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Abstract

With the market introduction of the 2014 Mercedes-Benz

S-Class vehicle equipped with a stereo camera system, au-

tonomous driving has become a reality, at least in low speed

highway scenarios. This raises hope for a fast evolution

of autonomous driving that also extends to rural and ur-

ban traffic situations. In August 2013, an S-Class vehi-

cle with close-to-production sensors drove completely au-

tonomously for about 100 km from Mannheim to Pforzheim,

Germany, following the well-known historic Bertha Benz

Memorial Route. Next-generation stereo vision was the

main sensing component and as such formed the basis for

the indispensable comprehensive understanding of com-

plex traffic situations, which are typical for narrow Eu-

ropean villages. This successful experiment has proved

both the maturity and the significance of machine vision

for autonomous driving. This paper presents details of

the employed vision algorithms for object recognition and

tracking, free-space analysis, traffic light recognition, lane

recognition, as well as self-localization.

1. Introduction

In August 1888, Bertha Benz used the three wheeled ve-

hicle of her husband, engineer Carl Benz, to drive from

Mannheim to Pforzheim, Germany. This historic event

is nowadays looked upon as the birth date of the modern

automobile. Exactly 125 years later, a brand-new 2014

Mercedes-Benz S-Class named ”Bertha” repeated this jour-

ney, but this time in a fully autonomous manner, see Fig-

ure 1. Following the official Bertha Benz Memorial Route,

this car drove through the very heart of the famous city of

Heidelberg, passed the Bruchsal Castle, and crossed narrow
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Figure 1: Autonomous vehicle ”Bertha”, a 2014 Mercedes-

Benz S-Class with well-integrated close-to-production sen-

sors driving fully autonomously on open public roads.

villages in the Black Forest. It stopped in front of red traffic

lights, made its way through a lot of roundabouts, planned

its path through narrow passages with oncoming vehicles

and numerous cars parked on the road, and gave the right of

way to crossing pedestrians. While Bertha Benz wanted to

demonstrate the maturity of the gasoline engine developed

by her husband, the goal of our experiment was to show that

autonomous driving is not limited to highways and similar

well-structured environments anymore. An additional aim

was to learn about situations that still cause problems, in

order to identify further research directions.

We only carefully modified the serial-production sensor

setup already available in our vehicle, as follows. Four

120
◦ mid-range radars were added for better intersection

monitoring. The baseline of the car’s existing stereo cam-

era system was enlarged to 35 cm for increased precision

and distance coverage. For traffic light recognition, self-

localization and pedestrian recognition in turning maneu-

vers, two wide angle monocular color cameras were added.

2. Related Work

The general vision of autonomous driving has quite a

long history which is well documented on the web [25]. It
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first appeared in the 1970s with the idea of inductive ca-

bling for lateral guidance. In the 1980s, the CMU vehicle

Navlab drove slowly on the Pittsburgh campus using cam-

eras. Following the introduction of Kalman Filtering for

image sequence analysis, Dickmanns demonstrated vision-

based lane keeping on a German highway with speeds of up

to 100 km/h [3]. This seminal work represents the founda-

tion of nearly all commercially available lane keeping sys-

tems on the market today. At the final presentation of the

European PROMETHEUS project in Paris in 1994, vision-

based autonomous driving on a public highway was demon-

strated including lane change maneuvers [2]. In July 1995,

Pommerleau (CMU) drove with the Navlab5 vehicle from

Washington DC to San Diego using vision-based lateral

guidance and radar-based adaptive cruise control (ACC) at

an autonomy rate of 98.2 % [13, 17]. In the same year,

Dickmanns’ team drove approximately 1750 km from Mu-

nich, Germany, to Odense, Denmark, and back at a max-

imum speed of 175 km/h. The longest distance travelled

without manual intervention by the driver was 158 km. On

average, manual intervention was necessary every 9 km [2].

All those approaches were focused on well-structured high-

way scenarios, where the autonomous driving task is much

easier than in constantly changing and chaotic urban traffic.

Sparked by the increased methodical and technical avail-

ability of better algorithms and sensors, initial steps towards

taking autonomous driving into urban scenarios were made

by Franke [10] in 1998. One notable and highly important

event was the Urban Challenge in 2007. Here, all final-

ists based their work on high-end laser scanners coupled

with radars for long range sensing. The impressive work by

Google in the field of autonomous driving is based on the

experience gained in the Urban Challenge. As a result, they

also adopted high-end laser scanners and long-range radars

as main sensing platforms in their system, augmented by a

high-resolution color camera for traffic light recognition.

Very recently, on July 12th 2013, Broggi and his group

performed an impressive autonomous driving experiment in

Parma, Italy [24]. Their vehicle moved autonomously in

public traffic, even at times with nobody in the driver’s seat.

The 13 km long route included two-way rural roads, two

freeways with junctions, and urban areas with pedestrian

crossings, tunnels, artificial bumps, tight roundabouts, and

traffic lights.

3. System Design and Layout

In our vision of future autonomous driving, detailed

maps will be one foundational component of the system, be-

sides the actual active sensing modules. Given the commer-

cial nonavailability of such high-quality maps today, they

were generated by our research partner, the Karlsruhe In-

stitute of Technology (KIT), in a semi-automatic fashion.

Infrastructural elements that are relevant to our application,

Figure 2: Software system architecture overview.

e.g. speed limits, pedestrian crossings, or stop lines, have

also been included into the digital map. Similar to success-

ful Urban Challenge approaches, optimal driving paths have

been calculated in an off-line step. Given a precise ego-

localization relative to the map in on-line mode, our vehicle

follows the pre-planned path as long as the traffic situation

permits. This planning and decision module continuously

analyzes the scene content delivered by the environment

perception and dynamically reacts by re-planning whenever

driving paths are currently blocked or will be obstructed by

other traffic participants in the future.

Preliminary tests proved that GPS accuracy is insuf-

ficient in most cities and villages to achieve the self-

localization precision we require for the previously men-

tioned dynamic planning step. Hence, we combined GPS

with inertial vehicle sensors for localization and addition-

ally utilized our vision system to significantly increase self-

localization precision.

Besides machine vision, which will be the main focus

of the remainder of this paper, radar sensors are employed

to detect moving objects at long distances as well as the

surveillance of the area around the car. They ensure safe

behavior at roundabouts, monitor crossing streets at inter-

sections and are used for safe lane change maneuvers.

Figure 2 shows the layer-based software architecture of

Bertha. On the sensing layer we use radars, cameras, a GPS

unit coupled with inertial vehicle sensors, and a precise dig-

ital map. Object-level fusion builds a comprehensive un-

derstanding of the current traffic situation and their partic-

ipants. In parallel, the visual localization results are com-

bined with the GPS and inertial results to obtain an optimum

self-localization estimate. Based on this, the planning mod-

ule determines the appropriate next behavior which is then

actuated by the control layer. All system modules, includ-

ing our complex vision algorithms, see Section 4, operate in

real-time, i.e. at a frame-rate of 25 Hz.

4. The Vision System

Bertha’s vision system consists of three different camera

setups, see Figure 3, i.e. one wide-angle monocular camera

to recognize traffic lights and pedestrians in turning maneu-
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Figure 3: Overview of Bertha’s camera setup. We use a

stereo camera system with a 45◦ field-of-view (red) and two

wide-angle 90
◦ field-of-view monocular cameras (blue).

vers, another wide-angle camera for feature-based localiza-

tion and a powerful stereo system for lane recognition and

3D scene analysis. The latter can be further sub-divided into

three main tasks:

1. Free-space analysis: Can Bertha drive safely along the

planned path?

2. Obstacle detection: Are there obstacles in Bertha’s

path? Are they stationary or moving? What size do

they have? How do they move?

3. Object classification: What is the type of obstacles and

other traffic participants, e.g. pedestrians, bicyclists,

or vehicles?

Although various vision systems are already on board

for advanced driver assistance, including fully autonomous

emergency braking for pedestrians, the existing algorithms

had to be improved significantly. The reason is that in

safety critical assistance systems the vision algorithms are

designed for a minimum false positive rate while keeping

the true positive rate sufficiently high. An autonomous sys-

tem however requires the environment perception module

to detect nearly all obstacles and - at the same time - to have

an extremely low false positive rate.

4.1. Lane Recognition and Localization

While lane keeping on highways and well-structured ru-

ral roads is widely available in production cars, lane recog-

nition in cities remains an unsolved problem for several rea-

sons: no strict rules apply for urban roads, low speeds al-

low for rapid changes in the lane course, lanes are marked

sparsely or even not at all. However, if the markings and

curbs are known from a digital map, the task of lane recog-

nition can be reduced to a graph matching problem.

Figure 4 illustrates this principle and shows the re-

projection of lane markings (blue) and curbs (yellow)

from the map into the image of our stereo system. Self-

localization with respect to the map involves finding the best

Figure 4: Re-projection of map information (bottom) into

the image (top) domain.

alignment between map data and the image in terms of po-

sition and orientation. This principle has already been suc-

cessfully employed in [9]. A higher robustness is achieved

by using a Kalman Filter for continuous estimation of the

vehicle’s pose, supported by the available inertial measure-

ments. This particularly helps with the estimation of the

longitudinal position, given that this is much less defined by

the markings than the lateral position. However, we found

that even the longitudinal position can be reliably estimated

with sufficiently precise digital maps.

A crucial part is the map generation process. An auto-

matic generation using aerial images as proposed in [20] is

attractive but not always possible. We decided to build our

maps from a recorded video sequence using a car with a

high-precision GPS localization similar to [22]. Standard

postprocessing was applied to the GPS data offline in order

to correct faulty traces. At this time, we manually selected

markings and curbs. Obviously, this needs to be automated

in the future.

In urban areas, lanes are often not marked but bounded

by curbs instead. Hence, a reliable recognition of curbs is

required to be able to use the map matching module. For ro-

bust curb recognition, we adopt the classification approach

described in [7]. Given the expected lateral position of a

curb, an appropriate image region is cropped and rectified

in a way that the slanted curb becomes (nearly) vertical and

independent of the distance. Then, this ROI is fed into

Figure 5: Example of classification-based curb recognition.
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(a) Left input image of the stereo camera setup. The ego-vehicle drives

through a narrow urban environment with static infrastructure (buildings,

trees, poles), a parking car on the right as well as an approaching vehicle.

(b) Visualization of the SGM stereo matching result. Red pixels are mea-

sured as close to the ego-vehicle (i.e. dist ≤ 10 m) while green pixels

are far away (i.e. dist ≥ 75 m).

(c) Stixel World representation of the disparity input. Objects are effi-

ciently described using vertical rectangles. The arrows on the base-points

of the Stixels show the estimated object velocity. The color encodes the

distance.

(d) Segmentation of the Stixel World into static background/infrastructure

and moving objects. The color represents a group of connected Stixels

with similar motion. Brown Stixels are flagged as potentially inaccurate.

Figure 6: Visual outline of the stereo processing pipeline. Dense disparity images are computed from sequences of stereo

image pairs. From this data, the Stixel World is computed, a very compact and efficient intermediate representation of the

three-dimensional environment. Stixels are tracked over time for estimating the motion of other objects. This information is

used to extract both static infrastructure and moving objects for subsequent processing tasks.

a multi-cue classifier operating on gray-value information

and height profiles obtained from stereo vision. Through

the optimal combination of both modalities, curbs are reli-

ably detected, see Figure 5 for an example.

To further reinforce vision-based self-localization we

adopt the feature-based localization approach of [15], that

operates on the monocular localization camera, see Fig-

ure 3. Outside of the vision system, this additional loca-

tion estimate is then fused with the map-based localization

described above.

4.2. Stereo Vision

A stereo camera is used to perceive and understand the

environment in front of the ego-vehicle, covering a range of

up to 75 m using 1024 × 440 px imagers with 45
◦ degree

FOV lenses and a baseline of 35 cm. The stereo processing

pipeline consists of four main steps: the dense stereo recon-

struction itself, the Stixel segmentation, a motion estimation

of other objects, and the final object segmentation. The dif-

ferent processing steps are briefly illustrated in Figure 6.

Stereo Matching Given the stereo image pairs, dense dis-

parity images are reconstructed using semi-global match-

ing (SGM) [12], c.f . Figure 6a and Figure 6b. This scheme

was made available on an efficient, low-power FPGA-

platform by [11]. The input images are processed at 25 Hz

with about 400, 000 individual depth measurements per

frame.

Stixel Computation To cope with this large amount of

data, we utilize the Stixel representation introduced in [19].

The idea is to approximate all objects within the three-

dimensional environment using sets of thin, vertically ori-

ented rectangles, the so-called Stixels. All areas of the

image that are not covered with Stixels are implicitly un-

derstood as free, and thus, in intersection with the map of

the route, as potentially driveable space. To consider non-

planar ground surfaces, the vertical road slope is estimated

as well. Altogether, the content of the scene is represented

by an average of about 300 Stixels. Just like SGM, the

Stixel computation is performed on an FPGA platform.

Motion Estimation Autonomously navigating through

urban environments asks for detecting and tracking other

moving traffic participants, like cars or bicyclists. In our

setup, this is achieved by tracking Stixels over time using

Kalman filtering following the approach of [18]. Assum-

ing a constant velocity, the motion of other objects across

the ground surface is estimated for every Stixel individually.

The result of this procedure is given in Figure 6c showing

both the Stixel representation and the motion prediction of

the Stixels.
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Object Segmentation Up to this point, Stixels are pro-

cessed independently, both during image segmentation and

tracking. Yet, given the working principle of this repre-

sentation, it is quite likely for adjacent Stixels to belong

to one and the same physical object. Thus, when stepping

forward from the Stixel to the object level, the knowledge

which Stixel belongs to which object is of particular inter-

est, e.g. for collision avoidance and path planning.

For this purpose, we rely on the segmentation approach

presented in [8]. Besides demanding motion consistency

for all Stixels representing the same object, this scheme also

makes strong use of spatial and shape constraints. The seg-

mentation result for the depicted scenario is given in Fig-

ure 6d.

4.3. Pedestrian Recognition

Given our focus on urban scenarios, pedestrians and bi-

cyclists are undeniably among the most endangered traffic

participants. Rather than implicitly addressing pedestrian

recognition solely as a generic object recognition problem

using the stereo environment model sketched above, we ad-

ditionally utilize an explicit pedestrian detection system in

the near-range of up to 40 m distance from the vehicle. In

doing so, we can exploit class-specific (pedestrian) models

and obtain sufficient robustness for an automatic emergency

braking maneuver.

Our real-time vision-based pedestrian detection system

consists of three main modules: region-of-interest (ROI)

generation, pedestrian classification and tracking. All sys-

tem modules make use of two orthogonal image modalities

extracted from stereo vision, i.e. gray-level image intensity

and dense stereo disparity.

ROI Generation Adopting the approach of [14], ROI

generation first involves the recovery of scene geometry in

terms of camera parameters and 3D road profile from dense

stereo vision. The current scene geometry constraints pos-

sible pedestrian locations regarding the estimated ground

plane location, 3D position and height above ground. ROIs

are then computed in a sliding-window fashion.

Pedestrian Classification Each ROI from the previous

system stage is classified by powerful multi-cue pedestrian

classifiers. Here, we are using a Mixture-of-Experts scheme

that operates on a diverse set of image features and modali-

ties inspired by [4]. In particular, we couple gradient-based

features such as histograms of oriented gradients (HoG) [1]

with texture-based features such as local binary patterns

(LBP) or local receptive fields (LRF) [26]. Furthermore,

all features operate both on gray-level intensity as well as

dense disparity images to fully exploit the orthogonal char-

acteristics of both modalities [4], as shown in Figure 7.

Classification is done using linear support vector machines.

Multiple classifier responses at similar locations and scales

Figure 7: Intensity and depth images with corresponding

gradient magnitude for pedestrian (top) and non-pedestrian

(bottom) samples. Note the distinct features that are unique

to each modality, e.g. the high-contrast pedestrian texture

due to clothing in the gray-level image compared to the

rather uniform disparity in the same region.

are addressed by applying mean-shift-based non-maximum

suppression to the individual detections, e.g. a variant of

[27]. For classifier training, we use the public Daimler

Multi-Cue Pedestrian Classification Benchmark, as intro-

duced in [5].

Tracking For tracking, we employ a rather standard re-

cursive Bayesian formulation involving Extended Kalman

Filters (EKF) with an underlying constant velocity model

of dynamics. Pedestrians are modeled as a single point

on the ground-plane. As such, the state vector holds lat-

eral and longitudinal position as well as corresponding ve-

locities. Measurements are derived from the footpoint of

detected pedestrians and the corresponding depth measure-

ments from stereo vision.

Pedestrians in areas to the side of the vehicle are par-

ticularly application-relevant in turning maneuvers. Given

our limited field-of-view in the stereo system, see Figure 3,

we additionally utilize a monocular variant of the pedestrian

system described above, operating on the wide-angle cam-

era that is also used for traffic light recognition.

4.4. Vehicle Detection and Tracking

Vision-based vehicle detection in the near-range (up to

40 m) involves a very similar system concept as is used for

pedestrian recognition, see above. Additionally, we use the

Stixel World as a compact medium-level representation to

further narrow down the search space for possible vehicle

locations, as suggested in [6].

However, the high velocities of approaching vehicles in

relation to the autonomously driving ego-vehicle require a

much larger operating range of our vehicle detection mod-

ule than for pedestrian recognition. We consider vehicle

detection and tracking at distances of up to 200 m from the

ego-vehicle, see Figure 8. In such a long range scenario,

precise depth and velocity estimation is very difficult due to

large disparity noise, given our camera setup. For similar
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Figure 8: Full-range (0 m - 200 m) vehicle detection and

tracking example in an urban scenario. Green bars indicate

the detector confidence-level.

reasons, we cannot apply stereo-based ROI generation.

Thus, we rely on a very fast monocular vehicle detector

in the long range, i.e. a Viola-Jones cascade detector [23].

Since its main purpose is to create regions-of-interest for

our subsequent strong Mixture-of-Experts classifiers, as de-

scribed above, we can easily tolerate the inferior detection

performance of the Viola-Jones cascade framework com-

pared to state-of-the-art and exploit its unrivaled speed.

Precise distance and velocity estimation of detected ve-

hicles throughout the full distance range poses extreme de-

mands on the accuracy of stereo matching as well as camera

calibration. In order to obtain optimal disparity estimates,

we perform an additional careful correlation analysis giving

a sub-pixel accuracy of 0.1 px.

Moreover, we put a strong emphasis on the on-line cali-

bration of the squint angle of our camera system to get pre-

cise distance estimates from the disparity map. Since we

may assume that the long range radar of our vehicle delivers

precise distance measurements, we run a slow disturbance

observer to compensate for drifts of this very critical angle.

4.5. Traffic Light Recognition

Given the viewing angle of 45◦, our stereo camera sys-

tem is not well suited for traffic light recognition. Stopping

at a European traffic light requires a viewing angle of up

to 120
◦ to be able to see the relevant light signal right in

front of the vehicle. At the same time, a comfortable re-

action to red traffic lights on rural roads calls for a high

image resolution. For example, in case of approaching a

traffic light at 70 km/h, the car should react at a distance of

about 80 m which implies a first detection at about 100 m

distance. In that case, given a resolution of 20 px/◦, the illu-

minated part of the traffic light is about 2x2 px, which is the

absolute minimum for successful classification. For practi-

cal reasons, we chose a 4 MPixel imager and a lens with a

horizontal viewing angle of approximately 90
◦.

From an algorithmic point-of-view, traffic light recogni-

tion involves three main problems: detection, classification

and selection of the relevant light at complex intersections.

To avoid a strong dependency on the map, we apply an im-

Figure 9: Example of an ideal situation with easy to detect

traffic lights.

age based localization method consisting of an off-line and

an on-line step, as follows.

Off-line, an image sequence is recorded while driving

towards the intersection of interest. For these recorded im-

ages, we compute highly discriminative features in manu-

ally labeled regions around the relevant traffic lights. These

features are stored in a data base.

While driving in on-line mode, the features in the ac-

tual image are matched against this data base. The result-

ing matching hypotheses allow both the identification of the

best matching image in the data base and the determination

of the location of the relevant traffic light in the current im-

age. The correspondent image regions serve as input for

the subsequent classification step. Classification follows the

principle introduced in [16]. The detected regions of inter-

est are cropped and classified by means of a Neural Net-

work classifier. Each classified traffic light is then tracked

over time to improve the reliability of the interpretation.

The classification task turned out to be more complex

than expected. While roughly 2/3 of the 155 lights along

the route were as clearly visible as shown in Figure 9, the

rest turned out to be very hard to recognize. Some exam-

ples are shown in Figure 10. Red lights in particular are

very challenging due to their lower brightness. One reason

for this bad visibility is the strong directional characteristic

of the lights. While lights above the road are well visible at

larger distances, they become invisible when getting closer.

Even the lights on the right side, that one should concen-

Figure 10: Examples of hard to recognize traffic lights.

Note, that these examples do not even represent the worst

visibility conditions.

219219



Figure 11: Visualization of our testing environment show-

ing an example of an identified failure case. The Stixel-

World (colors encode distance), the driven path (in blue)

and recognized cars and pedestrians (black boxes) are

shown. Due to an insufficient on-line calibration, small ob-

stacles wrongly show up (red circles) in this scenario.

trate on when getting closer, can become nearly invisible in

case of a direct stop at a red light. In those cases, change

detection is more efficient than classification to recognize

the switching between red and green. To improve visibility,

we also decided to adjust the stopping position of the car in

the global map, in case of a detected red light.

5. System Test and Validation

In the algorithm development and real-world testing

phase, many people contributed to the vision system and

continuously updated their software. To minimize the risk

of serious software bugs and unexpected performance de-

crease, we built a powerful testing tool-chain following the

established principles of unit testing, integration testing and

system testing. To verify that new algorithmic releases meet

their requirements, they were tested on hours of recorded

sensor data of the route and had to show at least the same

performance as the previous versions. Here, both the in-

dividual components as well as the fully-integrated system

were put through their paces.

Since manual labeling is infeasible for such a large

amount of data, we adopted the idea presented in [21] that

allows for a semi-automatic object-level performance eval-

uation. Since the exact driven path is known, we can check

the driving corridor for obstacles detected by our vision

modules. We can safely assume that there are no static ob-

stacles blocking our path up to two seconds in advance and

that moving obstacles coincide with the radar-objects. An

example of our testing toolchain is given in Figure 11.

During processing of the data base, statistics are gen-

erated and ambiguous situations reported. Later, a human

observer can easily inspect situations where unexpected

objects were detected. A helpful statistic is the time-to-

collision (TTC) histogram shown in Figure 12. It depicts the

likelihood that Stixels occur in our driving path at a certain

Figure 12: TTC statistics indicating the likelihood that Stix-

els occur at a certain TTC.

TTC. Most of the remaining obstacles closer than 2 seconds

are caused by newly initialized Stixels for which a reliable

motion estimate is not yet available. Lower probabilities

at small TTCs translate to a lower false positive rate. This

allows us to use such statistics not only for verifying new

releases but also for optimization of the different parts of

the whole stereo analysis chain.

6. Results

During our tests, about 6,700 km were driven in fully

autonomous mode. The final journey took place in Au-

gust 2013 in busy traffic. The maximum speed in cities

was 50 km/h, while on county roads the maximum allowed

speed of up to 100 km/h was driven at most times. 54 km

of the route are urban, 50 km are rural roads. There are no

highways along the route. The route was driven in intervals,

following an induced safety requirement of not more than

45 minutes for the control engineer behind the wheel. The

total time required for the trip was about 3 hours. Bertha

was able to handle all occurring situations including 18

busy roundabouts, numerous pedestrians and bicyclists on

the road, 24 merge situations, as well as narrow passages

in small villages, where parked cars forced the car to wait

for oncoming traffic. No sudden human intervention was

necessary. In total, the car asked for manual control twice

when it stopped safely in front of an obstacle and did not

see a chance to proceed. In the first situation, the lane was

blocked by a construction site, in the second case, Bertha

had stopped behind a van. Since we prohibited the car from

entering the opposite lane by more than one meter, Bertha

had no choice but to hand control back to the control driver.

Many people have compared Bertha to a human

”learner” taking driving lessons. Sometimes the car be-

haved extremely carefully, while in other situations an expe-

rienced human driver would have driven more defensively.

However, we believe that - like a human - Bertha will im-

prove its driving skills over time, which mainly translates to

an improvement of the vision system.
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7. Conclusions

Bertha successfully drove approximately 100 km of the

Bertha Benz Memorial Route in public traffic in a fully au-

tonomous manner. Besides the used radar sensors, machine

vision thereby played the most significant role. It was indis-

pensable for lane recognition, traffic light recognition, ob-

ject recognition, precise free-space analysis, and object size

and pose estimation. Although we optimized our vision al-

gorithms for the route, its considerable length, complexity,

dynamics and unpredictability coupled with the large vari-

ety of situations guarantees that we did not adapt too much

to this particular road section. One of our goals was to iden-

tify the most important topics for further research:

Improve intention recognition This implies turn light

recognition of leading or oncoming cars, the intention of

pedestrians on the road, and above all the intention of bicy-

clists. Although reliably recognized by the pedestrian clas-

sification module and the radar, our safety driver felt partic-

ularly uncomfortable when passing a bicyclist.

Increase robustness During the development phase we

encountered all possible weather situations including heavy

snowfall, strong rain, and low sun. While light rain did not

cause problems, snow on the street significantly impacted

the lane recognition module. During strong rain, the distur-

bances on the wind shield caused problems for disparity es-

timation and hence to the whole subsequent module chain.

We found that proper confidence measures for all reported

objects are an absolute necessity.

Generate redundancy Stereo vision was used to analyze

the situation in front of the car and monocular vision to

detect traffic lights and pedestrians in turning scenarios.

Automation requires redundancy and hence more cameras

would be desirable.

Improve the imager For traffic light recognition, we

specifically selected a CCD-imager since it showed better

quality than a comparable CMOS sensor. Still, we desire

better color quality and an automotive compliant CMOS

sensor for increased dynamics.
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