
1

1

GIA: Making Gnutella-like P2P Systems
Scalable

Yatin Chawathe, Sylvia Ratnasamy, Lee
Breslau, Scott Shenker, and Nick Lanham

SIGCOMM 2003

2

Acknowledgements

Most of the followings slides are borrowed from the
talk by Yatin Chawathe (Intel)

3

The Peer-to-peer Phenomenon

 Internet-scale distributed system
 Distributed file-sharing applications
 E.g., Napster, Gnutella, KaZaA

 File sharing is the dominant P2P app
 Mass-market

 Mostly music, some video, software

4

The Problem

 Potentially millions of users
 Wide range of heterogeneity
 Large transient user population

 Existing search solutions cannot scale
 Flooding-based solutions limit capacity
 Distributed Hash Tables (DHTs) not necessarily

appropriate

2

5

Why Not DHTs

 Structured solution
 Given a filename, find its location

 Can DHTs do file sharing?
 Probably, but with lots of extra work:

Caching, keyword searching
 Do we need DHTs?

 Not necessarily: Great at finding rare files, but
most queries are for popular files

Note: Not questioning the utility of Note: Not questioning the utility of DHTs DHTs in general, in general,
merely for mass-market file sharingmerely for mass-market file sharing 6

Why Not DHTs

 Structured solution
 Given a filename, find its location
 Tightly controlled topology & file placement

 Unsuitable for file-sharing
 Transient clients cause overhead
 Poorly suited for keyword searches
 Can find rare files, but that may not matter

Note: Not questioning the utility of Note: Not questioning the utility of DHTs DHTs in general, in general,
merely for mass-market file sharingmerely for mass-market file sharing

7

Proposed Solution: GIA

 Unstructured, but take node capacity into
account
 High-capacity nodes have room for more

queries: so, send most queries to them

 Will work only if high-capacity nodes:
 Have correspondingly more answers, and
 Are easily reachable from other nodes

8

 Make high-capacity nodes easily reachable
 Dynamic topology adaptation

 Make high-capacity nodes have more answers
 One-hop replication

 Search efficiently
 Biased random walks

 Prevent overloaded nodes
 Active flow control

 Make high-capacity nodes easily reachable
 Dynamic topology adaptation

 Make high-capacity nodes have more answers
 One-hop replication

 Search efficiently
 Biased random walks

 Prevent overloaded nodes
 Active flow control

GIA Design

Query

3

9

Dynamic Topology Adaptation

 Make high-capacity nodes have high degree (i.e.,
more neighbors)

 Per-node level of satisfaction, S:
 0 ⇒ no neighbors, 1 ⇒ enough neighbors
 Function of:

o Node’s capacity, Neighbors’ capacities, Neighbors’ degrees
o Sum of neighbors capacities (normalized by their degrees)

divided by the node’s own capacity
o Intuition: a node with capacity C will forward C queries per

unit time at full load and needs enough capacity from all its
neighbors to be able to handle that load

 When S << 1, look for neighbors aggressively

10

Dynamic Topology Adaptation (cont’d)

 Each node keeps a host cache populated with
nodes it knows about or discovers

 If S < 1, then it tries to add nodes from its host
cache to its neighbor list
 If number of neighbors reaches a maximum level, then

some current neighbor has to be dropped to make room
for the new neighbor

 If the new neighbor has higher capacity than an existing
neighbor then it is added

 O/w, the new node is added if it has a lower degree than
the current neighbor with the highest degree

o Neighbor with highest degree has least to lose if it is
dropped

11

Flow Control

 Active flow control
 Senders are allowed to direct queries to a neighbor only

if that neighbor has notified the sender that it is willing
to accept queries from the sender

 Each GIA client periodically assigns flow-control tokens
to its neighbors

o Each token represents a single query
o Tokens assigned using Start-time Fair Queuing (a

proportional-share scheduling algorithm)
o Neighbors assigned tokens in proportion to their advertised

capacity

12

Other Design Features

 One-hop replication
 Each node actively maintains an index of the content of

all its neighbors

 Search algorithm
 Biased random walk
 A node forwards a query to the highest capacity

neighbor for which it has flow control tokens
o If no tokens, query is queued until tokens arrive

 TTLs used to bound the duration of the random walk and
book-keeping techniques to avoid redundant paths (unique
GUID per query + query history)

 Query duration also bounded by MAX_RESPONSES
parameter

4

13

Other Design Features (cont’d)

 Query resilience
 Drawbacks of random walk: if a node dies before it has

forwarded a query, the query will be lost
 GIA relies on query keep-alive messages to address this

issue
 Query responses serve as implicit keep-alive messages
 If a query is forwarded several times without any

responses, an explicit keep-alive message is sent to the
originator, who can reissue the query

14

Simulation Results

 Compare four systems
 FLOOD: TTL-scoped, random topologies
 RWRT: Random walks, random topologies
 SUPER: Supernode-based search
 GIA: search using GIA protocol suite

 Metric:
 Collapse point: aggregate throughput that the

system can sustain

15

Questions

 What is the relative performance of the
four algorithms?

 Which of the GIA components matters the
most?

 How does the system behave in the face of
transient nodes?

16

System Performance

0.00001

0.001

0.1

10

1000

0.01 0.1 1
Replication Rate (percentage)

C
o

ll
a
p

s
e
 P

o
in

t
(q

p
s
/n

o
d

e
) GIA: N=10,000

SUPER: N=10,000

RWRT: N=10,000

FLOOD: N=10,000

GIA outperforms SUPER, RWRT & FLOOD by many GIA outperforms SUPER, RWRT & FLOOD by many
orders of magnitude in terms of aggregate query loadorders of magnitude in terms of aggregate query load

% % %

5

17

Factor Analysis

0.0006RWRT+FLWCTL

0.001RWRT+TADAPT

0.0015RWRT+BIAS

0.005RWRT+OHR

0.0005RWRT

Collapse
point

Algorithm

2GIA – FLWCTL

0.2GIA – TADAPT

6GIA – BIAS

0.004GIA – OHR

7GIA

Collapse
point

Algorithm

No single component is useful by itself; the No single component is useful by itself; the
combinationcombination of all of them is what makes GIA scalable of all of them is what makes GIA scalable

18

Factor Analysis

RWRT
0.0005

+ OHR
0.005

+ BIAS
0.0015

+ TADAPT
0.001

+ FLOWCTL
0.0006

GIA
7

– OHR
0.004

– BIAS
6

– TADAPT
0.2

– FLOWCTL
2

No single component is useful by itself; the No single component is useful by itself; the
combinationcombination of all of them is what makes GIA scalable of all of them is what makes GIA scalable

19

Transient Behavior

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000
Per-node max-lifetime (seconds)

C
o

ll
a
p

s
e
 p

o
in

t
(q

p
s
/n

o
d

e
)

replication rate = 1.0%

replication rate = 0.5%

replication rate = 0.1%

Static SUPER

Static RWRT (1% repl)

Even under heavy churn GIA outperforms the otherEven under heavy churn GIA outperforms the other
algorithms by many orders of magnitudealgorithms by many orders of magnitude

20

Summary

 GIA: scalable Gnutella
 3–5 orders of magnitude improvement in system

capacity

 Unstructured approach is good enough!
 DHTs may be overkill
 Incremental changes to deployed systems

 Status: Prototype implementation deployed
on PlanetLab

