
1 0

LA- U R-

Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Los Alamos
N A T I O N A L L A B O R A T O R Y

MAKING CORBA OBJECTS PERSISTENT: THE

OBJECT DATABASE ADAPTER APPROACH

Francisco Carlos R. Reverbel

COOTS '97
Portland, OR
June 1997

Los Alamos National Laboratory, an affirmative actiodequal opportunity employer, is operated by the University of California for the
US. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow

others to do so, for US. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the US. Department of Energy. The Los Alamos National Laboratory strongly supports

academic freedom and a researcher's right to publish: as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness. Form 836 (10/96\

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Portions of this document may be iIlegibie
in electronic image produe Images are
produced from the best avaiiable original
dOCKUleXlL

Making CORBA Objects Persistent: the Object Database Adapter

Approach*

Francisco C. R. Reverbel
reverbel0acl.lanl.gov

1 Introduction

In spite of its remarkable successes in promoting stan-

dards for distributed object systems [13], the Ob-

ject Management Group (OMG) has not yet set-

tled the issue of object persistence in the Object Re-

quest Broker (ORB) environment. The Common Ob-

ject Request Broker Architecture (CORBA) specifi-
cation [6] briefly mentions an Object-Oriented Data-

base Adapter that makes objects stored in an object-

oriented database accessible through the ORB. This
idea is pursued in the Appendix B of the ODMG stan-

dard 111, which identifies a number of issues involved

in using an Object Database Management System

(ODBMS) in a CORBA environment, and proposes
an Object Database Adapter (ODA) to realize the

integration of the ORB with the ODBMS.

Possibly because this proposal was perceived by

many as biased towards object-oriented databases,

and hence distant from the mainstream database
world, no further OMG specifications have contem-

plated the ODA approach. Instead, a Persistence

Object Service (POS), designed to accommodate the

widest possible variety of data stores, was introduced

in [7]. So far POS failed to deliver its promise. At-

tempt to this fact, the OMG recently issued an RFP
for POS version 2.0:

“While the industry posses many products

from OMG members that could be consid-
ered to be in this space, it is clear that virtu-

ally none have compliant POS implementa-
tions in their product roadmaps. Most have

taken the route of point integrations with

ORB products.’’ ([lo], page 20)

Meanwhile, recognition that the ODA approach is

not exclusive to object-oriented databases appears to

*This research was performed at the Advanced Computing
Laboratory of Los Alamos National Laboratory, Los Alamos,
NM 97545, as part of the Sunrise Project.

have grown in the industry. Object-relational map-

pers - systems that map C++ classes/objects into

relational tables/tuples - have been employed to

make relational databases appear as object-oriented

ones. Because such mappers implement an ODBMS
interface on top of a relational system, they extend

to relational databases the applicability of the ODA

approach. The benefits of integrating ORBS and

ODBMSs include:

Database Heterogeneity. ORB/ODBMS integra-

tion allows the construction of distributed object
databases that can be heterogeneous even with

respect to the DBMS software running on the

database server nodes.

“IDL views”. Access to database objects through

IDL interfaces does not require knowledge of the
database schema: changes in the schema are

transparent to IDL clients. Interfaces can be de-

fined to expose only data items that certain users

are permitted to read or update. Hence IDL in-

terfaces to database objects can play a role anal-
ogous to relational views, both for data indepen-

dence and for authorization purposes.

Language Heterogeneity. Databases can be ac-

cessed by CORBA clients written in any lan-

guage for which a mapping from IDL is defined.

Security. The ORB’S remote method invocation

mechanism requires much less trust in the client

than the data-shipping approach employed by

pure object-oriented DBMSs.

This paper discusses the design and implementa-

tion of an ODA that integrates an ORB and an
ODBMS with C++ bindings. For our purposes, an

ODBMS is a system with programming interfaces
similar to the ones specified in [l]. It may be a pure

object-oriented DBMS (an OODBMS), or a combi-
nation of a relational DBMS and an object-relational

mapper.

1

http://reverbel0acl.lanl.gov

An ODA based on the ideas presented here was

developed as part of the Sunrise Project1 at the Los

Alamos National Laboratory (LANL). This adapter

has been used by the TeleMed system [3] since mid

1995, and is currently employed by other LANL

projects as well. We have implemented it for two

ORBs, Orbix and VisiBroker for C++, with Object-

Store as the underlying ODBMS in both cases. Even

though our implementation work was aimed at a non-

ODMG compliant ODBMS, we report our experience
in ODMG terms whenever possible.

1.1

ODBMSs integrate database capabilities with an

object-oriented programming language. They im-

plement persistent memory, a single-level store ab-

straction of the memory hierarchy. An ODBMS

with C++ bindings provides a persistent address
space for C++ objects, with heap-style alloca-

tion/deallocation. ODBMS programmers manipulate
persistent C++ objects in the same way they manip-

ulate objects in the transient heap.

Nevertheless, a CORBA server implemented in
C++ cannot simply place in persistent memory the

objects it implements. To have the status of a
CORBA object, a C++ object must be registered

with the ORB, which keeps a per-server-process ta-
ble of active objects. The details of how C++ objects

are registered as CORBA objects are not fully spec-

ified by the current release of CORBA2 . In existing

ORBs, CORBA objects are registered upon creation.

The following approaches are currently used by ORB
implement at ions :

The Case for an ODA

1. A server may create CORBA objects only via
calls to the ORB, usually to the BOA: :create

function.

2. A server can instantiate CORBA objects di-

rectly. The constructor of a CORBA object ex-
ecutes IDL-generated code that registers the ob-

ject with the ORB.

The ODBMS, however, provides an overloaded

form of operator new for persistent object creation.
If the ORB enforces approach 1 above, then there is

clearly no way of placing a CORBA object in per-

sistent memory. If the ORB supports approach 2,

one could naively instantiate “persistent CORBA ob-

jects”. This would not work, because the constructor

of a persistent object is invoked only when the object

‘See http: //www. a c l . lanl. gov/sunrise/sunrise . h t m l .

’This led to portability problems [SI, which the OMG is
about to solve [2].

is added to the database. As far as the ORB is con-

cerned, “persistent CORBA objects” stored by other

processes (including previous runs of the same server

program) would not be active.

To make the ORB and the ODBMS work together,

an additional component is necessary. Driven by in-

coming requests, such component should activate ob-

jects that lie dormant in persistent memory. To al-

low on-demand activation of dormant objects, it must

ensure that object references handed out to CORBA

clients contain information on the location of the cor-

responding objects in persistent memory. Hence this

component has to be responsible for the generation
and interpretation of references to persistent objects.

In the OMG ORB architecture these responsibilities

belong to an Object Adapter.

I

1.2 The Role of the ODA

The primary role of the ODA is to provide CORBA

servers with an application-independent way of mak-

ing CORBA objects persistent. This includes ensur-
ing that references to persistent objects are them-

selves persistent. In CORBA, persistence of object
references means that “a client that has an object ref-

erence can use it at any time without warning, even
if the (object) implementation has been deactivated

or the (server) system has been restarted” [SI.

With persistence of object references, it makes per-

fect sense for a client to store an object reference for

later use. References to persistent CORBA objects
implemented by server X can be stored by server Y (a

client of server X), thereby enabling the construction
of ORB-connected multidatabases. In such a mul-

tidatabase, references to remote objects are used to

express relationships between CORBA objects imple-
mented by different servers.

Distributed transactions, in an ORB-connected

multidatabase, should be supported by a TP mon-
itor that implements the Object Transaction Service

(OTS) specified by the OMG [7]. In the absence of

this service3, the ODA has the additional role of en-
suring that operations on persistent objects are en-

compassed by local transactions. It interacts with

the ODBMS to start and commit (or abort) database
transactions.

3Several OODBMSs, including ObjectStore, do not yet sup-

port the resource manager interface required by OTS. This
service might also be absent simply because a particular appli-
cation does not need distributed transactions.

2

1.3 Organization of this Paper

The next section motivates and presents the general

design of the ODA. Section 3 discusses implementa-

tion issues; Section 4 considers transactions; Section

5 examines the ODA interfaces and their typical us-

age; Section 6 mentions related work; and Section 7
presents concluding remarks.

2 Design Decisions

Our perspective is the one of a third-party imple-

mentor, with no access to ORB and ODBMS internal

interfaces. Accordingly, our ODA is an add-on to the

ORB’S native Object Adapter (OA), rather than a
replacement for it. Figure 1 shows how it fits into the

integrated ORB/ODBMS environment.

I ORB core

ODBMS Server

II

Figure 1: The Object Database Adapter.

Note that the ODBMS is depicted as a separate

entity holding persistent objects. This representation

exposes the three-tiered nature of the ORB/ODBMS

environment: an object implementation - the mid-

dle tier - is at the same time a client of the ODBMS

and a server to CORBA clients. For simplicity, in a

subsequent figure we omit the ODBMS and represent

persistent objects within the CORBA server. The

reader should keep in mind that “persistence within

an object implementation” is a simplified representa-

tion of the architecture in Figure 1.

2.1 What to Place in Persistent Mem-

ory

A CORBA object has two parts: an IDL skeleton4
and a servant. The skeleton consists of ORB-specific

data members and member functions, all of them me-

chanically generated from an IDL specification. It

*We are not considering the case of CORBA objects imple-
mented with the Dynamical Skeleton Interface.

is an instance of skeleton cla server-side dis-

patcher generated by the IDL translator. The ser-
want5, sometimes called implementation object, en-

compasses the data members and member functions

actually defined by the object implementor. It is an

instance of a servant class, also know as implementa-

tion class, provided by the server writer.

The data members in the servant part of a CORBA

object are relevant to the application, the ones in the

skeleton part are relevant to the ORB only. If we

employ an ODBMS to make CORBA objects persis-

tent, we should certainly keep their servant parts in

persistent memory. Should we also place their skele-

ton parts in persistent memory? An obvious reason

for not doing so is waste of database space, specially

in the case of fine-grained objects6. Stronger reasons

are:

ORB Independence. Keeping ORB-specific data
members in persistent memory ties the data-

base to a particular ORB implementation. As

ORB products evolve, these data members may

change with ORB releases. Databases with

ORB-specific information would then have to go
through a schema evolution process.

Performance. Assuming that CORBA objects are
reference counted7, the skeleton part of a
CORBA object holds its reference count, which

is updated by the primitives duplicate and
release. Placing reference counts in persistent

memory means encompassing these primitives by

update transactions. Every operation that re-

ceives or returns a reference to a persistent ob-

ject would then require an update transaction,
because parameter passing involves duplicate

and re lease calls.

Only the servant parts of CORBA objects should

be placed in persistent memory. As the ODA acti-

vates and deactivates objects, it should dynamically

instantiate and release their skeleton parts, allocated

in transient memory. These observations lead us to a

clear choice with respect to the relationship between

skeletons and servants.

5We prefer this term, introduced in [4, 21, because imple-

mentation object is easily confused with object implementation

- a CORBA server, in the OMG terminology.
6Besides ORB-specific data members, the skeleton part of a

CORBA object typically has a pair of hidden vbase and vtable
pointers for each interface class in the object’s inheritance chain
up to CORBA: :Object.

7Although CORBA does not specify such implementation
details, most (if not all) ORB implementations keep a reference

count per object.

3

2.2 Delegation, Not Inheritance

Figure 2 shows the alternatives commonly used to

connect the parts of a CORBA object. In the inher-

itance approach, the object implementor derives ser-
vant classes from IDL-generated skeleton classes. In

the delegation approach, also known as tie approach,
instances of IDL-generated skeleton classes are called

t ie objects, or simply ties. Each tie holds a refer-

ence to a servant to which it delegates operations.

While inheritance imposes identical lifetimes to both
parts of a CORBA object, delegation allows servants

to outlive their skeleton objects. We therefore choose
delegation as the interface implementation approach

supported by the ODA.

Figure 2: Interface implementation approaches.

2.3 Pseudop ersist ence

Our decisions can be summarized as follows:

0 The ODA supports persistent CORBA objects

implemented with the delegation approach.

0 Object implementations keep only servants in
persistent memory.

0 The ODA is responsible for dynamically instan-
tiating and releasing transient ties to persistent

servants, so that full CORBA objects are avail-

able whenever they are needed.

Even though "persistent CORBA objects" are not

fully kept in persistent memory, to their clients they

appear as long-lived objects. Accordingly, we call this

scheme pseudopersistence. In what follows a pseudo-
persistent tie, or simply p-tie, is a transient tie t o a

persistent servant.

Figure 3 illustrates the pseudopersistence scheme.

A request to a dormant object arrives through the

ORB core (1), causing an upcall to an ODA-provided

object activation function. The i d field of the target

object reference is passed as a parameter t o this func-
tion. This i d contains a stringfied ODBMS reference

(dRef) to a persistent servant. The ODA extracts

the dRef from the i d and passes it as an argument

to an instantiation function (2), which constructs the

target CORBA object as a p-tie to the servant speci-
fied by the d R e f . The incoming request then reaches

the target object as an upcall through the IDL skele-

ton (3). At the end of the operation, another upcall to

the ODA (4) causes the target object to be released.

I

Object Implementation

Figure 3: The pseudopersistence scheme.

The object activation upcall in Figure 3 is trig-

gered by an incoming request is a dormant object.

Upcalls also happen in the case of dormant objects

referenced by request parameters, or by strings passed
to string-to-object.

3 Implement at ion Issues

The ODA is implemented as a library that uses and

extends the services of the native OA. It requires
changes on the IDL translation process, which now

must be ODA-aware. These changes, as well as the

actions of the ODA library, are examined below.

3.1 IDL Translation Issues

0 Any tie class has a data member that references

the servant to which ties delegate operations.

This data member is usually a C++ pointer or

4

reference. In the case of a p-tie class, however, it

must be a dRef.

Code to support the management of p-ties by
the ODA library must be generated within every

p-tie class. In our implementation, p-tie con-

structors and destructors perform ODA-related

actions. Moreover, each p-tie class makes avail-

able to the ODA library a static function for p-tie

instantiation .

The constructor of a p-tie class embeds into the

p-tie’s i d a stringfied dBef to the p-tie’s servant.

It also registers the p-tie with the ODA library; the

p-tie will be eventually unregistered by its destructor.

The p-tie instantiation function receives a dRef to

a persistent servant and creates a new p-tie to the

servant.

Special translation requirements do not necessar-

ily mean another IDL translator. Our ODA imple-

mentation actually employs the IDL translator pro-
vided by the ORB, complementing it with macros.

The object implementor annotates the server code

with ODA-defined directives, which macro-expand
into p-tie class definitions. These directives are typi-

cally placed in server header files.

3.2 ODA Actions

The ODA library receives object activation u p

calls from the native OA, forwarding each such

upcall to the appropriate p-tie instantiation func-

tion.

At the end of every operation, after any results
were marshaled into a reply message, the ODA

library issues r e l ease calls on all p-ties instan-

tiated while the current request was being ser-

viced.

Because the number of servants in a database is

potentially very large, a CORBA server cannot keep
in-memory ties to all the persistent servants it touches

during its execution. The last item above addresses
the need of releasing p-ties from time to time. Each

p-tie is instantiated with a “net reference count” of

zero - an initial reference count of one, plus a pend-

ing release call, to be performed by the ODA at the

end of the operation. Unless the servant code issues

duplicate calls on them, p-ties have short lifetime:

they exist while a request is being serviced. Whenever

a discarded p-tie is needed again, an equivalent to it

will be instantiated by an object activation upcall.

3.3 Caching P-ties

Releasing all p-ties at the end of every operation

appears unreasonable, since the ODA only needs to

ensure that these p-ties will be eventually released.

Postponing their destruction would avoid the costs

of successive p-tie reinstantiations. Our ODA imple-

mentation actually caches the last N p-ties it instan-

tiated, where N is a configurable parameter. At the

end of every operation, the ODA brings the number

of p-ties down to N +S, keeping the most recent ones.

(The S accounts for any dupl icate calls that might

have been issued by the servant code.)

Caching p-ties makes sense if the ODBMS ensures

that their dRef data members remain valid across

transactions. So far we have ignored database trans-

actions, this topic will be discussed in 4. Let us as-

sume, by now, that transactions are started and com-
mitted (or aborted) by means external to the CORBA

server, and that each operation is encompassed by an

individual transaction.

Does a dRef from transient to persistent memory

retain its validity across transactions? The ODMG

standard leaves the answer to the discretion of the

ODBMS implementor. In most ODBMSs, such a ref-
erence cannot be used in between transactions, but

does remain valid across transactions. This being the
case, the ODA should cache p-ties.

With caching, the servant code must have a way

of forcing the removal of objects from the cache. Ac-
cordingly, the ODA provides a function that receives

a CORBA: :Objectptr and immediately deletes the

corresponding p-tie. This function, ODA: :Delete, is

intended to be called by destructors of persistent ser-

vants, with the purpose of avoiding dangling p-ties.

3.4 Converting Servants into CORBA

The ODA must provide the servant code with the

means for obtaining a CORBA object given its ser-
vant. For each association (interface, servant-class)

there is an ODA-generated function that takes a
dRef to a servant and returns a reference (of type

interface-ptr) to the corresponding CORBA object.
To avoid multiple p-ties to a servant, this function is

not implemented as a mere call t o p-tie instantiate. It
first checks it if a p-tie to the servant already exists,

then it returns a duplicated reference to either an

existing p-tie or a newly instantiated one.

A non-standard bind function, present in various

ORBS, could be used to perform the check mentioned
above. Given a dRef to a servant, one would convert

it to string and obtain an id , which would then be

Objects

5

passed as an argument to bind. The ODA does not

use this approach. Instead, it keeps pairs

(dRef , p-tie-address)

in its own table of active p-ties, which it hashes by

dRefs with a hash function provided by the ODBMS.

3.5 Usage of Non-standard ORB and

ODBMS Features

The ODA relies on the delegation approach, which

is mentioned - but not mandated - by CORBA.

Orbix and VisiBroker are examples of commercially

available ORBs that support delegation. Both admit
direct instantiation of ties, automatically registering

newly instantiated ties as active CORBA objects.

Because the current release of CORBA describes

object activation in very general terms, ORB imple-
mentations vary widely on their support to object

activations The ODA builds upon the native OA’s
object activation capabilities. Its Orbix implemen-
tation uses a Loaderclass instance; the VisiBroker

implementation uses an Activator.

Various ORBs provide non-standard “event han-

dling” or “request /reply intercepting” facilitiesg. The
ODA needs such a facility both to release p-ties and to

manage database transactions in the absence of OTS

(see 4). Its Orbix implementation uses a F i l t e r ; the

VisiBroker implementation uses an EventHandler.

From the ODBMS, the ODA requires a means of

converting dRef s to strings and vice-versa. Although

supported by many ODBMSs, this feature is not in

the ODMG standard.

4 Transactions

Any access to persistent memory has to be performed

within a transaction. Leaving to the servant code the

responsibility of starting and committing (or abort-

ing) transactions is not an option, because accesses

to persistent memory happen both before and after

the servant code is called

In order to delegate an operation to its servant,

a p-tie must access persistent memory. The p-tie

must dereference its dRef data member, which

points to persistent memory.

8The OMG is working actively to correct this situation [8,

gThe OMG has recently introduced request level intercep-
tors [9] as an extension to the ORB core, but the standard
facility is not yet available in existing ORBs.

21.

Marshaling of operation results into a reply mes-

sage may involve accesses to persistent memory.

Usage of OTS [7] would ensure that not just ser-

vant method execution, but also request dispatching

and parameter marshaling would be performed within

transactions. Since OTS interacts directly with the

local resource manager (the ODBMS), transactions

would be started and committed (or aborted) by

means external to the CORBA server.

If OTS is absent, the ODA must take the responsi-

bility of starting and committing (or aborting) local

transactions. Not with the aim of performing dis-

tributed two-phase commit, but just t o ensure that

a transaction will be active whenever an operation is

dispatched, and will remain active till the operation
results are marshaled into a reply message. We did

not have OTS, so this was our scenario.

4.1 Support to Local Transactions

The ODA manages local transactions by employing

ORB-specific “event handling” or “request/reply in-
tercepting” facilities. Its default transaction mode
is transaction per operation: an “incoming request

pre-marshal” handler starts a transaction as soon as

a request arrives, an “outgoing reply post-marshal”

handler ends the transaction just before the reply is

sent. The servant code may specify if the current
transaction will be committed or aborted at the end

of the operation. By default, the ODA commits the

transaction. Under control of the servant code, the
ODA may also switch to another transaction mode,

which allows multiple operations to be grouped into

a single transaction.
Because ObjectStore requires the transaction type

(read-only or update) to be specified when a trans-

action starts, update operations must be registered
with the ODA. Registration of update operations is

typically done by the server mainline. By default, the
ODA starts read-only transactions. In the case of op-

erations previously registered as update operations,

it starts update transactions.

5 ODA Interfaces and Usage

The CORBA server interacts with the ODA through
a very small API. Besides ODA-generated functions

that return an interface-ptr given a dRef and vice-

versa, there are just a few static functions available

to the server code:

0DA::init ialize

ODA : : registerxpdate-ops

6

0 ODA : :Delete

0 ODA: :multi-op-transactionmode

0 0DA::abort-transaction

0 0DA::commit-transaction

Note that there is no specific function to create or ac-

tivate a persistent CORBA object: object activation

may occur as a side effect of the conversion of a dRef

into CORBA object reference.

Given an interface class X and a persistent servant

class X - i to which X delegates operations, the function

X-ptr ODAX-i-toX(const d_RefCX-i>&) ;

translates a dAef < X i > into the corresponding X-ptr.
This function, defined at the file scope, is generated

by the ODA directive that “ties together” X and X-i .

A member function of the ODA-generated p-tie class

performs the reverse translation (to dRef <Xi>).
The ODA is not an intrusive presence in the

programming environment. In our experience, the

vast majority of ODA calls is performed to obtain

an interface-ptr from a dRef. Except for these,
ODA calls are relatively rare in the server code.

ODA: : i n i t i a l i z e is called by the server’s mainline

only. Calls to ODA : : registerllpdate-ops typically

appear only in the server’s mainline only, and would
not be necessary in the case of an ODMG-compliant

ODBMS. 0DA::Delete is invoked from destructors of

persistent servant classes. In the default transaction

mode, servants do not normally call transaction man-
agement functions.

5.1 Server Organization

Persistent relationships between CORBA objects
within a server are actually realized by relationships

between their corresponding servants. When travers-
ing database relationships or performing a database

query, the servant code deals only with persistent ser-

vants, not with full CORBA objects. Such a traver-

sal or query is therefore executed at ODBMS speeds.
Consider, for example, the case of an operation that

performs a search for a particular object within a col-
lection of objects. The whole search is performed at

the ODBMS level, without CORBA-activating any

of the objects of the collection. Its result, a dRef

to particular servant, is then converted to CORBA

object reference and passed back to the client. When

the servant code calls the ODA to perform such a

conversion, it obtains a duplicated reference to a

CORBA object managed by the ODA. Whether this

object was just activated or was already in the ODA

cache is irrelevant to the servant code, which in ei-

ther case assumes the responsibility of releasing the

reference.

Persistent relationships between CORBA objects

in different servers are realized via stringfied CORBA

references stored in persistent memory. These ref-

erences must be explicitly converted back to its na-

tive form for usage. Note that any database con-
taining CORBA object references is ORB-dependent,

because these references are ORB-dependent. ORB

independence is lost when we move on to an ORB-

connected multidatabase.

5.2 Servant Inheritance

Consider the IDL interfaces below.

interface X {

...
1;

interface x i : x {

...
1;
interface x2 : x {

1 ;

...

interface Y {

readonly attribute X x;

...
1;

Interface X defines operations that are common to
both X i and X2. Attribute x of Y has interface type

X; its most derived interface may be either X1 or X2.

A natural organization for the corresponding per-
sistent servant classeslO would be:

l0We adopt the convention of naming servant classes by ap-

pending an ‘‘3” (for “implementation”) to the corresponding

interface names.

7

c

6 Related Work
class X - i : public d-Object {

// abstract c lass

...
1;

c las s XI-i : public X - i {

...
1;

c lass X2-i : public X - i {

...
1;

c lass Y - i :

public :

public d-Object {

X-ptr x 0 ;

...
private :

d_Ref<X-i> x-i;

...
1;

X - i is an abstract class: any instance of this class is

an instance of either X I - i or X2-i. Class Y - i holds an
ODBMS reference to an instance of X - i in its private

data member x-i. The attribute accessor Y - i : :x()

returns a CORBA reference the object whose servant

is x-i.

Note, however, that there is no ODA-generated

function that takes a dRef<X-i> and returns an
X-ptr. The ODA provides this conversion function

only when the interface skeleton and the servant class

are tied together by delegation. This is never the

case for an inherited servant class, such as X-i . In

the example above, there are ODA-generated conver-

sion functions from dRef < X l i > to XI-ptr and from

d l e f <X2-i> to X2-ptr.

ODA users solve this problem by defining a virtual
member function, say g e t X p t r 0 , in class X-i . This
function, declared as pure virtual in X-i , is redefined
by the derived classes X I - i and X2-i as below:

X-ptr x2-i: :getX-ptrO {

return ODAX2-i-toX2(dIlef<X2-i>(this)) ;

1

If the servant inheritance chain were longer, all ab-

stract servant classes would define getX-ptr() as

pure virtual.

The work about to be concluded at the OMG, in

the context of the ORB Portability Enhancement

RFP [8, 21, will reduce the ODA dependencies on

non-standard ORB features. The ODA is easily im-

plementable on top of the Server Framework Adapter
(SFA) proposed in [2]. Moreover, our pseudopersis-

tence scheme is essentially a realization of the ODMG

model for SFA, as outlined in the Appendix C of [2].

A number of ORB and ODBMS vendors has an-

nounced plans for the integration of their products;

some of these integrated solutions are already being

delivered. Probably the first one was Iona Tech-

nologies’s OrbixfObjectStore Adapter (OOSA) [5] ,
whose beta release became available by late 1995.

Since then, Iona has integrated Orbix with Versant,
and has announced plans for integrating Orbix with

0 2 and Persistence.

Iona’s OOSA takes advantage of the particular way

CORBA objects are laid out by the ORB. In Orbix,
not all data encapsulated by a CORBA: :Object in-

stance appears directly in its data members. Instead,

a data member of CORBA: :Object points to an aux-
iliary object. Some of the “logical” data members of
CORBA : : Object are actually in this auxiliary object.

The object reference count is one of them.

Unlike the ODA, which stores only servants, OOSA

actually stores CORBA objects in ObjectStore data-

bases. A CORBA object, however, is not stored in
their entirety: to avoid the performance penalty of

having object reference counts in persistent mem-
ory, OOSA does not store the auxiliary object in the

database. Instead, it dynamically instantiates auxil-

iary objects as persistent CORBA objects are made

available in ObjectStore’s client cache. When such

an auxiliary object is instantiated, the corresponding
CORBA object is inserted into the per-process ta-

ble of active objects maintained by Orbix. This ap-

proach allows persistent CORBA objects to be imple-

mented either by inheritance or by delegation. It also
allows object relationships to be expressed in terms of

CORBA objects, not just at the servant level. Its dis-
advantages are some waste of database space, ORB-

dependent databases, and the performance penalty of
object activations triggered by database accesses.

7 Concluding Remarks

We have presented the design and implementation of
an ODA that allows execution of database traver-

sals and queries at the full speed of the underlying

ODBMS. Only what needs to be persistent is kept

8

I

in persistent memory; ODA users are not forced to

store ORB-specific information persistently. Data-

bases are ORB-independent unless the user explicitly

places ORB-specific data (such as stringfied object
references) in persistent memory. Finally, the ODA

design appears to be general enough to be applica-

ble to any ODBMS. Objectstore’s virtual memory-

based architecture makes it different from all other

ODBMSs in many aspects. That the ODA design

can be described in ODMG terms, and yet be im-

plemented for Objectstore, is strong evidence of its

applicability to any ODBMS.

The ODA’s pseudopersistence scheme appears to
be an optimal solution for integrated ORB/ODBMS

environments in which object relationships are mostly
confined within a CORBA server. In such a scenario,

there is no reason to express database relationships at

the CORBA level, as they are much more efficiently

realized at the servant level.

The motivation for representing database relation-

ships at the CORBA level might arise in the context

of an ORB-connected multidatabase with many cross-

server references. Expressing persistent relationships

between objects in different servers via stringfied
CORBA references placed in persistent memory may
be inconvenient in this case. Consider, for example,

a situation in which it would be desirable for a server

to have a persistent and homogeneous collection of

object references, whose elements may refer to either

local or remote objects. This is not possible in the

pseudopersistence scheme. Instead of a uniform col-
lection, two distinct sub-collections must be used: one

with dRefs t o local servants, other with stringfied

CORBA references to remote objects. Intra-server

references and inter-server references could be uni-

fied if the Object Adapter provided support for per-
sistently representing both at the CORBA level. To

be useful, this unification should allow transparent

use of stored CORBA references to invoke methods

on possibly remote objects. Note, however, that in-
curring the cost of such a unification - the perfor-

mance penalty of expressing intra-server references
at the CORBA level - would be worthwhile only

if cross-server references occurred much more than

inter-server references.

[2] DEC, Expersoft, HP, IBM, ICL, IONA, Novell,

SunSoft, and Telefbnica I+D. O R B Portabil-

ity Joint Submission, Draft 5. OMG Document

orbos/96-12-02, December 1996.

[3] D. W. Forslund and others. Full reference to be

provided later.

[4] Hewlett-Packard, IBM, Novell, and SunSoft.

Server Framework Specification. OMG Docu-
ment orbos/96-05-03, May 1996.

[5] Iona Technologies. Object+ Objectstore Adapter
Dublin, Ire- - Beta Release Documentation.

land, 1995.

[6] Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specifica-

tion. Revision 2.0, July 1995.

[7] Object Management Group. CORBAservices:
Common Object Services Specification. Revised

Edition, March 1995. Updated November 1996.

[8] Object Management Group. ORB Portability

Enhancement RFP. OMG Document 95-06-26,

June 1995.

[9] Object Management Group. CORBASecun’ty.
Version 1.1, OMG Document Numbers 96-08-03

through 96-08-06, July 1996.

[lo] Object Management Group. Persistent Ob-

ject Service, version 2.0 - Request For Pro-

posal. OMG Document orbos/96-12-07, Decem-

ber 1996.

[113 F. C. R. Reverbel. Object Database Adapter Pro-

grammer’s Guide and Reference Manual. Ad-

vanced Computing Laboratory, Los Alamos Na-
tional Laboratory, Los Alamos, NM, August

1996.

[12] F. C. R. Reverbel. Persistence in Distributed Ob-
ject Systems: ORB/ODBMS Integration. PhD

thesis, University of New Mexico, Computer Sci-

ence Department, Albuquerque, NM, May 1996.

[13] S. Vinosky. Corba: Integrating diverse applica-
tions within heterogeneous environments. IEEE
Communications, 14(2), February 1997.

References

[l] R. G. G. Cattell, editor. The Object Data-
base Standard: ODMG-93, Release 1.2. Morgan

Kaufmann, 1996.

9

