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Abstract
Healthcare services increasingly use the activity recognition technology to track the daily

activities of individuals. In some cases, this is used to provide incentives. For example,

some health insurance companies offer discount to customers who are physically active,

based on the data collected from their activity tracking devices. Therefore, there is an

increasing motivation for individuals to cheat, by making activity trackers detect activities

that increase their benefits rather than the ones they actually do. In this study, we used a

novel method to make activity recognition robust against deceptive behavior. We asked 14

subjects to attempt to trick our smartphone-based activity classifier by making it detect an

activity other than the one they actually performed, for example by shaking the phone while

seated to make the classifier detect walking. If they succeeded, we used their motion data

to retrain the classifier, and asked them to try to trick it again. The experiment ended when

subjects could no longer cheat. We found that some subjects were not able to trick the clas-

sifier at all, while others required five rounds of retraining. While classifiers trained on normal

activity data predicted true activity with ~38% accuracy, training on the data gathered during

the deceptive behavior increased their accuracy to ~84%. We conclude that learning the

deceptive behavior of one individual helps to detect the deceptive behavior of others. Thus,

we can make current activity recognition robust to deception by including deceptive activity

data from a few individuals.

Introduction
Human activity recognition based on the data captured from accelerometers, video cameras,
and custom-designed sensors has been studied since the 1980s [1–6]. Some devices, such as the
Microsoft Kinect, are specifically designed to collect data that can easily be used to infer the
physical activities of a person [7], however, these devices are neither portable nor ubiquitous.
Smartphones and wearable activity trackers, on the other hand, offer both portability and pop-
ularity. These devices usually come with inertial measurement units (IMUs) that can be used to
detect the physical activities of their users: whether they are sedentary, walking, running, sitting
in a car, etc. [8], regardless of where they carry their device [9]. Thus, smartphones and wear-
able devices seem ideal platforms for daily-life monitoring of an individual’s physical activities.
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Healthcare providers use mobile and wearable sensor-based activity recognition for a variety
of purposes. A number of health insurance companies collect activity data from their custom-
ers to adjust their risk estimates and costs according to each individual’s daily-life behaviors.
For example, one life insurance company offers 15% discount if their customers are physically
active for at least 15 minutes per day [10]. In other healthcare areas, such as mental health and
physical rehabilitation, researchers and clinicians are interested in monitoring the physical
activities of their patients in their daily life. Researchers might want to detect symptoms of cer-
tain disorders and their severity using the activity data recorded from their patients [11, 12].
Clinicians, on the other hand, might be interested in finding out whether or not their patients
follow their advice in doing and/or refraining from certain activities that supposedly improves
the outcome of the treatment [13, 14].

Whether the goal is to estimate insurance costs or to monitor patients, it is crucial for activ-
ity tracking systems to be reliable. One source of unreliability can be inaccuracy of the sensors
or the failure of the algorithms, which is usually quantified in activity tracking algorithm devel-
opment. A second source, which is currently ignored, is the users’ behavior. In fact, users may
deliberately trick activity recognition systems into detecting activities that are different from
the ones they actually perform. In the health insurance example, users may try to show that
they are more active and thereby receive a discount. All they need to do is to shake the device
while they sit on their couch. In a patient monitoring scenario where patients are monitored by
an activity tracker to ensure they do not move out of bed without asking for assistance, they
might find a way of walking which the activity tracker cannot detect. Therefore, as healthcare
providers rely more on activity trackers, there is an imminent need to make these systems
robust against deceptive behavior.

Very few studies have tried to make activity recognition robust against cheating. A first
attempt was to train a neural network classifier to distinguish between the accelerometer data
generated by normal walking from the ones generated by shaking the activity tracker device,
however no cross-validation was performed to measure the accuracy of the method [15]. In a
study of the cheating behavior in a soccer video game, researchers used the intensity of motions
as an additional feature in order to prevent gamers from cheating by mimicking the actual
activity with low effort in a smaller scale [16]. Finally, a more recent study asked subjects to
trick a smartphone-based activity tracker into detecting walking activity while they were seated,
by shaking their phones [17]. This study was able to provide good accuracy on distinguishing
between deceptive and normal activities. However, it did not examine whether or not the sub-
jects were still able to cheat after the classifier was trained on the cheating data.

In this study, we asked subjects to deliberately make our smartphone-based activity classifier
fail in two distinct settings: Detect ‘walking’ while they were sitting on a chair, and detect ‘sit-
ting’ while they were walking. If they succeeded in cheating, we retrained the activity classifier
by incorporating fake activity data into its training dataset, and asked the subjects to try to
cheat again. We continued this procedure until the subjects could no longer cheat. To encour-
age subjects to try their best to trick the classifier, we provided them with a monetary reward
each time they succeeded in cheating for an entire round. Finally, we investigated whether
training a classifier on the deceptive data from one or a few subjects could make it robust
against the deceptive behavior of other subjects.

Experiment

Participants
We recruited 14 healthy subjects (5 males and 9 females) within the age range of 23 to 38 years
old using advertisements in a Northwestern University newsletter. Subjects were eligible for the
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experiment if they were able to speak and read English and lived in the Chicago area. Before
the experiment, written informed consent was obtained from each subject. The study protocol
and the consent procedure was approved by the Northwestern University Institutional Review
Board.

Activity Trials
The experiment design is summarized in Fig 1. At the beginning of the experiment, we handed
each subject a Google Nexus 5 smartphone running our activity classifier application (see
Mobile Application). Then, they went through a number of activity trials while carrying the
phone. There were two sets of trials:

1. Normal Activity Trials. At the beginning of the experiment, we asked subjects to do one
session of sitting and another session of walking, and perform these activities in the way
they normally do. Each session lasted for 5 minutes, and subjects were allowed to carry the
phone in any way they preferred. We used the collected sensor data to train the classifier
application to distinguish between walking and sitting.

2. Deceptive Activity Trials. After normal activity trials, we asked subjects to go through a
second set of walking and sitting trials, but this time try to trick the classifier: when sitting,
make it detect ‘walking’, and when walking, make it detect ‘sitting’. To provide feedback to
subjects about the output of the classifier, the mobile app made a beep sound every time it

Fig 1. Experiment design overview. Each trial consisted of two types of activities: walking and sitting.

doi:10.1371/journal.pone.0144795.g001
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was able to detect the true activity. Subjects were allowed to do anything as long as they
remained seated in the sitting trials and continued walking in the walking trials. To encour-
age them to try their best to trick the classifier, we paid them a $2 reward each time they suc-
ceeded in any of the sitting or walking trials, however we did not mention what specific
movements to do in order to cheat. If a subject succeeded, we used the collected sensor data
to retrain the classifier application, and started the next round of deceptive activity trials
after a short break.

Ending Criterion. The experiment ended when a subject was not successful in a deceptive
activity trial, or the maximum allowed number of trials, 10, was reached. Subjects’ success in
each deceptive activity trial was measured by success rate, defined as the proportion of the
number of evaluations in which they were able to deceive the classifier. If the success rate was
greater than 50%, the trial was considered successful, and otherwise, failed. Evaluations were
performed once every second, and the trial continued for 5 minutes, equivalent to 300 evalua-
tions, or until the number of either of the detected classes reached 150, whichever came first.

Mobile Application
We developed an Android mobile application and installed it on the smartphone that the sub-
jects carried during the experiment. The application collected data from accelerometer and
gyroscope sensors, extracted their features, ran an activity classifier on the features, and pro-
vided feedback to the subject about the output of the classifier by making a beep sound each
time the true activity was detected. A copy of the sensor data was also saved and transmitted to
a desktop computer to retrain the classifier after each trial.

The application consisted of three modules: Data acquisition, feature extraction, and activity
classifier. In the following, we will explain each of these modules.

Data Acquisition
The data acquisition module captured motion data using the accelerometer and gyroscope sen-
sors on the device. The accelerometer measured the acceleration along the phone’s X, Y, and Z
axes, and the gyroscope measured the rotational velocity around each of these axes. These two
sensors complement each other, and allow for the separation of the Earth gravity component
of the signals. In fact, a recent study showed that maximum accuracy in activity recognition
can be achieved by combining these two [18].

The accelerometer and gyroscope sensors on a Nexus 5 device can be set to sample at differ-
ent frequencies, from 15 Hz to 200 Hz. Here, we set the sampling frequency for both sensors to
50 Hz, which has been shown to be sufficient for capturing the dynamics of human motion [8].

Feature Extraction
The feature extraction module calculated various features of the motion sensor data, which
captured the patterns of change in the accelerometer and gyroscope sensor data. In fact, one
cannot directly use raw sensor data for activity classification as there is a new sample arriving
every 20 milliseconds. Thus, we extracted features from the raw sensor data and then used
these features to perform activity classification.

To compute features from the raw sensor data, we divided each of the accelerometer and
gyroscope sensor data into frames. Each frame was 200 samples long, corresponding to 4 sec-
onds of data. The frames also had 75% overlap, meaning that adjacent frames had 150 samples,
equivalent to 3 seconds, of sensor data in common. Then, we defined and extracted a variety of
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features from each frame, as listed in Table 1. We had previously used this feature set in a study
of activity recognition in Parkinson’s disease patients [19]. The features included descriptive
statistics, the magnitude of the second to the 20th Fourier transform components, and cross-
correlations between the axes of each sensor. In total, we extracted 260 features from each
frame of the accelerometer and gyroscope sensor data.

Activity Classifier
We used random forests [20] as the activity classifier in our mobile application. A random for-
est is an ensemble of decision trees, with each providing a prediction, or vote, about the class
the input data belongs to. The forest’s prediction is determined by averaging over the predic-
tions of individual trees. Each tree in a random forest only sees a subset of features and a subset
of input data samples, which makes the forest less prone to overfitting and a better candidate
for generalization to unseen data [21]. This was the main reason why we chose random forests
as activity classifiers.

The random forest classifier used the features extracted from motion sensors to distinguish
between sitting and walking activities. It consisted of 200 decision trees. The training dataset
for each tree was created by randomly and uniformly sampling from the forest’s training set. In
addition, each decision split in a tree randomly sampled 16 out of 260 features, and used a
Fisher information gain criterion to determine the best feature out of 16, and the decision
boundary. The forest’s predicted class was the class gathering most of the trees’ votes, and its
confidence was the proportion of the number of trees voting for the winning class. The activity
classifier module was optimized such that it provided the classification results in less than 1
second, so that feedback was provided to the subject in time.

Classifier Training and Evaluation

Personal Classifiers
In the beginning, we trained a classifier that could distinguish between normal sitting and
walking activities of each subject. After the subject finished a deceptive activity trial, we
retrained the activity classifier using the sensor data collected from that last trial. Since this was
a computationally demanding process, we used a desktop computer. First, we transferred the
new accelerometer and gyroscope data to the computer. Then, we extracted features from these
data and retrained the classifier using MATLAB. Finally, we transferred the trained classifier

Table 1. The feature set used for activity recognition. Each feature was extracted from both accelerome-
ter and gyroscope sensor data frames.

Feature Set (Accelerometer/Gyroscope) No. features

Mean, abs mean, RMS 9

Moments (standard deviation, skewness, kurtosis) 9

Moments (mean, standard deviation, skewness, kurtosis) of the derivative 12

Extremes (min, max, abs min, abs max) 12

Histogram (counts for -3 to 3 z-score bins) 18

Fourier coefficients (2nd to 20th coefficients) 57

Overall mean 1

Cross-correlations (XY, YZ, ZX) mean and abs mean 6

Angular cross-correlations (XY, YZ, ZX) mean and abs mean 6

Features from each sensor 130

All (Accelerometer + Gyroscope) 260

doi:10.1371/journal.pone.0144795.t001
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back to the phone using a JavaScript Object Notation (JSON) format. This classifier was then
used by the mobile application in the next trial.

Global Classifiers
To understand how learning the cheating behavior of an individual could be generalized to
other individuals, after finishing the experiment on all subjects, we trained another set of classi-
fiers on data from multiple subjects and cross-validated them on the subjects that were not
used in training. We varied the number of training subjects from 1 to 13. This procedure was
repeated 10 times with different training and test samples each time.

We trained two sets of classifiers. One set was trained only on normal activity data which
we had obtained at the beginning of the experiments. We call these baseline classifiers. The
other set was trained on both normal and deceptive activity data, which we call expert classifi-
ers. To make sure that the comparison between the baseline and the expert classifiers was fair,
and that the expert classifiers did not benefit from having larger number of samples in their
training set, we created bootstrapped training sets such that the number of training data points
for both expert and baseline classifiers was equal.

We measured each classifier’s performance by measuring its accuracy, sensitivity, and speci-
ficity in detecting the true activity.

Results
We asked subjects to try to trick our activity classifier mobile application by making it detect
‘walking’ while they were seated and ‘sitting’ while they were walking. When they succeeded in
cheating, we used their motion data to retrain the classifier, and asked them to try to trick it
again. We first wanted to see if it was harder for a subject to trick an activity classifier that had
been trained on deceptive activity data. The second question was if training classifiers on one
or multiple subjects’ deceptive activity enabled them to become more robust against the decep-
tive activity of other subjects. The data behind visualizations in this section are available in
S1 Data.

Participants’ Success in Deceiving Classifiers
First, we quantified how well subjects could cheat over the course of the experiment. Four out
of 14 subjects were not able to cheat at all from the beginning. The rest of the subjects suc-
ceeded in between 1 and 3 retraining rounds. None of the subjects were able to reach the maxi-
mum number of retraining rounds (10). Thus, most subjects were able to deceive the classifier
to some degree.

If the approach is successful, then cheating must get harder over subsequent rounds of the
retraining iterations. Fig 2 shows the success rate (see Activity Trials) of each subject at each
round averaged over walking and sitting trials. Indeed, most subjects were very successful in
the first cheating trial, with a success rate of above 95%, which gradually fell after each retrain-
ing. Clearly, the classifier got better over the course of the experiment, making it harder for
subjects to cheat.

Subjects used a variety of cheating strategies. For the fake walking trials, where they were
actually sitting on a chair, most subjects shook the phone with their hands as a strategy to trick
the classifier. Some subjects tried to put the phone in their pocket and move their torso or legs
to induce sensor readings that were similar to a true walk. When shaking their phones, subjects
also used different strategies, such as moving the phone linearly back and forth, drawing circles,
imitating the hand movements of a true walk, and rotating the phone. For the fake sitting trials
where they were walking, most subjects tried to walk very smoothly, but some also tried to
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walk with a pace different from their normal walking trial. Others tried to move the phone
with their hand in such a way that the overall impact on the phone was reduced.

The cheating strategies used by subjects are reflected in a low-dimensional representation of
their motion features depicted in Fig 3. In each plot, the green circles correspond to the baseline
(non-deceptive) sensor data for either sitting (top plots) or walking (bottom plots), and the
grey crosses are deceptive behavior data. It is evident from this figure that the subject’s strategy
in cheating, which is manifested in the location of grey dots, changes from trial to trial. There-
fore, our experiment successfully motivated subjects to try various strategies to trick the activity
classifier.

Machine’s Success in Detecting True Activities
We evaluated the performance of baseline and expert classifiers in detecting the true activities,
by varying the number of training subjects from 1 to 13 and testing them on subjects not pres-
ent in training sets. The single-subject classifiers were the ones that were trained during the
experiment and used in the mobile application, while the rest of the classifiers were trained
after data from all subjects was collected. Fig 4 shows how expert classifiers outperformed base-
line classifiers in detecting fake activity for any number of training subjects. Nevertheless, the
accuracy of both classifiers increased by increasing the number of training subjects.

In the leave-one-subject-in (LOSI) case (far left), where the classifiers were trained on one
subject and tested on the rest, the baseline classifier had an accuracy of ~38% while the expert
classifier’s accuracy was ~59%. For the leave-one-subject-out (LOSO) case (far right), where

Fig 2. Average success rate of subjects in walking and sitting trials, indicating how successful they are at cheating. Each colored dot represents a
subject’s success rate at a trial. The dots which are not connected to any line belong to subjects who failed in the first deceptive activity trial.

doi:10.1371/journal.pone.0144795.g002
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the classifier was trained on all subjects except one and tested on the remaining subject, these
numbers were ~47% and ~84%, respectively. Thus, the accuracy of the baseline classifier did
not get better than chance (50%) by increasing the number of training subjects, while the expert
classifier had good accuracy in the LOSO cross-validation setting.

We also evaluated how the classifiers performed on normal activity data, before and after
training on deceptive activity. These are shown by dashed lines in Fig 4. We found that the
accuracy of both baseline and expert classifiers increased by including more training subjects,
nevertheless their performances did not considerably differ. Therefore, training the classifiers
on deceptive activity data did not affect their performance on normal activity data.

Next, we wanted to see if the performance of the classifiers was different for walking and sit-
ting activities. Table 2 shows the precision and the recall of the expert classifier in detecting
each of the activity classes, in the LOSI and LOSO settings. Interestingly, there is a considerable
difference in recall between the two classes, implying that most of the inaccuracy of the LOSI
classifier was caused by inaccuracy in detecting the ‘walking’ activity. In other words, the LOSI
model was more vulnerable to deceptive walking. This difference disappeared when more
training subjects were used, in the LOSO classifier. Thus, in the end, the expert classifier with
sufficient number of training subjects was able to perform well in both walking and sitting
classes.

Fig 3. 2-dimensional representation of feature values collected from a single subject who succeeded in 3 trials.We used a 2-component factor
analysis. Green circles show normal activity and grey crosses indicate fake activity factors. The changing location of fake activity data points across trials
shows different strategies taken by the subject.

doi:10.1371/journal.pone.0144795.g003
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Finally, we evaluated how the gap between baseline and expert classifiers varied depending
on which subject was used for test. Fig 5 shows the difference between the accuracy of the base-
line and the expert classifiers as a function of the number of training subjects. Each gray line
shows this difference when one subject is used as test, and the black line shows the average for
all test subjects. It seems that the average difference is maximized when the number of training
subjects is 2, although the overall variation is negligible. However, this difference considerably
varies across the test subjects. Therefore, the gap between the baseline and the expert classifiers’

Fig 4. Accuracy of the baseline (circles) and the expert (triangles) models in classifying deceptive
(solid) and normal (dashed) data, as a function of the number of training subjects. Dotted line shows
the chance level (50%) and the shaded areas show standard deviation of the accuracies.

doi:10.1371/journal.pone.0144795.g004

Table 2. Precision, recall, and accuracy of the expert model in detecting the true activity.

Leave-One-Subject-In Leave-One-Subject-Out

Precision Recall Precision Recall

Sitting 55.1% 75.8% 83.4% 75.2%

Walking 78.2% 41.3% 79.3% 88.8%

Total Accuracy 59.4% 83.8%

doi:10.1371/journal.pone.0144795.t002
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performance depends on which subject is used for test, but it does not depend on the number
of training subjects.

Discussion
Activity tracking systems are vulnerable to deceptive behavior. We showed that training activ-
ity classifiers on deceptive activity data from a few subjects enabled these classifiers to detect
the deceptive activity of other subjects with good accuracy. The performance of the classifiers
trained using both normal and deceptive activity data was considerably and consistently better
than the ones trained only using normal activity data. Therefore, it seems that machine learn-
ing of deceptive behavior can be generalized across individuals. An implication of this result is
that including deceptive activity data in the training of current activity tracking systems might
substantially increase their performance in handling deceptive behavior.

Tricking an activity classifier which is only trained on normal activity data is simple. This
was evident in our experiments, where most subjects were able to cheat in the first trial with a
success rate of close to 100%. However, the deceptive activity data collected in this way will not
have enough variability within and across the subjects. Our experiment was able to generate
more variability by retraining the classifier on the deceptive data collected from each trial, and
asking the subjects to try to cheat again. This made subjects use a new cheating strategy for
each trial, resulting in a rich deceptive activity dataset.

Nevertheless, this study has a number of limitations that must be considered. First, we did
not explore many other ways of cheating in activity recognition. For example, we did not

Fig 5. Difference (%) between the accuracy of the expert and the baseline classifiers, when varying number of training subjects is used. Each gray
line shows the accuracy difference when one subject’s deceptive data is used as test, and the black line shows the average and its standard deviation as
error bars. In all tests the expert classifiers perform better than the baseline classifiers (the difference is positive). While the relationship between the
accuracies and the number of training subjects is noisy, it does not vary much for each test dataset.

doi:10.1371/journal.pone.0144795.g005
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account for impersonation, which means handing the mobile phone to another person to do
activities. This type of cheating was explored in a recent study [17]. Furthermore, there can be
other ways for individuals to cheat that were not possible in our experiment setting. For
instance, one might put their phone in a clothes dryer or stick it to their pet in order to make it
detect “walking”. In fact, we were assuming that subjects were carrying their phone all the time.

Second, we only tried to distinguish between walking and sitting. There are several other
classes of physical activity, such as stair climbing, running, or driving a car, that can be detected
by some smartphone-based activity tracking services such as Google’s Activity Recognition
API on Android devices. When more activity classes are present, it is possible that the cheating
behavior causes the confusion to spread across many classes (e.g., confusing walking with driv-
ing or sitting with stair-climbing), which makes it more difficult to handle the deceptive behav-
ior. Our goal here was to keep the number of classes low and instead focus on maximizing the
diversity of cheating strategies that subjects were using.

Finally, smartphones are less portable than wearable activity trackers which might be better
candidates in situations such as intensive sports activities. However, our subjects were carrying the
phone all the time, and we limited the phone sensors to accelerometer and gyroscope. This setting
minimized the difference between phone-based and wearable-based activity tracking in our exper-
iment, and thus we believe that our methodology can be applied to the wearable sensor technology
as well. In fact, a future study can perform the same experiment with wearable activity trackers.

Physical activity tracking is becoming more and more popular in healthcare, as well as other
areas. A law firm in Canada has used the activity data collected from their client’s activity
tracker device to show the adverse effects of an accident she had in the past [22]. Although this
is the first known case of this kind, it is very likely that courts in future incorporate activity
data into their evidence gathering procedures. We showed the potential to considerably
improve the robustness of current physical activity tracking systems, and making them more
reliable by training them on deceptive along with normal activity data.

Our methodology can be extended to other areas of pattern recognition and ubiquitous
computing that are susceptible to deceptive behavior. For example, speaker verification tech-
nology on smartphones allows us to detect whether a voice command is issued by the owner of
the phone or another person. However, the other person may be able to hack the software by
imitating the owner’s voice. One way to make speaker verification more robust against such
behavior would be to ask individuals to try to trick it into detecting someone else’s voice, and
train the classifier on the data collected in this way. Thus, an experimental setup similar to ours
can be used to increase the robustness of speaker verification against deceptive behavior.

Supporting Information
S1 Data. Figures and tables data. This file contains the data that is behind Figs 2–5 and
Table 2.
(ZIP)
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