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Abstract: One of the prime aims of smart cities has been to optimally manage the available resources
and systems that are used in the city. With an increase in urban population that is set to grow even
faster in the future, smart city development has been the main goal for governments worldwide.
In this regard, while the useage of Artificial Intelligence (AI) techniques covering the areas of
Machine and Deep Learning have garnered much attention for Smart Cities, less attention has
focused towards the use of combinatorial optimization schemes. To help with this, the current review
presents a coverage of optimization methods and applications from a smart city perspective enabled
by the Internet of Things (IoT). A mapping is provided for the most encountered applications of
computational optimization within IoT smart cities for five popular optimization methods, ant colony
optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and
differential evolution. For each application identified, the algorithms used, objectives considered,
the nature of the formulation and constraints taken in to account have been specified and discussed.
Lastly, the data setup used by each covered work is also mentioned and directions for future work
have been identified. This review will help researchers by providing them a consolidated starting
point for research in the domain of smart city application optimization.

Keywords: smart cities; Internet of Things (IoT); Artificial Intelligence; optimization; genetic agorithm;
particle swarm optimization; heuristics

1. Introduction

The increasing population and urbanization in the world has led to increased stress
on cities around the world. With an estimated 70% of the worlds population living in
cities by 2050 [1], governments and administrations are developing methods to cater
to this increasing rise in their city’s dwellers. Moreover, the ever increasing effects of
climate change and global warming have made necessary that these developments to
the city’s capacity also be sustainable and environmentally friendly, following the United
Nations Sustainable Development Goals for 2030 [2]. Considering these requirements,
Smart Cities have become a topic of great interest by governments and the private sector
worldwide. Smart Cities make use of technology to improve the living experience of the
city’s inhabitants by contributing to important aspects of a city’s functioning. There are
various domains within smart cities, these include Smart Agriculture, Smart City Services,
Smart Grid, Smart Health, Smart Homes, Smart Industry, Smart Infrastructure and Smart
Transportation. With improvement of Artificial intelligence (AI) capabilities in the last
decade, there have been different applications of machine and deep learning algorithms
within each of these domains [3] providing for better decision making and improvement of
services. Apart from various supervised and unsupervised learning applications, several
tasks within different components of smart cities can be formulated into optimization
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problems and/or require heuristics to be incorporated in some form. However, coverage of
such efforts for IoT bases Smart Cities has received less attention compared to applications
utilizing algorithms within the machine and deep learning domain.

In this regard, this paper presents a coverage of combinatorial optimization in Internet
of Things (IoT) based smart cities by deliberating on the most popular applications of
optimization algorithms and providing an insight to how those problems are formulated
and worked upon. Since optimization has been a topic of interest to researchers in general,
there have several surveys which pertain to individual aspects of smart cities such as
electricity distribution networks [4], emergency facility location [5] and optimization in the
industry [6]. Vukobratović et al. in [4] discuss the various optimization schemes used in
distribution network management and scheduling, Wang et al. [5] provide an overview of
the emergency facility location problem. They deliberate on the mathematical formulations
and the extension of those problems. In [6], the authors provide a review of optimization
algorithm development for industry 4.0, they provide a discussion of the problems present
in the industry and also discuss mathematical formulations. Our work is different from
the work in [4–6] in that we provide a mapped overview of the optimization landscape
in the smart city domain while considering the IoT. Through this mapping, the common
optimization problems across the various components of the IoT enabled smart city have
been identified to assist researchers working on optimization schemes in the field. For each
problem discussed, the objective function used, the nature of the objective as well as the
constraints considered have also been elaborated on. As has been observed by [7], combi-
natorial optimization problems in the real-world are known to be difficult to formulate and
generally are hard to solve. Moreover, choosing the right algorithm is also a tedious task
as each comes with a different set of characterizations. This is very applicable to the IoT
bases smart city where applications in each component caters to a different environment
and aspect of the city’s operation and therefore requires intricate design of the problem.

In order to organize the review, this paper takes guidance from the work of [7]. They
note that the most popular algorithms for use in combinatorial optimization problems are
the Ant Colony Optimization (ACO), Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Differential Evolution (DE) and Artificial Bee Colony (ABC). Moreover, following
from the discussion in [7], this paper considers six factors for each application identified.
These are:

1. The type of application: This refers to the problem being optimized within the smart
city domain.

2. Data Setup: For each application, we mention the data setup used. While doing so,
we aim to capture the various ways in which researchers have sourced data for their
proposed method.

3. Single-Parallel problems: Another thing to note in smart city optimization problems
is whether a problem has been considered as a single problem or multiple sub-
problems/parallel.

4. Objective direction, function and number of objectives: Maximization or minimization,
lowest fitness function value desirable or higher fitness function value is desirable.
Since we list the objectives, we also covere the number of objectives inherently. Single
objective, where a single fitness is optimized for its best value or multi-objective where
multiple objective functions need to be considered at the same time. The latter is a
complex process as some objectives may have conflicts and thus requires the need to
perform trade-offs with what’s acceptable.

5. Constraints: Constraints are a set of restrictions or prerequisites that may sometimes
be necessary to determine if a solution is considered valid or not. Soft constraints
are desirable but not necessary whereas hard constraints are mandatory to be met.
Constraints are put on the fitness function according to application being considered.
Covering this aspect is particularly important as constraints are determined by the
application being worked on.

The main contributions of the paper are as follows:
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1. The paper provides a mapping of the optimization scenario for IoT based smart city
applications for all smart city constituent domains thereby providing an overall view
of the state of IoT enabled optimization applications for smart cities.

2. For all of the applications discussed, the objective/s used in the problem formulation
are identified in terms of what function was used, the number of objectives, whether
it was solved in a parallel or singular manner as well as the constraints considered
have also been highlighted.

3. The detailed information provided herein for the covered work helps highlight the
diversity of the formulations used in different smart city applications. As is observed,
similar applications in smart cities require significantly different formualtions in
terms of the constraints imposed as well as the objective function utilized. Using the
provided insights, researchers and other stakeholders working in the field of smart
city optimization will have a firm starting point to develop new applications.

4. It provides recommendations and directions for future work in the domain of using
optimization algorithms for the IoT based Smart Cities.

The survey is organized as follows, Section 2 presents an introduction to the five
considered combinatorial optimization algorithms, Section 3 presents the applications
found for these algorithms for each component of smart cities and provides a discussion of
them based on the factors discussed previously. Recommendations based on the compiled
coverage are given in Section 4 with directions for future work in Section 5 to help guide
researchers in this field while Section 6 concludes the paper.

2. Algorithms

Metaheuristic algorithms are widely used to solve combinatorial optimziation prob-
lems in the real-world [7]. The aim of these algorithms is to determine the minima or
maxima of an objective function which translates an optimization objective in to one or
more mathematical equations. Five algorithms have been considered in this review, these
are the Ant Colony Algorithm, Genetic Algorithm, Particle Swarm Optimization Algorithm,
Differential Evolution and Artificial Bee Colony. As mentioned earlier, these have been
chosen as these were the most commonly used optimzation algorithms identified by [7].
In this section, we provide a brief intuitive description for each of them.

2.1. Ant Colony Optimization

Ant colony optimization is derived from the behavior of ants searching for food [8]. It
was observed that during this process, each ant deposits a chemical called pheromone on
the path which it takes towards the food. The more the ants take a given path, the more
the pheromone is deposited on it as it is deposited by each ant going over it. Subsequent
ants that want to go towards the food use the amount of pheromone on a given path or
sub-path to decide which path to take so as to determine the optimal route to the food.
In the artificial ant colony optimization algorithm, the points on the path that form the
sub-paths are encoded on a graph where each ant can only visit a given vertex (travel
on the same sub-path) once. Each iteration starts with a number of artificial ants, an ant
would choose the next vertex to visit based on the level of pheromone on the possible
sub-paths available to it as well as whether that path has been used before. At the end of
each iteration, the pheromone levels are updated so as to prioritize the use of the most used
path for ants in the next iteration.

2.2. Genetic Algorithm

A genetic algorithm [9] is based on evolutionary science. The idea behind the genetic al-
gorithm is that starting from a given population set of organisms, subsequent reproduction
will result in fitter organisms being produced given that the organisms chosen for repro-
duction have some level of fitness. To solve an optimization problem, a genetic algorithm
begins with a given population size of strings also called a chromosome. Each ‘chromo-
some’ consists of a ‘gene’ which may represent points in the population. The sequence
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in which the genes are present would represent a solution to the problem. For e.g., for a
route scheduling problem, this may be the coordinates of the stops. The ‘goodness’ of a
chromosome is determined by a fitness function that quantifies how appropriate a given
chromosome is as a solution for the problem. Choosing the right fitness function is an
important consideration in genetic algorithms as it needs to gauge the kind of optimization
that is to be performed. The optimization process starts with an initial population of a
given size. Once a fitness function has been defined, in each iteration, two or more chro-
mosomes (parents) are taken at random from the population and one or more offsprings
are generated. The random selection takes the selected parents fitness function value in to
account, however, its necessary that not all parents chosen are the fittest of the population
as otherwise, diversity will be compromised, and the algorithm may get stuck in a local
minimum. The method by which these offspring are generated is called the Crossover
function and the number of parents mated to form offsprings from them depends on the
crossover rate. The Crossover function defines the way the genes within the chromosomes
are exchanged. Usually, the crossover rate has a high value. Moreover, depending on some
mutation rate, a given fraction of all offsprings are mutated. Mutation depends on the
mutation function used and involves members of the offspring being swapped in some
manner. When one iteration of the offspring creation from the parents in the entire popula-
tion is completed, the offsprings replace members of the original population (typically the
weakest) and one generation of the GA is said to be completed. In order to converge to a
sufficiently good result, GA’s need to run for many generations.

2.3. Particle Swarm Optimization

Particle Swarm Optimization is modeled on the social behavior of animals rather than
the evolutionary biological behavior on which Genetic Algorithms are based. PSO [10] is
particularly based on the behavior of a flock of birds searching for food. Each bird in the
flock searches for food and can communicate with other birds in the flock as soon as it
finds food or a good direction for it. Therefore, each bird has two food ‘directions’ that it
needs to consider, first is on an individual level which is called the personal best and the
second is on the flock level which is the global best. Using these two values the bird will
proceed towards that path and will inform other birds in the flock too. The idea here is
that after enough time and with all the individuals working together, the swarm will find
the place with the highest concentration of food. In terms of using PSO for optimization
tasks, individual birds are equivalent to a solution as in a GA and each is considered as a
point or a particle, collectively they make up the swarm. This swarm population may be
initialized randomly or based on some domain knowledge about the problem. The highest
concentration of food represents the optimal solution for the whole swarm where as a good
direction represents the local optimal solution for each case. The aim here, like birds in a
flock is to determine the global optimal solution using information from each individual
particle. Each particle has three aspects to it, its position, its velocity and a value of its
current position’s ‘goodness’. This ‘goodness’ as in the GA is defined by a fitness function.
Like birds, each particle has a personal best fitness value and is also ware of the global best
fitness value. For any particle, the new direction of movement is decided by a combination
of the personal best and the global best as well as the particle’s intention to maintain
its current movement. Furthermore, several different topologies can be utilized, and a
neighborhood can also be set for each particle to convey positions when limiting the global
best parameter to the local best scheme rather than the whole swarm. The algorithm may
be stopped till the best solution is reached or no more improvement is observed.

2.4. Differential Evolution

Differential evolution [11] is a stochastic evolutionary algorithm which is used for
optimization problems for continuous functions. The DE algorithm does not expect gra-
dient information and thus it doesn’t need to be differentiable. Like other evolutionary
algorithms, a solution is searched for in the design space by maintaining a set of individual
candidate solutions. In each iteration, the solutions with the best fitness are combined
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together and retained for the next iteration. The aim is to improve upon the fitness value
and this process is repeated until a pre-decided condition for termination of this process
is satisfied. Differential Evolution is very similar to Genetic Algorithms in that both are
evolutionary in nature, however, the difference is that the DE uses real numbers in the
chromosome and also that the mutation operation consists of the difference between two
or more chromosomes of the population with the possible addition of some type of noise
to create a new individual. Like GA, DE also suffer from getting stuck in local minima.
The DE algorithm also has three control parameters, the population size, the mutation
factor and the crossover probability.

2.5. Artificial Bee Colony

Article Bee Colony [12] is a swarm intelligence algorithm based on the behavior of bees.
Within bees, there are different social classes who work together to complete tasks such as
harvesting pollen and nesting through the use of smell, ’swing dance’ and other methods.
Bee colonies consist of three types of bees, queen, male and the worker bees which work
on activities such as searching for food, gathering and storage of honey. After gathering
honey, the worker bee comes to the nest and informs other bees about the location of the
honey source site through a dance. The ABC algorithm simulates the behavior of bees
by considering three elements, the food source, employed bees and unemployed bees.
The food source is represented as revenue considering its distance and quality, the higher
the revenue, the better is the value. In computational optimization terms, the food source is
a potential solution to the objective formulation of the considered problem and the quality
or value of the food source represents the fitness value of that particular solution. At the
start, all bees are used as scouts, searching for food sources. When a food source is found,
for a high value food source, bees who find those food sources become hire bees and collect
the food source. If the food source is of intermediate value, the bees become follow bees
and if the food source value becomes low, the bees become scout bees to look for better
food sources. Hire bees, the bees with a food source location having a high value, lead
the follow bees to develop solutions in their neighborhood in order to come up with more
solutions. A subset of the highest-ranking solutions are then considered before this process
is repeated again until the end conditions are met.

3. Optimization Application in Smart Cities

Several tasks in smart city operations require the use of metheuristics to be solved,
the aim being to optimize the resources present in the city. This section presents the different
uses of optimization techniques for IoT enabled Smart Cities. This task is performed for all
eight components, Smart Agriculture, Smart City Services, Smart Grid, Smart Health, Smart
Homes, Smart Homes, Smart Industry, Smart Infrastructure and Smart Transportation.

3.1. Smart Agriculture

Smart Agriculture involves the use of digital technologies such as sensors and intelli-
gent systems to improve agricultural productivity. The sustenance of agriculture depends
on water, and it is central to the agricultural production of food items around the world.
However, water is becoming an ever-scarce resource due to the increasing demand caused
by human population growth, increased economic activity by industries and also due to
climate change. It therefore is necessary to utilize this precious resource wisely so as make
use of it in the best manner possible. One approach towards ensuring that water and land
is used appropriately is by introducing irrigation management schemes such as irrigation
scheduling and water allocation in the farming process. A summary of the optimization
problems, objectives, constraints in smart agriculture and the use of IoT is illustrated in
Figure 1.
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Smart Agriculture 

Irriga�on
Water

Scheduling 

Irriga�on
Water

Alloca�on 

Energy
Op�miza�on

and Water
Control 

Objectives: Minimize
water

usage/deviation/leakage
Maximize benefits

Constraints: Land area
available, water limits

Objectives:Minimize
leakage 

Maximize net return,
water usage 

Constraints: Water
limits, capacity of

irrigation system, flow
capacity, discharge

limits, time limits

Objectives: Minimize
energy cost 

Constraints: Limited
energy available, water

volume minimums

IoT Usage: Sensors provide information about water flow, amount of water and more

Constraints: Water
limits, capacity of

irrigation system, flow
capacity, discharge

limits, time limits

Figure 1. Optimization applications in Smart Agriculture.

Measurements in water irrigation systems are typically performed by sensors placed
at different points in the canals and rivers to determine water flow, volume and speed. This
information regarding water movement can be combined with economic information such
as yeild, crop profit to optimization water distribution. Irrigation management through
scheduling has been performed by the authors of [13–16] to maximize net return on crop
profits, water use efficiency and to minimize leakage losses. In [17] Fuqiang et al. aim to
optimize water delivery through canals while also performing scheduling. They do this
using a genetic algorithm and work with two objectives, minimizing the difference between
the time of water delivery and water demand and the fluctuation in water discharge of the
main canal. Their model was applied to a district in China.

The authors in [18,19] work on optimal allocation of water. Of these, Ikudayisi et al. [18]
use the differential evolution algorithm to minimize the water allocated to farms in South
Africa while maximizing the benefits in terms of job creation, ensuring food security and
the yield of crops. Wu et al. [19] approach this as problem of reducing deviation between
different channels and minimizing water seepage to ensure a more consistent supply to
all water channels. An approach presented by Ocampo et al. [20] tackles this problem not
as a task of allocation directly but considers the scenario of providing sufficient water to a
smart farm while controlling two water pumps. The objective function is formulated to
minimize the energy cost of the water pumps while maintaining sufficient supply of water
to the plants on the farms. Constraints considered for such applications include the limited
quantities of water being worked with, the time for which the water was available and the
area of land which was to be considered. Another allocation based scheme is presented
by the authors of Zhuo et al. [21] who use a genetic algorithm for an irrigation system
based on a reservoir and two pumping stations. Their aim is to ensure that there is no
water shortage. The objective function used by them is the minimization of the annual
sum of squared water shortage. Other work in [22] also minimizes use of groundwater



Sensors 2022, 22, 4380 7 of 34

and increase benefit to the regional water supply through reduction of water deficits in the
Dujiangyan of China.

A precision agriculture scheme is presented by Roy et al. [23] who combine an IoT
system consisting of sensors on plants using a GA based rainfall predictor. Combining
predicted rainfall information along with the sensed moisture level in the crops, they control
plant watering. Lin et al. [24] propose a framework for the management of fertigation and
irrigation in precision agriculture. They perform short term management and long-term
management. Soil and crop growth data is gathered from IoT based sensor systems. Long
term planning refers to the allocation of water and fertilizer resources to crops in terms of
quantity so as to meet demands whereas short term refers to when how to use them. They
use a genetic algorithm for long term planning considering the allocation of water and
fertilizer for crops to maintain pH value and the electrical conductivity. This information
has been presented in Table 1 while a summary of the identified data sources used by each
considered work has been provided in Table 2.

Table 1. Optimization in Smart Agriculture.

Application Algorithm Single/Parallel
Problems Objectives Constraints

Irrigation
Management
(Irrigation Water
Scheduling)

ACO [13] Single Maximizing net return on crop Constraint on water availability

PSO [14] Capacity of irrigation system
Water savings should be more than
deficiency

GA [17] Single

Minimize water fluctuations
and difference between the
time of water demand and
need

Finite canal capacity

Maximum rotation time limitation

GA [15] Parallel Maximize yield, global and
local water use efficiencies Constraint on irrigation interval

Minimum and max irrigation amount

GA [16] Parallel Minimize leakage loss both
individually and overall Flow capacity limited by maximum

Irrigation time constraint
Net discharge constraint
Total flow rate should be sum of
individual flowrates

Irrigation
Management
(Irrigation Water
Allocation)

DE [18] Single
Minimize irrigation water
allocated and maximizes net
benefits

Constraint on the land area available

Minimum and max planting areas for
crops
Limited water available for the farm

PSO [19] Parallel

Minimize deviation in the
different channels, water
seepage in the distribution
channels

Time

Water quantity constraints
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Table 1. Cont.

Application Algorithm Single/Parallel
Problems Objectives Constraints

GA [22] Parallel

Maximize benefit to regional
water supply, minimize water
deficit groundwater
exploitation in regions

Water supply quantity constraints for
annual water, ground water

Irrigation
Management
(Energy
Optimization)

GA [20] Parallel
Minimize energy cost while
maintaining water supply for
plants

Limited energy available

Water volume maintained in storage
tank, fish pond

GA [21] Single Minimize sum of squared
water shortage Annual water availability in reservoir

Water rights of replenishment
pumping station
Water rights of the irrigation pumping
station
Operational rule constraints

Irrigation
Management
(Water Control)

GA [25] Single Maximize yield Minimum and maximum water depth
limits

Min and max soil moisture

Irrigation and
Fertilizer
Management

GA [24] Single Maximize economic profits
and environmental benefits

Limits on the demand of water for
each crop

Total water does not exceed available
Total fertilizer doesn’t exceed
availability
Water allocation should be positive

Table 2. Data setup used for Smart Agriculture Optimization.

Data Type Papers

Self-collected/Presented [14,16,17,20,24,25]
Government and private agencies [13–19,25]

3.2. Smart City Services

According to the world bank, the amount of annual solid waste generated is set to be
3.40 billion tons [26] in 2050. Managing this waste and its collection in an efficient manner is
imperative for health and climate reaons. The most common application towards smart city
services optimization is waste management as illustrated in Figure 2 which summarizes
the objectives, constraints and the use of IoT.

Smart waste collection systems include sensors attached to trash cans which can
inform the municipal authority about the status of the garbage present in them. Once the
trash cans are close to being full, it is the responsibility of the municipal corporation to
perform garbage collection in an efficient manner. In this respect, data provided by the
sensors on garbage cans can be used to determine an optimized route for garbage collection
to construct the Vehicle Routing Problem (VRP) in the Smart City Services domain. As such,
this problem has been performed keeping in view various goals. The minimization of
the route distance taken by a garbage tuck has been performed by the authors in [27–31].
The aim in this case is to determine a route for garbage collection vehicles that minimizes
the total distance traveled by the them. Zhang et al. [31] consider multi-vehicle allocation
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while considering the single objective of minimizing route distance. Wei et al. [32] use
the Artificial Bee Colony algorithm to determine garbage collection routes resulting in
the minimum emission of CO2. Another optimization objective in route optimization
for waste management has been the minimization of the total travel time, such a target
is described by the authors of [33–36] who aim to reduce travel time while considering
emptying of waste bins. Another optimization consideration in route optimization for
waste management is to reduce cost. This has been carried out by Tirkolaee et al. [37] who
formulate a multi-objective function of travel cost and total useage cost of vehicles and
determine the route with the minimum costs using the ACO. Constraints considered in
such applications are related to a fixed road network which depends on the locality for
which the optimization is being performed, the continuity in the determined route as well
as fulfillment of capacity restrictions. The useage of optimization algorithms in smart city
services is provided in Table 3 and the data sources used are provided in Table 4.

Smart City Services 

Waste Management
Route Op�miza�on 

Objectives: Minimize
distance, CO2

emissions, travel time

Constraints: Road
network fixed, location
served by one truck,
continuous routes,

deadline to finish jobs,
capacity limited

IoT usage: Sensors for
trash fill level and
weight detection

Figure 2. Optimization applications in Smart City Services.
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Table 3. Optimization in Smart City Services.

Application Algorithm Single/Parallel Problems Objectives Constraints

Waste Management
Route Optimization ACO [27] Single Minimization of

distance Road Network is fixed

GA [28,29,31] Each dumpster served by one
truck only
Trucks leave depot to go to landfill

PSO [30] Routes are continuous

ABC [32] Single Minimize CO2
emissions

Capacity constraint for bins as
well as trucks

ACO [33] Single Minimize total
travel time Trucks leave a depot empty

GA [34,35] Bins needs to be fully emptied by
trucks
Vehicle start depot and end at
landfill

PSO [36] Demand should not exceed
capacity

ACO [37] Single
Minimize travel
cost and total usage
cost of vehicles

Subtour elimination

Jobs should finish within a given
deadline

Table 4. Data setup used for Smart City Services Optimization.

Data Type Papers

Self-collected/Presented/Generated [27–29,31,33,35,37]
Government Agency [34,36]

Dataset Capacitated VRP datasets [38] by [30],
Capacitated VRP Instances [39] by [32]

3.3. Smart Grid

The electricity grid has been a major beneficiary of smart city technologies. The in-
creasing demand for energy by consumers along with the environmental impact that fossil
fuel-based energy production has on the planet has forced utility companies to introduce
renewable energy sources within the electricity distribution system and make their energy
production and distribution systems more efficient through planning and design improve-
ments. Optimization algorithms find applications within the smart grid (SG) domain in
terms of power management and planning. A summary of the applications, objectives,
constraints and IoT useage for optimization algorithms in Smart Grids has been illustrated
in Figure 3.

An increasing population has led to an increasing demand for electricity around
the world. This burdening of the electricity grid has led to measures for increasing the
performance of the electricity distribution system by reducing loss, prevent overload
and reduce cost. The authors in [40–46] work on the improvement of grid performance
by minimizing cost and reducing power losses. Power loss minimization is specifically
targeted by [40,42,44]. Of these, Ettappan et al. [40] aim for the reduction of power losses,
voltage deviation and increasing voltage stability. Atteya et al. [44] also address this
problem by considering network redistribution to minimize losses in the grid whereas
Sakr et al. [42] focuses on minimizing transfer losses in the smart grid to accomplish
this task. Nguyen and Mohammadi [43] attempt the reduction of power losses and line
congestion by determining the location of thyristor controlled series compensator devices
(TCSC). The problem is formulated as a multi-objective problem aiming to minimize
loadability of the lines, active power loss and the reactance of the transmission line. A cost
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reduction-based approach to improve grid performance is followed by Das et al. [41] who
aim to reduce cost of maintaining electrical stability and also the cost of management of the
distribution network. The do this by considering changing the location of energy storage
systems within the grid. Kanwar et al. [45] take maximizing profits and minimization of
power losses while considering sizing of a distributed energy resource generation system.

Smart Grid 

Power Management 

Improved Grid
Performance 

Distributed
Energy

Resource
Management 

Planning 

Expansion of
Distribu�on

Network 

Objectives: Minimize power
loss, voltage deviation,

reactance, average
loadability, cost 
Maximize profit  

Constraints: Power flow
restrictions, location

limitations, operational
limitations. capacity limits,

load balances, power limits,
topology restrictions

Objectives: Minimize cost,
emissions 

Constraints: Power limits
(generation and

distribution), battery
charge/discharge limits,

load schedule restrictions,
capacity limits

Objectives: Minimize
expansion cost, number of

units, power losses

Constraints: Power flow
restrictions, generation

limits, infrastructure limits

IoT Usage: Loads and other devices in the power network can be swithced on and off as needed. Phase
measurement units for e.g., provide capability to obtain measurements in the smart grid

Figure 3. Optimization applications in Smart Grid.

Distributed energy resource (DER) management is another area where optimization
algorithms are used in Smart Grids. The management of distributed energy sources
within smart grids is dependent on the interconnectivity provided by IoT in the smart
grid system. Smart meters within the smart grid provide real-time information relating
to power consumption which can be used for controlling DER electricity. Moreover, IoT
devices allow for switching loads and generation sources as required. This assists in
creating a virtual power plant (VPP) to aggregate all energy sources in a DER scenario.
With global warming and a changing climate, utilities around the world are increasingly
incorporating various renewable energy sources within their grid which often times are
an economically convenient option as well. However, many of these sources such as wind
and solar (photo voltaic [PV]) do not offer a consistent supply of power throughout the day.
In this regard, systems such as batteries as well as conventional generation plants need to
be used together along with renewable energy sources. For utility companies, it is necessary
to optimize power production so that the maximum amount of energy is utilized from
these renewable sources so as to reduce cost to the user while also maintaining the quality
of service. The authors in [47–60] provide a management scheme for DERs to minimize cost.
In this regard, the authors in [47,48,50–52,55,58–60] all formulate the problem of distributed
energy resource management as a single objective problem where the cost incurred is
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minimized. On the other hand, the authors in [49,53,56,57] formulate this as a multi-
objective problem. Azaza and Wallin [57] not only target reduction of electricity production
cost but also maximize reliability of the system while reducing the environmental impact of
the distribution system. It is interesting to note that the improvement of system reliability
is formulated as a minimization problem as well. Similarly, Das et al. [49] consider the
reduction of both the total cost as well as the environmental cost of the system. Their
considered scenario also consists of a PV, Wind Turbine and battery. The constraints
considered were constraints regarding power flow, limitations on power and voltage
values, power balance constraint and power generation constraints on the renewable
energy sources. In [47,60], a DER management system is developed for a microgrid which
consists of a controllable collection of energy storage and generation sources powered by
IoT devices.

Planning in distribution networks has been considered by the work of [61,62]. Mahdavi
et al. [61] work on expanding transmission lines utilizing the artificial bee colony algorithm
to minimize cost of network expansion, power losses in load and generation. On the
other hand, Maji and Acharjee [62] aim to determine the minimum number of Phase
Measurement Units (PMUs) to make the distribution network observable. The constraints
used were power flow and balance of power as well as limits on the number of transmission
lines available. The internet of things also finds usefulness in terms of the use of Phase
Measurement Units (PMU) that provide voltage and current measurement capabilities
within smart grids to perform maintenance and monitoring operations. This has provided
in Table 5 and the data setups used by the covered research work is presented in Table 6.

Table 5. Optimization in Smart Grid.

Application Algorithm Single/Parallel
Problems Objectives Constraints

Power
Management
(Improve Grid
Performance)

ABC [40] Single

Minimize active power
loss, volage deviation and
voltage stability index
(L-index)

Power flow constraints

GA [42]
Restriction on power source
installations and other components
related to power structure

PSO [44,46] Single Minimize power loss Generation and other component
operations within limits

GA [43] Single

Minimize average
percentage of loadability of
the lines, active power loss,
reactance of transmission
line

Limitation on values of bus voltage

Transmission line capacity, generator
active and reactive power.

ABC [41] Single

Minimize cost for
maintaining thermal and
voltage stability and lower
asset management of
distribution networks

Active and reactive power must be
balanced

Limits on voltage and load maximum
ESS max charging and discharging
constraints
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Table 5. Cont.

Application Algorithm Single/Parallel
Problems Objectives Constraints

PSO [45] Parallel

Maximize annual profit by
reducing charges for
annual energy losses, peak
power loses etc

Constraint on the node voltage (soft)

Minimize power loss for
the network
reconfiguration

Power injected by DER and SG within
limit

Power generated at a given node has a
limit
For reconfiguration:
Radial topology,
Node voltages has a max hard
constraint

Power
Management
(Distributed Energy
Resource
Management)

ABC [50–52] Single Minimize total cost Power generation by renewables
within limits

DE [53–55] Battery charge and discharge limits
and system reliability

GA [47,48] Power balance constraint (generated
equal to consumed)

PSO [58–60] Specific loads are interruptible
Constraints on the efficiencies of the
sources

DE [56] Single Minimize cost and
emission

ABC [63] Single
Minimize cost and power
imported from outside
micro-grid

Power flow constraints for the DER

GA [49] Single

Minimization of cost of
energy and life cycle
emissions (CO2 and energy
stored in batteries or
converted by renewable
sources during process of
satisfying load
requirements)

Constraints on battery capacity

System reliability constraint
Energy produced equal or greater
sthan required

PSO [57] Single

Minimize reliability cost,
cost of electricity
production and operation
environmental impact
()using renewable factor)

Expansion of
distribution
network

ABC [61] Single

Minimize cost of network
expansion, active losses
and loss of load and
generation

Power flow and active power
balanced

Power generation limits
Number of transmission line limits

PSO [62] Single Minimize number of PMUs SG Network should be observable
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Table 6. Data setup used for Smart Grid.

Data Type Papers

Self-collected/Presented/Generated 25 Bus networks [49,53,55–60,63]
Government Agency/other research work [48,50–52,57,61]

Dataset/Standard Network

IEEE 14 Bus [42,62]
IEEE 30 Bus [40,42,43]
IEEE 33 Bus [41,44,45,54]
IEEE 37 Bus [47]
IEEE 57 Bus [40,42,62]
IEEE 69 Bus [45]
119 Node system of [46,64]

3.4. Smart Health

Smart health refers to the use of technology to provide better healthcare to patients.
This can be in the form of developing tools for better diagnosis of diseases or the use
of algorithms for better planning and healthcare delivery. The deployment of timely
emergency vehicles to a person in need is imperative towards providing healthcare services
to people. Two applications of optimization problems within Smart Health are emergency
vehicle routing and their allocation and relocation as shown in Figure 4. It also summarizes
the objectives uses, constraints considered and role of IoT.

Smart Health 

Emergency
Vehicle

Alloca�on and
Reloca�on 

Emergency
Vehicle Rou�ng 

Objectives: Minimize time,
cost

Constraints: Traffic balance,
traffic flow restrictions,

vehicle speed and number
limits, location of

emergency vehicle

Objectives: Minimize time,
vehicle density 

Constraints: Road connection
restrictions, time limits 

IoT Usage: Real time location services, real time traffic
information, vehicle to vehicle and vehicle to infrastructure

communication can also provide better navigation and monitoring
services

Figure 4. Optimization applications in Smart Health.
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Late arrival of ambulances and other emergency vehicles to people in need may result
in irreversible damage to life and property. Studies have shown that delayed ambulance
dispatch increases mortality [65], moreover, economically speaking, a one-minute delay in
response time for cardiac patients found that the mortality increases by 1% and adds annual
costs of USD 7 billion in healthcare expenditure [66]. Keeping this in mind ambulance
deployment and location determination have been of considerable interest in the area of
optimization for smart health. These two problems are specific cases of the Vehicle Routing
Problem [67] and Maximum coverage problem [68] sometimes called the Ambulance Rout-
ing Problem [69] and Ambulance Location Problem [70]. The authors in [71] work on the
optimal allocation determination based on fixed sites and a finite number of ambulances
while minimizing lateness of ambulance arrival using the Ant Colony Optimization. Later
on, in their work in [72], they do a comparison with using GAs and find that GAs provide
the better performance. Kochetov and Shamray [73] attempt localization of ambulance
fleet at base stations with the aim to minimize the average waiting time for arrival of
ambulances. An interesting approach to this problem is presented in Yan et al. [74] who
work on this problem from a scheduling perspective where they control scheduling of
emergency vehicles to reduce the total cost in terms of money and time using a Genetic
Algorithm. Another approach for sequencing vehicles to ensure emergency vehicles reach
their destination in time is presented by Lu et al. [75] who aim to prioritize emergency
vehicle thoroughfare on traffic intersections. They do this by minimizing the entrance time
of the vehicle by manipulating vehicle order. Constraints used for these problems include
constraints on the speed of the ambulances, the flow of vehicles on the road, specific road
connections present as well as time constraints. The internet of things serves a pivotal role
in enabling the allocation and routing of emergency vehicles. The connectivity provided by
IoT through vehicle-to-vehicle communication as well as vehicle to infrastructure commu-
nication facilitates providing a real-time indication of the vehicle’s location as well as the
condition of traffic in a given area. This information can then be used to determine an opti-
mal route for emergency vehicles as well as for their optimal deployment to serve people
in need. Information about optimization methods for smart health has been presented in
Table 7 and the data setups used in these approaches in Table 8.

Table 7. Optimization in Smart Health.

Application Algorithm Single/Parallel Problems Objectives Constraints

Emergency Vehicle
Allocation and
Relocation

ACO [71] Single Minimize lateness Ambulance from nearest hospital is
dispatched

GA [72] Speed of ambulance
Total number of ambulance limits

GA [73] Single
Minimize average
waiting time of
ambulances

Balance constraints on exit and entry
volumes

Flow conservation constraints

GA [74] Single Minimize total cost in
money and time

Emergency Vehicle
Routing PSO [76] Single

Minimize travel time,
road length traveled,
density of vehicles on
the road

Road connections are specific

GA [75] Single

Minimize the entrance
time of emergency
vehicle by changing
the order of vehicles
going through
intersections

Constraint on the difference between
arrival times of current and previous
vehicles and on the entrance time of the
vehicle
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Table 8. Data setup used for Smart Health

Data Type Papers

Self-collected/Presented/Generated [71–76]
Government Agency/other research work [72–74]

3.5. Smart Homes

Home energy management has been the prime application of optimization in smart
homes, a summary of the objectives, constraints and the use of IoT has been shown in
Figure 5.

Smart Homes 

Home Energy Management 

Appliance
Scheduling 

Objectives: Minimize
cost, time, peak to

average power ratio,
discomfort 

Constraints: Capacity
limits, flow, one level

per location

IoT usage: Sensors for providing power consumption data and other environmental
readings such as temperature etc for comfort determination in homes, smart meters

provide interconnectivity betwen homes

Figure 5. Optimization applications in Smart Homes.

Home energy management refers to the development of demand side management
schemes that aim to reduce the electricity cost billed to a customer or maintain comfort for
the user. One way this is performed is by appropriate appliance scheduling. The idea here
is to schedule the usage of appliances in such a way that the most power-hungry devices are
turned on during off peak hours when electricity costs might be lower. The combination of
the Smart Grid and Smart Homes facilitates the development of optimization schemes that
not only benefit the customer (in terms of reduced electricity costs and maintaining comfort)
but also be useful for the utilities in ensuring that load profiles (though minimizing the
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peak to average ratio) are more consistent thereby allowing better planning of the power
generation mix used by them. The authors of [77] perform appliance scheduling for the pur-
pose of minimizing electricity cost and the waiting time for appliance usage. Interestingly,
they incorporate comfort maintenance by adding it as a constraint. A similar approach has
been followed by Bui et al. [78] and Makhadmeh et al. [79] who aim to minimize the cost
of electricity usage with a constraint for maintenance of comfort. Makhadmeh et al. [79]
also include the reduction of waiting time rate for appliances by the user and the reduction
of the peak to average ratio of the power consumed as constraints. The authors in [80–83]
perform appliance scheduling while considering electricity cost and peak to average ratio
which need to be minimized. All of the authors present a multi-objective function for this
purpose combining the objectives of minimizing the cost and the peak to average power
ratio. Azimi et al. [84] combine the problem of reducing cost and power together as a
single objective by considering the minimization of the ratio of operating cost and load
factor in a battery supported system. The works of [85–89] also consider user comfort
as part of the objective. In [85], Essiet and Wang form a multi-objective minimization
problem of electricity cost, peak to average ratio for power and discomfort of users in a
smart home supported by a renewable energy system consisting of a battery and PV system.
In Chanra et al. [90], the authors aim to reduce electricity cost by appliance scheduling
in such a manner so as to make as much use of onsite energy units as possible so as to
reduce usage of utility provided electricity. The energy units they consider are a diesel
generator, renewables and battery. Another approach that aims to reduce cost of consumed
electricity is presented by Faia et al. [91] who formulate it as a problem of minimizing the
energy bill and the cost associated with curtailment of power in a system with a battery
and a photovoltaic system. The work in [88,92–94] also perform appliance scheduling to
reduce cost of electricity. Appliance scheduling for smart homes has also been performed
by Fatima et al. [81] and Abid et al. [80] considering a microgrid for homes where instead of
optimizing data from single homes, the authors used data from connected smart meters to
determine an optimized control scheme for appliances across the grid. The constraints used
for optimization in smart homes are on the comfort needing to be maintained, constraints
on the powerflow, time of operation, the maximum power that is present or used and which
appliances are switchable appliances. Appliance scheduling is based on smart meters as
well as individual control and monitoring of appliances using IoT systems. IoT devices
enable the microgrid which is used to gather data as well as control the switching on and
off of sources from the houses electricty supply. The information gathered from these
IoT units can be processed to optimize energy consumption patterns to reduce cost to the
customer as well as increase comfort. The use of the considered optimization schemes for
smart homes has been presented in Table 9 with the data setups presented in Table 10.

Table 9. Optimization in Smart Homes.

Application Algorithm Single/Parallel
Problems Objectives Constraints

Home Energy
Management ACO [77] Single Minimize cost and

waiting time Comfort needs to be maintained

ACO [80] Parallel Minimize cost and peak
to average ratio Power flow constraints

ACO [81] Single Minimize cost and peak
to average ratio Maximum energy capacity constraint

DE [82] Device counted that can be shifted is
positive

PSO [83]
Number of devices shifted at any time
should not be more than the available
number of controllable devices
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Table 9. Cont.

Application Algorithm Single/Parallel
Problems Objectives Constraints

GA [95] Single
Minimize peak to
average ratio for load
shaping

Load shaping, redistribution of load in
a flexible manner

GA [84] Single
Minimize ratio of
operating cost and load
factor

Charging and discharging of batteries

Complete load transfer and load
clipping limits

DE [85] Single

Minimize electricity
cost, peak to average
ratio of power and
discomfort
minimization of users

Constraints on PV supply limits

ACO [86] State of charge and rate of discharge of
battery

DE [87] Single Minimize electricity
cost and discomfort

Time of operation within specified
limits

PSO [89]
Temperature, air quality, illumination
and energy should be within
maximum limits

GA [63,88,96] Parallel A given appliance must be on for
specified times of the day
Power limits to be followed

ABC [78] Single Minimize cost of
electricity

Appliances for comfort have fixed
times

DE [90,92] Some appliances cannot be delayed
GA [93] Power balance constraints

PSO [79,94] Surplus solar power sold back to
distribution system
Maintain zero net energy in building
Time constraints
Load safety factor
Load phases of appliances fulfill
energy requirements
Comfort needs to be maintained
Peak to average power ratio balancing

PSO [91] Single
Minimize energy bill
and cost associated
with KWH curtailment

Power values within limits, battery
charge and discharge limits

Table 10. Data setup used for Smart Homes.

Data Type Papers

Self-collected/Presented/Generated [63,77–85,87,88,92–94,96]
Government Agency/other research work [79–81,85,89–91,95,96]

3.6. Smart Industry

One of the biggest enablers of the Industry 4.0 concept has been the use of AI tech-
niques to improve the efficiency of the manufacturing and production process. This has led
to the development of cyber physical systems aiming to assist in activity recognition [97],
machine health prediction [98] and production management in terms of bottleneck predic-
tion [99]. Apart from conventional AI applications of anomaly detection, classification and
regression, computational optimization also finds numerous applications as it fits well with



Sensors 2022, 22, 4380 19 of 34

the objective of efficient and streamlined manufacturing. The major applications for the use
of computational optimization have been in the area of routing and location for logistics and
are variations of the vehicle routing problem and are typically represented as Multidepot
Vehicle Routing Problem (MVRP), Vehicle Routing Problem Pick-up and Delivery with
Time Windows (VRPPDTW) or Large-scale Dynamic Vehicle Routing Problem (LSDVRP).
Figure 6 summarizes the objectives utilized, constraints and the role of IoT in optimization
for Smart Industry.

Smart Industry 

Loca�on Determina�on of sites Rou�ng for Logis�cs 

Objectives: Minimize
transportation,

establishment and
distribution cost, Maximize

profit

Constraints: Number of
sites need to be met,
distance coverage for
locations, time limits,

capacity, demands need to
be met

Objectives: Minimize
distance travelled, CO2
emissions, number of

vehicles, time, fuel, cost

Constraints: Customer
served only once, route is
continuous, demand limits,

vehicle count limits,
vehicle load limits, speed,
time and distance limits,

time limits

IoT Usage: Sensing units provide information relating to the loads to be
collected as well as traffic and other information

Figure 6. Optimization applications in Smart Industry.

The authors in [100,101] use the ABC and the GA respectively to determine the
best location of service sites for logistic operations. Both these approaches use multi-
objective formulations aiming to reduce cost of operations, transportation as well as the
establishment of the centers. The authors in Su et al. [102] use ACO, Alinaghia et al. [103]
PSO and Utama et al. [104] use ABC to address the problem of determining the best route for
logistics operations. The routing and coverage problem for logistics involves determining
the best route for either a single or multiple vehicles at a depot which have to visit every
customer. The works of [102–104] focus on reducing the cost incurred in the routing for
vehicles in logistics as a single objective formulation. On the other hand, the authors
of [105–107] all work on the minimization of distance as their objective in determining
the optimal route for delivery vehicles trying to serve multiple locations. Mounia and
Bachir [106] address routing in logistics as a multi-objective problem where they not only
aim to minimize the distance traveled by the vehicles but also aim to reduce CO2 emissions
and the number of vehicles used. A time based optimization approach is presented by
the authors of [108,109] also factoring in reduction of fuel consumption in their objective
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function formulation. Constraints used for the routing and location determination problem
are related to time, capacity constraints for the vehicles, each customer being served only
once, constraints related to the route. The determination of the location and the route for
vehicles is dependent on real time information concerning the traffic in the area as well the
loads to be collected from each site in addition to other information which can be provided
by IoT units. The usage of optimization algorithms for smart industry has been presented
in Table 11 with data setups presented in Table 12.

Table 11. Optimization in Smart Industry.

Application Algorithm Single/Parallel Problems Objectives Constraints

Location
determination for sites ABC [100] Single

Minimize transportation
and hub establishment
cost

Single allocation for each demand node

A given number of hubs are established
Covering radius constraint
Time reliability constraint

GA [101] Parallel Minimize distribution cost
and maximize profit Load capacity meets needs of customers

A delivery vehicle can only be delivered
when it receives a task
Capacity constraints

Routing for Logistics ABC [106] Parallel
Minimize distance
travelled, CO2 emissions,
number of vehicles used

Every customer visited only once

Every vehicle visiting a location must leave
it too
Ensure route continuity
Demands of any route must not exceed
capacity
Edges satisfying time window constraint
are allowed.

ABC [107] Single Minimize total
transportation distance Each customer served only once

GA [105] Route should start and end at the same
depot
Served demand of each vehicle does not
exceed capacity limit

ACO [102] Single Minimizing total cost Each customer served only once

PSO [103] Dispatched vehicles not more than
available

ABC [104] Vehicle routes don’t contain disconnected
routes
Customer demand shouldn’t be larger than
vehicle capacity

ABC [109] Single Minimize travelling time Vehicle load constraint
Subtours not allowed
Speed, time and distance
Maximum number of vehicles on a route
Each customer served by one vehicle
Vehicle number max limit

PSO [108] Parallel
Minimize fuel
consumption and travel
time

Each customer serviced by only one vehicle

Continuity in route
Vehicle load conservation between nodes,
First in first out proper when traveling time
is computed
Time taken for customers as stated,
Maximum time for servicing
Vehicle capacity constraint
Depot is the first and final destination of
each vehicle
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Table 12. Data setup for Smart Industry.

Data Type Papers

Self-collected/Presented/Generated [100,101,105,109]
Government Agency/other research work [102,104,106,107,109]

Dataset/Standard Network Test instances in [110] used by [103,108]

3.7. Smart Infrastructure

Within the infrastructure domain, the most common optimization problem is the area
of health monitoring of structures. Structural Health Monitoring (SHM) is a necessary
application within the smart infrastructure domain as it makes for safe usage of different
structures of public use. These structures can be buildings as well as transport structures
such as bridges, tunnels. Structural health monitoring typically involves the use of sensors
attached to a structure at several points that can gauge some type of physical variable
(vibration, strain, acceleration, temperature, tilt etc) from the structure. Data gathered from
these connected sensors is then used to determine if any structural damage has taken place
or not. Within the domain of SHM, optimization algorithms find application towards the
Optimal Sensor Placement Problem (OSP) as illustrated in Figure 7. Figure 7 summarizes
the objectives used, constraint and the use of IoT.

Smart Infrastructure 

Op�mal Sensor Placement 

Objectives: Minimize error,
redundancy 

Maximize sensor coverage,
connectivity, relaibility

Constraints: Sensor placement
locations limitations, number of

sensors limited

IoT usage: The placement of sensors
especially is performed using IoT

where connected sensors povide the
data using which optimization is

performed

Figure 7. Optimization applications in Smart Infrastructure.

For the optimal sensor placement problem (OSP), the aim is to determine the best
number and placement of sensors over a structure so as to reduce the number of sensors
used as well as improve the measurement process, both these aims result in increased
reliability of the SHM system as well as potentially lower the cost of the system too.
The authors in [111–115] work on the placement of sensors for structural health moni-
toring focusing on improving the effectiveness of the deployed system. In this regard,
refs. [111,114] use the genetic algorithm to solve a multi-objective problem aiming to mini-
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mize the measurement error and cost. Yang et al. in [113] formulate OSP as single objective
minimization where they aim to reduce the ratio of sensor placement performance to
the redundancy of information resulting from each tested placement. Another approach
that works on the error is presented by [112] who use the Particle Swarm Optimization
to maximize the reconstruction accuracy and robust transfer relationship between the
deformation and surface strain with different sensor placements. It must be noted that the
objective function is formulated as minimization of negated accuracy and negated robust-
ness measurement. Optimized structural health monitoring for aircraft monitoring has
been targeted in [116]. In their setup consisting of vibration sensors, the authors optimize
sensor placement by minimizing the cross correlation of the vibration waves in the sensing
network. The most common constraint for sensor placement is restrictions on the places
where sensors can be placed. This information has been provided in Table 13 and the data
setups are presented in Table 14.

Table 13. Optimization in Smart Infrastructure.

Application Algorithm Single/Parallel
Problems Objectives Constraints

Sensor placement GA [111] Single
Minimize measurement
error and measurement
cost

PSO [112] Single

Maximize
reconstruction accuracy
and robustness of
transfer relationship
between deformation
displacement and
surface strain
(formulated as a
minimization problem
for negated accuracy
and robustness)

Sensor placements within predefined
range and angles

GA [113] Single

Minimize the ratio of
sensor placement
performance to
redundancy
information

Sensor placement is permitted on
chosen location

GA [114] Single

Minimize the MAE
between the system
and the estimated
response (global error)
and minimize the
maximum difference
between the system
and its estimated
response (local error)

Sensor locations are from a set of
predefined locations

DE [115] Single

Maximize quality of
coverage, lifetime,
connectivity uniformity
of sensor nodes and
cluster heads and
reliability

Constraint on the number of cluster
heads associated with each sensor
node and cluster head

GA [116] Single
Minimize cross
correlation of the
sensing network

Sensor placement is permitted on
chosen location
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Table 14. Data types for Smart Infrastructure.

Data Type Papers

Self-collected/Presented/Generated [111–114,116,116–118]

3.8. Smart Transportation

One of the most popular optimization applications within smart cities are within the
smart transport domain. These include parking system routing, traffic signal control and
scheduling. A summary of the applications, their objectives, constraints and the role of IoT
is illustrated in Figure 8.

Smart Transporta�on 

Traffic Signal
Control 

Traffic Rou�ng 

Parking System
Rou�ng 

Road Traffic
Rou�ng 

Objectives: Minimize
time delay

Constraints: Traffic
volume constraint, traffic
flow constraint, duration

of traffic light phases 

IoT usage: For parking, IoT nodes indicate to free parking spots from which data is
gathered and sent to the cloud. Connected vehicles are also another source of IoT data

used for navigation purposes along with data from cellphones. 

Objectives: Minimize
travel distance, traffic

congestion

Constraints: Roadmap
to be followed is fixed,
road connections fixed 

Objectives: Minimize
travel time, delay,

emissions, traffic flow

Constraints: Road
connections are fixed,
number of routes are

fixed 

Figure 8. Optimization applications in Smart Transportation

Smart transport systems consist of sensors along roads and traffic intersections to mea-
sure relevant parameters while also providing communication services between vehicles
and infrastructure. This allows for measurement of the current state of roads in terms
of traffic congestion and usage thereby allowing for the use of optimization techniques
to improve trip experiences for users and make the transportation system more efficient.
The authors in [119–123] work on the minimization of time (wait and travel) in traffic
signal control. The aim of such systems is to reduce traffic build up on signal intersections.
Of these, the work in [119–121] use the artificial bee colony and the genetic algorithm
respectively for a single objective function of minimizing delay time. An interesting ap-
proach for this problem is presented by Li et al. [123] who use a multi objective formulation
targeting the minimization of the average travel time both overall and individually for all
vehiclesl. Another multi-objective approach in traffic signal control is presented by Chen
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and Yuan [124] who form a mixed problem of minimizing vehicle emissions and travel time
together. Korkmaz [125] work on the estimation of delays in traffic signals using a genetic
algorithm, they use it to minimize the difference between the estimated and simulated
values. Tang et al. [122] carry out distributed optimization in a fog and cloud hierarchy.
First, fog nodes optimize phase timings within a single cycle and if the number of vehicles
exceeds a threshold, the results are sent to the central controller to further optimize over
different cycles so that a traffic jam is avoided or alleviated. Zhang et al. [126] attempt
traffic signal optimization using multi objective optimization functions of reducing time
delay and increasing traffic capacity. Constraints used for traffic signal control are timing
constraints on the phase durations, flow rate of vehicles and on the travel time.

Traffic routing is also another important aspect in smart transportation. This typically
involves the determination of the best route to the destination keeping in view various
criteria such as reduction of distance, time, cost etc. The problem of traffic routing is
addressed by the works of [127–137]. The authors in [129,130] use the ant colony opti-
mization and genetic algorithm to minimize the travel distance in parking system routing.
They aim to minimize distance traveled by a driver looking to find a free parking spot,
using the algorithm, an optimized route is determined for the parking spot. In [131–133]
the ant colony optimization algorithm is used to determine the best route in a generic
traffic scenario where cars can communicate with road side units in a Vehicular Adhoc
NETwork (VANET) architecture. Routing for public transport is performed by [134,138]
in a connected vehicle scenario aiming to minimize travel time. An economic objective
approach to traffic routing is taken by the authors of [127,136,137] who minimize the total
cost of the trip. Mao [127] also include traffic congestion and travel time as well in their
computation. Hassoune et al. [139] work on a parking guidance using the ant colony
optimization algorithm to reduce traffic congestion and minimize distance. Constraints
for traffic routing are related to the road network allowing travel in specific directions,
signaling and travel time. Within smart transportation, IoT nodes are used to determine
occupied parking spaces and this data is used for routing applications in parking. Traffic
routing is based on vehicle to vehicle and vehicle to infrastructure communication provided
by VANETs within the IoT framework. These systems enable cars to exchange data with
each other and also with fixed infrastructure on the roads. This discussion is also presented
in Table 15 and the data setups for the covered work are presented in Table 16.

Table 15. Optimization in Smart Transportation.

Application Algorithm Single/Parallel
Problems Objectives Constraints

Traffic signal
control ABC [138] Single Minimize travel time Interval of feasible green time length values

ABC [128] Interval of feasible offset time length values
Constraints on cycle lengths

ABC [119,120] Single Minimize time delay Only one active stage
GA [121,122] Flow dynamic constraint

GA [123] Parallel
Minimize time delay and also
achieve traffic network
equilibrium

Link volume constraint

Constraints on duration of green/red phases
Offset phase duration
Minimize average travel time.
Relationship between route and link flows
need to be maintained as defined

GA [124] Single Minimize vehicle emissions
and travel time for vehicles

Sum of green time of each phase is equal to
total available green time
Green time is set by a lower bound
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Table 15. Cont.

Application Algorithm Single/Parallel
Problems Objectives Constraints

GA [126] Parallel

Minimize delay, and exhaust
emission and maximize traffic
capacity (formulated as
minimization problem)

Cycle length of signals has minimum and
maximum limits

Traffic Routing
(Parking System) ACO [129] Parallel

Minimize distance with bend
straightening and turn
reduction

Bend straightening and turn reduction

ACO [139] Parallel
Reduce traffic flow and
shortest distance towards
parking

GA [130] Single Minimize distance Specific prefixed routes possible for free
parking

Traffic Routing
(Road Traffic) ACO [131,132] Single Minimize distance, minimize

congestion Follow roadmap

ACO [133] Single Maximize flow

ACO [134] Single Minimize travel time
Constraint on relationship between green time
lengths cycle length, offset on the network
calculation

GA [135] Interval of feasible green time length values
Interval of feasible offset time length values
Specific road segments
Connected constraints on the values of time
taken for vehicles

DE [136] Single Minimize travelling cost and
rental cost Each bus has one employee

Employees can be assigned when stop is
available
Bus stop assigned when bus is in use
Constraint on distance of bus stop from
employee home and more

DE [137] Single Minimize total cost Road network connections followed
Solutions contains correct number of routes

ACO [127] Single
Minimize transit time, travel
distance, road congestion and
traffic expenses

Variable value constraints

Table 16. Data types for Smart Transportation.

Data Type Papers

Self-collected/Presented/Generated [119–124,126,128–133,135,138,139]
GovernmentAgency/other research work [119,121,123,124,128,130,134–137]

4. Recommendations

This survey discussed the application scenario for optimization algorithms within
the IoT based Smart Cities in terms of objectives, constraints and formulations. There are
several takeaways from this exercise. The first aspect observed was the lack of standardized
datasets being utilized by the methodologies covered as discussed in the various sections.
This limits the ability to effectively compare proposed methodologies for a similar problem.
This issue was less observed for the case of Smart Grids where standardized network
architectures were used. The use of standardized test sets would enable a fair comparison
of competing methodologies. Another aspect would be the use of more detailed statistical
analysis of experiment data such as running time than mean, standard deviation etc as
has been mentioned by [7]. Such analysis would help to understand better the effects of
different constraints on the algorithm better also help with comparative analysis with other
methodologies. For the nature of coverage herein, it would contribute to possibly looking
at performance of cross-smart city component applications which are similar.
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5. Future Work

While this review presents a coverage of the current state of IoT enabled Smart City
optimziation applications, there are several avenues of future work that have been identified
as well.

5.1. Novel Applications

While combinatorial optimization algorithms have found wide ranging applications
in all aspects of a city’s operations for e.g., in planning [140,141] and scheduling [142],
it is expected that as more aspects of a city are instrumented and data gathering takes
place, applications of optimization algorithms which work on real-time measurements
will be further developed. With newly instrumented systems, one could also leverage
machine and deep learning algorithms for predicting a variable of interest and then utilize
optimization algorithms for a given application. Such a combination could spearhead
optimization application development. Apart from prediction, machine learning could be
used for classification purposes too in conjunction with combinatorial optimization schemes.
One such application could be in the industry where worker activity recognition [143] is
performed and such data is collected for then scheduling operations in cooperation with
automated machine processes using heuristics.

5.2. Hybrid Algorithms

The aim of hybrid methodologies is to combine the best performance characteristics of
different algorithms to reach to an optimal solution for an optimization problem. There have
been several works which combine multiple optimization techniques. For e.g., the authors
in [144] use a combination of a PSO and GA to solve the ambulance location and allocation
problem. They do this in a subproblem form with the objective being the minimization
of the mean waiting time of the injured people and the response time between stations
and affected areas. The constraints are balance of flow, cost of open stations, number of
ambulances given to an areas satisfying its requirements, one affected area served by one
station, station ambulance capacity is respected and that no ambulances allocated if station
is closed. It is expected that work towards hybrid algorithms algorithms will increase the
applicability of combinatorial optimization in smart cities. Such a hybrid system has been
used in Smart Agriculture by [145] also utilizing a GA and a modified PSO algorithm.

5.3. Novel Nature Inspired/Heuristic Algorithms

Ant colony, Genetic algorithms and Particle Swarm Optimization, Differential Evolu-
tion and Artificial Bee Colony algorithms for solving Smart City optimization problems
were considered during the survey. However, there were some attempts that were based on
other evolutionary or collective behavior of other living organisms. Examples of such algo-
rithms include the use of shuffled frog leaping optimization, graywolf optimization [146]
for power management and also for traffic routing [147], earthworm optimization [148] for
power management in smart grid, vehicle routing using simulated annealing [149] and
several different ones for home energy management [150] and elephant herding optimiza-
tion [151] as well in addition to others.

5.4. Distributed Optimization Scheme

As the computation power at the edge increases, the methodologies which utilize a
distributed optimization scheme to fully utilize the IoT capabilities they operate in can
potentially provide better performance. Herein, there could be multiple objectives and
each can be optimized at a lower level before optimization is performed at a higher one
are bound to increase. One such example was suggested by Tang et al. [122] who carry out
distributed optimization in a fog and cloud architecture. First, fog nodes optimize phase
timings within a single cycle and if the vehicles exceeding number increases a threshold,
the results are sent to the central controller to further optimize over different cycles so that
a traffic jam is avoided or alleviated.
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5.5. Use of Reinforcement Learning

Reinforcement learning (RL) has the potential to provide solutions to combinatorial
optimization problems as covered in [152]. The idea is to use machine learning and
reinforcement learning to get rid of human created heurists which may lead to optimizations
towards local optimums. Agents can be trained to search for these heuristics to automate
the process. ML and RL methods have been observed to be faster compared to metaheuristic
methods for solving optimization problems as noted by [152], especially for large problems.
Such methods could be useful for applications within the IoT based Smart City landscape.
It must be noted however that the usage of RL and ML towards combinatorial optimization
problems is still a growing research area. An example of such use is its use for traffic signal
control as described in [153].

6. Conclusions

This paper provides coverage of the application of five popular computational algo-
rithms in the IoT enabled Smart City. It provides a mapping of the various applications
to the specific smart city domain as well as highlights the different formulations of the
objective function used to solve the considered problem. This coverage is provided in
terms of the number of objectives as well as whether the problem was solved as a single
objective, in a hierarchical manner or otherwise. It also highlights the constraints used
by the researchers in solving the problem which is an important aspect as constraints are
governed by the application at hand. An overview of the mapping of various smart city
optimization applications derived from this work is provided in Figure 9.
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Figure 9. Optimization applications in IoT based Smart Cities.

Figure 10 illustrate the distribution counts for each of the algorithms considered in
this survey. It was found that genetic algorithms was found to be most commonly used
optimization scheme as can be seen from Figure 10 and was used a total of 33 times
in the approaches covered in the survey as has been observed by. This inspite of the
fact that GAs are more computationally intensive than PSO with the latter being faster as
well [154]. However, it must be noted that the performance of any optimization algorithm is
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problem dependent [154]. The PSO algorithm was used the most for smart grid applications
whereas ACO and GA were equally used for Smart Transportation. When looking at the
difference between the uses of bio-inspired (PSO, ACO, ABC) and nature-inspired (GA, DE)
algorithms, it was observed that bio-inspired algorithms were used more times at 53 vs.
45 respectively as the proposed technique. This indicates that nature inspired algorithms,
even though relatively newer, are getting increasing traction for use in various applications
relating to Smart Cities.

Figure 11 illustrates the counts for the different ways in which the objective function
was solved. It can be observed that even though there were nearly similar number of
multiple and single objective function formulations (59 and 51 respectively), the solutions
for these were mostly derived as a single problem. This meaning that the objectives were
combined in some form (such as weighted combination of two or more objectives).
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Figure 10. Count of different algorithms used with respect to Smart City Component.
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Figure 11. Solution scheme for problems with respect to Smart City Component.

Another interesting observation from this review was on the formulations of simi-
lar standard combinatorial optimization problems within different smart city domains.
For e.g., the vehicle routing problem exists in smart health (emergency vehicle routing),
smart transportation (traffic routing and public transport routing) as well as in smart in-
dustry (routing for logistics). While, the objective of the routing problem in various papers
was observed to target time incurred for the trip, the constraints incorporated domain
knowledge in to the problem. That is, routing in the smart industry included constraints on
visiting all depots while for smart health and smart transport, constraints included speed
and road traffic. These insights highlight the difference in working on similar optimization
problems in different smart city domains.
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This review will help researchers in the field of computational optimization for smart
cities to develop better problem formulations for the problems encountered in IoT based
smart cities. It will also provide new researchers starting in the field by presenting them
with an overview of the optimization scope within the IoT supported Smart City domain.
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