
Making Huge Pages Actually Useful

Ashish Panwar∗

Indian Institute of Science

panwarit014@gmail.com

Aravinda Prasad†

Indian Institute of Science

aravinda@iisc.ac.in

K. Gopinath
Indian Institute of Science

gopi@iisc.ac.in

Abstract

The virtual-to-physical address translation overhead, a ma-

jor performance bottleneck for modern workloads, can be

e�ectively alleviated with huge pages. However, since huge

pages must be mapped contiguously, OSs have not been able

to use them well because of the memory fragmentation prob-

lem despite hardware support for huge pages being available

for nearly two decades.

This paper presents a comprehensive study of the interac-

tion of fragmentation with huge pages in the Linux kernel.

We observe that when huge pages are used, problems such

as high CPU utilization and latency spikes occur because of

unnecessary work (e.g., useless page migration) performed

by memory management related subsystems due to the poor

handling of unmovable (i.e., kernel) pages. This behavior is

evenmore harmful in virtualized systemswhere unnecessary

work may be performed in both guest and host OSs.

We present Illuminator, an e�cient memory manager that

provides various subsystems, such as the page allocator, the

ability to track all unmovable pages. It allows subsystems to

make informed decisions and eliminate unnecessary work

which in turn leads to cost-e�ective huge page allocations.

Illuminator reduces the cost of compaction (up to 99%), im-

proves application performance (up to 2.3×) and reduces the

maximum latency of MySQL database server (by 30×).

CCS Concepts • Software and its engineering → Op-

erating systems; Memory management; Allocation /

deallocation strategies;

Keywords Address Translation; Memory Fragmentation;

Memory Compaction; Huge Pages

∗Currently at NetApp, ashish.panwar@netapp.com
†Currently at IBM.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00

h�ps://doi.org/10.1145/3173162.3173203

ACM Reference Format:

Ashish Panwar, Aravinda Prasad, and K. Gopinath. 2018. Making

Huge Pages Actually Useful. In ASPLOS ’18: 2018 Architectural Sup-

port for Programming Languages and Operating Systems, March

24–28, 2018, Williamsburg, VA, USA. ACM, New York, NY, USA,

14 pages. h�ps://doi.org/10.1145/3173162.3173203

1 Introduction

Address translation overhead has become a major perfor-

mance bottleneck for modern data processing applications

as TLB scaling has not caught up with the growth of memory

capacity in recent times [31, 40, 49, 63]. This has inspired

support for huge pages in most processors [4, 5, 53]. Huge

pages minimize CPU time spent in performing page table

lookups by reducing TLB misses [29, 46].

Unfortunately, the pro�tability of huge pages depends on

the state of memory fragmentation as they must be mapped

in contiguous memory [49, 54]. In long-running systems,

unfavorable fragmentation can (and often does) become a

source of poor performance.

Users have repeatedly experienced performance degrada-

tion, high kernel space CPU utilization and latency spikes

while using huge pages with important applications such

as Hadoop, MongoDB, Redis and VoltDB [16, 17, 19, 20]. To

avoid such issues, most database servers are shipped with

huge pages disabled. Hence, we can safely infer that the

huge page support available in hardware for nearly two

decades is not e�ectively utilized by OSs. Contrary to a pop-

ular belief in the academic literature that fragmentation is

not a critical problem and OSs can e�ciently recover from

fragmentation with memory compaction (i.e., by relocating

pages) [29, 31, 46], we show that fragmentation can indeed

cause the aforementioned issues with huge pages. Our views

are also well corroborated by the Linux kernel community

discussions [6, 7].

This paper presents a comprehensive study of the interac-

tion of fragmentation with huge pages in the Linux kernel.

We �nd that the poor handling of unmovable (i.e., kernel)

pages, which are found in many OS designs, is the root cause

of many huge page related problems. While previous work

indicates that the existing OS designs can e�ectively handle

unmovable pages [59], we believe this to be erroneous at

least in the context of long-running systems.

We identify two major issues to be the root cause of var-

ious performance anomalies that appear with huge pages:

1) fragmentation via pollution, which occurs when memory

contiguity is unnecessarily polluted with unmovable pages,

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

679

https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3173162.3173203

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

and 2) latency-inducing unsuccessful (LIU) migration, which

occurs when the kernel unnecessarily migrates pages from

the polluted regions while attempting to allocate huge pages.

While the former often leads to severe fragmentation, the lat-

ter induces latency by increasing the cost of recovering from

fragmentation. As fragmentation via pollution increases, the

overhead of LIU migration starts to dominate the bene�ts of

huge pages. Importantly, both fragmentation via pollution

and LIU migration occur due to poor decision making in

memory management related subsystems.

With modest changes in the Linux kernel, Illuminator

explicitly tracks all unmovable pages to help various subsys-

tems in avoiding unnecessary work. For example, it helps

memory compaction in avoiding LIU migration which leads

to cost-e�ective huge page allocations. It also helps the page

allocator in e�ciently clustering unmovable pages which in

turn reduces fragmentation via pollution. These optimiza-

tions provide signi�cant performance improvement across

native and virtualized systems.

This paper makes the following major contributions:

• We identify how the existing memory management

policies lead to various performance anomalies often

experienced in the real world with huge pages (§ 4).

• We present Illuminator, a simple memorymanagement

framework that e�ectively mitigates fragmentation

and makes huge page bene�ts accessible to applica-

tions even in stressful conditions (§ 5).

• Through a detailed evaluation, we show that Illumina-

tor signi�cantly outperforms Linux in terms of various

performance metrics such as the execution speedup,

latency, jitter and performance isolation (§ 6).

2 Motivation

Huge pages have become vital for mitigating address transla-

tion overheads of modern workloads as non-linear scaling of

the hardware cost, energy consumption and lookup latency

has impacted the growth of TLB capacity [40, 49, 63]. Though

each address translation may require up to 6×more memory

lookups in virtualized systems due to the two-dimensional

page tables [31], modern hardware can nearly match the ad-

dress translation e�ciency of virtualized environments with

the native systems by utilizing huge pages [61]. However,

harnessing the full potential of huge pages requires e�cient

fragmentation mitigation by the OSs.

OSs can leverage the hardware support for huge pages in

two ways. First, by reserving a pool of contiguous memory

at boot time. Windows and OS X support huge pages us-

ing this mechanism. Linux provides a similar libhugetlbfs

interface for using huge pages in well-tuned system [12].

However, this approach is not �exible and necessitates appli-

cation modi�cations to explicitly request huge pages [63]. In

practice it is tedious for developers to know which memory

regions should (or should not) be backed by huge pages.

Second, a more practical and widely accepted approach

is Transparent Huge Pages (THP), where an OS tries to al-

locate huge pages automatically as in Linux and FreeBSD.

Unfortunately, the pro�tability of THP support declines as a

system runs longer. We discuss some examples to highlight

a few issues users often face with huge pages.

Tales from the real world: Customers with large Helix

user bases experienced unresponsive servers and frozen pro-

cesses despite being provisioned with adequate memory [23].

Troubleshooting revealed that THP feature of the Linux ker-

nel was the culprit because khugepaged process (§ 3.2) was

consuming a high number of CPU cycles. Even simple com-

mands (e.g., ps) appeared to be frozen [9]. Disabling huge

pages solved the problem.

Inmany cases the �rst recommendation for avoidingmany-

msec hiccups is to disable THP support in Linux as the kernel

thread interferes with latency-sensitive applications [19, 24];

we have also observed as much as 4.7 seconds hiccups (see

Figure 10). The Hadoop Performance Tuning Guide recom-

mends disabling huge pages because compaction increases

the kernel space CPU utilization by 66% for the TeraSort

benchmark [16]. Many popular database vendors also rec-

ommend disabling huge pages, primarily to avoid latency

spikes [17–20, 25].

We show that these issues can appear due to the poor

handling of unmovable pages which can be found in many

OSs such as FreeBSD, Solaris and OS X [2, 47, 52, 54]. Impor-

tantly, several OSs do not support THP primarily to avoid

dealing with fragmentation [10]. Illuminator makes THP

support actually useful for long-running systems. While we

believe the Illuminator design to be useful for di�erent OSs,

we present it here in the context of the Linux kernel.

3 Memory management background

3.1 Unmovable pages

The mobility of memory pages depends on the reference

management structures. The user virtual address space is

typically managed with page tables and a few other objects

(e.g., vm_mm, vm_area_struct etc. [33]). These pages (includ-

ing non-pageable mlocked regions) can be migrated by copy-

ing their content and updating the corresponding references.

In contrast, the kernel address space is directly mapped into

physical memory which provides faster mapping of kernel

objects: a kernel virtual address is converted to a physical

address (or vice-versa) by adding a constant. The direct map-

ping leads to a simple design whose bene�ts are well docu-

mented in the literature [8, 11, 29]. However, it makes the

kernel objects (e.g., inodes) unmovable—directly mapped

objects cannot be migrated or swapped to disk as their ref-

erences cannot be tracked. While unmovable pages are not

unique to Linux,1 the severity of fragmentation caused by

1The outermost page tables and DMA pages are inherently unmovable in

most OS designs.

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

680

Making Huge Pages Actually Useful ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

Figure 1. Two-way classi�cation based anti-fragmentation leads to fragmentation via pollution because the buddy allocator

cannot reuse hybrid pageblocks during fallbacks. For example, pollution of P1 can be avoided by reusing P2 during C→D. For

clarity, hybrid pageblocks are colored yellow in this �gure, but the Linux kernel treats them as either red or green, depending

on which region they belong to.

Figure 2. Physical memory management in Linux. The slab

allocator allocates kernel objects while the buddy alloca-

tor serves pages to the slab allocator (from the unmovable

region) and to the user space (from the movable region).

unmovable pages is high in direct mapped kernels as all

kernel pages are unmovable in such systems.

3.2 Memory allocation

Figure 2 shows the basic memory allocation framework of

Linux. Kernel objects are allocated by the slab allocator

which maintains separate caches (known as slab caches)

for di�erent objects. Slab caches are populated by requesting

memory from the buddy allocator via alloc_pages. Note

that pages occupied by the slab caches are unmovable.

Application requests are handled by the buddy allocator

which preferentially allocates huge pages at the time of page

fault, using direct (synchronous) compaction if memory is

fragmented. If huge page allocations fail, the kernel allocates

baseline pages which may be promoted to huge pages in the

background by the kernel thread khugepaged using asyn-

chronous compaction. We use the term page(s) and baseline

page(s) interchangeably.

3.3 RCU and deferred objects

Many subsystems using the slab allocator employ Read-

Copy-Update (RCU) synchronization mechanism for better

scalability. In RCU, writers create a new copy before updating

an object and defer the freeing of the old copy. The deferred

object is reclaimed by the synchronization mechanism after

a grace period, which denotes the completion of all its pre-

existing readers. Notice that delay in reclaiming deferred

objects can increase unmovable memory footprint as these

objects are unmovable.

3.4 Fragmentation mitigation techniques

Unfavorable placement of unmovable pages can create per-

manent fragmentation leading to huge page allocation fail-

ures. Current systems employ a combination of fragmenta-

tion avoidance (i.e., anti-fragmentation [55]) and recovery

mechanism (i.e., memory compaction) to handle fragmenta-

tion. We brie�y discuss these mechanisms below.

Anti-fragmentation clusters alike allocations by dividing

memory in two disjoint regions (see Figure 1): unmovable

(colored red) and movable (colored green). This partitioning

is done at pageblock granularity; a pageblock represents a

huge page sized contiguous physical memory region. The

buddy allocator selects a region based on the source of the

allocation request. For example, kernel requests are served

from the unmovable region. However, a region can steal

pageblocks from the other region when it runs out of free

memory (this event is referred to as fallback). During fallback,

the stolen pageblock is colored accordingly. For instance, the

color of a pageblock is updated to red if it is stolen by the

unmovable region.2

The memory compaction algorithm involves two pointers;

from one end, themigrate scanner prepares a list of in-use and

movable baseline pages while the freepage scanner collects

free baseline pages from the other end [6]. Pages from the

migrate scanner’s list are copied to the freepage scanner’s

list to restore memory contiguity.

4 A detailed analysis of fragmentation

The virtual memory layer in the Linux kernel has under-

gone signi�cant changes for accommodating the support for

huge pages. However, operations at the physical memory

layer (i.e., page/object allocation, compaction) have largely

remained unchanged. This section discusses how unneces-

sary work can occur and become a source of poor perfor-

mance. First, we introduce the notion of a hybrid pageblock.

Hybrid pageblock: A pageblock is hybrid if it contains

both movable and unmovable pages. We explain how hybrid

pageblocks are formed with an example (see Figure 1).

2Real implementation of anti-fragmentation has more than two regions in

the Linux kernel [54, 55]. However, to simplify the discussion in this paper,

we describe it only in the context of movable and unmovable regions.

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

681

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

Let us assume a system starts with four pageblocks P1 to

P4. The two-way classi�cation approach works well until the

system reaches state Awhere P1, P4 belong to the unmovable

region and P2, P3 belong to the movable region. If P1 and P4

have no free pages left and an unmovable page is requested

by the kernel, the algorithm of Linux steals and adds P2 to

the unmovable region during system transition from A→B.

P2 thus becomes a hybrid pageblock during A→B, if some

movable pages were already allocated from it.

4.1 The invisibility of hybrid pageblocks

Two-way classi�cation based anti-fragmentation makes hy-

brid pageblocks invisible which in turn represents a stale

view of movability. While there are three types of page-

blocks (i.e., movable, unmovable and hybrid) in the system,

subsystems operate on the assumption of only movable and

unmovable pageblocks. This leads to the following scenarios

of poor decision making in critical code paths.

4.1.1 Fragmentation via pollution

This is a situation where unmovable pages are unnecessarily

allocated from movable (green) pageblocks. This happens

because even though hybrid pageblocks are placed at the

head of free lists during fallbacks, they get shifted away

from the head over a period of allocation and free cycles.

Thus, the buddy allocator cannot identify or reuse existing

hybrid pageblocks e�ciently. For example in Figure 1, P1

gets polluted during C→D because the buddy allocator is not

aware of P2 already being a hybrid pageblock. Similarly, the

transition from E→F also produces a new hybrid pageblock

P4. In the worst case, each fallback can produce a fresh hybrid

pageblock in the system.

Fragmentation via pollution restricts huge page alloca-

tions since a polluted pageblock cannot be allocated as a

huge page unless its unmovable pages are freed. In practice,

only a fewmisplaced unmovable pages can create permanent

fragmentation. For example, a 2MB pageblock on x86 systems

consists of 512 baseline pages (512×4KB=2MB). However, a

single unmovable page is su�cient to pollute a pageblock

and hence only 0.19% misplaced unmovable pages (of total

system pages) can pollute all the pageblocks (1/512=0.0019)

in the worst case. Moreover, the severity of fragmentation

via pollution increases along with the size of huge pages —

a system using 1GB-sized huge pages can be fragmented by

only 0.00038% misplaced unmovable pages. In this paper we

discuss only the most commonly used 2MB huge pages for

simplicity.

4.1.2 LIU migration

During compaction, the kernel migrates pages from all green

pageblocks encountered by the migrate scanner, optimisti-

cally believing that a green pageblock can always be emptied.

But many hybrid pageblocks are also colored green in the

two-way classi�cation of pageblocks (for example, both P1

Unmovable Pages
Hybrid Pageblocks

Linux (664) Illuminator (34)

1 24 0

2–50 600 0

50–250 30 0

250–375 10 2

375–512 0 32

Table 1. Distribution of unmovable pages. Illuminator pro-

duces only about 5% hybrid pageblocks compared to Linux.

and P4 are hybrid in state F). This behavior leads to LIU

migration.

LIU migration is harmful because it unnecessarily con-

sumes CPU cycles. For example, migrating a baseline page

takes about 5 microseconds on our test setup. When a hybrid

pageblock contains one unmovable page, the kernel may

migrate up to 511 pages from the pageblock adding 2.5 mil-

lisecond latency to a huge page allocation. This latency is

further exacerbated when many consecutive pageblocks are

hybrid. Even worse, huge page allocation can fail even after

migrating pages from many hybrid pageblocks.

In addition to copying the page content, compaction also

involves other critical operations such as updating the page

table(s) and locking a few critical data structures. It also

necessitates TLB invalidations when the page beingmigrated

is mapped in the TLB of any CPU core(s). When many hybrid

pageblocks are present in the system, LIUmigration becomes

an unnecessary overhead because the kernel migrates pages in

response to each huge page allocation request without checking

the futility of doing so.

The current kernel design assumes that LIU migration

is not an issue as it can prevent long-term fragmentation

for sub-pageblock sized allocations. For example, a 64KB

allocation request can be served by migrating pages from a

hybrid pageblock. It can also free other smaller blocks that

can be used to serve future allocations.While we believe such

proactive migration is desirable for reducing fragmentation

for sub-pageblock allocations, it should not be applicable to

THP allocations because it never produces a free pageblock

and hence never reduces long-term fragmentation at huge

page granularity.

Measuring fragmentation: The overall state of fragmenta-

tion depends on the distribution of unmovable pages. Sparsely

polluted pageblocks result in higher fragmentation because

for a �xed amount of unmovable memory, sparse pollution

creates more hybrid pageblocks. Sparse pollution also results

in higher compaction overhead as pageblocks with fewer

unmovable pages lead to higher amount of LIU migration.

Prior works use FMFI (Free Memory Fragmentation Index)

to measure fragmentation [55, 63]. However, FMFI does not

consider unmovable pages and hence cannot be used to mea-

sure the di�culty of recovering from fragmentation. Instead,

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

682

Making Huge Pages Actually Useful ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

 0

 250

 500

 750

 1000

 1250

 1500

 0 20 40 60 80 100#
 H

y
b
ri

d
 P

ag
eb

lo
ck

s

Iterations

Linux
Prudence

Illuminator

Figure 3. Rate of pageblock pollution with a synthetic bench-

mark that stresses both the buddy and the slab allocator.

we propose unmovability index to measure the degree of frag-

mentation, which represents the fraction of total pageblocks

polluted by unmovable pages. For example, the unmovability

index is 0.5 if half of the total pageblocks contain at least one

unmovable page each.

4.1.3 Experimental study of Linux fragmentation

We �nd that fragmentation via pollution and LIU migration

are commonplace in Linux. For instance, on a 2GB system

which has about 950 pageblocks, the compilation of the ker-

nel source produces 664 hybrid pageblocks with most of

the hybrid pageblocks containing a few unmovable pages

(see Table 1). In fact, 624 out of 664 hybrid pageblocks have

less than 50 unmovable pages each. Interestingly, 24 hybrid

pageblocks contain one unmovable page each. As discussed

above, sparsely polluted pageblocks lead to signi�cant over-

head during memory compaction.

4.2 Delayed reclamation of deferred objects

In the existing slab-based allocators, deferred objects are

not reclaimed immediately after the completion of a grace

period for several reasons. For example: 1) RCU manages

deferred objects in a queue and reclaims their memory by

invoking the registered callback function of each object. Thus

the reclamation of objects placed towards the end of the

queue is delayed, 2) RCU throttles the rate of reclamation

of deferred objects to avoid interfering with applications,

irrespective of the state of the slab allocator [58], and 3) the

kernel threads responsible for reclaiming deferred objects

may be preempted. Until reclaimed, deferred objects cannot

be reused as they remain invisible to the slab allocator.

Modern applications that perform thousands of update

operations per second generate many deferred objects [35].

The delayed reclamation of deferred objects in turn increases

slab consumption. It also leads to high slab churns by forcing

the slab allocator to populate slab caches, in response to a

new allocation request, even if a lot of deferred objects have

waited for more than a grace period. Recall that slab pages

are unmovable. Hence, unnecessary calls to alloc_pages

can increase fragmentation via pollution.

Figure 3 shows the impact of fragmentation via pollution

with a synthetic benchmark that we use to fragment the

 500

 750

 1000

 1250

2 4 6 8 10 12

T
im

e
(s

ec
o
n
d
s)

Memory Size (GB)

none
async

sync+async

Figure 4. Execution time of milcwith no compaction (none),

with asynchronous compaction (async) and with synchro-

nous and asynchronous compaction (sync+async) at 0.75

unmovability index.

memory. Unlike existing tools, our benchmark stresses the

buddy allocator (with anonymous mapping) and the slab

allocator (with �le create and delete operations) at the same

time and can be used to control the level of fragmentation.We

execute the benchmark in a loop and observe the following.

In Linux, the delayed reclamation of deferred objects in-

creases the number of calls to alloc_pages resulting in 1021

hybrid pageblocks at the end of the hundredth iteration. The

recently proposed Prudence dynamic memory allocator [28]

reclaims deferred objects immediately after the completion

of a grace period which reduces the number of hybrid page-

blocks to 691, a 35% reduction compared to Linux. Hence,

we replace the slab allocator with Prudence.

4.3 Large memory large problems

We also �nd a counterintuitive side e�ect of LIU migration

i.e., it can make performance worse as the size of memory

grows. We observed that at similar unmovability index, the

execution time of certain applications increases as the mem-

ory size is increased.

To verify this, we measure the performance of milc (from

SPEC CPU2006) at 0.75 unmovability index with di�erent

memory sizes. This workload is chosen because it stresses

the memory allocation and compaction code paths due to

aggressive memory allocation behavior. Note that a large

memory system has more hybrid pageblocks and takes more

time to reach a similar unmovability index than a small

memory system. However, in this experiment, we do not

consider the time taken to fragment the memory; we are

interested only in the impact of fragmentation. The amount

of LIU migration is also higher on a large memory system as

it contains more hybrid pageblocks at similar unmovability

index. For example, 2GB and 10GB memory systems have

about 750 and 3750 hybrid pageblocks in this case.

Figure 4 shows that milc completes in constant time for

all memory sizes when compaction is not required i.e., in the

non-fragmented case. The execution time is also constant in

the fragmented case (but higher than the non-fragmented

case) with only asynchronous compaction which is designed

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

683

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

Figure 5. Illuminator improves page clustering by explicitly managing hybrid pageblocks. Once P2 is yielded to the hybrid

region during A→B, it is reused until state K. P1 is added to the hybrid region only when P2 fails to allocate memory.

Figure 6. Illuminator explicitly manages hybrid pageblocks

in a di�erent region to prevent fragmentation via pollu-

tion. Prudence helps Illuminator by minimizing callbacks to

alloc_pages with timely reclamation of deferred objects.

to avoid interfering with applications. To the contrary, syn-

chronous compaction stalls applications at the time of page

fault. Hence, its impact increases as memory capacity (and

hence the number of hybrid pageblocks) grows. As a result,

12GB memory system results in 1.9× higher execution time

compared to a 2GB memory system.

This occurs because the kernel controls the rate of only

asynchronous compaction, with a con�guration parameter

whose default value is 1.6MB per second. No such limit is

enforced on the rate of synchronous compaction whose cost

increases as the number of hybrid pageblocks grow. Hence,

applications that allocate memory during their entire execu-

tion cycle (e.g., milc, bwaves, bzip2 from SPEC CPU2006)

are heavily impacted by synchronous compaction. Applica-

tions that do not allocate memory frequently are not vul-

nerable to such behavior. We believe a similar issue may be

present in Windows as it prohibits making repeated large-

page allocations; applications should allocate all large pages

one time, at startup [10].

One way to handle this issue is to employ policy-based

decisions to also control the rate of synchronous compaction.

However, our objective in this paper is to develop an e�cient

compaction mechanism that can help in both synchronous

and asynchronous code paths.

4.4 Impact of fragmentation in virtualized systems

Notice that in virtualized systems, the guest OS (if it is Linux)

handles fragmentationwith similar algorithms as the host OS.

Hence, the severity of fragmentation is higher in virtualized

setups because LIU migration takes place in both guest and

host when memory is fragmented.

We �nd that the impact of guest memory fragmentation is

more severe than host memory fragmentation as the bene�ts

of huge pages at the guest layer are usually higher than huge

pages at the host (for our workloads). However, fragmenta-

tion in the host layer also has a signi�cant impact in many

cases. Hence, it is important to handle fragmentation in both

layers for making the best use of huge pages.

5 Illuminator design and implementation

To e�ciently support huge pages, an OS should mitigate

fragmentation via pollution and eliminate LIU migration. In-

tuitively, any solution that minimizes slab memory consump-

tion is also helpful. Illuminator satis�es these requirements

by explicitly managing hybrid pageblocks with a simple de-

sign. To optimize the memory consumption of slab caches,

we use the Prudence memory allocator [28]. Figure 6 repre-

sents the high-level design of Illuminator.

5.1 Explicit management of hybrid pageblocks

Illuminator partitions memory in three disjoint sets where

unmovable and movable regions serve the same purpose as

in Linux while the third region is used to explicitly manage

hybrid pageblocks. We represent hybrid pageblocks with yel-

low color. Three-way partitioning based anti-fragmentation

provides memory management subsystems a precise view

of movability; it guarantees that pageblocks colored red con-

tain only unmovable pages and pageblocks colored green

contain only movable pages. This design helps subsystems

in making informed decisions.

5.1.1 Mitigating fragmentation via pollution

In Illuminator, the buddy allocator attempts to allocate mem-

ory from the corresponding region �rst (similar to Linux)

but prefers hybrid pageblocks for allocation before a region

is allowed to steal pageblock(s) from the other. If fallback

happens, a pageblock is stolen only if all of its constituent

base pages are free. Otherwise, the pageblock is yielded to

the hybrid region and its color is updated to yellow. This

way, Illuminator ensures that pageblocks are not polluted

unnecessarily. The inclusion of hybrid pageblocks does not

add performance overhead in the allocation path as they can

be accessed by the buddy allocator in constant time.

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

684

Making Huge Pages Actually Useful ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

We explain the memory allocation in Illuminator with an

example similar to the one discussed in § 4 (see Figure 5).

Illuminator behaves similar to Linux until the system reaches

state A as the hybrid region stays empty until this point. If an

unmovable page is requested when P1 and P4 have no free

pages, the movable region yields P2 to the hybrid region and

tags it with yellow color. Illuminator guarantees that a new

pageblock is not polluted as long as P2 can successfully serve

memory fallbacks. This behavior leads to better clustering

of unmovable pages in the long run.

The impact of better page-clustering is shown in Table 1.

Illuminator reduces the number of hybrid pageblocks to only

34 compared to 664 of Linux, each with many unmovable

pages. Note that almost each hybrid pageblock has more

than 375 unmovable pages in Illuminator. It reduces the

number of hybrid pageblocks by almost 90% for our synthetic

benchmark as well (as shown in Figure 3).

5.1.2 Eliminating LIU migration

Illuminator eliminates THP related LIU migration by decou-

pling huge page related compaction from the compaction

induced by smaller (i.e., sub-pageblock) allocations. This is

achieved by avoiding hybrid pageblocks during huge page

allocations. The migrate scanner checks the color of each

pageblock before migrating pages and skips the entire page-

block range (i.e., 512 contiguous baseline pages) if the page-

block is hybrid. Similarly, the freepage scanner also skips

hybrid pageblocks while collecting free pages.

We deliberately allow the freepage scanner to skip hybrid

pageblocks so that free space in the hybrid region is not

exhausted. This prevents subsequent unmovable allocations

from falling back to the movable region (which otherwise

may lead to fragmentation via pollution in the long run).

5.2 Reclaiming pageblocks from the hybrid region

A hybrid pageblockmay becomemovable, for example, when

memory gets freed and the slab allocator returns all its pages

to the buddy allocator. It is important to reclaim such page-

blocks from the hybrid region to prevent them from getting

polluted by future allocations. Illuminator follows a lazy ap-

proach for this task for e�ciency; proactively reclaiming

pageblocks from the hybrid region necessitates changes in

the fast path of the buddy allocator as it requires keeping

track of the number of unmovable pages in each pageblock.

In performance sensitive code paths, such accounting is con-

sidered to be expensive.

Illuminator reclaims pageblocks from the hybrid region

during compaction. It queries the number of movable and

unmovable pages for each hybrid pageblock encountered by

either of the two pointers. If a hybrid pageblock is found to

contain only movable (or free) pages, Illuminator updates

the pageblock color to green and adds it to the movable

region. Similarly, a pageblock is colored red and added to the

unmovable region if it is found to contain only unmovable

Figure 7. The location of unmovable pages a�ects the out-

come of compaction in the two-way classi�cation approach.

In this case, Linux can allocate a huge page only in scenario

A while Illuminator can allocate huge page in both A and B.

(or free) pages. If compaction is delayed for a long duration,

a thread can be run in the background to periodically scan

and reclaim pageblocks from the hybrid region.

5.3 Eliminating susceptibility to page locations

In the Linux kernel, the invisibility of hybrid pageblocks

also has an additional side e�ect i.e., it makes performance

susceptible to physical location of unmovable pages. We

explain this with an example.

Consider two di�erent scenarios of a system with three

pageblocks P1, P2 and P3 along with the positions of the

scanning pointers as shown in Figure 7. Assume that half of

the baseline pages (i.e., 256 pages) are allocated from each

pageblock. Also assume that P2 is hybrid in scenario A and

P1 is hybrid in scenario B, with one unmovable page each.

In Linux, a huge page can be allocated only in scenario A (by

migrating P1’s pages to P3). In scenario B, LIU migration of

P1’s pages to P3 would eliminate the possibility of P2 being

allocated as a huge page as it will leave P3 with insu�cient

space to accommodate the pages of P2.

As a consequence of such behavior, the cost of compaction

in Linux depends on the spatial distribution of unmovable

pages which in turn leads to variable latency in the allocation

of huge pages. Illuminator is not susceptible to such behavior

as it avoids hybrid pageblocks during compaction.

5.4 Timely reclamation of deferred objects

We use Prudence to facilitate the timely reclamation of de-

ferred objects. Prudence stores deferred objects in latent

caches where a latent cache is de�ned for each slab cache. It

also integrates with RCU to provide grace period informa-

tion to the slab allocator. With such information, the slab

allocator reclaims deferred objects immediately after the

completion of a grace period.

Integration with the synchronization mechanism provides

a complete view of in-use, free and about-to-be-freed objects

to the slab allocator. The about-to-be-freed objects also pro-

vide crucial hints about the future free operations which are

utilized to reduce the footprint of unmovable memory by

clustering object allocations within fewer slabs. Together,

these optimizations substantially reduce the number of calls

to alloc_pages. For our synthetic benchmark, Prudence

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

685

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

Benchmarks Description

milc, mcf,

omnetpp, bzip2

Memory and compute intensive

applications from SPEC CPU2006 [48]

mummer, tigr
Genome alignment and sequencing

applications from BioBench [51]

NPB_CG.D
Congruent gradient algorithm from

NAS Parallel Benchmarks [36]

ferret, vips, canneal,

bodytrack, x_264

Compute intensive multi-threaded

workloads from PARSEC [32]

PostgreSQL, MySQL
Database servers benchmarked with

pgbench [15] and sysbench [22] utilities

Table 2. Summary of workloads considered for evaluation.

creates 691 hybrid pageblocks, a reduction of 33% compared

to 1021 of Linux as shown in Figure 3.

It is important to highlight that only optimizing the slab

allocator is not su�cient because fragmentation via pollu-

tion, which is under the control of the buddy allocator, is the

primary hindrance to e�ective OS support for huge pages.

However, optimizations in the slab allocator complement the

explicit management of hybrid pageblocks by reducing the

load on the buddy allocator.

5.5 Implementation notes

Illuminator modi�es only the infrequently traversedmemory

fallback path of the buddy allocator with minor changes in

the memory compaction code while Prudence also a�ects

only the deferred free operations. Hence, normal allocation

and free operations remain intact. In addition, by eliminating

LIU migration, Illuminator alleviates locking overhead on

many critical data structures, and minimizes cache pollution

and TLB invalidations. Illuminator is about 1500 lines of code

change in the Linux kernel 4.5 which a�ects less than 1.5%

of total memory management code.

6 Evaluation

So far we have discussed how Illuminator mitigates frag-

mentation via pollution with the help of a few examples

such as Table 1 and Figure 3. This section presents a detailed

evaluation of Illuminator in the context of huge pages.

6.1 Experimental setup and workloads

Our experimental setup consists of an Intel Ivy-Bridge server

with 8 cores running at 2.4GHz with 8MB of Last-Level-

Cache and a 500GB SSD drive. L1 dTLB and iTLB contain

64 entries each for 4KB pages and 8 entries each for huge

pages. The shared L2 TLB contains 512 entries for 4KB pages

but does not support huge pages. We evaluate a wide range

of workloads summarized in Table 2. Experiments are con-

ducted after disabling swap, to avoid the impact of paging. Ex-

periments that include large memory workloads NPB_CG.D,

PostgreSQL and MySQL are conductedwith 24GBwhile other

Terminology Description

pg_migrate_scanned Pages scanned by the migrate scanner

pg_free_scanned Pages scanned by the freepage scanner

pg_migrate_success Pages migrated during compaction

pg_migrate_failed Pages that failed during migration

pg_isolated
Pages that were temporarily

removed from the buddy allocator

Table 3. Software counters used to measure the cost of mem-

ory compaction.

Notation Description Value

Ca
Accessing page structure:

sizeo f (struct paдe)/word_size
8

Cmc
Migrate page copy:

(Ca + PAGE_SIZE/word_size) × 2
1040

Csm
Migrate scanning: Ca , this is

equivalent to scanning a page structure
8

Csf
Freepage scanning: Ca , this is

equivalent to scanning a page structure
8

Ci
Page isolation: Ca +Wi whereWi is

a constant representing locking overhead
28

Cmf Migrate page failure: Ca × 2 16

Table 4. Cost of each activity in the Linux kernel. We take

Wi to be 20. However, the cost of compaction is not heavily

dependent on its exact value.

experiments are performed with 8GB physical memory. We

use the default huge page promotion rate of 1.6MB per sec-

ond for khugepaged as used in Linux distributions.

6.2 The cost model for memory compaction

We use the cost-theoretic model proposed by Gorman to

estimate system e�ort invested in compaction [1]. The model

estimates the cost of memory compaction Costmc in terms

of the number of bytes read or written, by tracking system

activities and associating each activity with a weight factor

(see Table 3 and Table 4). Costmc is calculated as follows:

Costmc = Csm ∗ pд_miдrate_scanned

+Csf ∗ pд_f ree_scanned

+Ci ∗ pд_isolated

+Cmc ∗ pд_miдrate_success

+Cmf ∗ pд_miдrate_f ailed

(1)

Costmc determines the amount of memory tra�c induced

by the compaction code which directly impacts the cache

e�ciency. Page migration also requires TLB shootdowns as

the kernel is generally unaware of whether a page is cached

in a TLB (on x86). The cost of TLB shootdowns does not

scale well and is known to be a major source of performance

overhead in multicore systems [27, 57]. Hence, an e�cient

solution should minimize Costmc .

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

686

Making Huge Pages Actually Useful ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

-20

-10

 0

 10

 20

 30

 40

 50

milc mcf omnetpp bzip2 mummer tigr NPB_CG.D canneal Mean

-38 -41

%
 s

p
ee

d
u
p

Linux-M Linux-H Linux-C Illuminator Non-Fragmented

Figure 8. Performance relative to baseline pages at 0.25 (Linux-M), 0.5 (Linux-H) and 0.75 (Linux-C) unmovability indices.

Illuminator’s performance is presented once which is valid for all fragmentation indices considered. Notice that the performance

in Linux degrades as fragmentation increases resulting in worse than the performance of baseline pages at 0.75 unmovability

index for most applications.

At rest Under stress

Linux Illuminator Linux Illuminator

Min 67% 68% 3% 12%

Max 72% 72% 7% 28%

Avg 69% 69% 5% 17%

Table 5. Huge page allocation success rate for stress-

highalloc which tries to allocate 90% of memory as huge

pages.

6.3 Huge page allocations with stress-highalloc

stress-highalloc [13] is a standard benchmark used by

the Linux kernel community developers to quantitatively

measure the impact of fragmentation mitigation techniques.

The benchmark stresses the memory allocators by running

multiple kernel compilation jobs in parallel before request-

ing 90% of total system memory as huge pages. We run

stress-highalloc with 3GB memory which is also the rec-

ommended size for this benchmark.

Table 5 shows the success rate of huge page allocations

as the average of �ve runs of stress-highalloc. Illumi-

nator behaves similar to Linux when the system is at rest

(not fragmented) but outperforms Linux under stress (when

memory is heavily fragmented with unmovable pages) due

to its better management of unmovable pages. Compared

to Linux, Illuminator allocates 3.4× more huge pages and

reduces Costmc by more than 80%.

6.4 Performance results on bare-metal

Illuminator delivers bene�ts when memory is fragmented.

To the best of our knowledge, stress-highalloc is the only

reliable benchmark available for fragmenting memory. How-

ever, this benchmark is reliable for only up to 3GB memory

which does not provide a realistic context on modern large

memory systems. Hence, we create fragmentation with a

synthetic benchmark and measure performance at three dif-

ferent stages of fragmentation i.e.,moderate, high and critical

which correspond to 0.25, 0.5 and 0.75 unmovability index,

respectively. We refer to Linux at moderate, high and critical

fragmentation levels as Linux-M, Linux-H and Linux-C.

Illuminator’s performance is consistent despite varying

fragmentation because it limits the number of hybrid page-

blocks to less than 10% of Linux. Hence, less than 8% of total

pageblocks are hybrid in Illuminator even when Linux has

75% hybrid pageblocks. Moreover, Illuminator does not allow

hybrid pageblocks to participate in compaction. Hence, we

present Illuminator results only once as it is valid across

all three fragmentation levels considered. We also compare

Linux and Illuminator with the best speedup achieved with

huge pages in a non-fragmented system.

6.4.1 Overall performance improvement

Figure 8 shows performance relative to baseline pages. In

Linux, application performance degrades as fragmentation

increases. Notice that most applications perform even worse

than baseline pages in Linux-H and Linux-C. The worst case is

seen for milcwhich su�ers 38% and 41% performance loss in

Linux-H and Linux-C. Even in cases where Linux improves

performance, the bene�ts are signi�cantly lesser than the

non-fragmented case. For example, Linux-H improves the

performance of mcf by 22% as compared to 39% of the non-

fragmented case.

Illuminator outperforms Linux and achieves performance

comparable to the non-fragmented system for 5 out of 8 appli-

cations while others are within 2–12% of the non-fragmented

system. Some performance loss is expected because: 1) Illumi-

nator eliminates only LIU migration; the overhead of normal

migration also a�ects performance, and 2) it takes some time

for the kernel to promote huge pages in a fragmented sys-

tem. Despite these factors, Illuminator provides signi�cantly

better performance than Linux in all cases. For example,

it improves the performance of milc by 55%, mcf by 21%,

omnetpp by 18%, mummer by 19%, tigr by 32%, NPB_CG.D by

38% and canneal by 8% compared to Linux-C. The average

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

687

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

Application Linux-M Linux-H Linux-C Illuminator

milc 17621/34 4657/209 65/0 17594/45

mcf 121/6 81/4 17/0 135/15

omnetpp 20/90 15/20 17/17 22/101

bzip2 684/12 190/9 110/0 620/55

mummer 112/0 57/0 11/0 483/9

tigr 88/106 74/72 11/9 228/556

NPB_CG.D 1349/151 890/134 793/52 3405/736

canneal 92/15 68/11 31/0 92/379

Table 6. Number of huge pages allocated/promoted.

Linux-M Linux-H Linux-C Illuminator

11 (2%) 255 (28%) 343 (37%) 11 (2%)

Table 7. Kernel mode execution time in seconds and the

percentage of total time spent in the kernel mode for milc.

performance improvement is also signi�cant i.e., 5.5%, 19.5%

and 25% compared to Linux-M, Linux-H and Linux-C.

Next we discuss how Illuminator’s better performance is

correlated to the number of huge page allocations and the

cost of compaction incurred in allocating huge pages.

Huge page allocations: Table 6 shows that Linux’s ability

to allocate huge pages is impacted by the unmovability index.

For example, Linux-M allocates about 17K huge pages to

milc which drops to 4.6K in Linux-H and further to only 65

in Linux-C. Illuminator allocates about 17.5K huge pages to

milc.

Similarly, khugepaged’s ability to promote huge pages

in the background also gets impacted by fragmentation in

Linux. Notice that Linux-C is unable to promote any huge

page for 5 out of 8 workloads. The best case for huge page

promotions is observed with tigr and NPB_CG.D where Il-

luminator promotes 556 and 736 huge pages compared to 9

and 52 in Linux-C.

Compaction overhead: Illuminator signi�cantly reduces

the cost of compaction by eliminating LIU migration (Fig-

ure 9); the reduction is 10–83%, 19–99% and 62–99% com-

pared to Linux-M, Linux-H and Linux-C.

E�cient compaction in turn reduces CPU utilization and

lowers the system time consumed by the applications. While

we observed a signi�cant reduction in the system time of all

applications, we report it only for milc (see Table 7) as the

system time was a small fraction (less than 5%) of the overall

execution time for other applications. For milc, system time

is higher because this application stresses the compaction

code path due to its repeated allocation and freeing patterns.

In Linux-M, milc spends only about 2% of its overall execu-

tion time in kernel mode which increases to 28% in Linux-H

and further to 37% in Linux-C. Illuminator keeps the system

time of milc within 2% of the overall execution time.

 0

 20

 40

 60

 80

 100

milc
mcf

omnetpp

bzip2
mummer

tigr NPB_CG.D

canneal

co
st

 r
ed

u
ct

io
n
 (

%
)

Moderate High Critical

Figure 9. Reduction in the cost of compaction with Illumi-

nator at di�erent fragmentation levels.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10

L
at

en
cy

 (
se

co
n
d
s)

Iteration

Linux-H Illuminator

Figure 10.Maximum latency for MySQL read requests from

10 iterations at high fragmentation level.

6.4.2 Latency and OS jitter

We evaluate the impact of LIU migration on latency with the

MySQL database server con�gured with a table of 32 million

rows on which a read-only workload was executed with 8

threads. We repeat the experiment 10 times with 30 minutes

per iteration and report the maximum latency observed in

each iteration (see Figure 10).

In Linux, huge page allocation latency is a�ected by the

location of unmovable pages as the time taken to allocate

a huge page depends on the number of hybrid pageblocks

encountered by the migrate scanner. Such behavior leads to

high latency spikes in Linux. For example in Linux-H, the

maximum latency of MySQL read requests varies from 57ms–

4702ms across ten iterations. In Illuminator, the maximum

latency across iterations varies from 16ms–156ms due to the

elimination of LIU migration. Notice that eliminating LIU

migration alone does not provide any throughput improve-

ment. When fragmentation via pollution is handled along

with LIU migration, we observed 14% higher throughput for

MySQL due to high number of huge page allocations.

6.4.3 Performance isolation

As discussed earlier, applications like milcmonopolize mem-

ory compaction by generating frequent page faults. Note

that compaction is a global process that migrates all movable

pages encountered by the migrate scanner until it either fails,

allocates/promotes su�cient huge pages or gets preempted

by the scheduler. In a fragmented system, LIU migration can

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

688

Making Huge Pages Actually Useful ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

 0

 5

 10

 15

 20

 25

 30

ferret bodytrack vips x264 PostgreSQL MySQL

%
 s

lo
w

d
o
w

n

Linux-H Illuminator

Figure 11. Slowdown for applications (lower is better) while

running alongside milc at high fragmentation.

lead Linux into a compaction loop which in turn negatively

impacts other workloads running on the same machine.

We measure performance isolation by executing a few

workloads (one-by-one) alongside milc and record the slow-

down observed by them in Linux-H and Illuminator. Fig-

ure 11 shows the slowdown experienced by the workloads

when fragmentation is high. Illuminator provides better per-

formance isolation in all cases. For example, vips slows

down by 10% in Linux-H but experiences negligible per-

formance loss with Illuminator. Performance isolation is

considerably better for all other applications as well in Illu-

minator. We noticed that Illuminator reduces the number of

TLB shootdowns by 63% (for ferret) to 90% (for vips).

6.5 Performance in virtualized environments

We evaluate a virtualized setup with Ubuntu16.04 running

as the host OS with 24GB memory and KVM [45] as the hy-

pervisor. The guest runs with Ubuntu12.04, 8 cores and 8GB

memory. In a virtualized system, application performance

depends on the state of memory fragmentation at both the

guest and the host layers. For brevity, we report results for

�ve applications at 0.5 unmovability index in both guest and

host (see Figure 12). Experiments are reported for all the

three con�gurations: 1) when Illuminator is applied only at

the host, 2) when Illuminator is applied only at the guest,

and 3) when Illuminator is applied at both guest and host.

The performance bene�ts are higher when Illuminator is

applied at the guest as compared to when applied at the host,

except for mcf, for which the improvement is comparable

in both cases. Intuitively, the best performance is observed

when Illuminator is operating in both layers. For example,

the performance of mcf improves by 35% and 41% when

Illuminator is deployed at only host or only guest which

e�ectively increases to 75%when it is deployed at both layers.

Performance improvement for mummer, tigr and canneal is

also substantial i.e., 18%, 42% and 32% in the best case. Similar

to the native setup, the best performance improvement is

observed for milc i.e., 131% as compared to Linux.

In our experiments, guest memory fragmentation results

in higher performance loss than host memory fragmentation

for two main reasons: 1) our workloads are more sensitive

to address translation overhead at the guest, except for mcf

 0

 15

 30

 45

 60

 75

mummer tigr canneal mcf milc

123 131

%
 s

p
ee

d
u
p

Host Guest Both

Figure 12. Performance improvement over Linux-H in a

virtualized system when Illuminator is deployed at host,

guest and both.

which is equally sensitive to address translation performance

at both layers. As a result, performance loss in Linux due to

fragmentation in guest is higher than host memory fragmen-

tation; mcf incurs similar performance loss in guest only and

host only fragmented scenarios. 2) Applications are executed

after fragmenting the guest memory. Hence, the overhead of

synchronous compaction performed by the host impacts the

process that creates fragmentation; applications, that execute

after memory has been fragmented, encounter only the asyn-

chronous compaction of the host. As discussed previously,

the performance implications of asynchronous compaction

are modest as compared to the synchronous compaction. In

contrast, both synchronous and asynchronous compaction

of the guest OS impact applications running inside the guest.

7 Related work

OS support for huge pages: Early work discussed multiple

ways of supporting huge pages in HP-UX OS [44]. Navarro

et al. [49] implemented support for multiple page sizes in

FreeBSD with reservation-based huge page allocations and

contiguity-aware page reclamation. Carrefour-LP [37] im-

proves performance with huge pages in NUMA systems by

balancing the load across memory controllers, maintaining

locality and splitting huge pages that cause remote memory

accesses. Ingens [63] improves THP support in terms of fair-

ness, bloat and latency by tracking huge page utilization and

access frequency of pages. Guo et al. [38] proposed proac-

tively breaking huge pages to improve memory e�ciency

via page sharing in virtualized environments.

In summary, prior OS research has mainly focused on im-

plementing huge page support, optimizing performance or

improving memory e�ciency in the presence of huge pages,

with di�erent policies applied at the virtual memory layer

while fragmentation has received less attention. Illuminator

complements policy decisions by making huge page alloca-

tions feasible and cost-e�ective in long-running systems. It

can be easily integrated with the techniques discussed above.

Fragmentation mitigation in user space: Allocation and

reclamation decisions guided by the size or expected lifetime

of objects form the basis for many copying or generational

garbage collectors in user space [26, 34, 39, 42, 50, 60]. Such

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

689

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

solutions are not well-suited for mitigating kernel level frag-

mentation because the kernel has to deal with unmovable

pages. Moreover, application speci�c knowledge (e.g., object

lifetime) is, in general, not available to OSs [54, 62].

Fragmentation mitigation in the kernel: S. Kim et al.

[59] proposed proactive anti-fragmentation that allocates

contiguous memory to each process from the beginning. This

way, contiguous memory can be recovered when a process

exits or gets killed by the out-of-memory killer. Their so-

lution, however, is speci�c to Android due to its relatively

short-lived processes. Moreover, processes are killed in An-

droid under memory pressure as compared to workstations

or servers where paging is preferred over killing a process.

Gorman et al. proposed defragmenting memory with

Lumpy reclaim [56]. Contiguity-aware page replacement

discussed by Navarro et al. [49] is also similar to Lumpy

reclaim. These techniques try to recover memory contigu-

ity by dropping �le-backed pages from contiguous regions.

Lumpy reclaim was merged in Linux but was removed later

as it created regressions due to additional I/O tra�c [21]. In

current Linux versions, memory compaction is the preferred

mechanism for defragmenting memory [6]. We show that

compaction leads to severe problems in its current form. Il-

luminator solves compaction related problems by carefully

managing unmovable pages.

Gorman et al. proposed two di�erent anti-fragmentation

schemes to aid compaction [55], both of which are merged

into Linux. One of the approaches i.e., zone-based demands

a static partitioning of memory between movable and un-

movable regions at boot time. However, such an approach is

di�cult to employ when memory capacity is limited or when

the workload characteristics are not known in advance. The

other approach i.e., Grouping Pages Based on their Mobility

type (GPBM [54]) manages the size of memory partitions

dynamically and is more suitable for dynamic workloads.

Page-clustering algorithm of Linux discussed in this paper is

largely in�uenced by GPBM. We show how page-clustering

leads to fragmentation via pollution in its current form, and

e�ectively solve it with Illuminator.

Our previous paper [30] on huge pages is perhaps the clos-

est work to Illuminator, but it has several limitations: 1) it im-

proves page-clustering with O(n) page allocation algorithm

(wheren is the number of pageblocks), which is unacceptable

for large memory systems. In contrast, Illuminator provides

O(1) page allocations. 2) The solution relied on the two-way

classi�cation of pageblocks whose pitfalls have been dis-

cussed throughout this paper. Illuminator shows that cross

subsystem visibility of unmovable pages and coordination

among several layers (e.g., buddy allocator, slab allocator,

and compaction) is crucial. Moreover, Illuminator has also

been evaluated across native and virtualized systems with

respect to various aspects of performance such as latency,

OS jitter and execution speedup.

8 Discussion

Unmovable pages are found in most general-purpose OSs

[2, 54]. For example, page tables and DMA pages are typically

unmovable [43]. For large memory workloads, page tables

can occupy multiple GBs of memory [14] which highlights

the importance of e�ciently handling unmovable pages.

However, di�erent OSs can have di�erent unmovability con-

straints. OSs that provide support for movable kernel pages

(e.g., Windows, Solaris) are less likely to su�er from the is-

sues discussed in this paper. However, not directly mapping

memory in the kernel address space leads to a complex de-

sign. Hence OSs with movable kernel pages prefer directly

mapping certain kernel address spaces in physical memory

[11]. For example, FreeBSD reserves a special region in the

kernel address space for directly mapping the objects allo-

cated by its slab-like zone allocator. The high-level design of

its memory manager is also similar to Linux [3, 52]; it’s inter-

nal data structures are wired [49] and allocations are handled

with the combination of a zone allocator and a buddy alloca-

tor. Hence, an interesting future work is to port Illuminator

to FreeBSD. However, performance implications depend on

how much unmovable memory is present and how the ker-

nel defragments memory. A detailed cross OS study on this

topic is a potential future work.

In addition, many prior techniques also demand memory

contiguity for improving performance or optimizing energy

consumption [29, 41, 46]. Understandably, such techniques

are also vulnerable to fragmentation created by unmovable

pages. Illuminator can be used to make them more robust in

long-running systems.

9 Conclusions

We address the issue of performance regressions caused by

huge pages and show how unmovable pages can become

a major hindrance to fragmentation mitigation in OS ker-

nels. We propose Illuminator to make huge page alloca-

tions feasible as well as cost-e�ective in fragmented sys-

tems, which provides good performance in both native and

virtualized systems. While this paper has discussed Illumi-

nator in the context of huge pages, the proposed techniques

are generic and can be helpful in mitigating other kernel

level fragmentation issues. Illuminator source is available at

h�ps://github.com/apanwariisc/Illuminator.

Acknowledgments

We thank the anonymous reviewers, Sorav Bansal, Arpit

and Girish Chandrashekar for their constructive feedback.

We acknowledge NetApp’s generous support for conference

travel.

Disclaimer: The views in the article are solely of the authors

and not of their employers.

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

690

https://github.com/apanwariisc/Illuminator

Making Huge Pages Actually Useful ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

References
[1] A basic model to estimate the cost of memory compaction. h�ps:

//patchwork.kernel.org/patch/1624461/.

[2] About the Virtual Memory System. h�ps://developer.apple.

com/library/content/documentation/Performance/Conceptual/

ManagingMemory/Articles/AboutMemory.html.

[3] FreeBSD Manual Pages. h�ps://www.freebsd.org/cgi/man.cgi?query=

uma&sektion=9.

[4] Intel Haswell. h�ps://ark.intel.com/products/codename/42174/

Haswell.

[5] Intel Skylake. h�ps://ark.intel.com/products/codename/37572/

Skylake.

[6] Jonathan Corbet. Memory compaction. h�ps://lwn.net/Articles/

368869/.

[7] Jonathan Corbet. Proactive compaction. h�ps://lwn.net/Articles/

717656/.

[8] Jonathan Corbet. Virtually mapped kernel stacks. h�ps://lwn.net/

Articles/692208/.

[9] khugepaged eating 100% cpu. h�ps://bugzilla.redhat.com/show_bug.

cgi?id=879801.

[10] Large-Page Support in Windows. h�ps://msdn.microso�.com/en-us/

library/windows/desktop/aa366720(v=vs.85).aspx.

[11] Mapping physical memory directly. h�ps://www.sceen.net/

mapping-physical-memory-directly/.

[12] Mel Gorman. Huge pages part 1 (Introduction). h�ps://lwn.net/

Articles/374424/.

[13] MMTests: Benchmarking framework primarily aimed at linux kernel

testing. h�ps://github.com/gormanm/mmtests.

[14] Performance Tuning: HugePages In Linux. h�ps://blog.pythian.com/

performance-tuning-hugepages-in-linux/.

[15] pgbench. h�ps://www.postgresql.org/docs/9.1/static/pgbench.html.

[16] Recommendation for disabling huge pages for Hadoop.

h�p://amd-dev.wpengine.netdna-cdn.com/wordpress/media/

2012/10/Hadoop_Tuning_Guide-Version5.pdf.

[17] Recommendation for disabling huge pages for MongoDB. h�ps://docs.

mongodb.org/manual/tutorial/transparent-huge-pages/.

[18] Recommendation for disabling huge pages

for NuoDB. h�p://www.nuodb.com/techblog/

linux-transparent-huge-pages-jemalloc-and-nuodb.

[19] Recommendation for disabling huge pages for Redis. h�p://redis.io/

topics/latency.

[20] Recommendation for disabling huge pages for VoltDB. h�ps://docs.

voltdb.com/AdminGuide/adminmemmgt.php.

[21] Removal of lumpy reclaim. h�ps://lwn.net/Articles/488993/.

[22] sysbench. h�ps://dev.mysql.com/downloads/benchmarks.html.

[23] Tales from the Field: Taming Transparent Huge Pages

on Linux. h�ps://www.perforce.com/blog/151016/

tales-field-taming-transparent-huge-pages-linux.

[24] The black magic of systematically reducing Linux

OS jitter. h�p://highscalability.com/blog/2015/4/8/

the-black-magic-of-systematically-reducing-linux-os-ji�er.html.

[25] Why TokuDB Hates Transparent HugePages. h�p://amd-dev.

wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_

Tuning_Guide-Version5.pdf.

[26] Alan Demers, MarkWeiser, Barry Hayes, Hans Boehm, Daniel Bobrow,

and Scott Shenker. Combining generational and conservative garbage

collection: Framework and implementations. In Proceedings of the

17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’90, pages 261–269, New York, NY, USA, 1990. ACM.

[27] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and

Gabriel H Loh. Avoiding TLB shootdowns through self-invalidating

TLB entries. In 26th International Conference on Parallel Architectures

and Compilation Techniques (PACT), 2017, pages 273–287. IEEE, 2017.

[28] Aravinda Prasad and K. Gopinath. Prudent memory reclamation in

procrastination-based synchronization. In Proceedings of the Twenty-

First International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’16, pages 99–112, New

York, NY, USA, 2016. ACM.

[29] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and

Michael M. Swift. E�cient virtual memory for big memory servers. In

Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pages 237–248, New York, NY, USA, 2013. ACM.

[30] Ashish Panwar, Naman Patel, and K. Gopinath. A case for protecting

huge pages from the kernel. In Proceedings of the 7th ACM SIGOPS

Asia-Paci�c Workshop on Systems, APSys ’16, pages 15:1–15:8, New

York, NY, USA, 2016. ACM.

[31] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee.

Large pages and lightweight memory management in virtualized en-

vironments: Can you have it both ways? In Proceedings of the 48th

International Symposium on Microarchitecture, MICRO-48, pages 1–12,

New York, NY, USA, 2015. ACM.

[32] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.

[33] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel.

Oreilly & Associates Inc, 2005.

[34] Darko Stefanović, Kathryn S McKinley, and J Eliot B Moss. Age-based

garbage collection. ACM SIGPLAN Notices, 34(10):370–381, 1999.

[35] Dipankar Sarma and Paul E. McKenney. Making RCU safe for deep

sub-millisecond response realtime applications. In Proceedings of the

2004 USENIX Annual Technical Conference (FREENIX Track), ATC ’04,

pages 182–191, Berkeley, CA, USA, 2004. USENIX Association.

[36] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.

The nas parallel benchmarks;summary and preliminary results. In

Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Su-

percomputing ’91, pages 158–165, New York, NY, USA, 1991. ACM.

[37] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston,

Alexandra Fedorova, and Vivien Quéma. Large pages may be harmful

on numa systems. In Proceedings of the 2014 USENIX Conference on

USENIX Annual Technical Conference, USENIX ATC ’14, pages 231–242,

Berkeley, CA, USA, 2014. USENIX Association.

[38] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. Proac-

tively breaking large pages to improve memory overcommitment

performance in vmware esxi. In Proceedings of the 11th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environ-

ments, VEE ’15, pages 39–51, New York, NY, USA, 2015. ACM.

[39] Guy L. Steele, Jr. Multiprocessing compactifying garbage collection.

Commun. ACM, 18(9):495–508, September 1975.

[40] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. Do-it-

yourself virtual memory translation. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, ISCA ’17, pages

457–468, New York, NY, USA, 2017. ACM.

[41] Heechul Yun, Renato Mancuso, Zheng Pei Wu, and Rodolfo Pellizzoni.

PALLOC: DRAM bank-aware memory allocator for performance iso-

lation on multicore platforms. In 20th IEEE Real-Time and Embedded

Technology and Applications Symposium, RTAS 2014, Berlin, Germany,

April 15-17, 2014, pages 155–166, 2014.

[42] Henry Lieberman and Carl Hewitt. A real-time garbage collector based

on the lifetimes of objects. Commun. ACM, 26(6):419–429, June 1983.

[43] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-

berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page

fault support for network controllers. In Proceedings of the Twenty-

Second International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’17, pages 449–466,

New York, NY, USA, 2017. ACM.

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

691

https://patchwork.kernel.org/patch/1624461/
https://patchwork.kernel.org/patch/1624461/
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://www.freebsd.org/cgi/man.cgi?query=uma&sektion=9
https://www.freebsd.org/cgi/man.cgi?query=uma&sektion=9
https://ark.intel.com/products/codename/42174/Haswell
https://ark.intel.com/products/codename/42174/Haswell
https://ark.intel.com/products/codename/37572/Skylake
https://ark.intel.com/products/codename/37572/Skylake
https://lwn.net/Articles/368869/
https://lwn.net/Articles/368869/
https://lwn.net/Articles/717656/
https://lwn.net/Articles/717656/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692208/
https://bugzilla.redhat.com/show_bug.cgi?id=879801
https://bugzilla.redhat.com/show_bug.cgi?id=879801
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://www.sceen.net/mapping-physical-memory-directly/
https://www.sceen.net/mapping-physical-memory-directly/
https://lwn.net/Articles/374424/
https://lwn.net/Articles/374424/
https://github.com/gormanm/mmtests
https://blog.pythian.com/performance-tuning-hugepages-in-linux/
https://blog.pythian.com/performance-tuning-hugepages-in-linux/
https://www.postgresql.org/docs/9.1/static/pgbench.html
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
https://docs.mongodb.org/manual/ tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/ tutorial/transparent-huge-pages/
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://redis.io/topics/latency
http://redis.io/topics/latency
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://lwn.net/Articles/488993/
https://dev.mysql.com/downloads/benchmarks.html
https://www.perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux
https://www.perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Ashish Panwar, Aravinda Prasad, and K. Gopinath

[44] Indira Subramanian, Cli�ord Mather, Kurt Peterson, and Balakrishna

Raghunath. Implementation of multiple pagesize support in hp-ux. In

USENIX Annual Technical Conference, pages 105–119, 1998.

[45] Irfan Habib. Virtualization with kvm. Linux J, 2008(166), February

2008.

[46] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift.

E�cient memory virtualization: Reducing dimensionality of nested

page walks. In Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-47, pages 178–189, Washing-

ton, DC, USA, 2014. IEEE Computer Society.

[47] Jim Mauro and Richard McDougall. Solaris Internals (2nd Edition).

Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[48] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34(4):1–17, September 2006.

[49] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L. Cox. Practical,

transparent operating system support for superpages. In 5th Sym-

posium on Operating System Design and Implementation (OSDI 2002),

Boston, Massachusetts, USA, December 9-11, 2002.

[50] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner,

Victor Leikehman, Yoav Ossia, Avi Owshanko, and Erez Petrank. A

parallel, incremental, mostly concurrent garbage collector for servers.

ACM Trans. Program. Lang. Syst., 27(6):1097–1146, November 2005.

[51] K. Albayraktaroglu, A. Jaleel, XueWu,M. Franklin, B. Jacob, Chau-Wen

Tseng, and D. Yeung. Biobench: A benchmark suite of bioinformatics

applications. In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software, 2005, ISPASS ’05, pages

2–9, Washington, DC, USA, 2005. IEEE Computer Society.

[52] Marshall Kirk McKusick, George Neville-Neil, and Robert N.M. Wat-

son. The Design and Implementation of the FreeBSD Operating System.

Addison-Wesley Professional, 2nd edition, 2014.

[53] Mel Gorman and Patrick Healy. Performance characteristics of explicit

superpage support. In Proceedings of the 2010 International Conference

on Computer Architecture, ISCA ’10, pages 293–310, Berlin, Heidelberg,

2012. Springer-Verlag.

[54] Mel Gorman and Patrick Healy. Supporting superpage allocation

without additional hardware support. In Proceedings of the 7th Inter-

national Symposium on Memory Management, ISMM ’08, pages 41–50,

New York, NY, USA, 2008. ACM.

[55] Mel Gorman and Andy Whitcroft. The what, the why and the where

to of anti-fragmentation. In Linux Symposium, page 369–384, 2006.

[56] Mel Gorman and Andy Whitcroft. Supporting the allocation of large

contiguous regions of memory. In Linux Symposium, page 141–152,

2007.

[57] Nadav Amit. Optimizing the TLB shootdown algorithm with page

access tracking. In Proceedings of the 2017 USENIX Conference on

USENIX Annual Technical Conference, USENIX ATC ’17, pages 27–39,

Santa Clara, CA, USA, 2017. USENIX Association.

[58] Paul E McKenney, Dipankar Sarma, Ingo Molnar, and Suparna Bhat-

tacharya. Extending RCU for realtime and embedded workloads. In

Ottawa Linux Symposium, pages v2, pages 123–138. Citeseer, 2006.

[59] Sang-Hoon Kim, Sejun Kwon, Jin-Soo Kim, and Jinkyu Jeong. Control-

ling physical memory fragmentation in mobile systems. In Proceedings

of the 2015 International Symposium on Memory Management, ISMM

’15, pages 1–14, New York, NY, USA, 2015. ACM.

[60] TamarDomani, Elliot K. Kolodner, and Erez Petrank. A generational on-

the-�y garbage collector for java. In Proceedings of the ACM SIGPLAN

2000 Conference on Programming Language Design and Implementation,

PLDI ’00, pages 274–284, New York, NY, USA, 2000. ACM.

[61] Timothy Merri�eld and H. Reza Taheri. Performance implications of

extended page tables on virtualized x86 processors. In Proceedings

of the12th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’16, pages 25–35, New York, NY, USA,

2016. ACM.
[62] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and Kevin

Elphinstone. Application level ballooning for e�cient server consoli-

dation. In Proceedings of the 8th ACM European Conference on Computer

Systems, EuroSys ’13, pages 337–350, New York, NY, USA, 2013. ACM.

[63] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,

and Emmett Witchel. Coordinated and e�cient huge page manage-

ment with ingens. In 12th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 16), pages 705–721, GA, 2016. USENIX

Association.

Session 7B: Memory 2 ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

692

	Abstract
	1 Introduction
	2 Motivation
	3 Memory management background
	3.1 Unmovable pages
	3.2 Memory allocation
	3.3 RCU and deferred objects
	3.4 Fragmentation mitigation techniques

	4 A detailed analysis of fragmentation
	4.1 The invisibility of hybrid pageblocks
	4.2 Delayed reclamation of deferred objects
	4.3 Large memory large problems
	4.4 Impact of fragmentation in virtualized systems

	5 Illuminator design and implementation
	5.1 Explicit management of hybrid pageblocks
	5.2 Reclaiming pageblocks from the hybrid region
	5.3 Eliminating susceptibility to page locations
	5.4 Timely reclamation of deferred objects
	5.5 Implementation notes

	6 Evaluation
	6.1 Experimental setup and workloads
	6.2 The cost model for memory compaction
	6.3 Huge page allocations with stress-highalloc
	6.4 Performance results on bare-metal
	6.5 Performance in virtualized environments

	7 Related work
	8 Discussion
	9 Conclusions
	Acknowledgments
	References

