of genes in this early release with

limited evidence support; in other words, a large portion

of genes have high AED values). In contrast, for the

more recent mouse release 37.1, the AED distribution is

shifted toward lower AED (better) values. These two
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curves thus provide a high-level quantitative overview of

the genome-wide improvements to the mouse gene-

annotations between 2003 and 2007.

Notably, many of the release 33 mouse annotations

nearly or completely lack support from EST and protein

homology (as indicated by a spike of genes distributed

around the AED value of 1). In contrast, for the more

recent mouse release 37.1, there is nearly a complete

elimination of the spike due to genes with AED scores

near 1. This suggests that the earlier releases contained

an abundance of false positive gene predictions that

were deleted by release 37.1.

To further explore the extent to which AED scores are

indicative of annotation quality, we also investigated the

AED distribution of the highest quality subset of refer-

ence GenBank annotations from each of the mouse and

human genome releases (the highest quality genes are

those with NM prefixes assigned by RefSeq[57]). The

RefSeq NM prefix provides us with an independently

identified ‘gold-standard’ dataset of best quality annota-

tions for comparison. For all releases, we see that the

‘gold-standard’ NM annotation datasets produce cumu-

lative AED distributions that are shifted toward lower

AED scores than the reference sets they are derived

from (dotted lines in Figure 2c and Additional file 1 Fig-

ure S1c). This indicates that MAKER2 is able to verify

the higher quality of these genes, and quantify the dif-

ferences in quality, providing further support for the use

of AED and MAKER2 as tools for annotation quality

control.

We also investigated how well AED scores agreed with

Pfam domain content. As can be seen in Figure 2a and

Additional file 1 Figure S1a, AED scores accord well

with domain content. In mouse release 30, for example,

87% of genes with AED scores from 0 to 0.25 contain a

known domain, whereas only 44% of genes with an

AED score ranging from 0.75 to 1.0 contain a domain.

The trend is even more striking in human release 33

where only 15% of annotations with AED scores

between 0.75 and 1.0 contain a domain, again suggesting

there is a greater fraction of false positive gene predic-

tions in that subset of genes (Additional file 1 Figure

S1a). Tracking these annotations across releases sup-

ports this hypothesis: 86% of genes from human release

33 with AED scores between 0.75 and 1.0 are absent by

release 37.2 (Additional file 1 Figure S1b). The same

trend is observed in mouse: 59% of annotations in

release 30 with AED scores between 0.75 and 1.0 were

deleted by release 37.1 (Figure 2b). In comparison, only

14% of genes with AED scores between 0 and 0.25 were

deleted between mouse release 30 and release 37.1.

Collectively, these results show that gene annotations

judged to be of low quality by MAKER2 were also

judged to be of low quality by GenBank and preferen-

tially deleted (demonstrating that AED scores mirror the

independent curation decisions made by the mouse and

human research communities). These facts demonstrate

the utility of MAKER2 as an annotation management

tool.

Re-annotation of existing genomes and legacy

annotations

While there are a large number of second-generation

genome projects underway, falling sequencing costs are

also leading many researchers to revisit published gen-

omes to improve gene models in light of new evidence,

(such as mRNA-seq) or to take advantage of newer,

more complete genome assemblies. There are also
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Figure 2 Evaluating AED as a metric for annotation quality

control. Annotation Edit Distance (AED) provides a measurement

for how well an annotation agrees with overlapping aligned ESTs,

mRNA-seq and protein homology data. AED values range from 0

and 1, with 0 denoting perfect agreement of the annotation to

aligned evidence, and 1 denoting no evidence support for the

annotation. We evaluated the use of AED as a quality control metric

by comparing MAKER2 produced AED scores for release 30 (2003)

of the M. musculus genome to the AEDs for release 37.1 (2007).

These data show how AED can be used to quantify improvements

to the annotations between each release. (A) The Pfam domain

content of M. musculus release 30 for genes found in each quartile

of the MAKER2 AED distribution. Note that genes with low AEDs are

highly enriched for domains. (B) The fraction of M. musculus genes

from release 30 maintained/removed from subsequent release 37.1

for each MAKER2 AED distribution quartile. These data show how

AED mirrors the independent curation decisions made by the

mouse research community between 2003 and 2007. (C) The

cumulative AED distributions of M. musculus release 30 and 37.1

demonstrate how AED quantifies improvements made between

releases. The subset of genes with NM prefixes assigned by RefSeq

(which indicates the highest level of annotation quality) is plotted

separately to show that these independently identified ‘gold-

standard’ gene annotations tend to have lower AED values in

comparison to the genome as a whole.
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instances where researchers are sequencing individual

strains/mutants of organisms where a published refer-

ence genome is already available or where multiple sets

of legacy annotations exist and they wish to carry over

annotations from the reference genome and merge them

into a non-redundant consensus dataset. MAKER2 pro-

vides a simple method to perform these tasks via its

external annotation pass-through mechanism that

accepts as input any pre-existing genome annotations as

well as aligned experimental evidence provided in a

GFF3 formatted file.

When using this GFF3 pass-through mechanism,

MAKER2 takes the user-provided gene models (from

GFF3 files), aligns any additional experimental evidence

against the genome (from standard FASTA files), and

then calculates quality control statistics such as AED. If

the user supplied MAKER2 with more than one legacy

annotation dataset (i.e. multiple GFF3 files of alternate

legacy annotations), MAKER2 chooses the one model

most consistent with the evidence for each locus and

carries it forward to produce a consensus (non-redun-

dant) dataset. Researchers can also select to run ab

initio gene-predictors (as is done for de novo annota-

tion) in addition to providing a GFF3 file of legacy

annotations. In this case, MAKER2 can produce new

gene models for regions where the evidence suggests the

existence of a gene that was not found in the legacy set,

and with the help of the gene-finders MAKER2 will

automatically update/revise the legacy annotations to

better account for features suggested by aligned

evidence.

As proof-of-principle of MAKER2’s model pass-

through and re-annotation capabilities, we used the

pipeline to process a 22 megabase region of maize

inbred line B73 chromosome 4 together with version

5a.59 of the http://MaizeSequence.org Working Gene

Set. For maize chromosome 4, we produced a de novo

annotation gene set, a pass-through dataset (in which all

reference annotations were maintained but tagged with

evidence associations and AED values), and a re-annota-

tion dataset (wherein MAKER2 was allowed to maintain

or update reference annotations based on aligned

experimental evidence). The cumulative distribution of

AED scores for these three datasets was then graphed

and is shown in Figure 3c. We also plotted the AED dis-

tribution of the high quality subset of reference annota-

tions from the Maize Classical Gene List for comparison

as an independently identified ‘gold-standard’ control

dataset (Figure 3c, gold curve).

During re-annotation, 304 out of 493 version 5a.59

reference gene models were altered/updated to reflect

features suggested by evidence alignments; 88 new gene

models were produced for regions where the evidence

suggested the existence of a gene but no model existed;

and 189 reference gene models were left unchanged. A

total of 89 of the unmodified reference gene models had

no evidence support and were prioritized by MAKER2

for manual review as possible false positive annotations.

Alterations to gene models during the re-annotation

process caused the AED distribution curve for the re-

annotation dataset (Figure 3c, purple curve) to shift

towards lower AED values (better) relative to the refer-

ence annotation set (Figure 3c, red curve). This shift

suggests that re-annotation using MAKER2 successfully

brought gene models more in line with experimental

evidence, thus improving their quality. A further com-

parison of both the re-annotation dataset and the unmo-

dified reference dataset to the ‘gold-standard’ annotation

set (Figure 3c, gold curve) supports this conclusion, as

these high quality gene models also tend to be distribu-

ted around lower AED values (with more than 80% of

‘gold-standard’ annotations having AED values of < 0.2

compared to just 40% for the version 5a.59 reference

annotation set). The spike in the AED distribution for

both the unmodified reference dataset and the re-anno-

tation dataset represents gene models that have little-to-

no evidence support and are prioritized by MAKER2 for
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Figure 3 Re-annotation of a portion of the Maize genome

using MAKER2. Annotation Edit Distance (AED) provides a

measurement for how well an annotation agrees with its associated

evidence (see text and Figure 1 for additional details). Shown are

cumulative AED distributions for several Maize annotation datasets.

Gold curve: AED distribution of high-quality ‘gold standard’

annotations in the benchmark region that are members of the J.

Schnable and M. Freeling Classical Maize Genes List; These genes

generally have the lowest AEDs. Red curve: all Maize gene models

from the http://www.MaizeSequence.org 5a.59 Working Gene Set in

the benchmark region; Blue curve: MAKER2’s first pass, de novo

annotations for the benchmark region; note that these genes

generally have lower AEDs than the 5a.59 Working Gene Set (red

curve). Purple curve: automatic MAKER2-based update/revision of

the Maize 4a.53 Working Gene Set annotations. Note that the

revised dataset now exceeds the quality of the 5a.59 Working Gene

Set as judged by AED.
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manual review. In comparison, the de novo annotation

set (Figure 3c, blue curve) has an AED distribution

shifted toward lower values than either the re-annota-

tion or reference dataset; this is primarily due to the

exclusion of unsupported gene models as the average

AED for both the de novo and re-annotation datasets is

identical when unsupported models are excluded (aver-

age AED of 0.17 in both).

Managing existing annotation databases

With the proliferation of existing sequencing data,

researchers have access to published genomes of multi-

ple related species that may have been annotated using

very different methods and to varying degrees of quality.

Here, we evaluate how MAKER2’s annotation pass-

through option can be used to map cross-species data

to multiple related genomes. We also explore how these

data can be used to fuel downstream analyses such as

cross-species orthology.

We used MAKER2 to map experimental evidence as

well as reference annotations to six published ant gen-

omes: A. cephalotes, P. barbatus, L. humile, H. saltator,

C. floridanus, and S. invicta. The protein datasets pro-

vided to MAKER2 consisted of all proteins from Uni-

Prot/Swiss-Prot, D. melanogaster, N. vitripennis (wasp),

A. mellifera (honey bee), and each of the previously

mentioned published ant species (the individual species

whose genome was being evaluated was always excluded

from the protein dataset). We also included all Apocrita

and Formicidae ESTs in dbEST with the EST dataset.

Resulting cumulative AED distributions were then

plotted for each ant species; average percent orthology

and domain content were also evaluated for each quar-

tile of the AED distribution (Figure 4).

Low AED scores indicate gene models with better

agreement with evidence alignments, while higher values

mean less evidence support. The cumulative distribution

of AED scores for the six ant species can be seen in Fig-

ure 4c. For each ant species, there is a spike in the dis-

tribution curves around AED score 1. This spike

represents genes that MAKER2 has prioritized for man-

ual review. We see in Figure 4a that Pfam domain con-

tent is well correlated with AED score, and an average

of 63% of genes with scores between 0 and 0.25 contain

a Pfam domain compared to only 11% of genes with

scores between 0.75 and 1.0. The low domain enrich-

ment suggests that genes prioritized by MAKER2 are

most likely false positive gene predictions–a conclusion

supported by our earlier analyses of the mouse and

human annotation datasets shown in Figure 2– but

there is also the potential that these represent novel

genes with domains that would not be found in the

Pfam domain database.

If we further expand our analysis to look at orthology

among the ant species, we see that percent orthology

between the six ant species is also well correlated to

AED. Using reciprocal best blast hits as a rough defini-

tion of orthology, 94% of genes with AED scores

between 0 and 0.25 have orthology to at least one pro-

tein in another ant species (on average there are 4.41

orthologous genes in other ant species that associate

back to each of these), whereas only 26% of genes with

AED scores between 0.75 and 1.0 have at least 1 ortho-

log in another ant species (for the genes here that have

an ortholog there are only 1.85 orthologs that map back

to them on average). Together with the domain analysis,

the association of AED and orthology suggests that

genes with AED scores near 1 are either recently

evolved genes or false positive gene predictions; in either

case, these genes should be targeted from manual

review. Thus supporting the use of the AED statistic for

quality control.
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Figure 4 MAKER2 as a management tool for existing genome

annotations. MAKER2 was used to add cross species homology

evidence and AED values to six published ant species. These data

show how MAKER2 can be used both to add new data to existing

datasets and for downstream prioritization of genes in those

datasets for further analysis and curation. (A) The Pfam domain

content in each AED quartile. Genes receiving higher AED scores

are less likely to contain a domain, thus prioritizing them as possible

false positive gene predictions. (B) The percent of genes in each

AED quartile having an orthologous protein in a related ant species

with the average number of orthologs per gene (for the subset of

orthologous genes) listed at the bottom. AED score is highly

correlated with orthology. (C) The cumulative AED distribution for

all six ant species. The spike of genes with AED score at or near 1

suggests potential false positive genes predictions rather than

species-specific genes, as these annotations also generally lack EST

support and Pfam domains; these gene models are first in MAKER2’s

list for manual review.
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The ability of MAKER2 to align cross-species data to

multiple genomes in this way demonstrates how

MAKER2 can be used to generate common resources

even when genomes are annotated using very different

methods. Because all annotations and experimental evi-

dence have been processed into a common format, they

can now be easily loaded into downstream GMOD tools

for analysis and data distribution. MAKER2 thus pro-

vides an efficient automated mechanism for research

communities and organizations to manage shared gen-

ome database resources.

High-throughput parallelization

MAKER2 has been optimized to support high-through-

put parallelization using Message Passing Interface

(MPI), a distributed cluster communication protocol. To

explore how data throughput in MAKER2 scales with

processor usage, we annotated the 10 megabase NGASP

dataset for C. elegans using an increasing number of

processor cores (Figure 5). As can bee seen, data

throughput scales linearly with processor usage: Anno-

tating the entire 10 megabase dataset in just under 1

hour on 32 CPU cores; this means MAKER2 should be

able to annotate the entire C. elegans genome in less

than 10 hours using similar settings. Researchers with

access to distributed computer clusters (300-3000 CPU

cores) could expect to annotate even human-sized gen-

omes (~2-3 gigabases) in less than 24 hours, while smal-

ler fungal sized genomes (~40-80 megabases) could

easily be annotated on laptop or desktop machines in

the same time period. The scalability of data throughput

for MAKER2 therefore allows researchers to process

datasets of virtually any size or to process multiple data-

sets in a timely manner. MAKER2’s high-throughput

parallelization also provides a potential solution to the

problem of annotating ultra large genomes such as pine

trees, which have genomes in the 20-30 gigabase range

[13].

It is important to note that much of MAKER2’s com-

putation time is spent aligning experimental evidence to

the genome and analyzing the results. For this reason,

the overall time required for genome annotation is

expected to vary not only with genome length but also

with the size of the input experimental evidence dataset.

This upfront investment in computation time, however,

provides enormous benefits downstream as all supplied

EST reads, protein homology data, and gene predictions

are available as searchable features in the final output.

By loading MAKER2’s output into GMOD tools like

Chado[58], Galaxy[59], and GBrowse[60], researchers

can quickly perform downstream analyses such as

exploring protein orthology and analyzing sequence

conservation. They can also identify cross-species

changes in intron exon structures with the advantage of

having all the information available directly from

MAKER2’s output without having to perform any addi-

tional computation.

Conclusions
The performance of ab initio gene-predictors is heavily

dependent on the availability of extensive training data.

First-generation genome projects such as D. melanoga-

ster thus benefitted greatly from the extensive knowl-

edge of genes and gene structure that was already

available before the genome projects even began. Unfor-

tunately, second-generation (emerging model organisms)

genomes generally lack pre-existing ‘gold standard’ gene

models with which to train gene finders. These same

projects, however, often do have on hand mRNA-seq

data, a resource of obvious utility for annotation. Our

results show that MAKER2 provides an easy means to

integrate these and other data into the gene prediction

and annotation process, resulting in dramatic improve-

ments to annotation quality even when gene-finders are

poorly trained.

By aligning evidence from ESTs, mRNA-seq, and pro-

tein homology, MAKER2 also provides a convenient

way to add these types of experimental data to new and

existing annotation datasets for purposes of quality con-

trol, and as a means to update and revise legacy annota-

tion datasets automatically. As proof-of-principle, we

demonstrated that MAKER2 was able to prioritize genes

for review from mouse release 30 and human release 33.

This prioritization is well correlated with the deletion

and revision of the same genes in subsequent mouse
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Figure 5 MAKER2 scales to even the largest genomes. MAKER2

was used to annotate a 10 megabase section of the C. elegans

genome (NGASP dataset). The algorithm was parallelized using MPI

on an increasing number of CPU cores. The results demonstrate

how MAKER2 scales almost linearly with CPU number (with a slope

of near 1). If we project our results forward to the entire C. elegans

genome (~100 megabases), MAKER2 should take under 10 hours on

32 CPUs to complete; similarly, the human genome (~3 gigabases)

would require fewer than 24 hours on 400 CPUs.
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release 37.1 and human release 37.2, indicating that

MAKER2’s AED-based prioritization method closely

emulates the quality control decisions used for these

genomes. Likewise, our re-annotation of portions of the

Maize genome demonstrates the ability of MAKER2 to

automatically revise and update existing genome annota-

tions. MAKER2 thus provides an automated means of

quality control for both new and existing genome anno-

tations; this in turn will allow researchers to make more

informed decisions when designing experiments whose

success is dependent upon the correctness of the anno-

tation as incorrect annotations poison every experiment

that uses them.

Availability and requirements
MAKER2 is a Perl-based application, is freely available

for academic use. Source code, documentation and a

user tutorial are available at

http://www.yandell-lab.org/software/maker.html

Links to a bug tracker and users’ email list are also

available on the download page.

Additional material

Additional file 1: Supplementary tables and figures. Contains

Supplementary Tables 1, 2, and 3 as well as Supplementary Figure 1.
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