
P
H

Y
S

IC
S

Making ab initio QED functional(s): Nonperturbative
and photon-free effective frameworks for strong
light–matter coupling
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Strong light–matter coupling provides a promising path for the

control of quantum matter where the latter is routinely described

from first principles. However, combining the quantized nature of

light with this ab initio tool set is challenging and merely devel-

oping as the coupled light–matter Hilbert space is conceptually

different and computational cost quickly becomes overwhelming.

In this work, we provide a nonperturbative photon-free formula-

tion of quantum electrodynamics (QED) in the long-wavelength

limit, which is formulated solely on the matter Hilbert space

and can serve as an accurate starting point for such ab initio

methods. The present formulation is an extension of quantum

mechanics that recovers the exact results of QED for the zero-

and infinite-coupling limit and the infinite-frequency as well as

the homogeneous limit, and we can constructively increase its

accuracy. We show how this formulation can be used to devise

approximations for quantum-electrodynamical density-functional

theory (QEDFT), which in turn also allows us to extend the ansatz

to the full minimal-coupling problem and to nonadiabatic situa-

tions. Finally, we provide a simple local density–type functional

that takes the strong coupling to the transverse photon degrees

of freedom into account and includes the correct frequency and

polarization dependence. This QEDFT functional accounts for the

quantized nature of light while remaining computationally sim-

ple enough to allow its application to a large range of systems.

All approximations allow the seamless application to periodic

systems.

quantum-electrodynamical density-functional theory (QEDFT) |
cavity quantum electrodynamics | strong light–matter coupling |
photon-free QED | QEDFT functionals

In the last decade, seminal experimental results (1–4) have
demonstrated that the properties and dynamics of atoms,

molecules, and solids can be substantially modified by cou-
pling strongly to the modes of a photonic environment. The
strong coupling between light and matter in these cases leads
to the emergence of hybrid light–matter states (polaritons)
which subsequently can be used to control, for instance, chem-
ical reactions (5–11) and enhance charge and energy trans-
port (12–19), even over very large distances, and there are
recent indications that they might be used to increase the crit-
ical temperature of superconductors (20–22). Many of these
changes persist at normal ambient conditions and are hence
promising for quantum-technological applications (1). They
question, however, our common perception that light and mat-
ter are distinct physical entities and call for a more unified
description.

Typically, in such strong light–matter coupling situations,
only a few photonic modes, which are supported by a cavity
geometry, play a substantial role. Their interaction with matter is,
however, greatly enhanced in comparison to the free-space situ-
ation. Effective subwavelength confinement (2, 23–26) or circuit

geometries (27–29) enable hybridization strengths on the order
of the matter excitation. A noticeable hybridization between
light and matter (strong coupling) results in the emergence of
polaritons in the excited states. The coupling between (artificial)
cavity modes and matter excitation can be so considerable that
all eigenvalues of the individual constituents are affected, and
even the ground state becomes correlated (ultrastrong coupling).
For even larger hybridization, the character of light and matter
becomes truly interlacing (deep ultrastrong coupling).

Many of the experimentally observed effects, in particular
those involving chemical reactions under strong coupling, are so
far theoretically not well understood (6, 11, 30–32). Detailed the-
oretical explanations are largely missing as strong light–matter
coupling calls in principle for investigations within the frame-
work of quantum electrodynamics (QED) (33). This, however,
leads to an enormous increase of computational complexity as
the combined light–matter Hilbert space becomes prohibitively
large (illustrated in Fig. 1).

The most common approach is to considerably reduce the
dimensionality of the light–matter Hilbert space by deciding a
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Fig. 1. An illustration of the exponential increase in computational com-

plexity: In QED the matter Hilbert space He is extended with the photonic

Fock space (indicated by the vectors for different modes α starting with

the vacuum state 0α=1 · 0α=2 · . . . ), and hence, the combined Hilbert space

(Left) grows exponentially also with the number of photonic states. A

vast reduction of complexity is found by approximating QED with quan-

tum mechanics, where the photonic sector is subsumed into the effective

mass of the particles and into classical electromagnetic fields. The effective

photon-free QED ansatz (Bottom Right) takes the dominant fluctuations of

the quantized electromagnetic field 0̃ into account, while having the same

dimensionality as ordinary quantum mechanics (Top Right).

priori which matter and photon states are supposed to be impor-
tant. This leads to effective model light–matter Hamiltonians (3,
34). A different approach is to reformulate the full QED prob-
lem in terms of reduced quantities. Quantum mechanics, for
instance, can be viewed as a reduction of the full QED prob-
lem onto the matter sector only, where the photon field is taken
into account approximately by the effective (physical) mass of
the particles (33, 35) and by the longitudinal Coulomb inter-
action as well as by possible Van der Waals corrections (33,
35, 36). This can be viewed as an example of an effective ab
initio light–matter Hamiltonian. This simplification is, however,
no longer valid in the case of strong light–matter coupling, and
more advanced reformulations of QED become necessary. An in
principle exact reformulation of QED on the basis of reduced
quantities is quantum-electrodynamical density-functional the-
ory (QEDFT), which allows one to avoid the unfeasible cou-
pled matter–photon wave function altogether (37–40). The main
drawback of QEDFT is that we need to find approximations to
the matter–photon coupling, usually in terms of matter quantities
only (41, 42). Deriving such functional expressions for interac-
tions is already for matter-only DFT a challenging task, and
the photonic field introduces additional and unfamiliar com-
ponents into the problem. It therefore becomes desirable to
define an effective ab initio photon-free QED as an alterna-
tive to standard quantum mechanics which is also applicable
to strong light–matter coupling situations and serves as a start-
ing point for approximations for QEDFT. Furthermore, this
effective matter-only theory should be constructively improv-
able and recover the physical limits of the original QED
solution.

In this work we provide such a nonperturbative photon-free
QED reformulation that takes the dominant fluctuations of the
quantized electromagnetic field explicitly into account (Section
1). It thereby lifts the artificial distinction between light and mat-
ter that underlies standard quantum mechanics, and it remains
applicable from the weak to the deep ultrastrong coupling
regime. Among other things we show that the ansatz recovers the

exact QED solution in the weak- and infinite-coupling limit and
the infinite-frequency limit, as well as for the homogeneous elec-
tron gas, without the need to treat the photonic degrees of free-
dom at all. While many effective ab initio descriptions of light–
matter coupling problems are known, e.g., the high-frequency
limit of Floquet theory (43–45), this high consistency with fun-
damental physical conditions provides a much more flexible and
general perspective. Since the theory is built upon an explicit
ansatz for photonic operators in terms of matter quantities, we
still have approximate access to photonic observables. Further,
we show that the nonperturbative photon-free QED reformula-
tion is obtained as a truncation of an especially efficient basis
expansion of the full QED problem (Section 2). In this way, we
can consistently increase the accuracy of the ansatz, converging
to the original QED results and accounting for all correlations
between light and matter. Furthermore, we show how this ansatz
can be used to set up an orbital-dependent approximation in
QEDFT that shares the same beneficial features as the nonper-
turbative photon-free QED reformulation (Section 3). Based on
this functional we propose a simple local density–type approxi-
mation for strong light–matter coupling that provides up to ultra-
strong coupling excellent results and yet accounts for the correct
frequency and cavity polarization dependence. We benchmark
all introduced approximations against the exact solution of one-
dimensional hydrogen coupled to a single cavity mode and
further benchmarks for a double-well potential can be found in
SI Appendix. Our derivations can be applied seamlessly to peri-
odic systems and many mode cavities. Due to the flexibility of the
QEDFT framework, we can finally discuss how this ansatz can be
extended to full minimal coupling and comment on nonadiabatic
extensions.

1. Photon-Free QED Ansatz

The point of departure for our endeavor is the Pauli–Fierz
(or minimal coupling) Hamiltonian of nonrelativistic QED in
Coulomb gauge. For simplicity, we will focus here at first on
the long-wavelength limit, but the following conceptions are
general enough to allow an abstraction beyond this common
simplification. We provide an outlook beyond those common
approximations in Section 3. In atomic units with electron charge
q =−|e|=−1 and keeping the nuclei fixed we have

ĤPF =
1

2

Ne
∑

i=1

(

−i∇i +
1

c
Â

)2

+

Ne
∑

i=1

v(ri)

+
1

2

Ne
∑

i 6=j

w(ri , rj )+

Mp
∑

α=1

ωα

(

â
†
αâα +

1

2

)

.

[1]

The Ne electrons move according to the forces caused by the
local nuclear potentials v in addition to their longitudinal inter-
action w and the coupling to the transverse vector potential at
the molecular center-of-charge r0

Â=
√
4πc2

Mp
∑

α=1

Sα(r0)ǫα
1√
2ωα

(

â
†
α + âα

)

. [2]

The Mp cavity eigenmodes Sα(r0)∝ 1/
√
V are the solutions

to the boundary value problem of the effective cavity (which
we assume to be lossless for simplicity) and provide the
local (vacuum) field strength. The vector potential is conve-

niently expanded in the eigenmodes of the cavity geometry Â=
∑

α Âαǫα, featuring polarization ǫα, frequency ωα, and cavity

volume V. The Âα obey the following equation of motion in the
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Heisenberg picture,

(

1

c2
d2

dt2
+

ω2
α

c2

)

Âα,H =−λ2
α

c
ǫα ·

(

Ĵp,H− Ĵd,H

)

, [3]

with λα =
√
4πSα(r0) the fundamental coupling strength. The

paramagnetic current Ĵp =−i
∑

i
∇i serves as a driving force for

the photonic degrees of freedom. The diamagnetic current in the

long-wavelength approximation Ĵd =−Ne/c
∑

α Âαǫα, on the
other hand, can be conveniently absorbed in effective cavity fre-
quencies and polarizations denoted from here on as ω̃α and ǫ̃α.

For a single mode, we can simply move Ĵd to the left-hand side
to obtain ω̃2

α =ω2
α +ω2

d,α, ω2
d,α =Neλ

2
α, and ǫα = ǫ̃α. The dia-

magnetic term therefore dresses the bare cavity frequency by the
fundamental coupling strength λα and the amount of charged
particles. For multiple modes, a normal-mode (or Bogoliubov)
transformation (Section 5.1) similarly eliminates the diamagnetic
current, leading to a pure bilinear coupling in the Hamilto-
nian Eq. 1. The representation in normal modes with ω̃α also

transforms all related operators Â where we keep the original
notation for brevity.

After absorbing the diamagnetic current, the Ehrenfest, or
more specifically Maxwell’s, equation associated to Eq. 3 is eas-
ily solved with the help of the classical Green’s function for the
harmonic oscillator,

Aα(t)=−ω̃α

∫ t

−∞

c
ω2
d,α

Ne ω̃2
α

sin
(

ω̃α(t − t
′)
)

ǫ̃α · Jp(t
′)dt ′. [4]

In the limit of Maxwell’s equation there is therefore no need to
keep track of the photonic degrees of freedom, as their evolu-
tion is fully determined by the initial conditions and the matter
degrees of freedom.

Now let us stretch this idea, comparably to the relativistic Breit
substitution (46), to the Heisenberg equation of motion, and let
us attempt to avoid the necessity of photonic degrees of freedom
in Eq. 1. Certainly, such a substitution is far less trivial for the
operator quantity; it is furthermore complicated by the fact that
now we deal with two different pictures, i.e., Heisenberg for Eq.
3 and Schrödinger for Eq. 1. A suitable first approximation is an
adiabatic ansatz for the quantum fluctuations,

∆Âα≈−c
ω2
d,α

Ne ω̃2
α

ǫ̃α ·∆Ĵp where∆Ô = Ô −〈Ô〉. [5]

Surely, also the pure photonic contributions have to be substi-
tuted, and we obtain

ω̃αâ
†
αâα≈

1

2

ω2
d,α

Ne ω̃2
α

(

ǫ̃α ·∆Ĵp

)(

ǫ̃α · Ĵp

)

[6]

in the adiabatic limit (Section 5.2). Replacing now all photonic
degrees of freedom by their introduced counterparts, we obtain
the effective photon-free Hamiltonian

Ĥpf(t)=−
1

2

Ne
∑

i=1

∇2
i +

Ne
∑

i=1

v(ri)+
1

2

Ne
∑

i 6=j

w(ri , rj )

+

Mp
∑

α=1

ω̃α

2
−

Mp
∑

α=1

ω2
d,α

Ne ω̃2
α

[

1

2
ǫ̃α ·

(

Ĵp− Jp(t)
)

+ ω̃α

∫ t

−∞

sin
(

ω̃α(t − t
′)
)

ǫ̃α · Jp(t
′)dt ′

]

(ǫ̃α · Ĵp),

[7]

which is now time-dependent. While computationally simpler to
solve, more importantly, this provides us with a starting point

conceptually much closer to the known realm of electronic struc-
ture theory. Although the photon-free Hamiltonian depends on
time, all equilibrium solutions are time-translational invariant,
meaning that they depend on the excitation energy which labels
a given excited state but not on time. Excited states can be
calculated using linear response theory.

A particularly interesting feature of this effective Hamil-
tonian Eq. 7 is that the adiabatic correction takes the form

of a polarization-projected kinetic operator −(ǫ̃α · Ĵp)
2∼ (ǫ̃α ·

∇i)
2 +(ǫ̃α · ∇i)(ǫ̃α · ∇j 6=i) with opposite sign to the kinetic

operator. A large part of the photonic fluctuations are therefore
responsible for dynamically increasing the mass of the charged
particle along the axis of polarization, very much in line with
the perturbative mass renormalization obtained from the Lamb
shift (35) and the accumulation of electronic density inside cavi-
ties (19, 36, 42). If we extend the number of modes to infinity,
we even recover the logarithmic ultraviolet divergence char-
acteristic of the Lamb shift (47). We notice furthermore that
simply disregarding pure photonic contributions in the substi-
tution procedure from Eqs. 1–7 would mean to miss the factor
1
2

introduced in Eq. 6. This would imply that for λα→∞ the
mass would tend not to infinity but to negative values instead,
and the Hamiltonian would become unbounded from below,
a common problem for similar approaches within relativistic
regimes (48).

While we accomplished our initial goal of a nonperturbative
photon-free QED theory, such an adiabatic substitution does not
come without sacrifices. Fig. 2 illustrates the absorption spec-
trum of one-dimensional hydrogen strongly coupled to an optical
cavity using the exact Pauli–Fierz Hamiltonian, the photon-free
description in Eq. 7, and the purely classical description of the
photonic field. Clearly, even on this strongly simplified level
including only adiabatic fluctuations, the photon-free description
in Eq. 7 improves noticeably over the semiclassical Maxwell–
Schrödinger picture. It accounts correctly for the upward (first
matter excitation) and downward (higher matter excitations)
bending at low cavity frequencies. The description of multipho-
ton excitations present in the exact solution would demand to go
beyond the adiabatic approximation in Eq. 5.

A particularly important feature of the photon-free Hamil-
tonian is the explicit dependence on the cavity frequency via
ω2
d,α/ω̃

2
α. To understand the importance of this observation,

let us utilize the Power–Zienau–Woolley (PZW) transformation
(49–51) and rewrite our original Coulomb-gauge Hamiltonian
Eq. 1 in the routinely utilized PZW form (33, 35, 51)

ĤPZW =−1

2

Ne
∑

i=1

∇2
i +

Ne
∑

i=1

v(ri)+
1

2

Ne
∑

i 6=j

w(ri , rj ) [8]

+
1

2

Mp
∑

α=1



(−i∂pα)
2 +ω2

α

(

pα +
λα

ωα
ǫ̃α ·

Ne
∑

i=1

ri

)2


.

The photonic harmonic-oscillator coordinates are given here
explicitly as pα. Without truncation of electronic or photonic
space, both the Pauli–Fierz Eq. 1 and the PZW–Hamiltonian
Eq. 8 provide the exact same result for all physical observables,
as we would expect from the concept of gauge invariance. We
note, however, that the PZW Hamiltonian is not a convenient
starting point for extended periodic systems, since the period-
icity in the matter coordinates is explicitly broken (52). Eq. 8
now involves the dipole self-polarization term 1

2
(λαǫ̃α ·

∑

i
ri)

2.
So even if we disregard the photonic degrees of freedom alto-
gether, we remain with a confining harmonic potential acting
on the electronic degrees of freedom that results in the correct
behavior for zero and infinite coupling. This approximation is
sometimes referred to as QED Hartree–Fock (36, 53). Fig. 3,
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A B C

Fig. 2. Linear-response spectrum of the dipole moment |r(ωα)| for a single cavity mode with different cavity frequencies ωα coupled to one-dimensional

soft-Coulomb hydrogen v(x) =−1/
√

x2 + 1. Shown are (A) the exact reference, (B) the photon-free effective Hamiltonian Eq. 7, and (C) the semiclassical

Maxwell–Schrödinger solution. The fundamental coupling strength was chosen such that gα/ωα = 0.136, gα =
√

ωα/2λα, i.e., on the interface between

strong and ultrastrong coupling, with ωα = ε
hydrogen
1 − ε

hydrogen
0

in resonance with the first electronic excitation. We have chosen a grid of 301 points with

0.1 a0 spacing (a0 being the Bohr radius) and 40 photonic Fock states for the exact reference using the PZW Hamiltonian Eq. 8. The response was obtained by

the delta-kick method applying a perturbation vkick(x, t) =−10−4/π · 10−2/[(t − 1)2 + 10−4]x with consecutive time propagation for T = 103 atomic units

(a.u.) with fourth-order Runge–Kutta and a time-stepping of dt = 5 · 10−4 a.u. Vertical lines are artifacts originating from numerical deviations, logarithmic

scale, and interpolation.

however, clearly illustrates that the photon-free Hamiltonian Eq.
7 is superior due to its explicit frequency dependence. The latter
furthermore guarantees that photon-free and exact description
coincide for infinite cavity frequency, where matter excitations
are no longer allowed to couple to the photonic degrees of free-
dom. It provides thus an excellent electronic subspace solution
which becomes exact whenever a factorized wave function ansatz
is possible.

By handling operators as if we would treat expectation val-
ues, we intrinsically assume that both sides of Eq. 5 possess
the same set of eigenstates. This, for instance, is satisfied for a
set of plane waves describing free electrons and quantized pho-
tonic fields. Unfortunately, for the vast majority of condensed
matter systems this condition will not be met. Knowing about
the limitation of such a construction, we can, however, use the
solution of the homogeneous electron gas inside the cavity as
a basis for a formally more accurate description. We show in
the following that even by restricting ourselves to the origi-
nal electronic Hilbert space this provides accurate results which
become exact in the limit of weak and deep ultrastrong cou-
pling, thus providing a preferable starting point for functional
development.

2. The Photon-Coupled Homogeneous Electron Gas Basis

We already stated that the photon-free ansatz becomes exact
in the homogeneous limit. This is indeed no coincidence, as it
can be shown that in the free (v =0) and noninteracting (w =0)
limit, the Pauli–Fierz Hamiltonian Eq. 1 can be diagonalized
analytically with a combination of Bogoliubov and coherent shift
transformations (47). The obtained photon-coupled homoge-
neous electron gas (pHEG) Hamiltonian is purely additive in the
new transformed operators,

ĤpHEG =−1

2

Ne
∑

i=1

∇2
i −

Mp
∑

α=1

ω̃αβ̂
2
α +

Mp
∑

α=1

ω̃α

(

ĉ
†
αĉα +

1

2

)

, [9]

with the coherent shift operator

β̂α =
ωd,α√
2Ne ω̃3

α

ǫ̃α ·
Ne
∑

i=1

(−i∇i).

The precise definition of the transformed annihilation and cre-
ation operators ĉα, ĉ

†
α can be found in SI Appendix. An imme-

diate consequence of the additive structure is that the eigen-
functions of the Hamiltonian Eq. 9 are factorized in nature. Its
eigenbasis can be chosen as plane-wave Slater determinants and
displaced photon number states,

|{kj}, {βα(K),nα}〉= |Φ{kj }〉⊗
Mp
∏

α=1

|βα(K),nα〉.

Here K=
∑

i
kj represents the collective momentum of all par-

ticles, a well-defined quantum number in the pHEG system. The
photonic states |βα(K),nα〉 implicitly account for the collective
momenta of the homogeneous electronic system. It becomes
apparent that this new basis, although factorized, represents
intrinsically interacting light and matter parts, very similar to the
photon-free ansatz motivated in Section 1. It is now our intention
to bring this particular pHEG solution into use as a basis for a
general, inhomogeneous system. This demands an expression of
the local potential in the pHEG basis, a computationally simple
task for any potential that can be represented in a Fourier basis.
The matrix elements of the external single-particle potentials in
the pHEG basis then read

〈{kj}, {βα(K),nα}|v(r̂i)|{k′
j}, {βα(K

′),n ′
α}〉 [10]

= 〈Φ{kj }|v(r̂i)|Φ{k′
j
}〉 ·

Mp
∏

α=1

〈βα(K),nα|βα(K
′),n ′

α〉,

where all kj = k′
j have to match for j 6= i in order to provide a

nonzero expression due to orthogonality. The first part is the
Fourier transformation of the potential at ki − k′

i , and the sec-
ond can be evaluated analytically in terms of associated Laguerre
polynomials (54) with argument βα(ki)−βα(k

′
i). We denote the
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D E F

A B C

Fig. 3. Ground-state (A–C) variance and (D–F) energy for the one-

dimensional soft-Coulomb hydrogen atom coupled to a single cavity mode.

Illustrated are the exact solution (A and D), the photon-free Hamiltonian

Eq. 7 (B and E), and the photon-free self-polarization solution of Eq. 8

(C and F). The results presented here are entirely due to the quantized

nature of light; a semiclassical Maxwell–Schrödinger treatment would show

no effect in the ground state. We disregarded the trivial zero-point energy

shift ωα/2 in all calculations and used 2,001 grid points with 0.025 a0 spac-

ing, finite-difference order 4, and 40 photonic Fock states (using the PZW

Hamiltonian).

second part as the Fourier transform of a function mn,n′

α (ri), and
consequently, Eq. 10 is conveniently expressed with the help of
the convolution theorem,

Fv ·
Mp
∏

α=1

Fmn,n′

α =F
(

v∗
Mp

α=1
m

n,n′

α

)

.

The coherent shifts of the pHEG basis therefore provide an
effective screening or mollification of the local potential. In the
homogeneous system (v =0), photonic excitations nα are mere
replicas without substantial relevance. The moment our system
becomes inhomogeneous (v 6=0), however, we start to couple
different eigenstates via scatterings at the local potential. In per-
fect agreement with our conclusions in Section 1, we observe
that for an inhomogeneous system the photonic Fock space
recovers its relevance. However, even in lowest order and there-
fore entirely within the zero-excitations sector, the modifier is
nonzero,

m
0,0
α (r)=

√

Ne ω̃3
α

πω2
d,α

e
−

Ne ω̃
3
α

ω2
d,α

(ǫ̃α·r)2

δ(ǫ̃⊥,1
α · r) δ(ǫ̃⊥,2

α · r),

where ǫ̃
⊥,1
α , ǫ̃⊥,2

α are selected such that they complete ǫ̃α into an
orthonormal basis for R3. Convolution with the Gaussian above
acts as a mollification and yields a zeroth-order correction to our
original photon-free ansatz Eq. 7. This correction vanishes, i.e.,
m0,0

α → δ, for λα→ 0 or ∞ and ωα→∞, and we observe again
that the photon-free ansatz is exact in those limits. For higher

orders n,n ′ the respectively modified potentials v∗mn,n′

α couple
different excitation number sectors.

Assuming a sufficient number of photonic excitations nα are
considered, the pHEG basis provides exactly the same results
as the original Pauli–Fierz Hamiltonian Eq. 1. As presented in
Fig. 4, this Fock space dimension nα can however be substan-
tially smaller in the pHEG basis while still obtaining much better

converged energies than with the trivial noninteracting basis
|Φ{kj }〉⊗ |nα〉 for the Pauli–Fierz Hamiltonian. Especially in the
ultrastrong coupling limit the superiority of the pHEG basis
is apparent. Here the noninteracting basis demands a quickly
growing Fock space while the pHEG basis is exact for λα→∞
by construction, even in its lowest approximation. Very intu-
itively, the flatter the local potential, i.e., the closer our system
resembles a homogeneous system, the better the pHEG basis
converges. The sharper the local potential, the more scattering
events have to be described by the pHEG basis. Comparing Fig.
4 A–D, it, however, becomes apparent that even for strongly
localizing potentials this does not break the ansatz introduced
here. Note that with the change of operators, photon observ-
ables are still accessible. Even in the photon-free case, matter
fluctuations can represent photonic operators (see, e.g., Section
5.2). While we illustrate here the correlated energy, also purely
photonic observables such as the photon number can be accu-
rately reproduced by the truncated pHEG basis with very few
excitations, as demonstrated in SI Appendix. The pHEG basis is
similar to solving Hamiltonian Eq. 1 after a unitary transforma-
tion that moves the quantized fields into the spatial dependence
of the external potential, similar to a Kramers–Henneberger
transformation (55).

Despite the great advantage that the pHEG basis might pro-
vide, the high complexity of the electronic system remains. So
even our nonperturbative photon-free ansatz will be challenged
by any many-particle system and thus calls for further consid-
erations if we intend to describe realistic molecules or solids.
A combination of the photon-free ansatz with established elec-
tronic structure theory approaches will already provide a first
suitable description of (ultra-) strong light–matter coupling. Sec-
tion 3 illustrates how our previous considerations seamlessly
integrate into QEDFT and shows how the conceptions behind
the nonperturbative photon-free ansatz can be projected to
realistic systems.

3. QEDFT

A much more reduced reformulation of QED is QEDFT, where
the wave function of the coupled light–matter system is substi-
tuted by a current density and a vector potential (37–40, 56).
Like in other versions of density-functional theory, no infor-
mation is lost by this substitution, and the full wave function
can be reconstructed in principle from this pair of reduced
observables (37). The main drawback of QEDFT is, similar to
any density-functional reformulation, that we in general do not
have explicit expressions (expressed only by the pair of reduced
observables) for the terms that appear in the defining equa-
tions (see, e.g., Eq. 13). To approximate these terms, one usually
relies on auxiliary systems which are easier to treat numerically.
The standard choice, which is also followed by and large in
QEDFT, is to use noninteracting auxiliary systems. This Kohn–
Sham construction gives rise to effective potentials that force
the auxiliary noninteracting system to give the same current
density and vector potential as the original reference system (37–
40). These effective potentials can be expressed by differences
of equations of motion. While it is relatively straightforward
to find simple approximations for the longitudinal interaction
(57, 58), for the transverse interactions between light and mat-
ter, there are only a few approximations hitherto available (41,
42, 59). The main problem with the matter–photon interaction
terms in QEDFT is that the auxiliary, uncoupled Kohn–Sham
wave function provides an inconvenient starting point to approx-
imate a linearly coupled term of photonic and matter oper-
ators (see also the discussion of Eq. 13 below). It is at this
point where QEDFT can strongly benefit from the methods
devised here, and we can make use of the approximate theories
derived above.
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Fig. 4. Absolute deviation in ground-state energy compared to the exact

Pauli–Fierz reference solution using nα = 100 photonic excitations of a tun-

able one-dimensional soft-Coulomb hydrogen v(x) =−1/
√

x2 + ξ2 coupled

to a single cavity mode. (A) Pauli–Fierz Hamiltonian with max nα = 4 excita-

tions, (B) pHEG basis with max nα = 0 and the original potential v, (C) pHEG

basis with max nα = 0 but mollified potential v ∗ m0,0
α , and (D) pHEG basis

with max nα = 4. The pHEG basis is vastly superior over the noninteracting

Pauli–Fierz basis for large λα. The flatter the local potential (ξ→∞), the

closer we get to the scattering-free homogeneous solution and the better

performs the pHEG basis. The electronic dimension was represented with 31

k points on a periodic grid.

Focusing on the ground-state case in the long-wavelength
limit, the two basic equations of motion that we will use
in order to define the effective potential are the balance

of forces due to the paramagnetic current density ĵp(r)=
1
2i

∑

i

(

δ(r− ri)
−→∇i −

←−∇iδ(r− ri)
)

,

ρ(r)∇v(r)= 〈F̂T (r)〉+ 〈F̂W (r)〉− 1

c

〈(

Â · ∇
)

ĵp(r)
〉

, [11]

together with the static mode-resolved Maxwell’s equations,

Aα =− cω2
d,α

Ne ω̃2
α

ǫ̃α · Jp. [12]

Both equations follow from the Heisenberg equation of motion
for their respective operators (see also Eq. 3) with the Pauli–
Fierz Hamiltonian of Eq. 1 and are evaluated with the ground
state of the coupled light–matter system Ψ. Here the density

operator is ρ̂(r)=
∑

i
δ(ri − r), F̂T (r)=

i
2
[̂jp(r),

∑

i
∇2

ri
] is the

local stress force, F̂W (r)=− i
2
[̂jp(r),

∑

i 6=j
w(ri , rj )] is the local

interaction force, and 〈·〉 indicates the expectation value with
respect to Ψ. Alternatively, Eqs. 11 and 12 can be derived
from the corresponding full minimal-coupling expression (SI
Appendix) by taking the long-wavelength limit. In the static
case the zero-component of the current density, i.e., the density
ρ(r), determines also the other components of the current den-
sity (39). Thus, the exact mean-field exchange-correlation (Mxc)
scalar potential of static Kohn–Sham QEDFT is defined by

∇2
vMxc(r)=∇ ·

1

ρ(r)
[FT ([Φ], r)−FT ([Ψ], r) [13]

−FW ([Ψ], r)+
1

c

〈(

Â · ∇
)

ĵp(r)
〉

− 1

c
(A · ∇)jp([Φ], r)

]

,

where FT ([Φ], r) and jp([Φ], r) indicate the expectation values

of F̂T (r) and ĵp(r) with respect to the noninteracting Kohn–
Sham wave function Φ, and FT ([Ψ], r) as well as FW ([Ψ], r)
accordingly with respect to Ψ. Further, in the static case the

mean-field contribution (A · ∇)jp[Φ], which arises from the Ĵp ·A
coupling in the Kohn–Sham system, is zero. For the differences
in stress and interaction forces, various approximations based on
the Kohn–Sham wave function exist in the DFT literature (60–
63). Taking just the noninteracting Kohn–Sham wave function
already leads to a nonvanishing expression for the interaction
force FW ([Φ], r). This contribution is called the local Hartree
exchange contribution (58, 64),

∇2
vHx(r)=−∇ ·

[

FW ([Φ], r)

ρ(r)

]

. [14]

The same is no longer the case for the matter–photon interaction
term in Eq. 13, where substituting just the auxiliary Kohn–Sham
wave function leads to zero. The reason for this is that we
work with an uncoupled and noninteracting Kohn–Sham wave
function [the photonic part only consists of trivial shifted har-
monic oscillators (39, 40)]. Having an approximation to the
coupling in terms of matter quantities becomes therefore highly
desirable.

The most straightforward approach follows the discus-

sion in Section 1 by just replacing ∆Âα = Âα−Aα→
−cω2

d,α/(Ne ω̃
2
α)ǫ̃α ·∆Ĵp in Eq. 13. In order to guarantee the

real-valuedness of the expectation value we have to use a sym-
metrized form. While on the level of the equations of motion
the validity of this ad hoc ansatz remains unclear, we find that
by using the photon-free Hamiltonian of Eq. 7 to derive the
equation of the paramagnetic current density the approximate
coupling term becomes

1

c

〈(

∆Â · ∇
)

ĵp(r)
〉

[15]

−→−1

2

Mp
∑

α=1

ω2
d,α

Ne ω̃2
α

(〈(

ǫ̃α ·∆Ĵp

)

(ǫ̃α · ∇)̂jp(r)
〉

+ c.c.
)

,

which exactly agrees with the above symmetrized equation of
motion–based substitution. Here the expectation value is taken
with respect to the photon-free QED ground-state wave func-
tion of Eq. 7. From this alternative approach that leads to the
same expressions we see that this simple approximation becomes
exact for the various limiting cases discussed in the previous
sections. We furthermore know how to constructively increase
the accuracy of this approach by including more terms from the
pHEG basis expansion with the respective mollification. This
implies that it is a reasonable strategy to build approximations
for the coupling-force term based on the simple substitution of
Eq. 15. Rewriting the exact Mxc potential as vMxc(r)= vpx(r)+
vHx(r)+ vc(r), we find the static orbital-dependent photon
exchange (px) contribution as

∇2
vpx(r)=−∇ ·





Mp
∑

α=1

ω2
d,α

Ne ω̃2
α

(ǫ̃α · ∇)
〈(

ǫ̃α · Ĵp

)

ĵp(r)
〉

ρ(r)



,

[16]

where now the expectation value is taken with respect to a real-
valued, auxiliary Kohn–Sham wave function and thus also Jp≡ 0.
This expression can be further simplified for special cases, such
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as in one spatial dimension and for one particle (Ψ=ϕ=
√
ρ),

where it becomes

∂2
x vpx(x ) =−

Mp
∑

α=1

ω2
d,α

2ω̃2
α

∂x

[

∂x

[

(∂xϕ(x ))
2−
(

∂2
xϕ(x )

)

ϕ(x )
]

ϕ(x )2

]

=

Mp
∑

α=1

ω2
d,α

2ω̃2
α

∂2
x

[

∂2
x

√

ρ(x )
√

ρ(x )

]

. [17]

Eq. 17 intuitively illustrates that electronic density becomes accu-
mulated at local maxima, consistent with increasing the particle
mass along the polarization direction as discussed in Section 1.

However, in general, the expression for vpx (Eq. 16) is still
an orbital-dependent functional and hence can become costly
for very large systems. It is therefore desirable to simplify this
expression even further. Borrowing from a recent demonstration
that Eq. 14 leads to the well-known exchange-only local-density
approximation (LDA) for the Coulomb interaction in the homo-
geneous case (58), we follow the same strategy to devise a simple
LDA for Eq. 16.

The starting point of the derivation, which we provide in detail
in Section 5.3, is to express the current–current correlation in
terms of one- and two-body reduced density matrices

〈(

ǫ̃α · Ĵp

)

ĵp(r)
〉

=
1

2

[

(ǫ̃α · ∇′)∇ρ(1)(r, r
′)− (ǫ̃α · ∇′)∇′ρ(1)(r, r

′)
]

r′=r

+

∫

[

(ǫ̃α · ∇′
2)∇ρ(2)(r, r2; r

′, r
′
2)+ c.c.

]

r′=r,r′
2
=r2

dr2.

From here on, we use the closed-shell exchange representa-
tion of the two-body reduced density matrix ρ(2)(r, r2; r′, r′2)=
1
2
[ρ(1)(r, r′)ρ(1)(r2, r′2)− 1

2
ρ(1)(r, r′2)ρ(1)(r2, r′)] for spin- 1

2
par-

ticles in combination with the homogeneous electron-gas
ansatz ρ(1)(r, r′)= 2(2π)−d

∫

|k|<kF
exp(ik · (r− r′))dk with a

local Fermi radius kF in d spatial dimensions. This leads to
the photon exchange–only LDA (pxLDA) that can be given for
arbitrary spatial dimensionality d ,

∇2
vpxLDA(r)=−

Mp
∑

α=1

2π2ω2
d,α

Ne ω̃2
α

(ǫ̃α · ∇)2
(

ρ(r)

2Vd

)2
d

[18]

with Vd being the volume of the d -dimensional unit sphere.
Let us emphasize that even this particularly simple functional
includes the correct frequency and cavity-polarization depen-
dence that are inherent to the nonperturbative photon-free
approach. Assuming an isotropic interaction between light and
matter, Eq. 18 allows for the direct solution vpxLDA(r)=

−
∑

α 2π2ω2
d,α/(dNe ω̃

2
α)(ρ(r)/(2Vd))

2/d , a form suitable to
describe free-space Lamb-shift physics. However, this form is
consequently inapplicable to cavity settings.

The local potentials from Eqs. 13–18 are generally deter-
mined as the solutions to a Poisson-type equation ∇2v(r)=
−f (r). Solving the latter is a routinely performed calculation
step in ab initio density-functional theory codes in order to
obtain the Hartree potential ∇2vH(r)=−4πρ(r) in a cost-
efficient way (65). It is thus straightforward to go to realistic,
three-dimensional systems. The numerical implementation and
validation of such functionals for sizable, realistic systems will be
discussed in detail in a forthcoming publication.

Finally, the energy associated with the vMx = vHx + vpx, or
approximations thereof, is given by

EMx =

〈

−1

2

Ne
∑

i=1

∇2
i +

1

2

Ne
∑

i 6=j

w(ri , rj )

〉

+

∫

v(r)ρ(r)dr

+

Mp
∑

α=1

ω2
d,α

2Ne ω̃2
α

〈

Ne
∑

i,j=1

(ǫ̃α · ∇i)(ǫ̃α · ∇j )

〉

+

Mp
∑

α=1

ω̃α

2

with the expectation values with respect to the noninteract-
ing Kohn–Sham wave function Φ determined by vMx. Further,
photonic observables can be approximated by using the simple
substitution discussed in Section 1 and also in Section 5.2.

Let us next consider how these simple exchange-type approx-
imations for the coupling between light and matter perform in a
test-case scenario. In Fig. 5 we show the spatial electronic dipole
variance and total energy for a one-dimensional soft-Coulomb
hydrogen model from weak to deep ultrastrong coupling. Inves-
tigating a single-particle system guarantees that we only consider
the reliability of the light–matter approximation and do not mix
in the approximate longitudinal electron–electron description.
By construction, the photon exchange approximation vMx (blue
diamonds) recovers the photon-free QED Hamiltonian solution
(red dash-dotted line). Both (consistent) approximations overes-
timate the coupling effect (the exact result is the black dashed
line) and tend to overbind. As discussed in Section 1, these
approximations become exact for weak and deep ultrastrong cou-
pling. In the intermediate (ultrastrong) regime, employing the
mollification (crossed line and blue stars) suggested by the basis
expansion in Section 2 leads to a clear improvement. The mol-
lification also renders the minimization variational, i.e., by con-
struction the energy is always above the exact energy. Similarly
to the usual Coulombic LDA, which tends to delocalize elec-
trons too strongly, the pxLDA also underestimates the enhanced
binding. This leads to a partial error cancellation in the ultra-
strong coupling domain but results in the wrong infinite-coupling
limit.

Overall, the pxLDA provides fairly accurate predictions for
ultrastrong light–matter coupling with minimal additional costs
when compared to common density-functional approximations
for the Coulombic interaction. This computational simplicity
allows us to utilize the pxLDA in an adiabatic manner also for
time propagation. Fig. 6 presents the linear-response spectrum
(similar to Fig. 2) and illustrates that the adiabatic pxLDA poten-
tial correctly predicts the upward-bending of the first matter
excitation at low frequencies. However, it falsely predicts the
same behavior for all excited states.

There are several possible origins for that. First, since in
the time-dependent case we have complex wave functions, in

the original Eq. 16 we should work with ∆Ĵp instead of Ĵp.
Thus, Eq. 18 also includes the implicit approximation Jp≡ 0
due to the adiabatic homogeneous-electron-gas ansatz for the
fluctuations. This can be corrected by working with Eq. 16 and

by resubstituting ∆Ĵp. Second, in the time-dependent case we
should actually use a different equation of motion (total cur-
rent instead of just the paramagnetic current), which leads to
the contribution of several further terms that are zero in the
static case, and we should use a consistent approximation to
the Mxc vector potential as well (SI Appendix). That is, to
be consistent with the static approximation we should actu-
ally use a current-density formulation of QEDFT also in the
dipole-coupling limit. In addition, we need to include nonadia-
batic photon fluctuation effects. This poses a real problem for
the simple Hamiltonian approach discussed in Section 1 as the
substituted operators are defined in the Heisenberg picture
which would lead to involved memory terms in order to
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arrive at the photon-free Hamiltonian in the Schrödinger
picture. Yet, for the equation-of-motion approach employed
in this section, no such restriction applies as expectation
values are by definition identical in all pictures, and we
can easily switch between them. This allows us to define
also a nonadiabatic version of the presented px poten-
tial (as discussed in SI Appendix) leading to multiphoton
excitations.

Furthermore, for a detailed understanding of light–matter
coupling effects, it is desirable to go beyond the common dipole
approximation. Again we can simply follow the above strategy
and replace the fluctuations of the vector-potential operator by
inverting the inhomogeneous quantum Maxwell equation, which
is discussed in SI Appendix. Yet since we can derive the defin-
ing equation for the px potential by taking the long-wavelength
limit of the corresponding minimal-coupling equations (see also
SI Appendix), we can find a first approximation to the beyond-
dipole case by simply making the coupling terms ωd,α∝λ2

α and
the polarizations ǫ̃α spatially dependent in Eqs. 16 or 18. Such
a simple extension would already lead to (static) ponderomotive
forces that allow trapping of polarizable systems in the eigen-
mode profile. In order to practically apply our full minimal
coupling extensions to extended systems we have to account effi-
ciently for the new commensurable period of cavity mode and
crystal structure, which will be in general substantially bigger.

Fig. 5. (Top) Dipole variance 〈̂r2〉− 〈̂r〉2 and (Bottom) total energy dif-

ference to the exact solution E − Eexact of the correlated cavity hydrogen

system for various approximations compared to the exact solution (black

dashed line) with 40 photon number states (using the PZW Hamilto-

nian). The index “−m” indicates the utilization of the ad hoc mollification

of the external potential according to Section 2. The mollification leads

to variational energies. The exchange LDA potential provides excellent

results up to λ= 0.3. The cavity frequency of the single cavity mode is

set in resonance with the bare lowest excitation energy like in Fig. 2. The

real-space grid and potential were chosen identically to Fig. 3. Since we

selected particularly tough parameters for the benchmark, the approxi-

mations presented here will perform better for softer potentials (compare

Section 2).

While supercell calculations provide a simple shortcut, they are
computationally demanding such that adjusting the Bloch ansatz
becomes particularly interesting (66).

Finally, we note that we have limited our initial investigation
presented here to the exchange-level of theory in the longi-
tudinal and the transverse light–matter interactions. Besides
going beyond the single–Slater determinant ansatz (64, 67) or
combinations with wave function–based methods (68), there is
the possibility (hitherto only for the longitudinal interaction)
to use directly parametrizations or approximations of correla-
tion expressions (69, 70). The photon-free framework provides
us with functionals that are in close structural relation to the
known approximations and conditions developed in ordinary
density-functional theory which facilitates the further develop-
ment of QEDFT. Providing accurate yet computationally afford-
able functionals that go beyond the dipole approximation and
include correlations and nonadiabatic contributions will be the
subject of future work.

4. Conclusion

Solving the Schrödinger equation for realistic system is an
extremely hard task. The moment we consider the quantum char-
acter of light, we add an abundance of additional degrees of
freedom to the already almost intractable problem. Our goal to
retain the first-principles character of electronic structure theory
and entwine it with QED is thus particularly challenging, unless
we find effective descriptions which allow us to absorb large parts
of the QED problem into the familiar electronic problem.

We presented here such an effective photon-free frame-
work which adheres to all essential physical demands, including
the correct frequency and cavity polarization dependence and
accounts even in its simplest form for a substantial part of the
full QED problem. Even if we remain entirely within the elec-
tronic Hilbert space, we recover the exact results of light–matter
interaction in the weak coupling, deep ultrastrong coupling,
and high frequency limit, as well as for homogeneous systems.
This framework provides an excellent electronic subspace solu-
tion which becomes exact whenever a factorized wave function
ansatz is possible. Starting from there, we illustrated that the
photon-free approach corresponds to a highly efficient basis for
light–matter interaction in many relevant situations. Expressing
the coupling purely in matter quantities provided a convenient
starting point to develop exchange correlation potentials deal-
ing with correlated light–matter systems. We then leveraged the
potential of the photon-free ansatz by constructing a hierarchy
of QEDFT functionals, illustrated their performance for ground
and excited states, and discussed how to go beyond the sim-
ple adiabatic and dipole-approximated cases. As a result, we
derived a local-density approximated functional that combines
the quantum nature of light with the computational simplicity
of well-known electronic local-density functionals in DFT. The
photon-free construction, including the derived QEDFT func-
tionals, is ideally suited to describe periodic systems strongly
coupled to light.

That the photon-free QED Hamiltonian remains entirely
within the electronic Hilbert space is of great benefit not only
computationally but also conceptually. The latter feature allows
it to serve as a foundation for the development of more advanced
electron-photon-structure approaches without the need to con-
sider extensions of the known methodologies to larger Fock
spaces. For instance, the description of strong light–matter
coupling in terms of nonequilibrium Green’s functions com-
monly introduces the necessity to solve an expanded set of
Kadanoff–Baym equations (71). The present photon-free QED
ansatz on the other hand could serve as a starting point that
remains exact in the infinite coupling limit. It is thus ideal
for perturbative improvements on top of its nonperturbative
foundation.
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Fig. 6. Linear response spectrum of the dipole moment |r(ωα)| of a single

cavity mode with varying frequency ωα coupled to one-dimensional soft-

Coulomb hydrogen. Shown are the adiabatic utilization of the pxLDA poten-

tial Eq. 18 in combination with (A) the semiclassical Maxwell–Schrödinger

solution and (B) the exact reference solution. All parameters are identical to

Fig. 2.

Our approach is conceptually general enough to be expanded
to vibrational light–matter coupling and beyond the dipole
approximation. Extensions beyond the dipole approximation
become feasible if we follow the equation-of-motion construc-
tions of Section 3. The obtained spectral information and the
lack of multiphoton excitations suggest that future development
should foremost focus on going beyond the adiabatic approx-
imation. While this demands curing an old wound of density-
functional theory, the equation-of-motion construction provides
a passage to memory-dependent functionals. It furthermore
avoids the numerical and perturbative instability of other orbital-
dependent functionals such as the time-dependent optimized-
effective potential (72). This would not only greatly benefit the
description of strongly correlated light–matter systems but also
ameliorate common problems with ordinary density-functional
theory.

5. Materials and Methods

All calculations have been performed using python3; the code can be

obtained from the authors upon reasonable request.

5.1. The Bogoliubov Transformation. In the following, we recall the well-

known Bogoliubov transformation (ref. 73, Section 1.10) utilized in Section

1. The transformation is based on the realization that the purely photonic

part of Hamiltonian Eq. 1,

Ĥph =

Mp∑

α=1

ωα

(

â
†
αâα +

1

2

)

+
Ne

2c2
Â

2
,

with Â given by Eq. 2 is simply the Hamiltonian of Mp coupled harmonic

oscillators. This is even more obvious when we introduce the harmonic oscil-

lator coordinates qα = 1/
√

2ωα

(

â†
α + âα

)

and pα = i
√

ωα/2
(

â†
α − âα

)

,

which leads to the Hamiltonian

Ĥph =
1

2





Mp∑

α=1

p
2
α +

Mp∑

α,α′=1

Wα,α′qαqα′



,

with Wα,α′ =ω2
αδα,α′ + 4πNeSα(r0)Sα′ (r0)ǫα · ǫα′ . Since Wα,α′ is symmet-

ric, there is a unitary transformation U which brings Wα,α′ into diagonal

form Ω̃ = UWU† with eigenvalues ω̃2
α. This diagonalization introduces the

decoupled normal modes with corresponding operators q̃β =
∑

α Uβ,αqα

and p̃β =
∑

α Uβ,αpα and polarization vectors ǫ̃β =
∑

α Uβ,αǫα. The

resulting Hamilton reads

ĤPF =− 1

2

Ne∑

i=1

∇2
i +

Ne∑

i=1

v(ri) +
1

2

Ne∑

i 6=j

w(ri , rj)

+
1

c
Ĵp · ˆ̃A +

Mp∑

α=1

ω̃α

(

ˆ̃a
†
α
ˆ̃aα +

1

2

)

,

where we introduced the annihilation operators ˆ̃aα = 1/
√

2ω̃α(ω̃αq̃α +

ip̃α) corresponding to q̃α, p̃α, as well as the respective creation operators.

We will ignore the .̃ denotation of operators for the sake of brevity and

readability.

5.2. Adiabatic Breit Approximation for the Photon Energy. A sensible effective

photon-free Hamiltonian (e.g., Eq. 7) has to adhere to the same fundamen-

tal rules as the original Hamiltonian. Foremost, this includes the existence

of bound eigenstates and translational invariance. To achieve this, we can-

not just disregard all photonic degrees of freedom in an ad hoc fashion but

instead have to find the matter term corresponding to
∑

α ω̃αâ†
αâα. From

the equations of motion we get for the annihilation operators (the creation

operators are always just the Hermitian conjugate),

d2

dt2
âα =−ω̃

2
αâα − ωd,α

√
ω̃α√

2Ne

ǫ̃α ·
(

Ĵp − i

ω̃α

d

dt
Ĵp

)

,

and we can identify the adiabatic approximation as

âα ≈− ωd,α
√

2Neω̃3
α

ǫ̃α · Ĵp.

This leads to the critical contribution that renders the photon-free

Hamiltonian bounded from below

ω̃αâ
†
αâα ≈

ω2
d,α

2Neω̃2
α

(ǫ̃α · Ĵp)
2
.

In the time-dependent case, the bilinear term Ĵp · ˆ̃A → (ǫ̃α ·∆Ĵp)(ǫ̃α · Ĵp)

suggests that also the quadratic â†
αâα term should follow the same

structure. This motivates the substitution ω̃αâ†
αâα ≈ω2

d,α/(2Neω̃
2
α)(ǫ̃α ·

∆Ĵp)(ǫ̃α · Ĵp)and leads to the photon-free Hamiltonian Eq. 7. Other possi-

bilities, such as using the static (time-independent) substitution of â†
αâα

or disregarding the mean-field correction in Eq. 7 (ǫ̃α ·∆Ĵp)(ǫ̃α · Ĵp) → (ǫ̃α ·
Ĵp)2, have been investigated but provided worse results.

5.3. Photon Exchange–Only LDA Derivation. In order to arrive at a local-

density approximation for the photon exchange–only term, we note that

for a properly antisymmetrized wave function Φ(r, r), r = (r2 . . . rNe ), we can

express the expectation value in Eq. 16 in terms of the one-body (1RDM)

and two-body reduced density matrices (2RDM) (ref. 69, Section 2.4) as
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fα(r) =
〈(

ǫ̃α · Ĵp

)

ĵp(r)
〉

=
〈(

ǫ̃α · Ĵp

)

Φ, ĵp(r)Φ
〉

=
Ne

2i

∫ [((

ǫ̃α · Ĵp

)

Φ
)
∗∇Φ−

((

ǫ̃α · Ĵp

)

∇Φ
)
∗
Φ
]

dr

=
Ne

2

∫
[
((ǫ̃α · ∇)Φ

∗
)∇Φ− ((ǫ̃α · ∇)∇Φ

∗
)Φ

]
dr

+
Ne(Ne − 1)

2

∫
[
((ǫ̃α · ∇2)Φ

∗
)∇Φ− ((ǫ̃α · ∇2)∇Φ

∗
)Φ

]

︸ ︷︷ ︸

((ǫ̃α·∇2)Φ∗ )∇Φ+c.c.

dr

=
1

2

[
(ǫ̃α · ∇′

)∇ρ(1)(r, r
′
) − (ǫ̃α · ∇′

)∇′
ρ(1)(r, r

′
)
]

r′=r

+

∫
[
(ǫ̃α · ∇′

2)∇ρ(2)(r, r2; r
′
, r

′
2) + c.c.

]

r′=r,r′
2
=r2

dr2.

[19]

We used partial integration to move ǫ̃α · ∇2 to the other side in the under-

braced expression. This 2RDM contribution will later be found having the

same form as the 1RDM terms but with opposite sign, lessening the strength

of the attractive px potential, and will finally be neglected altogether. In

the remaining integral the 2RDM can be rewritten in terms of the 1RDM

for closed-shell Slater-determinant states of spin- 1
2 particles that we assume

from here, ρ(2)(r, r2; r′, r′2) = 1
2 [ρ(1)(r, r′)ρ(1)(r2, r′2) − 1

2ρ(1)(r, r′2)ρ(1)(r2, r′)]. This

makes the integral

∫

(ǫ̃α · ∇′
2)∇ρ(2)(r, r2; r

′
, r

′
2)|

r′=r,r′
2
=r2

dr2

=
1

2

∫ [

∇ρ(1)(r, r
′
)|

r′=r
(ǫ̃α · ∇′

2)ρ(1)(r2, r
′
2)|

r′
2
=r2

− 1

2
((ǫ̃α · ∇2)∇ρ(1)(r, r2))ρ(1)(r2, r)

]

dr2

=
1

2
∇ρ(1)(r, r

′
)|

r′=r

∫

(ǫ̃α · ∇′
2)ρ(1)(r2, r

′
2)|

r′
2
=r2

dr2

− 1

4

∫

((ǫ̃α · ∇2)∇ρ(1)(r, r2))ρ(1)(r2, r)dr2.

[20]

For the homogeneous electron gas of spin- 1
2 particles the 1RDM is then

given by the usual Fermi sphere integration (ref. 69, Section 6.1)

ρ(1)(r, r
′
) =

2

(2π)d

∫

|k|<kF

e
ik·(r−r′ )

dk, [21]

with the local Fermi radius given by kF(r) = 2π(ρ(r)/(2Vd))1/d with Vd being

the volume of the d-dimensional unit sphere (see ref. 74, equation 1.77, but

also easily derived from Eq. 21 by setting r′ = r). The Fermi sphere is centered

around the origin since we consider the static case with zero current jp = 0.

Then

∇ρ(1)(r, r
′
)|

r′=r
=

2i

(2π)d

∫

|k|<kF

kdk = 0

is readily seen to be zero because k is integrated over the symmetric Fermi

sphere volume. We now insert the ansatz Eq. 21 also into all remaining terms

from Eq. 19 and get with kF = kF(r), chosen at r because this is the primary

position, and k′
F left open that

fα(r) =
2

(2π)d

∫

|k|<kF

(ǫ̃α · k)kdk

− 1

(2π)2d

∫∫

|k|<kF
|k′|<k′F

(ǫ̃α · k)k
(∫

e
ik·(r−r2)

e
ik′·(r2−r)

dr2

︸ ︷︷ ︸

ei(k−k′ )·r(2π)dδ(k−k′ )

+c.c.
)

dkdk
′

=
2

(2π)d

∫

|k|<kF

(ǫ̃α · k)kdk − 2

(2π)d

∫

|k|<min(kF,k′
F

)

(ǫ̃α · k)kdk.

Here the r2 integration leads to a delta function that leaves the smaller inte-

gration radius from the two k, k′ integrals. What is done here is to introduce

the local approximation Eq. 21 for ρ(1)(r, r2) even though the positions r, r2

are not close. Since further r2 is taken from the whole space, we can argue

that for an inhomogeneous medium, min(kF, k′
F) approaches zero because

k′
F possibly gets very small, and thus, no contribution arises from the orig-

inal 2RDM expression. On the other hand, for a homogeneous medium it

will hold min(kF, k′
F) = kF since k′

F = kF , and thus, fα(r) = 0 which exactly fits

Fig. 7. (Top) Dipole variance and (Bottom) total energy difference to the

exact solution for the exchange LDA approximation vκ
pxLDA with different

parameters κ compared to the exact reference solution (black solid) for

the one-dimensional soft-Coulomb potential with ξ= 1 coupled to a sin-

gle cavity mode in resonance to the first bare excitation energy. The setup

is identical to Fig. 5. The choice κ= 1 suggested here provides excellent

results up to λ= 0.3. Larger values can improve the (deep) ultrastrong cou-

pling limit at the cost of instability (collapse onto a few/single grid point)

and overestimation in the strong to ultrastrong domain.

our expectations. To take all those different situations into account, we

introduce a factor κ∈ [0, 1] that expresses the ratio that is left from the

first integral after subtracting the second with a smaller radius. The max-

imally inhomogeneous limit corresponds to κ= 1 while the homogeneous

case is κ= 0. Within the main text we decided to limit ourselves entirely to

the case κ= 1. Considering spin-polarized systems motivates a spin-resolved

LDA which would suggest a different κ regime and will be the subject of

future work. Introducing the new parameter κ is a simple approach that

allows us to stay in the realm of the local density approximation. Clearly,

those considerations suggest that the light–matter interaction, as it is non-

local in character, should be described ideally by more advanced nonlocal

functionals following the spirit of modern (meta) GGAs. Fig. 7 illustrates

the performance of the LDA for various values also including the possi-

bility κ> 1. In this example, the LDA potential with κ= 1 provides even

better results than the full exchange potential for λ< 0.3 due to error

compensation.

Evaluating the integral by switching to polar coordinates we get

fα(r) =
2κ

(2π)d

∫

|k|<kF

(ǫ̃α · k)kdk =
2κVd

(2π)d

kF(r)d+2

d + 2
ǫ̃α.

Putting this solution for fα(r) into Eq. 16 yields a Poisson-like equation for

the photon exchange–only LDA potential,

∇2
vpxLDA(r) =−∇ ·





Mp∑

α=1

ω2
d,α

Neω̃2
α

(ǫ̃α · ∇)fα(r)

ρ(r)





=− 2κVd

(2π)d

Mp∑

α=1

ω2
d,α

Neω̃2
α

(ǫ̃α · ∇)

[

kF(r)d+1

ρ(r)
(ǫ̃α · ∇)kF(r)

]

.
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Expressing the Fermi radius by the local density once more, we get the

final result

∇2
vpxLDA(r) =−

Mp∑

α=1

2κπ2ω2
d,α

Neω̃2
α

(ǫ̃α · ∇)
2

(
ρ(r)

2Vd

)2
d
.

Assuming an isotropic mode distribution, the differential operators (ǫ̃α ·
∇)2 are summed up to full Laplacians, and thus, if zero boundary conditions

are assumed, the photon exchange–only LDA potential is explicitly given by

vpxLDA(r) =−
Mp∑

α=1

2κπ2ω2
d,α

dNeω̃2
α

(
ρ(r)

2Vd

)2
d
.

Data Availability. All study data are included in the article and SI Appendix.
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17. R. Sáez-Blázquez, J. Feist, A. I. Fernández-Domı́nguez, F. J. Garcı́a-Vidal, Organic

polaritons enable local vibrations to drive long-range energy transfer. Phys. Rev. B

97, 241407 (2018).

18. M. Du et al., Theory for polariton-assisted remote energy transfer. Chem. Sci. (Camb.)

9, 6659–6669 (2018).
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44. C. Schäfer, M. Ruggenthaler, A. Rubio, Ab initio nonrelativistic quantum electro-

dynamics: Bridging quantum chemistry and quantum optics from weak to strong

coupling. Phys. Rev. A (Coll. Park) 98, 043801 (2018).
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