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Abstract

We present a theoretically grounded approach to train

deep neural networks, including recurrent networks, subject

to class-dependent label noise. We propose two procedures

for loss correction that are agnostic to both application do-

main and network architecture. They simply amount to at

most a matrix inversion and multiplication, provided that

we know the probability of each class being corrupted into

another. We further show how one can estimate these prob-

abilities, adapting a recent technique for noise estimation

to the multi-class setting, and thus providing an end-to-end

framework. Extensive experiments on MNIST, IMDB, CIFAR-

10, CIFAR-100 and a large scale dataset of clothing images

employing a diversity of architectures — stacking dense,

convolutional, pooling, dropout, batch normalization, word

embedding, LSTM and residual layers — demonstrate the

noise robustness of our proposals. Incidentally, we also

prove that, when ReLU is the only non-linearity, the loss

curvature is immune to class-dependent label noise.

1. Introduction

Large datasets used in training modern machine learning

models, such as deep neural networks, are often affected by

label noise. The problem is pervasive for a simple reason:

manual expert-labelling of each instance at a large scale is

not feasible, and so researchers often resort to cheap but im-

perfect surrogates. Two such popular surrogates are crowd-

sourcing using non-expert labellers and — especially for im-

ages — the use of search engines to query instances by a key-

word, assuming the keyword as a valid label [5, 35, 3, 29, 17]

Both approaches offer the possibility to scale the acquisition

of training labels, but invariably result in the introduction of

label noise, which may adversely affect model training.

Our goal is to effectively train deep neural networks with

modern architectures under label noise. We do so by marry-

ing two different lines of recent research. The first strand is

work on ad-hoc deep architectures tailored to the problem,

primarily developed in Computer Vision [27, 32, 39, 42].

While some such approaches have shown good experimental

performance on specific domains, they lack a solid theoreti-

cal framework and often need a large amount of clean labels

to obtain acceptable results — in particular, for pre-training

or validating hyper-parameters [42, 17, 32].

The second strand is recent Machine Learning research

on theoretically grounded means of combating label noise.

In particular, we are interested in the design of corrected

losses that are robust to label noise [38, 28, 30]. Despite

their formal guarantees, these methods have not been fully

appreciated in practice because, crucially, they require noise

rates to be known a priori.

An estimate of the noise is often available to practitioners

by polishing a subset of the training data [42] — which is

useful and often necessary for model selection. Yet, inter-

estingly, recent work has provided practical algorithms for

estimating the noise rates [36, 34, 21, 26, 31]; remarkably,

this is achievable with absolutely no knowledge of ground

truth labels. To our knowledge, no prior work has combined

those estimators with loss correction techniques, nor has

either idea been applied to modern deep architectures. Our

contributions aim to unify these research streams:

• We introduce two alternative procedures for loss cor-

rection, provided that we know a stochastic matrix T
summarizing the probability of one class being flipped

into another under noise. The first procedure, a multi-

class extension of [28, 30] applied to neural networks,

is called “backward” as it multiplies the loss by T−1.

The second, inspired by [39], is named “forward” as it

multiplies the network predictions by T .

• We prove that both procedures enjoy formal robustness

guarantees w.r.t. the clean data distribution. Since we

only operate on the loss function, the approach is both

architecture and application domain independent, as

well as viable for any chosen loss function.

• We take a further step and extend the noise estimator

of [26] to our multi-class setting, thus formulating an
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end-to-end solution to the problem.

• We prove that for ReLU networks the Hessian of the

loss is independent from label noise.

We apply our loss corrections to image recognition on

MNIST, CIFAR-10, CIFAR-100 and sentiment analysis on

IMDB; we simulate corruption by artificially injecting noise

on the training labels. In order to show that no architec-

tural choice is the secret ingredient of our robustification

recipe, we experiment with a variety of network modules

currently in fashion: convolutions and pooling [20], dropout

[37], batch normalization [15], word embedding and resid-

ual units [11, 12]. Additional tests on LSTM [13] confirm

that the procedures can be seamlessly applied to recurrent

neural networks as well. Comparisons with non-corrected

losses and several known methods confirm robustness of

our two procedures, with the forward correction dominating

the backward. Unsurprisingly, the noise estimator is the

bottleneck in obtaining near-perfect robustness, yet in most

experiments our approach is often the best compared to prior

work. Finally, we experiment with Clothing1M, the 1M
clothing images dataset of [42], and establish the new state

of the art.

2. Related work

Our work leverages recent research in a number of differ-

ent areas, summarized below.

Noise robustness1. Learning with noisy labels has been

widely investigated in the literature [7]. From the theoreti-

cal standpoint label noise has been studied in two different

regimes, with vastly different conclusions. In the case of

low-capacity (typically linear) models, even mild symmet-

ric, i.e. class-independent (versus asymmetric, i.e. class-

dependent), label noise can produce solutions that are akin to

random guessing [22]. On the other hand, the Bayes-optimal

classifier remains unchanged under symmetric [28, 26] and

even instance dependent label noise [25] implying that high-

capacity models are robust to essentially any level of such

noise, given sufficiently many samples.

Surrogate losses. Suppose one wishes to minimize a loss

ℓ on clean data. When the level of noise is known a priori,

[28] provided the general form of a noise corrected loss ℓ̂
such that minimization of ℓ̂ on noisy data is equivalent to

minimization of ℓ on clean data. In the idealized case of

symmetric label noise, for certain ℓ one in fact does not need

to know the noise rate: [8] gives a sufficient condition for

which ℓ is robust, and several examples of such robust non-

convex losses, while [41] shows that the (convex) linear or

unhinged loss is its own noise-corrected loss. Another robust

non-convex loss is given in [24].

1We use the term robustness in its meaning of immunity to noise and

not generically as “adaptivity to various scenarios”, e.g. [6].

Noise rate estimation. Recent work has provided methods

to estimate label flip probabilities directly from noisy sam-

ples. Typically, it is required that the generating distribution

is such that for each class, there exists some “perfect” in-

stance, i.e. one that is classified with probability equal to one.

Proposed estimators involve either the use of kernel mean

embedding [31], or post-processing the output of a standard

class-probability estimator such as logistic regression using

order statistics on the range of scores [21, 26] or the slope

of the induced ROC curve [34].

Deep learning with noisy labels. Several works in Deep

Learning have attempted to deal with noisy labels of late,

especially in Computer Vision. This is often achieved by

formulating noise-aware models. [27] builds a noise model

for binary classification of aerial image patches, which can

handle omission and wrong location of training labels. [42]

constructs a more sophisticated mix of symmetric, asymmet-

ric and instance-dependent noise; two networks are learned

by EM as models for classifier and noise type. It is often the

case that a small set of clean labels is needed in order either

to pre-train or fine-tune the model [42, 17, 32].

The work of [39] deserves a particular mention. The

method augments the architecture by adding a linear layer

on top of the network. Once learned, this layer plays the role

of our matrix T . However, learning this architecture appears

problematic; heuristics such as trace regularization and a

fixed updating schedule for the linear layer are necessary.

We sidestep those issues by decoupling the two phases: we

first estimate T and then learn with loss correction.

We are not aware of any other attempt at either applying

the noise-corrected loss approach of [28] to neural networks,

nor on combining those losses with the above noise rate esti-

mators. Our work sits precisely in this intersection. Note that,

even though in principle loss correction should not be nec-

essary for high-capacity models like deep neural networks,

owing to aforementioned theoretical results, in practice, such

correction may offset the sub-optimality of these models aris-

ing from training on finite samples. Specifically, we expect

that directly optimizing the (corrected) objective we care

about will be beneficial in the finite-sample case.

3. Preliminaries

We begin by fixing notation. We let [c]
.
= {1, . . . , c} for

any c positive integer. Column vectors are written in bold

(e.g. v) and matrices in capitals (e.g. V ). Coordinates of a

vector are denoted by a subscript (e.g. vj), while rows and

columns of a matrix are denoted e.g. Vj· and V·j respectively.

We denote the all-ones vector by 1, with size clear from

context, and ∆c−1 ⊂ [0, 1]c the c-dimensional simplex.

In supervised c-class classification, one has feature space

X ⊆ R
d and label space Y = {ei : i ∈ [c]}, where ei

denotes the ith standard canonical vector in R
c by , i.e. ei ∈

{0, 1}c,1⊤ei = 1. One observes examples (x,y) drawn
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from an unknown distribution p(x,y) = p(y|x)p(x) over

X ×Y . We denote expectations over p(x,y) by Ex,y . Note

that each y only has one non-zero value at the coordinate

corresponding to the underlying label.

An n-layer neural network2 comprises a transformation

h : X → R
c, where h = (h(n) ◦ h(n−1) ◦ · · · ◦ h(1)) is the

composition of a number of intermediate transformations —

the layers — defined by:

(∀i ∈ [n− 1])h(i)(z) = σ(W (i)z + b(i)) ,

h(n)(z) = W (i)z + b(i) .

where W (i) ∈ R
d(i)×d(i−1)

and b(i) ∈ R
d(i)

are parameters

to be estimated3, and σ is any activation function that acts

coordinate-wise, such as the ReLU σ(x)i = max(0,xi).
Observe that the final layer applies a linear projection, unlike

all preceding layers. To simplify notation, we write:

(∀i ∈ [n])x(i) .
= h(i)(x(i−1)),

with the base case x(0) .
= x, so that e.g. x(1) is exactly the

representation in the first layer. The coordinates of h(x)
represent the relative weights that the model assigns to each

class i = 1, . . . , c to be predicted. The predicted label is

thus given by argmaxi∈[c] hi(x). In the training phase, the

output of the final layer is contrasted with the true label

y via two steps. First, h(·) passes through the softmax

function ehi(x)/
∑c

k=1 e
hk(x). The softmax output can be

interpreted as a vector approximating the class-conditional

probabilities p(y|x); we denote it by p̂(y|x) ∈ ∆c−1. Next,

we measure the discrepancy between label y = ei and

network output by a loss function ℓ : Y × ∆c−1 → R, for

example by means of cross-entropy:

ℓ(ei, p̂(y|x)) = −(ei)⊤log p̂(y|x) = −log p̂(y = ei|x) .
(1)

With some abuse of notation, we also define a loss in vector

form ℓ : ∆c−1 → R
c, computed on every possible label:

ℓ(p̂(y|x)) =
(

ℓ(e1, p̂(y|x)), . . . , ℓ(ec, p̂(y|x))
)⊤

∈ R
c .
(2)

In the following, formal results hold under very mild con-

ditions on a generic loss function ℓ; at times we provide

examples for the cross-entropy. For simplicity, one could

think of cross-entropy every time ℓ is mentioned.

2W.l.o.g., we assume all layers to be fully connected, or dense; for

example, convolutions can be represented by dense layers with shared

sparse weights.
3Here, d(0) = d, the original feature dimensionality, and d(n) = c, the

label dimensionality.

4. Label noise and loss robustness

We now consider label noise. We assume the asymmetric,

i.e. class-conditional noise setting [28], where each label y in

the training set is flipped to ỹ ∈ Y with probability p(ỹ|y);
feature vectors are untouched. Thus, we observe samples

from a distribution p(x, ỹ) =
∑

y p(ỹ|y)p(y|x)p(x). De-

note by T ∈ [0, 1]c×c the noise transition matrix specifying

the probability of one label being flipped to another, so that

∀i, j Tij = p(ỹ = ej |y = ei). The matrix is row-stochastic

and not necessarily symmetric across the classes.

This is an approximation of real-world corruption which

can still be useful in certain scenarios. One such case is that

of classes representing a fine-grained hierarchy of concepts,

for example dog breeds and bird species [17] or narrow cate-

gories of clothing [42]. Classes may be too similar between

each other for non-expert human labellers to distinguish,

regardless of the specific instances. Little is known about

learning under the more generic feature dependent noise,

with few exceptions [42, 8, 25].

We aim to modify a loss ℓ so as to make it robust to asym-

metric label noise; in fact, this is possible if T is known.

Under this assumption — that we relax later on — we intro-

duce two alternative corrections inspired by [28] and [39].

4.1. The backward correction procedure

We can build an unbiased estimator of the loss function,

such that under expected label noise the corrected loss equals

the original one computed on clean data. This property is

stated in the next Theorem, a multi-class generalization of

[28, Theorem 1]. The Theorem is also a particular instance

of the more abstract [40, Theorem 3.2].

Theorem 1 Suppose that the noise matrix T is non-singular.

Given a loss ℓ, backward corrected loss is defined as:

ℓ←(p̂(y|x)) = T−1ℓ(p̂(y|x)) .

Then, the loss correction is unbiased, i.e. :

∀x, Eỹ|x ℓ
←(y, p̂(y|x)) = Ey|x ℓ(y, p̂(y|x)) ,

and therefore the minimizers are the same:

argmin
p̂(y|x)

Ex,ỹ ℓ
←(y, p̂(y|x)) = argmin

p̂(y|x)

Ex,y ℓ(y, p̂(y|x)) .

Proof. Eỹ|x ℓ←(p̂(y|x)) = Ey|x Tℓ←(p̂(y|x)) =
Ey|x T T−1ℓ(p̂(y|x)) = Ey|x ℓ(p̂(y|x)) . �

The corrected loss is effectively a linear combination of

the loss values for each observable label, whose coefficients

are due to the probability that T−1 attributes to each possi-

ble true label y, given the observed one ỹ. Intuitively, we

are “going one step back” in the noise process described by
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the Markov chain T . The corrected loss is differentiable —

although not always non-negative — and can be minimized

with any off-the-shelf algorithm for back-propagation. Al-

though in practice T would be invertible almost surely, its

condition number may be problematic. A simple solution is

to mix T with the identity matrix before inversion; this may

be seen as taking a more conservative noise-free prior.

4.2. The forward correction procedure

Alternatively, we can correct the model predictions. Fol-

lowing [39], we start by observing that a neural network

learned with no loss correction would result in a predictor

for noisy labels p̂(ỹ|x). We can make explicit the depen-

dency on T . For instance, with cross-entropy we have:

ℓ(ei, p̂(y|x)) = −log p̂(ỹ = ei|x) (3)

= −log
∑c

j=1
p(ỹ = ei|y = ej) p̂(y = ej |x) (4)

= −log
∑c

j=1
Tji p̂(y = ej |x) , (5)

or in matrix form ℓ(p̂(y|x)) = −log T⊤p̂(y|x) . This loss

compares the noisy label ỹ to averaged noisy prediction

corrupted by T . We call this procedure “forward” correc-

tion. In order to analyze its behavior, we first need to recall

definition and properties of a broad family of losses named

proper composite [33, Section 4]. Consider a link function

ψ : ∆c−1 → R
c, invertible. Many losses are said to be

composite, and denoted by ℓψ : Y × R
c → R, in the sense

that they can be expressed by the aid of a link function as

ℓψ(y,h(x)) = ℓ(y,ψ
−1(h(x))) . (6)

In the case of cross-entropy, the softmax is the inverse link

function. When composite losses are also proper [33], their

minimizer assumes the particular shape of the link function

applied to the class-conditional probabilities p(y|x):

argmin
h

Ex,y ℓψ(y,h(x)) = ψ(p(y|x)) . (7)

Cross-entropy and square are examples of proper composite

losses. An intriguing robustness property holds for forward

correction of proper composite losses.

Theorem 2 Suppose that the noise matrix T is non-singular.

Given a proper composite loss ℓψ, define the forward loss

correction as:

ℓ→ψ (h(x)) = ℓ(T⊤ψ−1(h(x))) .

Then, the minimizer of the corrected loss under the noisy

distribution is the same as the minimizer of the original loss

under the clean distribution:

argmin
h

Ex,ỹ ℓ→ψ (y,h(x)) = argmin
h

Ex,y ℓψ(y,h(x)) .

Proof. First notice that:

ℓ→ψ (y,h(x)) = ℓ(y, T⊤ψ−1(h(x))) = ℓφ(y,h(x)) (8)

where we denote φ−1 = ψ−1 ◦ T⊤. Equivalently, φ =
(T−1)⊤ ◦ψ is invertible by composition of invertible func-

tions, its domain is ∆c−1 as of ψ and its codomain is R
c.

The last loss in Equation 8 is therefore proper composite

with link φ. Finally, from Equation 7, the loss minimizer

over the noisy distribution is

argmin
h

Ex,ỹ ℓφ(y,h(x)) = φ(p(ỹ|x)) (9)

= ψ((T−1)⊤p(ỹ|x)) = ψ(p(y|x)) , (10)

that proves the Theorem by Equation 7 once again. �

Recall that p̂(y|x) approximates p(y|x) and thus we can

relate to the result by taking any neural network that enough

expressive. Although, the property is weaker than unbiased-

ness of Theorem 1. Robustness applies to the minimizer

only, that is, the model learned by forward correction is the

minimizer over the clean distribution. Yet, Theorem 2 guar-

antees noise robustness with no explicit matrix inversion; the

“de-noising” link function φ does it behind the scene. This

turns out to be an important factor in practice; see below.

4.3. The overall algorithm

A limitation of the above procedures is that they require

knowing T . In most applications, the matrix T would be

unknown and to be estimated. We present here an extension

of the recent noise estimator of [21, 26] to the multi-class

settings. It is derived under two assumptions.

Theorem 3 Assume p(x,y) is such that:

(1) There exist “perfect examples” of each of class j ∈ [c],
in the sense that

(∃x̄j ∈ X ) : p(x̄j) > 0 ∧ p(y = ej |x̄j) = 1.

(2) given sufficiently many corrupted samples, h is rich

enough to model p(ỹ|x) accurately.

It follows that ∀i, j ∈ [c], Tij = p(ỹ = ej |x̄i) .

Proof. By (2), we can consider p(ỹ|x) instead of p̂(ỹ|x).
For any j ∈ [c] and any x ∈ X , we have that:

p(ỹ = ej |x) =
∑c

k=1
p(ỹ = ej |y = ek) p(y = ek|x)

=
∑c

k=1
Tkj p(y = ek|x) . (11)

By (1), when x = x̄i, p(y = ek|x̄i) = 0 for k 6= i. �

Rather surprisingly, Theorem 3 tells us that we can esti-

mate each component of matrix T just based on noisy class

probability estimates, that is, the output of the softmax of a
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Algorithm 1 Robust two-stage training

Input: the noisy training set S, any loss ℓ

If T is unknown:

Train a network h(x) on S with loss ℓ

Obtain an unlabeled sample X
′

Estimate T̂ by Equations (12)-(13) on X
′

Train the network h(x) on S with loss ℓ← or ℓ→

Output: h(·)

network trained with noisy labels. In particular, let X ′ be

any set of features vectors. This can be the training set itself,

but not necessarily: we do not require this sample to have

any label at all and therefore any unlabeled sample from the

same distributions can be used as well. We can approximate

T with two steps:

x̄i = argmaxx∈X′ p̂(ỹ = ei|x) (12)

T̂ij = p̂(ỹ = ej |x̄i) . (13)

In practice, assumption (1) of Theorem 3 might hold true

when X ′ is large enough. Assumption (2) of Theorem 3 is

more difficult to justify; we require that the network can per-

fectly model the probability of the noisy labels. Although, in

the experiments we can often recover T close to the ground

truth and find that small estimation errors have a mild, not

catastrophic effect on the quality of the correction.

Algorithm 1 summarizes the end-to-end approach. If

we know T , for example by cleaning manually a subset of

training data, we can train with ℓ← or ℓ→. Otherwise, we

first have to train the network with ℓ on noisy data, and obtain

from it estimates of p(ỹ|x) for each class via the output of

the softmax. After training T̂ is computable in O(c2 · |X ′|).
Finally, we re-train with the corrected loss, while potentially

utilizing the first network to help initializing the second one.

4.4. Digression: noise free Hessians via ReLU

We now present a result of independent interest in the

context of label noise. The ReLU activation function appears

to be a good fit for an architecture in our noise model, since it

brings the particular convenience that the Hessian of the loss

does not depend on noise, and hence the local curvature is

left unchanged. At the same time, we are assured that back-

ward correction by T — or any arbitrarily bad estimator of

the matrix — has no impact on those second order properties

of the loss — something that does not hold for the forward

correction though. We stress the fact that other activation

functions like the sigmoid do not share this guarantee. The

proof makes use of the factorization trick due to [30].

Theorem 4 Assume that all activation functions are Re-

LUs4. Then, the Hessian of ℓ does not change under noise.

Moreover, the Hessians of ℓ← and ℓ are the same for any T .

4A caveat: ℓ must be a linear-odd loss studied in [30]; cross-entropy and

loss correction Ex,ỹ Hessian of Ex,ỹ

ℓ - no guarantee unchanged

ℓ← T−1
· unbiased estimator of ℓ unchanged

ℓ→ T · same minimizer of ℓ no guarantee

Table 1: Qualitative comparison of loss corrections.

Proof. We give the proof for cross-entropy for simplicity;

see [30] for a generalization. When y = ei the loss is:

− log p̂(y = ei|x)i = −log
eW

(n)
i· x(n−1)+b

(n)
i

∑c

k=1 e
W

(n)
k· x

(n−1)+b
(n)
k

= −W
(n)
i· x

(n−1) + b
(n)
i + log

∑c

k=1
eW

(n)
k· x

(n−1)+b
(n)
k .

The only dependence on the true class ei above are the

first two terms. The log-partition is independent of the

precise class i. Evidently, the noise affects the loss only

through W
(n)
·i and b

(n)
i : those are the only terms in which

ℓ(y, p̂(y|x)) and ℓ(ỹ, p̂(y|x)) may differ. Therefore we can

rewrite the backward corrected loss as:

ℓ←(ej , p̂(y|x)) =
(

T−1ℓ(p̂(y|x))
)

j
(14)

= −
(

T−1W (n)
)

j·
x(n−1) −

(

T−1b(n)
)

j
(15)

+ log
∑c

k=1
eW

(n)
k· x

(n−1)+b
(n)
k . (16)

In fact, note that T−1 does not affect the log-partition func-

tion. To see this, let A(x) = log (
∑c

k=1 e
W

(n)
k· x

(n−1)+b
(n)
k ),

with the (vector) log-partition being A(x)1. It follows that

its correction is T−1A(x)1 = A(x)1, by left-multiplication

of T and because T1 = 1 since T is row-stochastic.

Thus ℓ←(ej ,hs (x)) = B(x) + A(x), where B(x) =
−(T−1W (n))j·x

(n−1) − (T−1b(n))j is a piece-wise linear

function of the model parameters, and the log-partition A(x)
is non-linear because of the loss and the architecture but does

not depend on noise. Since the composition of piece-wise

linear function is piece-wise linear, the Hessian of B(x) van-

ishes, and therefore the Hessian of ℓ← is noise independent

for any T . The same holds for ℓ (no correction) by taking

T = I and hence the Hessians are the same. �

Theorem 4 does not provide any assurance on minima:

indeed, stationary points may change location due to label

noise. What it does guarantee is that the convergence rate

of first-order methods is the same: the loss curvature cannot

blow up or flat out and instead it is the same point by point

in the model space. The Theorem advocates for use of ReLU

networks, in line with the recent theoretical breakthrough

allowing for deep learning with no local minima [16]. Table

1 summaries the properties of loss correction.

square loss are such. At the same time, we could generalize Theorem 4 to

any neural network that expresses a piece-wise linear function, including

for example max-pooling.

51948



5. Experiments

We now test the theory on various deep neural networks

trained on MNIST [20], IMDB [23], CIFAR-10, CIFAR-100

[18] and Clothing1M [42] so as to stress that our approach

is independent on both architecture and data domain.

5.1. Loss corrections with T known or estimated

We artificially corrupt labels by a parametric matrix T .

The rationale is to mimic some of the structure of real mis-

takes for similar classes, e.g. CAT → DOG. Transitions

are parameterized by N ∈ [0, 1] such that ground truth and

wrong class have probability respectively of 1−N,N . An

example of T used for MNIST with N = 0.7 is on the left:































1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 .3 0 0 0 0 .7 0 0
0 0 0 .3 0 0 0 0 .7 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 .3 .7 0 0 0
0 0 0 0 0 .7 .3 0 0 0
0 .7 0 0 0 0 0 .3 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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1 ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ
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ǫ ǫ .33 ǫ ǫ ǫ ǫ .67 ǫ ǫ

ǫ ǫ ǫ .35 ǫ ǫ ǫ ǫ .65 ǫ

ǫ ǫ ǫ ǫ 1 ǫ ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ ǫ .29 .71 ǫ ǫ ǫ

ǫ ǫ ǫ ǫ ǫ .73 .26 ǫ ǫ ǫ

ǫ .75 ǫ ǫ ǫ ǫ ǫ .25 ǫ ǫ

ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ 1 ǫ

ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ 1































(17)

Common to all experiments is what follows. The loss

ℓ chosen for comparison is cross-entropy. 10% of training

data is held out for validation. The loss is evaluated on it

during training. With the corrected losses we can validate on

noisy data, which is advantageous over other approaches that

measure noisy validation accuracy instead. The available

standard test sets are used for testing. We use ReLU for all

networks and initialize weights prior to ReLUs as in [10],

otherwise by uniform sampling in [−0.05, 0.05]. The mini-

batch size is 128. The estimator of T from noisy labels is

applied to X ′ being training and validation sets together. In

fact, preliminary experiments highlighted that the large size

X ′ improve sensibly the approximation of T ; after estima-

tion, we row-normalize the matrix. Following [26], we take

a α-percentile in place of the argmax of Equation 12, and

we found α = 97% to work well for most experiments; the

estimator performs very poorly with CIFAR-100, possibly

due the small number of images per class, and we found it is

better off computing the argmax instead.

Fully connected network on MNIST. In the first set of

experiments we consider MNIST. Pixels are normalized in

[0, 1]. Noise flips some of the similar digits: 2 → 7, 3 →
8, 5 ↔ 6, 7 → 1; see Equation (17, left). We train an ar-

chitecture with two dense hidden layers of size 128, with

probability 0.5 of dropout. AdaGrad [4] is run for 40 epochs

with initial learning rate 0.01 and δ = 10−6. We repeat each

experiment 5 times to account for noise and weight initial-

ization. It is clear from Figure 1a that, although the model

is somewhat robust to mild noise, high level of corruption

has a disrupting effect on ℓ. Instead, our losses do not wit-

ness a drastic drop. With T̂ estimated performance lays in

between, yet it is significantly better than with no correction.

An example of T̂ is in Equation (17, right), with ǫ < 10−6.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Comparison of cross-entropy with its corrections,

with known or estimated T .

Word embedding and LSTM on IMDB. We keep only the

top 5000 most frequent words in the corpus. Each review is

either truncated or padded to be 400-word long. To simulate

asymmetric noise in this binary problem, we keep constant

noise for the transition 0 → 1 at 5%, while 1 → 0 is param-

eterized as above; 0/1 are the two review’s sentiments. We

trained two models inspired by the baselines of [2]. The first

maps words into 50-dimensional embeddings, before passing

through ReLUs; dropout with probability 0.8 is applied to

the embedding output. In the second model the embedding

has dimension 256 and it is followed by an LSTM with 512
units and by a last 512-dimensional hidden layer with 0.5
dropout. AdaGrad is run for 50 epochs with the same setup

as above; results are averages over 5 runs. Figures 1b-1c

display an outcome similar to what previously observed on

MNIST, in spite of difference in dataset, number of classes,

architecture and structure of T . Noticeably, our approach

is effective on recurrent networks as well. Correcting with

T̂ is in line with the true T here; we believe this is because

estimation is easier on this binary problem.

Residual networks on CIFAR-10 and CIFAR-100. For

both datasets we perform per-pixel mean subtraction and
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data augmentation as in [11], by horizontal random flips and

32×32 random crops after padding with 4 pixels on each side.

T for CIFAR-10 is described by: TRUCK → AUTOMOBILE,

BIRD → AIRPLANE, DEER → HORSE, CAT ↔ DOG. In

CIFAR-100, the 100 classes are grouped into 20 5-size super-

classes, e.g. AQUATIC mammals contain BEAVER, DOLPHIN,

OTTER, SEAL and WHALE. Within super-classes, the noise

flips each class into the next, circularly.

For the last experiments we use deep residual networks

(ResNet), the CIFAR-10/100 architectures from [11]. In

short, residual blocks implements a non-linear operation

F (x) in parallel with an identity shortcut: x→ x+F (x). F
is as cascade of twice batch normalization → ReLU → 3×3
convolution, following the “pre-activation" recommendation

of [12]. Here we experiment with ResNets of depth 14 and

32 (CIFAR-10) and 44 (CIFAR-100). By common practice

[14], we run SGD with 0.9 momentum and learning rate

0.01, and divide it by 10 after 40 and 80 epoch (120 in total)

for CIFAR-10 and after 80 and 120 (150) for CIFAR-100;

weight decay is 10−4. Training deep ResNets is more time

consuming and thus experiments are run only once. Since we

use shallower networks than the ones in [11], performance

is not comparable with the original work. In figures 1d-

1f, forward correction does not suffer any significant loss.

Except with the shallowest ResNet, backward correction

does not seem to work well in the low noise regime. Finally,

noise estimation is particularly difficult on CIFAR-100.

5.2. Comparing with other loss functions

We now compare with other methods. Data, architectures

and artificial noise are the same as above. Additionally, we

test the case of symmetric noise where N is the probability of

label flip that is spread uniformly among all the other classes.

We select methods prescribing changes in the loss function,

similarly to ours: unhinged [41], sigmoid [8], Savage [24]

and soft and hard bootstrapping [32]; hyper-parameters of

the last two methods are set in accordance with their paper.

Unhinged loss is unbounded and cannot be used alone. In

the original work L2 regularization is applied to address the

problem, when training non-parametric kernel models. We

tried to regularize every layer with little success; learning

either does not converge (too little regularization) or con-

verge to very poor solutions (too much). On preliminary

experiments sigmoid loss ran into the opposite issue, namely

premature saturation; the loss reaches a plateau too quickly,

a well-known problem with sigmoidal activation functions

[9]. To make those losses usable for comparison, we stack a

layer of batch normalization right before the loss function.

Essentially, the network outputs are whitened and likely to

operate in a bounded, non-saturated area of the loss; note

that this is never required for linear or kernel models.

Table 2 presents the empirical analysis. We list the key

findings: (a) In the absence of artificial noise (first column

for each dataset), all losses reach similar accuracies with

a spread of 2 points; exceptions are some instances of un-

hinged, sigmoid and Savage. Additionally, with IMDB there

are cases († in Table 2) of loss correction with noise esti-

mation that perform slightly better than assuming no noise.

Clearly, the estimator is able to recover the natural noise in

the sentiment reviews. (b) With low asymmetric noise (sec-

ond column) results differ between simple architecture/tasks

(datasets on the left) and deep networks/more difficult prob-

lems (right); in the former case, the two corrections behave

similarly and are not statistically far from the competitors; in

the latter case, forward correction with known T is unbeaten,

with no clear winner among the remaining ones. (c) With

asymmetric noise (last two columns) the two loss corrections

with known T are overall the best performing, confirming

the practical implications of their formal guarantees; forward

is usually the best. (d) If we exclude CIFAR-100, the noise

estimation accounts for average accuracy drops between 0
(IMBD with LSTM model) and 27 points (MNIST); never-

theless, our performance is better than every other method

in many occasions. (e) In the experiment on CIFAR-100 we

obtain essentially perfect noise robustness with the ideal for-

ward correction. The noise estimation works well except in

the very last column, yet it guarantees again better accuracy

over competing methods. We discuss this issue in Section 6.

5.3. Experiments on Clothing1M

Finally, we test on Clothing1M [42], consisting of 1M

images with noisy labels, with additional 50k, 14k, 10k of

clean data respectively for training, validation and testing;

we refer to those sets by their size. We aim to classify images

within 14 classes, e.g. t-shirt, suit, vest. In the original work

two AlexNets [19] are trained together via EM; the networks

are pre-trained with ImageNet. Two practical tricks are

fundamental: a first learning phase with the clean 50k to

help EM (#1 in Table 3) and a second phase with the mix of

50k bootstrapped to 500k and 1M (#3). Data augmentation

is also applied, same as in Section 5.1 for CIFAR-10.

We learn a 50-layer ResNet pre-trained on ImageNet —

the bottleneck architecture of [11] — with SGD with learn-

ing rate 10−3 and 10−4 for 5 epochs each, 0.9 momentum,

and batch size 32. When we train with 50k we use weight

decay of 5 · 10−2 and data augmentation, while with 1M
we use only weight decay of 10−3. The ResNet gives an

uplift of about 2.5% by training with 50k only (#7 vs. #1).

However, the large amount of noisy images is essential to

compete with #3. Instead of estimating the matrix T by

(12)-(13), we exploit the curated labels of 50k and their

noisy versions in 1M . Forward and backward corrections

are confirmed to work better than cross-entropy (#6,#5
vs. #4), yet cannot reach the state of the art without the

additional clean data. Thus, we fine tune the networks with

50k, with the same learning parameters as in #7; due to
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MNIST, fully connected CIFAR-10, 14-layer ResNet

NO NOISE SYMM. N = 0.2 ASYMM. N = 0.2 ASYMM. N = 0.6 NO NOISE SYMM. N = 0.2 ASYMM. N = 0.2 ASYMM. N = 0.6

cross-entropy 97.9 ± 0.0 96.9 ± 0.1 97.5 ± 0.0 53.0 ± 0.6 87.8 83.7 85.0 57.6

unhinged (BN) 97.6 ± 0.0 96.9 ± 0.1 97.0 ± 0.1 71.2 ± 1.0 86.9 84.1 83.8 52.1
sigmoid (BN) 97.2 ± 0.1 93.1 ± 0.2 96.7 ± 0.1 71.4 ± 1.3 76.0 66.6 71.8 57.0
Savage 97.3 ± 0.0 96.9 ± 0.0 97.0 ± 0.1 51.3 ± 0.4 80.1 77.4 76.0 50.5
bootstrap soft 97.9 ± 0.0 96.9 ± 0.0 97.5 ± 0.0 53.0 ± 0.4 87.7 84.3 84.6 57.8
bootstrap hard 97.9 ± 0.0 96.8 ± 0.0 97.4 ± 0.0 55.0 ± 1.3 87.3 83.6 84.7 58.3

backward 97.9 ± 0.0 96.3 ± 0.1 96.6 ± 1.1 93.0 ± 0.9
⋆ 87.6 81.5 83.8 75.2

⋆

backward T̂ 97.9 ± 0.0 96.9 ± 0.0 96.7 ± 0.1 67.4 ± 1.5 87.7 80.4 83.8 66.7
forward 97.9 ± 0.0 97.3 ± 0.0

⋆
97.7 ± 0.0 97.3 ± 0.0

⋆ 87.8 85.6
⋆ 86.3 84.5

⋆

forward T̂ 97.9 ± 0.0 96.9 ± 0.0 97.7 ± 0.0 64.9 ± 4.4 87.4 83.4 87.0 74.8

IMBD, word embedding CIFAR-10, 32-layer ResNet

NO NOISE SYMM. N = 0.1 ASYMM. N = 0.1 ASYMM. N = 0.4 NO NOISE SYMM. N = 0.2 ASYMM. N = 0.2 ASYMM. N = 0.6

cross-entropy 86.7 ± 0.0 84.6 ± 0.1 85.0 ± 0.2 58.1 ± 0.5 90.1 86.6 89.0 53.6

unhinged (BN) 83.3 ± 0.0 76.9 ± 0.5 80.6 ± 0.3 72.9 ± 0.4 90.2 86.5 87.1 60.0
sigmoid (BN) 84.3 ± 0.0 80.2 ± 0.3 81.7 ± 0.5 72.8 ± 0.6 81.6 69.6 79.1 61.8
Savage 86.5 ± 0.0 84.3 ± 0.4 85.2 ± 0.3 58.3 ± 1.0 88.3 86.2 86.3 53.5
bootstrap soft 86.7 ± 0.0 84.5 ± 0.1 85.1 ± 0.1 57.8 ± 0.7 90.9 86.9 88.6 53.1
bootstrap hard 86.7 ± 0.0 84.6 ± 0.3 85.1 ± 0.3 59.0 ± 0.6 90.4 86.4 88.6 54.7

backward 86.7 ± 0.0 85.3 ± 0.3
⋆

85.7 ± 0.1 82.1 ± 0.1
⋆ 90.1 83.0 84.4 74.3

backward T̂ 87.0 ± 0.0† 85.1 ± 0.4 85.8 ± 0.2 77.0 ± 1.4 90.8 86.9 86.4 66.7
forward 86.7 ± 0.0 85.3 ± 0.2

⋆
85.9 ± 0.1 80.9 ± 1.3

⋆ 91.2 87.7 89.9 87.6
⋆

forward T̂ 87.0 ± 0.0† 85.2 ± 0.3 85.9 ± 0.2 73.0 ± 1.2 90.5 87.9 90.1 77.6

IMBD, word embedding + LSTM CIFAR-100, 44-layer ResNet

NO NOISE SYMM. N = 0.1 ASYMM. N = 0.1 ASYMM. N = 0.4 NO NOISE SYMM. N = 0.2 ASYMM. N = 0.2 ASYMM. N = 0.6

cross-entropy 87.8 ± 0.4 85.2 ± 0.5 86.8 ± 0.4 71.4 ± 1.3 68.5 57.9 63.5 17.1

unhinged (BN) 84.3 ± 4.4 69.7 ± 15.9 85.2 ± 1.2 59.4 ± 12.9 50.9 47.5 48.0 14.5
sigmoid (BN) 87.7 ± 0.5 77.6 ± 13.6 86.3 ± 3.1 70.0 ± 14.6 58.2 47.6 55.6 16.4
Savage 87.4 ± 0.3 85.1 ± 0.6 87.2 ± 0.3 70.4 ± 3.8 1.4 2.0 1.8 1.6
bootstrap soft 87.1 ± 0.6 83.5 ± 2.5 86.1 ± 1.2 69.0 ± 5.3 67.9 57.8 63.8 16.3
bootstrap hard 86.5 ± 0.5 84.3 ± 1.0 86.7 ± 0.4 71.8 ± 3.3 68.5 57.3 63.9 17.0

backward 87.6 ± 0.2 84.3 ± 0.9 86.7 ± 0.5 83.6 ± 1.4 68.5 55.1 53.8 36.8
⋆

backward T̂ 87.2 ± 0.7 82.8 ± 2.7 87.3 ± 0.1 82.3 ± 1.7 68.6 51.7 63.8 18.5

forward 87.5 ± 0.2 85.0 ± 0.2 87.0 ± 0.4 84.7 ± 0.6
⋆ 68.8 64.0

⋆
68.1

⋆
68.4

⋆

forward T̂ 87.8 ± 1.5† 84.1 ± 1.0 87.5 ± 0.2 84.2 ± 0.9 68.1 58.6 64.2 15.9

Table 2: Average accuracy with standard deviation (5 runs, left part) is bold faced when statistically far from the others, by

means of passing a Welch’s t-test with p-value < 5%; in case the highest accuracy is due to ℓ← or ℓ→ with the ground truth T ,

we denote those by ⋆ and highlight the next highest accuracy as well. For experiments with no standard deviation (right part),

the same rule is applied, but bold face is given to the all accuracies in a range of 0.5 points from the highest. The meaning

of N depends on symmetric vs. asymmetric noise and on number of classes (see Section 5.1). On the first columns with no

injected noise, † indicates when the noise estimation recovers some natural noise and beats “loss correction” with T = I .

Clothing1M
# model loss init training accuracy
1 AlexNet cross-. ImageNet 50k 72.63
2 AlexNet [39] cross-. #1 1M, 50k 76.22
3 AlexNet [42] cross-. #1 1M, 50k 78.24
4 50-ResNet cross- ImageNet 1M 68.94
5 50-ResNet backward ImageNet 1M 69.13
6 50-ResNet forward ImageNet 1M 69.84
7 50-ResNet cross-. ImageNet 50k 75.19
8 50-ResNet cross-. #6 50k 80.38

Table 3: Results on the top section are from [42]. In #2,#3
the clean 50k are bootstrapped to 500k. Best result #8 is

obtained by fine tuning a net trained with forward correction.

reasons of time we only tune #6. The new state of the art is

#8 that outperforms [42] of more than 2 percent, which is

achieved without time consuming bootstrapping of the 50k.

6. Discussion and Conclusion

We have proposed a framework for training deep neural

networks with noisy labels that boils down to two loss correc-

tions. Accuracy is consistently only few percent points away

from training cross-entropy on clean data, while corruption

can worsen performance of cross-entropy by 40 percent or

more. Forward correction often performs better. We believe

the reason is not statistical — Theorems 1 and 2 guarantee

optimality, in the limit of infinite data. The cause may be

either numerical (via matrix inversion) or a drastic change of

the loss (in particular its Hessian), which may have a detri-

mental effect on optimization. Indeed, backward correction

is a linear combination of losses for every possible label,

with coefficients that can be far by orders of magnitude and

thus makes the learning harder. Instead, forward correction

projects predictions into a probability distribution in [0, 1].
The quality of noise estimation is a key factor for obtain-

ing robustness. In practice, it works well in most experiments

with a median drop of only 10 points of accuracy with re-

spect to using the true T . The exception is the last column

for CIFAR-100, where estimation destroys most of the gain

from loss correction. We believe that the mix of high noise

and limited number of images per class (500) is detrimental

to the estimator. This is confirmed by the sensitivity of α.

Future work shall improve the estimation phase by incor-

porating priors of the noise structure, for example assuming

low rank T . Improvements on this direction may also widen

the applicability to massively multi-class scenarios. It

remains an open question whether instance-dependent noise

may be included into our approach [42, 25]. Finally, we

anticipate the use of our approach as a tool for pre-training

models with noisy data from the Web, in the spirit of [17].
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