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Abstract

In this paper we discuss a persistent problem arising from polysemy: namely the difficulty

of finding consistent criteria for making fine-grained sense distinctions, either manually or

automatically. We investigate sources of human annotator disagreements stemming from the

tagging for the English Verb Lexical Sample Task in the Senseval-2 exercise in automatic

Word Sense Disambiguation. We also examine errors made by a high-performing maximum

entropy Word Sense Disambiguation system we developed. Both sets of errors are at least

partially reconciled by a more coarse-grained view of the senses, and we present the groupings

we use for quantitative coarse-grained evaluation as well as the process by which they were

created. We compare the system’s performance with our human annotator performance in light

of both fine-grained and coarse-grained sense distinctions and show that well-defined sense

groups can be of value in improving word sense disambiguation by both humans and machines.

1 Introduction

Highly ambiguous words pose continuing problems for Natural Language Processing

(NLP) applications. They can lead to irrelevant document retrieval in IR systems,

and inaccurate translations in Machine Translation systems (Palmer, Han, Xia,

Egedi and Rosenzweig 2000). Several efforts have been made to develop automatic

Word Sense Disambiguation (WSD) systems that are capable of addressing these

problems (Ide and Véronis 1998; Palmer and Light 1999). While homonyms1 like

bank are fairly tractable, polysemous words like run, with related but subtly distinct

meanings, present the greatest hurdle for WSD. The most polysemous words are not

1 word forms with multiple unrelated meanings.
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only the most frequently occurring ones, but many of their senses are also domain-

independent, making the WSD problem ubiquitous. The Senseval (Kilgarriff and

Palmer 2000; Edmonds and Cotton 2001) exercises for evaluating automatic WSD

systems attempt to create corpora annotated with sense tags to enable the training

and testing of supervised WSD systems, and in the process raise questions about

how to define the senses in the first place.

In this paper, the central question we ask is, Which senses CAN be distinguished?,

and we examine both manual and automatic tagging results in our quest for an

answer. There is a separate but related question which is equally important, Which

senses NEED to be distinguished? The answer to this, however, is more contextually

dependent, in that it can vary from application to application. We will touch on it

briefly, with some illustrative examples, at the end of the paper.

In section 2 we review the Senseval-1 and Senseval-2 exercises and the impact

the choice of sense inventory (Hector vs. WordNet) had on them. Section 3 discusses

general criteria for sense distinctions with examples from both inventories. Next,

sections 4 and 5 present our semantic groupings of related WordNet senses and

the quantitative evaluation of their effect on both manual and automatic tagging

results. We also present our preliminary set of criteria for creating the groupings.

We found that the same sense distinctions often prove troublesome for both human

taggers and automatic systems. Using our independently derived groupings as a

more coarse-grained set of sense distinctions results in similar improvements for

both manual and automatic tagging scores. Section 6 concludes with an informal

discussion of the utility of our group distinctions for applications such as Machine

Translation. We see the groupings as a promising avenue for achieving more accurate

automatic word sense disambiguation systems.

2 Senseval tagging exercises

The methodology for applying supervised machine learning techniques to WSD

involves a series of steps, beginning with the preparation of tagged data and a

corresponding evaluation of its quality. The data are typically a large number of

naturally occurring sentences containing a given word, each of which has been tagged

with a pointer to a sense entry from a pre-existing sense inventory (a computational

lexicon or machine-readable dictionary). A section of the tagged data is used for

training, while another section is reserved for testing purposes. Unsupervised machine

learning systems and rule-based systems can also be evaluated against the same test

data, which is considered to be a Gold Standard. Where the sense inventory provides

levels of granularity with respect to the entries the evaluation metric can provide

both fine-grained and coarse-grained scores. Since the consistency of the systems

cannot be expected to surpass that of humans, high interannotator agreement

provides reassurance of the quality of the tagged data. This is, in turn, facilitated

by a high quality sense inventory with clear sense distinctions. Unfortunately, sense

inventories for a language can be discouragingly diverse, with significant differences

with respect to entries for polysemous words (Atkins and Levin 1991), raising doubts

about the utility of the tagged data. Since the first two Senseval evaluation exercises
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used different sense inventories, they provide an opportunity to study the impact of

different sense inventories on system performance and inter-annotator agreement.

Senseval-1 The first exercise in automatic WSD, Senseval-1 (Kilgarriff and

Palmer 2000), used a DARPA-style evaluation format where the participants were

provided with hand-annotated training data and test data and a pre-defined metric

for evaluation. The evaluation scheme provided a scoring method for exact matches

to fine-grained senses as well as one for partial matches at a more coarse-grained

level. Romanseval, an evaluation for French and Italian, was run in parallel (Véronis

and Segonde 2000; Calzolari and Corazzari 2000).

The lexical inventory for Senseval-1 was the Hector lexicon, developed jointly by

DEC and Oxford University Press using a corpus-based approach and traditional

hierarchical dictionary entries (Kilgarriff and Rosenzweig 2000).2 After selecting the

34 target lexical items, professional lexicographers tagged sentences containing those

items that had been extracted from the Hector corpus. By allowing for discussion

and revision of confusing lexical entries before the final test data was tagged, inter-

annotator agreement (ITA) of over 80% was eventually achieved. Replicability was

also measured. Replicability is determined by having two different teams of taggers

tag the same instances in parallel. After adjudication of each set, the agreement

between the sense tags for the two sets is measured. Replicability for four Senseval-

1 words (generous, onion, sack, shake) was 95.5%. The initial ITA of each team was

in the 80s. In general the 24 participating systems did surprisingly well, with several

of the supervised systems getting precision and recall numbers in the high 70s and

low 80s on a data set with an average polysemy of 10.7 (Kilgarriff and Rosenzweig

2000). The evaluation metric allowed for both fine-grained scores for exact matches

and coarse-grained scores where the tag chosen was a daughter, parent or sibling of

the correct tag, based on the entry’s hierarchical structure as encoded in the sense

inventory. The best scoring system achieved a fine-grained score of 77.1%3 accuracy

and a coarse-grained score of 81.4%. In general, the lower the system performance,

the larger the gap between the fine-grained and coarse-grained scores. The highest

fine-grained score on just the verbs, which had an average polysemy of 7.79, was

70.9%. See Table 1 for the complete results.

The Senseval-1 workshop provided convincing evidence that automatic systems

can perform WSD satisfactorily, given clear, consistent sense distinctions and suitable

training data. However, the Hector lexicon was very small and under proprietary

constraints, and the question remained whether it was possible to have a publicly

available, broad-coverage lexical resource for English (or any other language) with

the requisite clear, consistent sense distinctions.

2 An example hierarchical entry from Hector: bother: 1. intransitive verb, (make an effort),
after negation, usually with to infinitive; (of a person) to take the trouble or effort needed
(to do something). Ex. “About 70 percent of the shareholders did not bother to vote at all.”
1.1 (can’t be bothered), idiomatic, be unwilling to make the effort needed (to do something),
Ex. “The calculations needed are so tedious that theorists cannot be bothered to do them.”

3 The systems we discuss here all attempt every possible tagging, so there is no need to
report separate precision and recall scores
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Table 1. Accuracy of the LESK-CORPUS baseline and the best, average and worst
performing systems in Senseval-1, broken down by part of speech

POS Baseline Best Average Worst

Verbs 0.700 0.709 0.610 0.421

Nouns 0.569 0.865 0.635 0.388

Adjs 0.717 0.777 0.615 0.377

All 0.719 0.787 0.544 0.161

Senseval-2 – The English Verb Lexical Sample Task Subsequently, the Senseval-

2 (Edmonds and Cotton 2001) exercise was run, which included WSD tasks for 12

languages. A concerted effort was made to use existing WordNets as sense inventories

because of their wide-spread popularity and availability. English WordNet is a large

electronic database organized as a semantic network built on paradigmatic relations

like synonymy, hyponymy, antonymy, and entailment (Miller et al. 1990; Miller and

Fellbaum 1991; Fellbaum 1998b), and this approach has now been ported to several

other languages. The English lexical sample task for Senseval-2 involved 73 lexical

items (29 verbs, and the rest nouns and adjectives) taken from WordNet 1.7 and

was the result of a collaboration between the authors, who provided training/test

data for the verbs and the all-words task,4 and Adam Kilgarriff, who provided

the training/test data for the nouns and adjectives (Kilgarriff 2001; Palmer et al.

2001). Between 75 and 300 instances of each word in the lexical sample task were

hand-tagged, depending on the number of senses for the word; the formula of

75 plus 15n, given n senses, was roughly adhered to in determining the number of

instances to tag. Multi-word constructions in the corpus (e.g., “call attention to”) were

explicitly marked for head word (“call”) and all satellites in the construction (“atten-

tion to”). The data came primarily from the Penn Treebank II Wall Street Journal

corpus (Marcus et al. 1993), but was supplemented with data from the British Na-

tional Corpus whenever there was an insufficient number of Treebank instances. The

instances for each word were partitioned into training/test data using a ratio of 2:1.

Because the verbs were the most polysemous words in Senseval-2, they will remain

the focus for the rest of the paper. The lexical sample verb task consisted of twenty-

nine verbs, with an average polysemy of 16.28 senses using the pre-release version

of WordNet 1.7. These were chosen from among the most polysemous verbs in the

all-words task. Double blind annotation by two linguistically trained annotators

was performed on corpus instances, with a third linguist adjudicating between inter-

annotator differences to create the “Gold Standard.” Most of the revisions of sense

definitions relevant to the English tasks were done by the adjudicator prior to the

bulk of the tagging, although there was much less discussion among the taggers of

4 For the details of this task, which involved 5K words of running text consisting of three
Penn TreeBank II articles, see Palmer, et al., (Palmer et al. 2001). A simple baseline strategy
which simply tags each head word with the first WordNet sense for the corresponding
Treebank part-of-speech tag, has a score of 57%, as compared to the best system score of
69%. Complete results are at http://www.sle.sharp.co.uk/senseval2/
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Table 2. Accuracy of the LESK-CORPUS baseline and the best, average and worst
performing systems in Senseval-2, broken down by part of speech

POS baseline best average worst

Verbs 0.445 0.576 0.419 0.186

Nouns 0.547 0.695 0.540 0.244

Adjs 0.591 0.732 0.572 0.216

All 0.512 0.642 0.489 0.239

how senses were to be applied than there had been with the Senseval-1 taggers.

The average inter-annotator agreement (ITA) rate achieved with these verb senses

was 71% (see Table 7) which is comparable to the 73% agreement for all words

for SemCor, a previous tagging project using WordNet 1.4. (Fellbaum et al. 1997;

Fellbaum et al. 1998). The nouns and adjectives, which were less polysemous overall,

have an ITA of 85% (see Table 2).

WordNet does not offer the same type of hierarchical entry that Hector does, so

the verbs were also grouped by two or more people, with differences being reconciled,

and the sense groups were used for coarse-grained scoring of the systems. Using

these independently derived grouped senses the inter-annotator agreement figures

rose to 82%. Section 3 contains a detailed discussion of the criteria for grouping

and the impact of the groups on ITA.

For system comparisons we ran several simple baseline algorithms similar to

the ones that had been used in Senseval-1, including COMMONEST,

LESK (Lesk 1986), LESK-DEFINITION, and LESK-CORPUS (Kilgarriff and

Rosenzweig 2000). In contrast to Senseval-1, in which none of the competing

systems performed significantly better than the highest baseline, this time most of the

systems performed comparably to the highest baseline (LESK-CORPUS, at 45.5%),

with approximately half performing better, and the top system achieving 57.6%

(Palmer et al. 2001) on the verbs alone, with 64.2% on the overall task (nouns, verbs

and adjectives). Again the groupings which were used for coarse-grained scoring

produced significantly better results for most systems for most verbs. Our own

system, which was not officially entered in the exercise, performed well at 62.5% for

verb senses and 71.7% for grouped senses (Dang 2004). For the entire lexical sample

task (verbs, nouns and adjectives), the highest system scores (from Johns Hopkins

University) were 64.2% fined-grained and 71.3% coarse-grained.5 In general the

nouns and adjectives had lower polysemy and higher scores (71.8% score, ITA 85%,

polysemy 4.9) (Yarowsky, Florian, Cucerzan and Schafer 2001). See Table 2 for the

complete results.

Senseval-3 The most recent Senseval, Senseval-3, was held in Barcelona, Spain

in conjunction with ACL-04 (Senseval 2004). The scope of the evaluation expanded

yet again, this time including 16 different tasks and literally hundreds of teams.

5 They have since improved their overall fine-grained score to 66.3%.
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One major difference was that the English lexical sample task tried to avoid the

expensive overhead of a supervised manual tagging project and made use of the

Open Mind Word Expert interface to collect tagged instances. This resulted in

a fair amount of data being produced, although the ITA was somewhat lower

than that attained by more traditional methods, 62.8% for single words (Mihalcea

and Kilgarriff 2004). There were many new techniques described at the workshop,

although on the whole system performance is still clearly tied to ITA, and when this

is low, system performance follows suit. Given the lower ITA, we have not included

this data in our current discussion.

Comparison of Tagging Exercises Prior to the Senseval-2 exercise, there were

concerns expressed about whether or not WordNet had the requisite clear, consistent

sense distinctions. Both the inter-annotator agreement figures and the performances

of the systems are lower for Senseval-2 than for Senseval-1, which seemingly

substantiates these concerns (see Tables 1 and 2). However, in addition to the

differences in sense inventories, one must also bear in mind the highly polysemous

nature of the Senseval-2 verbs which are on average twice as polysemous as

the Senseval-1 verbs, an average polysemy of 16.28 compared to 7.79.6 High

polysemy has a detrimental effect on both manual and automatic tagging, although it

does not correlate negatively with system performance as well as entropy does

(Palmer et al. 2001).

We can get a better comparison of the quality of the tagged data (and, indirectly, of

the sense inventories) for Senseval-1 and Senseval-2 by comparing the performance

of our automated system on similar subsets of data from the two exercises. Does

the system perform comparably given data for verbs of similar polysemy? To test

this, we first found the most polysemous verbs from Senseval-1, bury, float and

seize, with a polysemy in Hector of 15, 18 and 11, respectively.7 Factoring out

the verbs with lower polysemy and discarding the phrasal filter from our system8

which was only applicable for Senseval-2, we find very little difference in the

system performance: 59.7% for Senseval-1 versus 60.0% for Senseval-2 with a

baseline well below 45%. This small sample indicates that even with different

sense inventories, when controlling for polysemy, Senseval-2 data gives rise to very

similar system performance as Senseval-1 data. The simplest explanation of the

lower system performance overall on Senseval-2 is therefore the higher average

polysemy of the verbs in the task. It is likely that, in spite of the lower inter-

annotator agreement for Senseval-2, the double blind annotation and adjudication

6 Overall polysemy for Senseval-1 is 10.7. The Hector sense inventory is more hierarchical
and makes different sense distinctions, but on the whole has a total number of senses for
individual words that is similar to WordNet’s.

7 Their WordNet 1.7 polysemy Figures are 6, 8, and 8, illustrating the variable nature of
sense distinctions across different lexical resources. (Atkins and Levin 1991)

8 In contrast to Senseval-1, senses involving multi-word constructions in Senseval-2 could
be directly identified from the sense tags themselves (through the WordNet sense keys that
were used as sense tags), and the head word and satellites of multi-word constructions were
explicitly marked in the training and test data.
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provided a reliable enough filter to ensure consistently tagged data with WordNet

senses.

We are still faced with the challenge of improving ITA and system performance

on highly polysemous lexical items, regardless of the sense inventory being used.

As an additional check, we had our taggers re-tag a subset of the Senseval-1 data

to see if we could replicate the higher ITA results. We tagged 35 words (at least

10 each of nouns, verbs, and adjectives). For nine of the words we tagged all of

the Senseval-1 instances, several hundred for each word. Due to time constraints,

for the remaining 26 words, we took fifty instance subsets for each word, ensuring

the different senses were distributed as evenly as possible. For the 9 large data-set

words the ITA was 81.1%; for the 50-instance words the ITA was 75.8%, with an

overall average of 80.1%. This is in keeping with the reported ITA of over 80%

for Senseval-1, and is certainly much higher than the 71% ITA for the Senseval-2

verbs. This is almost certainly due to the lower polysemy and not just the different

sense inventories. It is not surprising that the larger data sets result in higher ITA.

This may be be partly an artifact of practice, but is also because these larger sets

contain a much higher proportion of the most frequent senses, so they have a higher

baseline.

We also considered the effect of training set size on the performance of the

systems. Ignoring outliers, there were on average half as many training samples

for each verb in Senseval-2 as there were in Senseval-1. However, the smaller

set of training examples did not seem to be a major factor in the performance of

our system on verbs of similar polysemy in Senseval-1 and Senseval-2. Others

have found that the accuracies of automatic WSD systems over all parts of speech

(nouns, verbs, and adjectives) of Senseval-2 increased as training sizes increased

(Yarowsky and Florian 2002). Although we also found additional data useful for

Chinese sense tagging (Dang, Chia, Chiou and Palmer 2002), when we used 10-fold

cross-validation and enlarged our Senseval-2 training set for verbs by using a

partition of 9:1 instead of 2:1, we found a relative improvement in accuracy of only

2.0%. However, because these training set sizes were increased by only 35%, further

experimentation is needed to determine whether or not significantly more training

data would benefit high polysemy verbs.

Given the close correlation between lower polysemy and higher ITA, we feel

this is an important angle to pursue. In the next section, we will first examine the

nature of sense distinctions, and the sources of sense tagging disagreements. We

then present our criteria for creating sense groups, and discuss the impact these

groups have on the human tagger disagreements as well as automatic tagging errors

for highly polysemous verbs. One can take comfort from the knowledge that the

majority of lexical items do not exhibit the high polysemy of the verbs discussed

here.

3 Sense groupings

The difficulty of achieving accurate data for sense tagging has been thoroughly

attested to in the literature (Kilgarriff 1997; Hanks 2000). There is little optimism
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about finding criteria for making indisputable sense distinctions, with difficulties

being found with truth-theoretical criteria, linguistic criteria and definitional criteria

(Jones 1986; Geeraerts 1993). Several decades ago, Karen Sparck Jones proposed

data-driven synonym sets as the only reliable means of characterizing a word’s

behavior, similar to the approach later adopted by WordNet. In spite of the prolifer-

ation of dictionaries, there is no current methodology by which two lexicographers

working independently are certain to derive the same set of distinctions for a given

word. Even given identical corpus-based examples there are still many fairly arbitrary

judgements for the lexicographer to make, such as when to stretch an existing sense

to encompass extended meanings, and when to create a new sense. The inherent

complexity of objects ensures that references to them must often be multi-faceted

(Cruse 1986; Asprejan 1974; Pustejovsky 1991). Events are at least equally complex

and perhaps even more difficult to characterize (Talmy 1991). The inherent fluidity

of language ensures that a definition of a word is a moving target; as long as it

is in use its meaning could continue to expand. One of the greatest challenges for

the creation of a static sense inventory lies in the complex and constantly changing

nature of the vocabulary, bringing into question the feasibility of the sense tagging

task.

The mapping between Hector and WordNet 1.6 that was made available for

Senseval-1 provides striking evidence of the different choices lexicographers can

make in determining sense distinctions. It is immediately apparent that Hector

and WordNet often have different numbers of senses for the same lemma (see

footnote 7). Closer examination of individual words such as shake reveals even

more fundamental mismatches. Hector and WordNet entries for shake have the

same number of main senses (8). However, there is variation in the verb-particle

constructions they have chosen to include, with the result that Hector has 27 total

senses while WordNet only has 15. At a more fundamental level, while Hector

distinguishes between shaking hands with someone, shaking one’s fist and shaking

one’s head, WordNet does not. Hector also distinguishes between the unaccusative

TREMBLE sense, My hands were shaking from the cold, and the more active,

transitive, causative MOVE sense, He shook the bag violently, where someone

intentionally moves an object back and forth. WordNet collects these together,

along with She shook her cousin’s hands, as WN1, and instead makes distin-

ctions with respect to the type of motion: WN2, gentle tremors; WN3, rapid

vibrations; or WN4, swaying, which Hector does not. These distinctions can all be

seen as justifiable choices, but they carve the semantic space up in very different

ways.

As we demonstrate below, coarser-grained sense distinctions can sometimes

alleviate the difficulties involved in mapping between sense inventories, as well

as reconcile inter-annotator disagreements. We begin by introducing the criteria

for creating the groups which led to significant revisions of pre-existing WordNet

groups, and discuss the factors behind their positive impact on performance. There

are situations where, rather than trying to force an exact match with a fine-grained

sense, it may be more prudent to equivocate by choosing a less-specific cluster of

senses.
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3.1 Using Levin classes to group shake

Our interest in grouping was initially sparked by the mismatched Hector and WN

entries described above, and our attempts to reconcile them. Shake proved especially

amenable to grouping, and most of the shake differences mentioned above were

resolved by the groups. Our shake groups were inspired by our study of Levin

classes, where verbs are grouped together based on their ability to appear in similar

sets of syntactic frames which are assumed to reflect underlying semantic similarities

(Levin 1993; Dang et al. 1998; Dang et al. 2000; Kipper et al. 2000). These frames

often correspond to syntactic alternations such as indefinite object drop, [We ate fish

and chips./We ate at noon.]; cognate object realization, [They danced a wild dance./

They danced.]; and causative/inchoative [He chilled the soup./The soup chilled.].

Several basic senses of shake appear in different Levin classes from which

we derived five major, coarse-grained sense divisions, each one of which can be

subdivided further. The 27 Hector shake senses and the 15 WordNet shake senses

can all be partitioned into these five divisions (although WN1:move still gets mapped

to more than one division), with idioms being listed separately (Palmer, Dang and

Rosenzweig 2000).

The basic sense, Sense 1 (Levin Class 47.3), is the externally controlled shaking

motion which results when a person or an earthquake or some other major force

causes an object to move back and forth. This same motion can be amplified with

directional information indicating a result such as off, down, up, out or away (Classes

26.5, 22.3). If a path prepositional phrase is specified, such as shook the apples out

of the tree or shook water from the umbrella, then a change of location (CH-LOC)

occurs, Sense 2 (Class 9.3). The same back and forth motion can occur during Body-

Internal states such as shaking from cold or fear, i.e. TREMBLING, which gives us

Sense 3 (Class 40.6). If a particular BODY-PART is shaken in a conventionalized

gesture, such as shaking hands, fists or fingers, then a communicative act takes place,

Sense 4 (Class 40.3.2). Finally non-physical usages are all classified as Sense 5 (Class

31.1, Psych verbs), such as shaken by the news/the attack/his father’s death.

3.2 Criteria for WordNet sense grouping

The success we had in using these coarse-grained partitions to reconcile Hector and

WordNet led us to re-examine the use of previous groupings in WordNet 1.6. One

of the main differences between WordNet and a standard dictionary is the lack of

an hierarchical organization for the distinct senses of an entry. They are all simply

listed sequentially. WordNet, after all, supplies a wealth of inheritance information

via hypernyms and synonym sets. However, these do not lend themselves readily

to forming natural sense hierarchies, and have not been especially beneficial for

automatic WSD systems (Lin 1998; Mihalcea and Moldovan 2001). The variation

in hypernyms that occurs in most of the groups listed below provides evidence for

why automatic grouping by hypernyms has not been more successful.

We decided to substantially revise and augment the existing WordNet 1.6 group-

ings for WordNet 1.7. In this section we discuss the rationale behind our new group-

ings and the methodology used to produce them. Coarse-grained sense distinctions
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are only slightly easier to define than fine-grained ones, and there are often cases

where a sense appropriately belongs to more than one group. We chose the simplest

possible style of grouping with no overlaps, acknowledging that this would sometimes

be less than satisfactory.

WordNet 1.6 Groups WordNet typically has distinct entries for different syntactic

forms of a verb. The result is that the syntactic alternations, such as causat-

ive/inchoative, that are grouped together by Levin into one class are often treated

as distinct senses by WordNet. This design choice also forces sense distinctions for

a given verb based on argument alternations (Levin 1993) to appear in different

hypernym hierarchies (Fellbaum 1998a). So He chilled the soup is WN2, CAUSE

TO CHANGE, and The soup chilled is WN3, UNDERGO A CHANGE. These

approaches are not as contradictory as they seem. The Levin classes focus on

the commonality of meaning that is preserved across different syntactic frames,

allowing for subtle differences, while the WordNet senses capture the subtle shift in

meaning occasioned by each different syntactic frame, without excluding possible

commonalties.

WordNet 1.6 groupings were limited to linking together certain pairs of syntactic

alternations, such as causative/inchoative. These links only affected 3.5% of the

senses of our Senseval-2 verbs, and had no impact on system performance or

reconciliation of inter-annotator agreements.

WordNet 1.7 Groups We decided to do a much more comprehensive grouping of

the Senseval-2 senses, following the lead of the shake example, and attempting to

provide specific criteria for the human groupers, as described below.9 The groupings

were made without reference to any corpus instances, although most of the groupers

were also taggers. Each set of senses was grouped independently by two separate

taggers. Discrepancies in the groupings were discussed and then adjudicated by a

third tagger (Fellbaum et al. 2001). In contrast with hierarchical dictionary entries,

this approach has a distinctly bottom-up, self-organizing flavor, and varies quite a bit

from verb to verb. This is not really arbitrary, since different words require different

criteria. A pure change-of-state verb like break will be especially sensitive to the type

of object undergoing the change of state. Members of the same semantic class might

cluster together quite naturally, as in breaking vases/windows/glasses vs. breaking

arms/legs/heads. For activity verbs such as shake or wipe, the distinctions might

become much more fine-grained, as in shaking a fist vs shaking hands (Hanks 1996),

or less fine-grained wiping one’s face/the table. The necessity of varying the criteria

for sense distinctions on a word by word basis is also borne out by several machine

learning experiments, where optimal performance is only achieved by allowing each

word to choose its own parameter values (Veenstra et al. 2000; Yarowsky et al.

2001).

9 Many of these criteria stemmed from a set of lectures given at Penn by Patrick Hanks in
the fall of 2000.
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Table 3. Play senses, WordNet 1.7

Sense No. Description Example Hypernym

WN3 play (music) on “The band played on . . .” PERFORM

an instrument

WN6 play a melody “Play it again, Sam” RECREATE

WN7 perform music on “play the flute” SOUND

(a musical instrument)

Syntactic criteria Syntactic structure performed two distinct functions in our

groupings. Recognizable alternations with similar subcategorization frames were

often a factor in choosing to group senses together, as in the Levin classes, whereas

distinct subcategorization frames were also often a factor in putting senses in

separate groups as discussed below.

Syntax is often considered a mirror of the underlying semantics. Major differences

in subcategorization frames for the same verb can reflect correspondingly major

differences in meaning, e.g. John left the room (one object) vs. Mary left her daughter-

in-law her pearls in her will (double object). When this is the case, applying a coarse

syntactic filter to a verb’s usages can be the simplest way of quickly capturing

the underlying sense distinction. In other cases, where the subcategorization frames

correspond to the types of alternations discussed above, the changes in meaning can

be very slight. For example, in WordNet 1.7 play has the three separate senses given

in Table 3, all of which can refer to the same event of playing music on a musical

instrument.

These different senses are clearly related (in fact, 6 and 7 have the same syntax

and differ only in the type of direct object), but these relations are not reflected

in their hypernyms which emphasize the differences in what is being highlighted

by each sense, rather than the similarities. Some lexicographers might argue that

these slightly different usages should not be considered separate senses at all, but

in the event that they are distinguished there can be little controversy in creating

a group for them. The sense group also clearly corresponds to a broader, more

underspecified sense which is not explicitly listed and which does not participate in

any of the WordNet semantic relations. The groupings determined by this criteria

had the most overlap with the previous groupings from WordNet 1.6. The complete

grouping of play is given in Table 9.

We used Levin class membership as much as possible in assessing syntactic criteria,

and while it was always useful, it was rarely as comprehensive as it had been for

shake. The Levin classes were never intended to provide complete coverage of all

senses, and they often only include one or two major senses of a word. An expanded

version of these classes that included more senses could be very helpful. VerbNet, a

computational lexicon based on the Levin classes is being developed, and the classes

are currently being extended (Dang et al. 1998; Kipper et al. 2000; Dang et al. 2000;

Kipper et al. 2004). Future research will be aimed at investigating the relevance of

these expanded classes to sense distinctions.
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Semantic criteria Clear semantic criteria for groupings are even more variable

(Hanks 2000). Senses were grouped together if they were more specialized versions

of a general sense. Our criteria for grouping senses separately included:

• differences in semantic classes of arguments (abstract versus concrete, animal

versus human, animacy versus inanimacy, different instrument types . . .),

• differences in entailments (a change of state of an existing entity versus the

creation of a new entity),

• differences in the type of event (abstract, concrete, mental, emotional . . .),

• whether there is a specialized subject domain, etc.

Note that many of our criteria, such as semantic class, subject domain and underlying

predicate-argument structure, represent a shallow level of semantic representation

that is becoming increasingly accessible to automatic processing techniques.

3.3 Applying the criteria to a specific verb

In the grouping of an actual verb entry, reference is made to both syntactic and

semantic criteria, in whatever way is most suitable for that verb. WordNet often has

separate entries for the intransitive form of a transitive verb, but that is not always

the case when the transitive usage predominates. The same semantic criterion,

such as the semantic class of the syntactic subject or object, is sometimes used

to separate entries into two different sense groups and sometimes not. The more

explicit we can be about the criteria we use for each verb for both grouping senses

and distinguishing them, the more consistent we can be in tagging and in the

categorizations of new usages, so we have attempted to label our sense groups with

the criteria for distinguishing them. The sets of criteria are by necessity verb specific,

and a slightly different set of criteria, applied in a unique order, is used for each

verb, as illustrated below by our two example verbs. As discussed above, it’s not

surprising that different criteria would apply to different verbs. Change-of-state verbs

like break or melt are much more affected by the type of object they are applied to

than action verbs such as sweep or wipe. One of our goals for future work is looking

for generalizations about sense distinctions that can be made with respect to classes

of verbs rather than individual verbs.

Call The case of major subcategorization frame differences corresponding to

clear sense distinctions is illustrated by call. Our final grouping of call includes

several groups with distinctive predicate-argument structures, as in the sentential

complements of Group 1: [1,3,19,22], X call Y Z: ascribe an attribute Z to Y (see

Table 4). This is in contrast with most of the other call groups, which shared

a straightforward transitive frame associated with a binary predicate-argument

structure, as in Group 2: [2,3], X called Y (on the phone) or Group 3: [4,7,9], X

called a meeting/X was called for jury duty. These groups are distinguished from

each other semantically rather than syntactically. Group 2 involves a specific type

of instrument and Group 3 is a summons to a particular type of activity (Fellbaum

et al. 2001).
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Table 4. Call senses, Group I, WordNet 1.7

Sense No. Description Example Hypernym

WN1 name, call “They named their son David” LABEL

WN3 call, give a quality “She called her children LABEL

lazy and ungrateful”

WN19 call, consider “I would not call her beautiful” SEE

WN22 address, call “Call me Mister” ADDRESS

Develop In contrast, syntactic structure did not play as primary a role in our

grouping of develop, as shown in Table 5. Two entire groups (1 and 4) are separated

from two other groups (2 and 3) simply on the basis of whether or not the

development process had to be instigated by an outside causal agent. Group 4 is

distinguished from Group 1 because it involves the improvement of an existing

entity rather than the creation of a new entity. The outside agent usages are more

likely to be transitive, whereas the internally controlled ones are more likely to be

intransitive, but alternations do occur. These major distinctions affect 17 of the

senses, while the remaining 5 are each associated with specialized subject domains,

such as CHESS, FILM or MATH.

4 Impact of groupings on manual taggings

Our inter-annotator agreement figures, given in Table 7, were not as high as we had

hoped, prompting a closer look. For several of the verbs we retagged a subset of 50

sentences distributed as evenly as possible among the different possible senses. This

time the overall figures were higher, with agreement against the Gold Standard going

up to over 90% using the groups. In general the inter-annotator agreement rose

between 10% and 20% when measured against the grouped senses.10 In this section

we discuss one of the verbs in detail, develop, to illustrate the types of disagreements

that occurred across the board. Measured against the Gold Standard, the fine-grained

score on develop was 66% (33 correct tags) while the coarse-grained score rose to

90%. There are at least four different sources of annotator errors: sense subsumption,

missing or insufficient entries, vague usages, and world knowledge (Fellbaum et al.

2001). The twelve develop tagger disagreements reconciled by the groups can be

categorized into these four types, with 5 accounted for by sense subsumption or

missing entries and 7 due to vague usages or inadequate world knowledge. These are

discussed in more detail below, with reference to the effectiveness of the groupings

in reconciling these differences.

Sense subsumption There were several disagreements on develop which stemmed

from the choice between a more general or a more specific entry, well-known

10 Agreement with the Gold Standard is generally higher than ITA, since only one set of
errors is involved.
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Table 5. Develop senses, grouped, WordNet 1.7

Group Type Sense No. Description-Example Hypernym

1-agent new, abstract

WN1 products, or mental or artistic creations CREATE

WN 2 mental creations - “new theory of evolution” CREATE

4-agent improve item

WN6 resources - “natural resources” IMPROVE

WN7 ideas - “ideas in your thesis” THEORIZE

WN8 train animate beings - “violinists” TEACH

WN11 civilize - “countries are developing” CHANGE

WN12 make grow, ex. plants- “climate develops the grain” CHANGE

WN13 business, grow the market - “develop more customers” GENERATE

WN19 music, make more elaborate - “develop the melody” COMPLICATE

2 new, property

WN3 personal attribute - “a passion for painting” CHANGE

WN4 physical characteristic - “beard” CHANGE

3 new, self

WN5 originate - “new religious movement” BECOME

WN9 gradually unfold - “the plot developed slowly” OCCUR

WN10 grow - “a flower developed on the branch” GROW

WN14 mature - “The child developed beautifully . . . ” CHANGE

WN20 happen - “Report the news as it develops” OCCUR

5 chess

WN17 strengthening the position - “Spassky developed..” PLAY

WN18 a better position for a piece - “develop the rook” PLAY

6 film

WN15 make visible - “develop the film” CHANGE

7 math

WN16 3D mapped onto 2D, as in geometry SUPERIMPOSE

WN21 expand a series - “develop the function” EXPAND

among lexicographers as “lumping” versus “splitting” (Fellbaum et al. 2002). Two

easily confused develop senses involve the creation of new entities, characterized as

either “products, or mental or artistic creations: CREATE (Sense 1)” or “a new

theory of evolution: CREATE BY MENTAL ACT (Sense 2).” Three of the develop

disagreements involved determining which of these two senses should be applied

to phrases like develop a better way to introduce crystallography techniques. Either

definition could fit; it’s merely a question of determining among the taggers whether
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ways should be treated as things or theories. Since Sense 1 specifically mentions

mental creations in addition to other types of creations, it can be seen as a more

general definition which could subsume Sense 2. These more general senses, when

present, provide the requisite flexibility for encompassing new usages.

In this case the discrepancies involved two different members of the same sense

group, so the more coarse-grained evaluation reconciles them. Similar examples

have been reported for live and use (Fellbaum, Palmer, Dang, Delfs and Wolf 2001).

We have described the sense groups themselves as constituting a broader, more

underspecified sense. When there is not an explicit entry in a group that is more

general than the others it would be helpful to use the group itself as a tag.

Missing or Insufficient Dictionary Entries Other disagreements are introduced

because the sense inventory against which a tagger is annotating may have gaps

or redundancies; the glosses may also have ambiguous wordings or contradictory

examples. Even if the annotator is working with an extremely clear, extensive entry,

it may not cover novel or unusual usages, or domain-specific ones. For instance,

WN 1.7 did not have a domain-specific sense for develop to handle the real-estate

sense of developing land. The taggers agreed on the meaning of these verb tokens

when they appeared, but used different strategies to stretch the pre-existing sense

inventory to fit this usage, hesitating between Sense 6 and Sense 13, both in Group

4 (see Table 5.)11 Two of the other develop disagreements involved deciding whether

or not understanding as in develop a much better understanding of . . . constituted an

attribute (Sense 3) or a physical characteristic (Sense 4), which was also finessed by

the groupings (Group 2). In this case neither of the pre-existing senses is general

enough to subsume the other.

Vague Contexts There are sentences where an author intentionally invokes a rich

representation of a word that includes two or more related senses. For instance,

onion (Senseval-1) typically has a food sense and a plant sense, and in a phrase

such as planting, harvesting and marketing onions both are invoked (Krishnamurthy

and Nicholls 2000). An instance of play ( Senseval-2) said only, he played superbly.

It was clear from the context that music was being played, but did the author intend

to praise the playing of the instrument (Sense 3) or the melody (Sense 6) or both?

Probably both. The grouping of these senses, as given in section 3.2, softens the

penalty for failing to read the author’s mind.

World knowledge Perhaps the most intractable tagging issues arise when the

meaning of a word in a particular context depends not only on its syntactic use or

the semantics of its arguments, but on world knowledge. For instance, the final seven

of the develop disagreements all pertained to Group 4. Three of the sentences involved

the development of cancer tumors. Do cancer tumors originate spontaneously, as

11 Sometimes, in fact, one tagger would double-tag a particular instance while the second
tagger chose a single sense that matched one of the two selected by the first annotator. This
happened twice in the fifty develop sentences that were tagged, but they were not counted
as disagreements.
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would a religious movement (Sense 5), or are they more like a flower, a product of

natural growth and evolution (Sense 10)? This choice involves a depth of medical

knowledge which few doctors would claim, and in such a case tagging with a

more coarse-grained sense that subsumes both 5 and 10 offers a more judicious

option.

Discussion Differences in annotator choices often involve subtle semantic dis-

tinctions between senses where one sense might be slightly more specific or more

applicable (in the case of a gap) than the other. Extremely high inter-annotator

agreement with highly polysemous words is an unrealistic goal, given the inherent

difficulty in attaining a consensus on word meaning and the changeable nature of

language. Since a semantic grouping of senses with similar meanings puts the most

easily confused senses in the same group, the annotator disagreements can often be

reconciled by evaluating with the groups instead of the more fine-grained senses:

Senseval-2 verb disagreements were reduced by more than a third, from 27% to

18%. Equally valuable is the opportunity to treat the group as a more underspecified

sense in itself, for new usages that do not exactly fit a pre-existing sense. The ITA

based on the grouped senses is 82%, much more in line with the Senseval-1 ITA, and

leads to correspondingly higher system scores, again more in line with Senseval-1,

as discussed in the next section. In a more recent experiment where the annotators

actually tagged with the grouped senses, which had first been augmented with more

explicit syntactic and semantic criteria for distinguishing them, the ITA for grouped

senses rose to 86% (Palmer, Babko-Malaya and Dang 2004).

There are also reassuring parallels with even more coarse-grained distinctions

based on subcategorization frames. In a separate project for the semantic annotation

of predicate-argument structure, PropBank (Palmer, Gildea and Kingsbury 2005),

very coarse-grained sense distinctions were made for the 700 most polysemous verbs

in the Penn TreeBank (Kingsbury and Palmer 2002). These distinctions are based

primarily on different subcategorization frames that require different argument label

annotations, and all of the verbs were sense-tagged accordingly. Since the same data

was tagged independently for both PropBank and Senseval-2, it has been possible

to evaluate how well the Senseval-2 groupings correspond to the PropBank sense

distinctions. They are surprisingly compatible; 95% of our groups map directly onto

a single PropBank sense (Palmer et al. 2004), with a single PropBank sense typically

corresponding to 2 or more groups.

The groupings have an intuitive appeal; a reader can readily appreciate the

semantic coherence of the senses. However, if too much information is being lost by

failing to make the more fine-grained distinctions, the groups will avail us little. We

begin to address this question in Section 6, but first present the impact the groups

had on our automatic system’s performance.

5 Impact of groupings on automatic tagging

In this section we compare the performance of our automatic WSD system with both

fine-grained senses and grouped senses. We analyze the tagging errors made by the
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system in the same way we analyzed the inter-annotator disagreements. Our system

is based on a maximum entropy framework which combines linguistic contextual

features from corpus instances of each verb to be tagged (Dang, Chia, Chiou and

Palmer 2002). It performs comparably to the best performing systems in Senseval-

1 and Senseval-2 (Dang and Palmer 2002), providing a reliable benchmark for

comparing different data sets and sense inventories.

5.1 System description

Under the maximum entropy framework (Berger, Della Pietra and Della Pietra 1996),

evidence from different features can be combined with no assumptions of feature

independence. The automatic tagger estimates the conditional probability that a word

has sense x given that it occurs in context y, where y is a conjunction of features.

The estimated probability is derived from feature weights which are determined

automatically from training data so as to produce a probability distribution that has

maximum entropy, under the constraint that it is consistent with observed evidence.

In order to extract the linguistic features necessary for the model, all sentences

were first automatically part-of-speech-tagged using a maximum entropy tagger

(Ratnaparkhi 1998) and parsed using the Collins parser (Collins 1997). In addition,

an automatic named entity tagger (Bikel, Miller, Schwartz and Weischedel 1997)

was run on the sentences to map proper nouns to a small set of semantic classes.

Following work by Chodorow, Leacock and Miller (Chodorow et al. 2000), we

divided the possible model features into topical and local contextual features. Topical

features looked for the presence of keywords occurring anywhere in the sentence

and any surrounding sentences provided as context (usually one or two sentences).

The set of 200–300 keywords is specific to each lemma to be disambiguated, and is

determined automatically from training data so as to minimize the entropy of the

probability of the senses conditioned on the keyword.

The local features for a verb w in a particular sentence, given in Table 6, tend to

look only within the smallest clause containing w. This set of local features relies on

access to syntactic structure as well as semantic class information, and represents

our move towards using richer syntactic and semantic knowledge sources to model

human performance. When we incorporated WordNet semantic class information,

the noun complements were not disambiguated in any way, and all possible synsets

and hypernyms for the noun were included. No separate disambiguation of noun

complements was done because, given enough data, the maximum entropy model

should assign high weights to the correct semantic classes of the correct noun sense

if they represent defining selectional restrictions.

5.2 Sources of automatic tagger disagreements

In this section we describe the system performance on the verbs from Senseval-2.

We compare the coarse-grained scores using our new groupings versus random

groupings and the previous WordNet 1.6 groupings, and substantiate the greater

coherence of the new groupings. In addition, we experiment with training the system
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Table 6. Local features used by the Maxent WSD system

lexical and part-of-speech unigrams, bigrams, and trigrams of words

within a window of 2 words to the left and right of w

whether or not the sentence is passive

whether there is a sentential complement, subject, direct object, or indirect object

the words (if any) in the syntactic positions above and particle,

prepositional complement (and its object)

a Named Entity tag (PERSON, ORG, LOC) for proper nouns appearing

in the positions above

WordNet synsets and hypernyms for the nouns appearing

in the positions above

on the coarse-grained senses, to see if the larger amounts of training data per sense

result in higher performance.

We tested the WSD system on the verbs from the English lexical sample

task for Senseval-2. The annotation for multi-word constructions made them

straightforward to identify and consequently made it much easier for our system to

incorporate information about the satellites, typically verb-particles, without having

to look at the dictionary (whose format may vary from one task to another). All

the best-performing systems (including our own) on the English verb lexical sample

task filtered out possible senses based on the marked satellites, and this improved

performance significantly. For example, the particle in call on was marked by the

annotation as call having an on satellite, distinguishing it from call by itself.

Our system achieved 62.5% and 71.7% accuracy using fine-grained and coarse-

grained scoring, respectively. This is in comparison to the next best-performing

system, which had fine- and coarse-grained scores of 57.6% and 67.2% (Palmer

et al. 2001). Here we see the benefit of including a filter that only considered phrasal

senses whenever there were satellites of multi-word constructions marked in the test

data; had we not included this filter, our fine- and coarse-grained scores would have

been only 60.0% and 69.1%.

Table 7 shows a breakdown of the number of senses and groups for each verb, as

well as human inter-tagger agreement on fine-grained (ITA-fine) and coarse-grained

(ITA-coarse) senses.12 Overall, coarse-grained evaluation using the groups improved

the system’s score by about 10%. This is consistent with the improvement we found

12 We do not include kappa figures because the standard formulation of kappa doesn’t
address our situation where multiple tags are allowed for each instance. Although there
were relatively few multiply tagged instances in the Gold Standard, 84 out of over 5000
instances, in the raw human annotator data there are substantially more. We also find
that inter-tagger agreement is sufficient for the comparisons that we wish to make between
system and human performance, and between Senseval-1 and Senseval-2.
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Table 7. Number of WN 1.7 (corpus) senses for each verb, not including multi-word
expressions; number of WN 1.7 (corpus) groups for each verb, not including multi-word
expressions; inter-tagger agreement for fine-grained senses and sense groups; accuracy
of maximum entropy system under fine- and coarse-grained scoring; accuracy of
system trained using groups and scored with coarse-grained method. *No inter-tagger
agreement figures were available for “play” and “work”

Verb WN (cor) Sen WN (cor) Grp ITA-f ITA-c MX-f MX-c MX-g

begin 10 (9) 10 (9) 0.812 0.814 0.893 0.893 0.893

call 28 (14) 11 (7) 0.693 0.892 0.545 0.697 0.697

carry 39 (22) 16 (11) 0.607 0.753 0.394 0.485 0.515

collaborate 2 (2) 2 (2) 0.750 0.750 0.900 0.900 0.900

develop 21 (16) 9 (6) 0.678 0.852 0.580 0.725 0.739

draw 35 (21) 15 (9) 0.767 0.825 0.317 0.463 0.439

dress 15 (8) 7 (4) 0.865 1.000 0.729 0.915 0.898

drift 10 (7) 6 (4) 0.500 0.500 0.406 0.406 0.469

drive 21 (9) 8 (4) 0.588 0.717 0.595 0.833 0.810

face 9 (7) 4 (4) 0.786 0.974 0.839 0.903 0.903

ferret 3 (0) 3 (0) 1.000 1.000 1.000 1.000 1.000

find 16 (15) 8 (7) 0.443 0.569 0.368 0.500 0.441

keep 22 (15) 11 (10) 0.791 0.801 0.612 0.627 0.597

leave 14 (12) 7 (7) 0.672 0.805 0.606 0.636 0.591

live 7 (6) 4 (4) 0.797 0.872 0.701 0.731 0.731

match 9 (8) 5 (4) 0.565 0.826 0.500 0.714 0.690

play 35 (21) 17 (12) * * 0.530 0.530 0.591

pull 18 (10) 10 (5) 0.681 0.722 0.500 0.667 0.683

replace 4 (4) 2 (2) 0.659 1.000 0.600 0.933 0.933

see 24 (19) 12 (10) 0.709 0.755 0.391 0.464 0.507

serve 15 (12) 7 (6) 0.908 0.932 0.745 0.824 0.843

strike 20 (16) 12 (10) 0.762 0.905 0.389 0.519 0.444

train 11 (9) 6 (4) 0.288 0.550 0.635 0.730 0.714

treat 8 (6) 6 (5) 0.969 0.975 0.500 0.614 0.591

turn 26 (16) 14 (9) 0.742 0.894 0.493 0.627 0.612

use 6 (6) 3 (3) 0.743 0.894 0.711 0.842 0.829

wander 5 (5) 3 (3) 0.650 0.900 0.800 0.900 0.900

wash 12 (6) 6 (3) 0.875 0.906 0.667 0.667 0.750

work 27 (13) 10 (7) * * 0.450 0.583 0.633

Total 16.28 (10.83) 8.07 (5.90) 0.713 0.820 0.625 0.717 0.715

in inter-tagger agreement for groups over fine-grained senses (82% instead of 71%).

In addition to the fine- (MX-f) and coarse-grained (MX-c) scores for our system,

we report the coarse-grained score (MX-g) for a variant of the system that was

trained on sense groups instead of the fine-grained senses. Because the training

corpus was so small, we expected that training on groups would mitigate the sparse

data problem.

Call We found that the grouped senses for call improved performance over

evaluating with respect to fine-grained senses; the system achieved 67.9% accuracy

with coarse-grained scoring using the groups, as compared to 54.5% accuracy with
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fine-grained scoring. When evaluated against the fine-grained senses, the system got

30 instances wrong, but 10 of the “incorrect” instances were tagged with senses

that were actually in the same group as the correct sense. Almost all the confusion

(9 instances) involved senses from Group 1 (see Table 4). This group of senses

differs from others in the ability to take a sentential complement, which is explicitly

modeled as a feature in our system. For each of these senses, the maximum entropy

model assigned very high weights to the feature “has sentential complement.” Here

we see that the system benefits from using syntactic features that are linguistically

richer than the features that have been used in the past. Furthermore, we would

not expect to be able to differentiate Senses 3 and 19 from the other two senses in

the group without looking deeper into the structure of the sentential complement to

identify whether the small clause has a predicative noun or adjective.

Develop The system’s performance on develop also improved significantly using

the groups, confirming the apparent close correspondence between ITA and system

performance. Eight of the 29 errors made by the tagger were due to confusing Sense

1 and Sense 2 of develop, which are in the same group. Instances of Sense 1 that

were tagged as Sense 2 by the system included: . . . they have developed a genetic

engineering technique for creating hybrid plants . . . ; William Gates and Paul Allen

in 1975 developed an early language-housekeeper system for PCs. Conversely, the

following instances of Sense 2 were tagged as Sense 1 by the tagger: A . . . team . . . hopes

to develop ways to magnetically induce cardiac muscle contractions; Kobe Steel Ltd.

adopted Soviet casting technology . . . until it developed its own system. Based on the

direct object of develop, the automatic tagger was hard-pressed to differentiate

between developing a technique or system (Sense 1) and developing a way or system

(Sense 2). These instances that were difficult for the automatic WSD system, are also

difficult for human annotators to differentiate consistently, as discussed in Section 4.

Training on Groups Training on groups did not significantly change the overall

coarse-grained scores of our system. It increased the coarse-grained score by at least

5% for some verbs (drift, play, wash, work) but decreased the score for others (find,

strike). Defining more precisely the cases when groups do and do not mitigate the

sparse data problem will be a subject for future investigation.

Comparing other groupings As a base-line, to ensure that the improvement did

not come simply from the lower number of tag choices for each verb, we created

random groupings in which each verb had the same number of groups, but with the

senses distributed randomly. We found that these random groups provided almost no

benefit to the inter-annotator agreement figures (74% instead of 71%), confirming

the greater coherence of the manual groupings. The WordNet 1.6 groups reduced

the polysemy of the same verbs from 1413 to 13.5, and had even less effect on

performance.

13 some senses were added for WN 1.7.
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Table 8. Portuguese, German, Chinese and Korean translations of develop

Groups Senses (obj) Portuguese German Chinese Korean

G4 WN13 markets desenvolver entwicklen kai1-fa1 hyengsengha-ta

G1 WN1 products desenvolver entwickeln kai1-fa1 kaypalha-ta

WN2 ways

G1 WN2 theory desenvolver entwickeln fa1-zhan3 palcensikhi-ta

G2 WN3 understanding desenvolver entwickeln pei2-yang3-chu1 palcensikhi-ta

G2 WN3 character desenvolver bilden pei2-yang3 yangsengha-ta

G4 WN8 musicians desenvolver ausbilden pei2-yang3 yangsengha-ta

G3 WN10 bacteria desenvolver-se sich bilden fa1-yu4 paltalha-ta

G3 WN5 movements desenvolver-se bilden xing2-cheng2 hyengsengtoy-ta

6 Suitability of groups for machine translation

We have demonstrated that semantically coherent groupings of senses can reconcile

subtle disagreements between annotators. However, this is only a benefit if these

subtle distinctions have little or no impact in NLP applications. To explore this

issue we examined the translations of several develop sentences into Portuguese,

German, Chinese and Korean, as summarized in Table 8. This is in the same spirit

as recent work that examines cross-language variation in how senses are translated

as a means of automatically determining sense distinctions (Resnik and Yarowsky

1999; Ide 2000). The examples here can be seen as the converse of that approach,

in that our goal is determining how effective the given sense distinctions are in

predicting translation differences. The translations were created by native speakers

of each language who were given example sentences from the sense definitions and

asked to translate just the verb in question into the most suitable expression in their

language.

As might have been expected, the Portuguese translations are the most similar to

English, and with the exception of an explicit reflexive marking for our “internally

caused” senses, they are all the same (see Table 8). The grouped senses would

certainly be sufficient for translation into Portuguese; in fact they are unnecessarily

fine-grained. For German there are only two main choices, entwickeln (Groups 1,

2, 4) or a variant of bilden (bilden, ausbilden, sich bilden) (Groups 3, 2, 4) but

the choices do not match the group boundaries of Groups 2 and 4 very precisely.

It is even less clear that the groups would be helpful for translating into Korean

or Chinese, where there are almost as many translation possibilities as there are
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Table 9. 30 of 35 Play senses, grouped, WordNet 1.7

Group Type Sense No. Description-Example Hypernym

1-trans sports WN1 games – “we played hockey” COMPETE

WN34 an opponent – “Princeton played Yale” MEET

2-trans with LOC-PP WN15 put a piece into play DEPLOY

WN31 play a good backhand HIT

WN32 play a piece USE

WN33 play a player USE

3-trans have an effect WN2 contribute to – “play a part in his decision” ACT

WN17 behave as “play it safe, play fair” ACT

4-trans music WN3 play (music) on an instrument PERFORM

WN6 play a melody RE-CREATE

WN7 perform music on (a musical instrument) SOUND

5-trans theatre WN4 play a role – “Gielgud played Hamlet.” RE-CREATE

WN14 location – “play Carnegie Hall” PERFORM

WN25 perform – He played in “Julius Caesar” PERFORM

WN26 location – a show is playing at Carnegie ?

6-trans musical device WN13 mechanical device – “the tape was playing” SOUND

WN18 causative/animate – “please play my record” ?

7-trans pretend WN12 pretend – “let’s play Indians” SIMULATE

WN8 play deaf ACT

8-trans abstract WN16 play the stockmarket ACT

WN20 play on someone’s emotions EXPLOIT

WN21 play with the thought of CONSIDER

WN23 flirt ACT

WN19 fiddle with – play with the idea of MANIPULATE

9-trans bet WN29 make bets – “He plays the casinos in Trouville” BET

WN30 wager – “I bet $100 on that new horse” GAMBLE

10-ditrans bet WN10 wager – “He played $20 on a horse” GAMBLE

11-intrans motion WN24 move freely – MOVE

this wheel has

a lot of play in it

12-intrans recreation WN5 be at play, “the kids played all day” ACT

WN11 recreate – “on weekends I play” ?

WordNet senses (Ng et al. 2003). We have similar translation results for hit, learn,

live, and call.

There are interesting common themes between all five languages, such as con-

sidering properties of the objects (“abstract” vs “animate”) and whether or not

an external agent is required, (i.e., causative/inchoative). Some languages group
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WN3 and WN8 together based on being applied to a “human” or a “human

characteristic.”14

In sum, when mapping from English to one other language, our preliminary

investigation indicates that the groups can provide a substantial benefit in lessening

the amount of sense distinctions that must be made. However, if the goal is

translation into several languages eventually every distinction that can be made

will be made, and there are few useful generalizations. This does not mean that

the groups become completely ineffective. Even if they do not provide a single

translation, providing a small set of translations that are semantically related can

still be beneficial. It is often possible for the target language to choose from such a

set based on target language selectional restrictions (Palmer et al. 2000; Palmer and

Wu 1995).

7 Conclusion

This paper has discussed the data preparation and system performance for the

English verb Lexical Sample Task of the Senseval-2 Word Sense Disambiguation

exercise, and demonstrated that WordNet 1.7 provided a useful sense inventory

for training automatic systems. The manual groupings of the WordNet 1.7 verb

senses and the methodology for producing them were presented. These provide a

more coarse-grained view of the sense distinctions which plays an essential role

in evaluation as well as applications. In examining the instances that proved

troublesome to both the human taggers and the automatic system, we found

several categories of errors that were tied to subtle sense distinctions which were

reconciled by backing off to independently derived coarse-grained sense groups.

These categories include different perspectives on sense subsumption, insufficient

sense entries, vague contexts or inadequate world knowledge. The annotators also

reported that the groupings allowed them to study side-by-side the senses that

are most likely to be confused, improving tagging consistency. For the automatic

systems, a potential advantage of the groupings is that, because the members are

so closely related, their combination can contribute towards providing a critical

mass of coherent examples, clarifying the differences between two groups and in

some instances alleviating the sparse data problem. These groupings have been

made available to the community via the Senseval2 web site, as well as a first pass

at groupings for all WordNet 1.7 verbs with more than three senses. An NSF-

funded project is currently underway which will provide grouped entries for over

1500 WordNet verbs and corresponding Penn Treebank tagged data. The associated

research will include attempts to create the sense groupings in a more principled

fashion, looking for commonalities across classes of verbs, as well as improvements

to the automatic WSD systems. Access to larger amounts of tagged data for more

lexical items will allow us to explore unsupervised clustering, perhaps following Bill

14 The persistence in treating WN13 similarly to WN1 and WN2 prompts us to consider
moving WN13 from Group4 to Group 1.
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Dolan’s lead (Dolan 1994), and bearing in mind that automatic techniques do not

have access to all the relevant information.

Lexicographers have long recognized that many natural occurrences of poly-

semous words are embedded in underspecified contexts and could correspond to

more than one specific sense. There will also always be gaps in inventories and

available world knowledge. In such cases both manual and automatic tagging

discrepancies are inevitable. Annotators and automatic systems need the option of

selecting, as an alternative to an explicit sense, either a group of specific senses or a

single, broader sense, where specific meaning nuances are subsumed (Palmer 1990).

Although present to some degree in the hierarchical entries of traditional dictionaries,

these have previously played only a small role in WordNet. The verb groupings

presented here represent an important step in the direction of making WordNet more

effective in computational applications such as cross-lingual information retrieval

(Lee et al. 2004) and machine translation. These sense groupings can be guided

and enhanced by the analysis of inter-annotator disagreements and the development

of more principled sense distinction criteria. Comparing the annotations of an

automatic system with that of a human tagger provides further insights into the

nature of the relationships between senses from a computational perspective, and

brings into focus the similarity in criteria being used by both humans and machines.

There is no claim that the groupings presented here are correct in any absolute sense,

but simply that they are of practical use. There could be alternative groupings that

might prove equally useful, or even more useful, for particular types of applications.
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