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Making Information Flow Explicit in HiStar

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières
Stanford and UCLA

ABSTRACT

HiStar is a new operating system designed to minimize

the amount of code that must be trusted. HiStar pro-

vides strict information flow control, which allows users

to specify precise data security policies without unduly

limiting the structure of applications. HiStar’s security

features make it possible to implement a Unix-like envi-

ronment with acceptable performance almost entirely in

an untrusted user-level library. The system has no notion

of superuser and no fully trusted code other than the ker-

nel. HiStar’s features permit several novel applications,

including an entirely untrusted login process, separation

of data between virtual private networks, and privacy-

preserving, untrusted virus scanners.

1 INTRODUCTION

Many serious security breaches stem from vulnerabili-

ties in application software. Despite an extensive body

of research in preventing, detecting, and mitigating the

effects of software bugs, the security of most systems ul-

timately depends on a large fraction of the code behaving

correctly. Unfortunately, experience has shown that only

a handful of programmers have the right mindset to write

secure code, and few applications have the luxury of be-

ing written by such programmers. As a result, we see a

steady stream of high-profile security incidents.

How can we build secure systems when we cannot

trust programmers to write secure code? One hope is

to separate the security critical portions of an application

from the untrusted bulk of its implementation; if secu-

rity depends on only a small amount of code, this code

can be verified or implemented by trustworthy parties re-

gardless of the complexity of the application as a whole.

Unfortunately, traditional operating systems do not lend

themselves to such a division of functionality; they make

it too difficult to predict the full implications of every ac-

tion by untrusted code. HiStar is a new operating system

designed to overcome this limitation.

HiStar enforces security by controlling how informa-

tion flows through the system. Hence, one can reason

about which components of a system may affect which

others and how, without having to understand those com-

ponents themselves. Specifying policies in terms of in-

formation flow is often much easier than reasoning about

the security implications of individual operations.

As an example, consider the recently discovered criti-
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Figure 1: The ClamAV virus scanner. Circles represent processes, rect-

angles represent files and directories, and rounded rectangles represent

devices. Arrows represent the expected data flow for a well-behaved

virus scanner.

cal vulnerability in Norton Antivirus that put millions of

systems at risk of remote compromise [15]. Suppose we

wanted to avoid a similar disaster with the simpler, open-

source ClamAV virus scanner. ClamAV is over 40,000

lines of code—large enough that hand-auditing the sys-

tem to eliminate vulnerabilities would at the very least

be an expensive and lengthy process. Yet a virus scanner

must periodically be updated on short notice to counter

new threats, in which case users would face the unfor-

tunate choice of running either an outdated virus scan-

ner or an unaudited one. A better solution would be for

the operating system to enforce security without trust-

ing ClamAV, thereby minimizing potential damage from

ClamAV’s vulnerabilities.

Figure 1 illustrates ClamAV’s components. How can

we protect a system should these components be com-

promised? Among other things, we must ensure a com-

promised ClamAV cannot purloin private data from the

files it scans. In doing so, we must also avoid imposing

restrictions that might interfere with ClamAV’s proper

operation—for example, the scanner needs to spawn a

wide variety of external helper programs to decode in-

put files. Here are just a few ways in which, on Linux,

a maliciously-controlled scanner and update daemon can

collude to copy private data to an attacker’s machine:

• The scanner can send the data directly to the destina-

tion host over a TCP connection.

• The scanner can arrange for an external program such

as sendmail or httpd to transmit the data.

• The scanner can take over an existing process with the

ptrace system call or /proc file system, then transmit

the data through that process.

• The scanner can write the data to a file in /tmp. The
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update daemon can then read the file and leak the data

by encoding it in the contents, ordering, or timing of

subsequent outbound update queries.

• The scanner can use any number of less efficient

and subtler techniques to impart the data to the up-

date daemon—e.g., using system V shared memory

or semaphores, calling lockf on various ranges of

the database, binding particular TCP or UDP port

numbers, modulating memory or disk usage in a de-

tectable way, calling setproctitle to change the output

of the ps command, or co-opting some unsuspecting

third process such as portmap whose legitimate func-

tion can relay information to the update daemon.

Some of these attacks can be mitigated by running the

scanner with its own user ID in a chroot jail. However,

doing so requires highly-privileged, application-specific

code to set up the chroot environment, and risks breaking

the scanner or one of its helper programs due to miss-

ing dependencies. Other attacks, such as those involv-

ing sockets or System V IPC, can only be prevented by

modifying the kernel to restrict certain system calls. Un-

fortunately, devising an appropriate policy in terms of

system call arguments is an error-prone task, which, if

incorrectly done, risks leaking private data or interfering

with operation of a legitimate scanner.

A better way to specify the desired policy is in terms

of where information should flow—namely, along the ar-

rows in the figure. While Linux cannot enforce such a

policy, HiStar can. Figure 2 shows our port of ClamAV

to HiStar. There are two differences from Linux. First,

we have labeled files with private user data as tainted.

Tainting a file restricts the flow of its contents to any un-

tainted component, including the network. A file can be

labeled with arbitrarily many categories of taint. Who-

ever allocates a category—in this case the file owner—

has the exclusive ability to untaint data in that category.

The second difference from Linux is that we have

launched the scanner from a new, 110-line program

called wrap, to which we give untainting privileges.

wrap untaints the virus scanner’s result and reports back

to the user. The scanner cannot read tainted user files

without first tainting itself. Once tainted, it can no longer

convey information to the network or update daemon. So

long as wrap is correctly implemented, then, ClamAV

cannot leak the contents of the files it scans.

Though this paper will use the virus scanner as a run-

ning example, a number of other typical security prob-

lems can more easily be couched in terms of informa-

tion flow. For example, protecting users’ private pro-

file information on a web site often boils down to en-

suring one person’s information (social security num-

ber, credit card, etc.) cannot be sent to another user’s

browser. Protecting against trojan horses means ensur-

ing network payloads do not affect the contents of system
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wrap

Private /tmp User Data

AV
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Figure 2: ClamAV running in HiStar. Lightly-shaded components are

tainted, which prevents them from conveying any information to un-

tainted (unshaded) components. The strongly-shaded wrap has untaint-

ing privileges, allowing it to relay the scanner’s output to the terminal.

files. Protecting passwords means ensuring that whatever

code verifies them can reveal only the single bit signi-

fying whether or not authentication succeeded. HiStar

provides a new, Unix-like development environment in

which small amounts of code can secure much larger,

untrusted applications by enforcing such policies.

The information flow principles behind this type of

isolation are not new. Mechanisms in several other

systems, including SELinux [11], EROS [23], and As-

bestos [5], are also capable of isolating an untrusted

virus scanner. HiStar’s taint labels, which originated

in Asbestos, have features resembling the language-

based labels in Jif and Jflow [14]. Unlike these sys-

tems, though, HiStar shows how to construct conven-

tional operating system abstractions, such as processes,

from much lower-level kernel building blocks in which

all information flow is explicit. HiStar demonstrates that

an operating system can dynamically track information

flow through tainting without the taint mechanism itself

leaking information. By separating resource revocation

from access, HiStar also shows how to eliminate the no-

tion of superuser from an operating system without in-

hibiting system administration; a HiStar administrator

can manage the machine with no special right to untaint,

read, or write arbitrary user data.

2 LABELS

HiStar tracks and enforces information flow using As-

bestos labels [5]. All operating system abstractions are

layered on top of six low-level kernel object types de-

scribed in the next section—threads, address spaces, seg-

ments, gates, containers, and devices. Every object has

a label. The label specifies, for each category of taint,

whether the object has untainting privileges for that cate-

gory (threads and gates can have such privileges), and, if

not, how tainted the object is in that category. Any sys-

tem call or page fault can cause information to flow be-

tween the current thread and other objects. However, the

kernel disallows actions that would convey information

from more to less tainted objects in any given category.

A label is a function from categories to taint levels.
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Level Meaning in an object’s label

⋆ has untainting privileges in this category

0 cannot be written/modified by default

1 default level—no restriction in this category

2 cannot be untainted/exported by default

3 cannot be read/observed by default

Figure 3: An object’s label assigns it one of the above taint levels in

each category. Only thread and gate labels may contain ⋆.

Any given label maps all but a small number of cat-

egories to some default background taint level for the

object—usually 1. Thus, a label consists of a default taint

level and a list of categories in which the object is either

more or less tainted than the default. We write labels

inside braces, using a comma-separated list of category-

level pairs followed by the default level. For example, a

typical label might be L = {w0, r 3, 1}, which is just a

more compact way of designating the function

L(c) =











0 if c = w,

3 if c = r,

1 otherwise.

Each category in which an object’s taint differs from

the default level 1 places a restriction on how other

threads may access the object. To see this, consider a

thread T with label LT = {1}, and an object O with la-

bel LO = {c3, 1}. Because LT (c) = 1 < 3 = LO(c), O

is more tainted than T in category c. Hence, no infor-

mation may flow from O to T , which means the thread

cannot read or observe the object. Conversely, an object

may be less tainted than the default. If instead an ob-

ject O′ has LO′ = {c0, 1}, then LO′(c) = 0 < 1 = LT (c),
and no information can flow from T to O′, meaning the

thread cannot write to or modify the object.

Any given category in an object’s label restricts ei-

ther reading or writing the object, but not both. (It is,

of course, common to restrict both by using two cate-

gories.) While conventional operating systems can ei-

ther permit or prohibit read access to an object such as

a file, HiStar allows a third option: permit a thread to

read an object so long as it does not untaint the data

or export it from the machine. In some cases, such as

VPN isolation discussed in Section 6.3, it is convenient

to make read without untainting the default permission

for a given category. Therefore, HiStar supports two lev-

els more tainted than the default: 2 and 3. The difference

arises because threads may chose to taint themselves to

read more tainted objects, but only up to another label

called their clearance, which defaults to {2}.

The final taint level is ⋆ (“Star”). It signifies untaint-

ing privileges within a category, and may appear only in

a thread or gate label. Roughly speaking, when a thread

is at level ⋆ in a particular category, the kernel ignores

that category in performing label checks for operations

{br 3, v3, 1}
Private /tmp User Data Virus DB Network

Update
Daemon

TTY

{br ⋆, v3, 1} {1}

{1}{1}

{1}

{bw 0, br 3, 1}

{br ⋆, v3, 1}

Helper AV
Scanner

wrap

{br ⋆, v⋆, 1}

Figure 4: Labels on components of the HiStar ClamAV port.

by that thread. In other words, if a thread T with label

LT has LT (c) = ⋆, the thread can bypass information flow

restrictions in c; we therefore say T owns c. A thread

that owns a category can also grant ownership of the cat-

egory to other threads using various mechanisms. Fig-

ure 3 summarizes taint levels that appear in object labels.

While there are only a few levels, HiStar supports an

effectively unlimited number of categories. Categories

are named by 61-bit opaque identifiers, which the kernel

generates by encrypting a counter with a block cipher.

Encrypting the counter prevents one thread from learning

how many categories another thread may have allocated.

The counter is sufficiently long that it would take over

60 years to exhaust the identifier space even allocating

categories at a rate of one billion per second. Thus, the

system permits any thread to allocate arbitrarily many

categories. (The specific length 61 was chosen to fit a

category name and 3-bit taint level in the same 64-bit

field, which facilitated the label implementation.)

A thread that allocates a category is granted ownership

of that category. We note this is a significant departure

from traditional military systems, which use categories

but typically support only a fixed number that must be

assigned by the privileged security administrator.

2.1 Example

Returning to the virus scanner example, Figure 4 shows

a simplified version of the labels that would arise if a hy-

pothetical user, “Bob,” ran ClamAV on HiStar. Before

even launching the virus scanner, permissions must be

set to restrict access to Bob’s files—otherwise, the up-

date daemon could directly read Bob’s files and transmit

them over the network. In Unix, Bob’s files would be

protected either by setting file permission bits to 0600 or

by running the update daemon in a chroot jail. In HiStar,

labels can achieve equivalent results.

The equivalent of setting Unix permissions bits is for

Bob to allocate two categories, br and bw, to restrict read

and write access to his files, respectively. Bob labels his

data {br 3, bw 0, 1}. Threads that own br can read the

data, so br acts like a read capability. Similarly bw acts

like a write capability. The authentication mechanism
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described in Section 6.2 grants Bob’s shell ownership of

the two categories whenever he logs in.

The wrap program is invoked with all of Bob’s

privileges—in particular with ownership of br, the cat-

egory that restricts read access to Bob’s files. wrap al-

locates a new category, v, to isolate the scanner, creates

a private /tmp directory writable at taint level 3 in cat-

egory v, then launches the scanner tainted 3 in category

v. The v taint prevents the scanner, or any process it cre-

ates, from communicating to the update daemon or net-

work, except through wrap (which has untainting privi-

leges in v). The v taint also prevents the scanner, or any

program it spawns, from modifying any of Bob’s files,

because those files are all less tainted (at the default level

of 1) in category v.

2.2 Notation

Almost every operation in HiStar requires the kernel to

check whether information can flow between objects. In

the absence of level ⋆, information can flow from an ob-

ject labeled L1 to one labeled L2 only if L2 is at least as

tainted as L1 in every category. This relationship is so

important that we introduce a symbol, ⊑, to denote it:

L1 ⊑ L2 iff ∀c : L1(c) ≤ L2(c).

Level ⋆ complicates matters since it represents owner-

ship and untainting privileges rather than taint. A thread

T whose label LT maps a category to level ⋆ can ignore

information flow constraints on that category when read-

ing or writing objects. When comparing LT to an ob-

ject’s label, the ⋆ must be considered either less than or

greater than numeric levels, depending on context. When

T reads an object, ⋆ should be treated as high (greater

than any numeric level) to allow observation of arbitrar-

ily tainted information. Conversely, when T writes an

object, ⋆ should be treated as low (less than any numeric

level) so that information can flow from T to objects at

any taint level in the category. This shift from high to

low implements untainting.

Rather than have ⋆ take on two possible values in label

comparisons, we use two different symbols to represent

ownership, depending on context. The existing ⋆ sym-

bol represents the ownership level of a category when it

should be treated low. A new ✪ (“HiStar”) symbol repre-

sents the same ownership level when it should be treated

high. This gives us a notation with six “levels,” ordered

⋆ < 0 < 1 < 2 < 3 < ✪. However, level ✪ is only used in

access rules and never appears in labels of actual objects.

The shifting between levels ⋆ and ✪ required for un-

tainting is denoted by superscript operators ✪ and ⋆ that

translate ⋆ to ✪ and ✪ to ⋆, respectively. For exam-

ple, if L = {a⋆, b✪, 1}, then L✪ = {a✪, b✪, 1} and

L⋆ = {a⋆, b⋆, 1}.

We can now precisely specify the restrictions imposed

by HiStar when a thread T labeled LT attempts to access

an object O labeled LO:

• T can observe O only if LO ⊑ L✪

T (i.e., “no read up”).

• T can modify O, which in HiStar implies observing

O, only if LT ⊑ LO ⊑ L✪

T (i.e., “no write down”).

These two basic conditions appear repeatedly in our de-

scription of HiStar’s abstractions.

Labels form a lattice [4] under the partial order of the

⊑ relation. We write L1 ⊔L2 to designate the least upper

bound of two labels L1 and L2. The label L = L1 ⊔L2 is

given by L(c) = max(L1(c),L2(c)). As previously men-

tioned, threads may choose to taint themselves to observe

more tainted objects. To observe an object O labeled

LO, a thread T labeled LT must raise its label to at least

L′
T = (L✪

T ⊔LO)⋆, because that is the lowest label satisfy-

ing both LT ⊑ L′
T and LO ⊑ L′✪

T .

3 KERNEL DESIGN

As previously mentioned, the HiStar kernel is organized

around six object types. Every object has a unique, 61-

bit object ID, a label, a quota bounding its storage usage,

64 bytes of mutable, user-defined metadata (used, for in-

stance, to track modification time), and a few flags, such

as an immutable flag that irrevocably makes the object

read-only. Except for threads, objects’ labels are speci-

fied at creation and then immutable. Some objects allow

efficient copies to be made with different labels, which is

useful in cases that might otherwise require re-labeling.

An object’s label controls information flow to and

from the object. In particular, the kernel interface was

designed to achieve the following property:

The contents of object A can only affect object B if,

for every category c in which A is more tainted than

B, a thread owning c takes part in the process.

This is a powerful property. It provides end-to-end guar-

antees of which system components can affect which

others without the need to understand either the compo-

nents or their interactions with the rest of the system.

To revisit the virus scanner example, suppose data

from the scanner, tainted v3, was somehow observed by

the update daemon, with a label of {1}. It follows that

the wrap program—the only owner of v—allowed this to

happen in some way, either directly or by pre-authorizing

actions on its behalf (for instance, by creating a gate).

The privacy of the user’s data now depends only on the

wrap program being correct, and not on the virus scan-

ner. In general, we try to structure applications so that

key categories are owned by small amounts of code, and

hence the bulk of the system is not security-critical.

Unfortunately, information flow control is not perfect.

Tainted malicious software can leak information through
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covert channels—for instance, by modulating CPU us-

age in a way that affects the response time of untainted

threads. A related problem is preventing malicious soft-

ware from making even properly tainted copies of data

it cannot read. Such copies could divulge unintended

information—for instance, allowing someone who just

got ownership of a category to read tainted files that were

supposed to have been previously deleted. Restricting

copies also lets one limit the amount of time malicious

software can spend leaking data over covert channels.

To prevent code from accessing or copying inappro-

priate data, each thread has a clearance label, specifying

an upper bound both on the thread’s own label and on the

labels of objects the thread allocates or grants storage to.

In the virus scanner example, the update daemon cannot

read Bob’s private files, labeled {br 3, bw 0, 1}, because

its clearance of {2} prevents it from tainting itself br 3.

HiStar has a single-level store—on bootup, the en-

tire system state is restored from the most recent on-

disk snapshot. This eliminates the need for trusted boot

scripts to re-initialize processes such as daemons that on

more traditional operating systems would not survive a

reboot. It also achieves economy of mechanism by al-

lowing the file system to be implemented with the same

kernel abstractions as virtual memory. On the other hand,

persistence opens up a host of other issues, chief among

them the fact that one can no longer rely on rebooting to

kill off errant applications and reclaim resources.

Indeed, resource exhaustion is a potentially trouble-

some issue for many systems (including Asbestos). The

ability to run a machine out of memory is at best a glaring

covert channel and at worst a threat to system integrity.

HiStar’s single-level store at least reduces the problem to

disk-space exhaustion, since all kernel objects are written

to disk at each snapshot and can be evicted from memory

once stably stored. HiStar prevents disk space exhaus-

tion by enforcing object quotas. Quotas form a hierarchy

under top-level control of the system administrator—the

only inherent hierarchy in HiStar.

The simplest kernel object is a segment, providing a

variable-length byte array—similar to a file in other op-

erating systems. The rest of this section discusses other

HiStar kernel object types.

3.1 Threads

As previously mentioned, each thread T has a label LT

and a clearance CT . By default, T has LT (c) = 1 and

CT (c) = 2 for most categories c, but the system call

• cat t create category (void)

pseudo-randomly chooses a previously unused category,

c, and sets LT (c)← ⋆ and CT (c)← 3. At that point T

is the only thread whose label maps c to a value below

the system default of 1. In this sense, labels are egalitar-

ian: no thread has any inherent privileges with respect to

ThreadGate

Address

Space
Segment

Segment

(thread-local)Network

Device

Container
Soft link

Hard link

Figure 5: Kernel object types in HiStar. Soft links name objects by a

particular 〈container ID,object ID〉 container entry. Threads and gates,

which can own categories (i.e., contain ⋆ in their labels), are repre-

sented by rounded rectangles.

categories created by other threads.

T may raise its own label through the system call

• int self set label (label t L),

which sets LT ← L so long as LT ⊑ L ⊑ CT . This can,

for example, let T read a tainted object. T can also lower

its clearance in any category (but not below its label), or

increase its clearance in categories it owns, using

• int self set clearance (label t C),

which sets CT ←C so long as LT ⊑C ⊑ (CT ⊔L✪

T ).
LT and CT restrict the label L of any object T creates

to the range LT ⊑ L ⊑CT . Similarly, any new thread T ′

that T spawns must satisfy LT ⊑ LT ′ ⊑CT ′ ⊑CT .

3.2 Containers

Because HiStar has no notion of superuser yet allows any

software to create protection domains, nothing prevents

a buggy thread from allocating resources in some new,

unobservable, unmodifiable protection domain. We must

ensure such resources can nonetheless be deallocated.

HiStar provides hierarchical control over object al-

location and deallocation through a container abstrac-

tion. Like Unix directories, containers hold hard links

to objects. There is a specially-designated root container,

which can never be deallocated. Any other object is deal-

located once there is no path to it from the root container.

Figure 5 shows the possible links between containers and

other object types.

When allocating an object, a thread must specify both

the container into which to place the object and a 32-byte

descriptive string intended to give a rough idea of the ob-

ject’s purpose (much as the Unix ps command associates

command names with process IDs). For example, to cre-

ate a container, thread T makes the system call

• id t container create (id t D, label t L, char *descrip,

int avoid types, uint64 t quota).

Here D is the object ID of an existing container, into

which the newly created container will be placed. (We

use D for containers to avoid confusion with clearance.)

L is the desired label for the new container, and descrip
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is the descriptive string. avoid types is a bitmask spec-

ifying kernel object types (e.g., threads) that cannot be

created in the container or any of its descendants. quota

is discussed in the next subsection. The system call suc-

ceeds only if T can write to D (i.e., LT ⊑ LD ⊑ L✪

T ) and

allocate an object of label L (i.e., LT ⊑ L ⊑CT ).

Objects can be unreferenced from container D by any

thread that can write to D. When an object has no more

references, the kernel deallocates it. Unreferencing a

container causes the kernel to recursively unreference the

entire subtree of objects rooted at that container.

HiStar implements directories with containers. By

convention, each process knows the container ID of its

root directory and can walk the file system by traversing

the container hierarchy. The file system uses a separate

segment in each directory container to store file names.

A thread T can create a hard link to segment S in con-

tainer D if it can write D (i.e., LT ⊑ LD ⊑ L✪

T ) and its

clearance is high enough to allocate objects at S’s label

(LS ⊑CT ). T can thus prolong S’s life even without per-

mission to modify S. A thread T ′ must not observe that

T has done this, however, unless T could have otherwise

communicated to T ′—i.e., LT ⊑ L✪

T ′ (which need not be

the case just because T ′ has read permission on S). Most

system calls therefore specify objects not by ID, but by

〈container ID,object ID〉 pairs, called container entries.

For T ′ to use container entry 〈D,S〉, D must contain a

link to S and T ′ must be able to read D—i.e., LD ⊑ L✪

T ′ ;

since T had LT ⊑ LD, this implies LT ⊑ L✪

T ′ , as required.

Container entries let the kernel check that a thread has

permission to know of an object’s existence. When a

thread has this permission, it may also read immutable

data specified at the object’s creation. In particular, for

any object 〈D,O〉, if T can read D, then T can also read

O’s descriptive string and, unless O is a thread, O’s label.

(Since thread labels are not immutable, T can only read

the label of another thread T ′ if L✪

T ′ ⊑ L✪

T .) By exam-

ining the labels of objects more tainted than themselves,

threads can determine how they must taint themselves if

they wish to read those objects.

As a special case, every container contains itself. A

thread T can access container D as 〈D,D〉 when LD ⊑ L✪

T ,

even if T cannot read D’s parent, D′. (The root con-

tainer has a fake parent labeled {3}, and must always

be referenced this way.) One consequence is that if

LD′ 6⊑ LD, a thread with write permission on D′ but not

D can nonetheless deallocate D in an observable way.

By making D less tainted than its parent in one or more

categories, the thread T ′ that created D effectively pre-

authorized a small amount of information to be transmit-

ted from threads that can delete D to threads that can use

D. Fortunately, the allocation rules (LT ′ ⊑ LD′ ⊑ L✪

T ′ and

LT ′ ⊑ LD ⊑ CT ′ ) imply that to create such a D in D′, T ′

must own every category c for which LD(c) < LD′(c).

3.3 Quotas

Every object has a quota, which is either a limit on its

storage usage or the reserved value ∞ (which the root

container always has). A container’s usage is the sum of

the space used by its own data structures and the quotas

of all objects it contains. One can adjust quotas with the

system call

• int quota move (id t D, id t O, int64 t n),

which adds n bytes to both O’s quota and D’s usage. D

must contain O, and the invoking thread T must satisfy

LT ⊑ LD ⊑ L✪

T and LT ⊑ LO ⊑CT . If n < 0, LT must also

satisfy LO ⊑ L✪

T because the call returns an error when O

has fewer than |n| spare bytes, thereby conveying infor-

mation about O to T .

Threads and segments can both be hard linked

into multiple containers; HiStar conservatively “double-

charges” for such objects by adding their entire quota to

each container’s usage. One cannot add a link to an ob-

ject whose quota may subsequently change. The kernel

enforces this with a “fixed-quota” flag on each object.

The flag must be set (though a system call) before adding

a link to the object, and can never be cleared.

We do not expect users to manage quotas manually,

except at the very top of the hierarchy. The system li-

brary can manage quotas automatically, though we do

not yet enable this feature by default.

3.4 Address spaces

Every running thread has an associated address space

object containing a list of VA → 〈S,offset,npages,flags〉
mappings. VA is a page-aligned virtual address. S =
〈D,O〉 is a container entry for a segment to be mapped

at VA. offset and npages can specify a subset of S to be

mapped. flags specifies read, write, and execute permis-

sion (and some convenience bits for user-level software).

Each address space A has a label LA, to which the

usual label rules apply. Thread T can modify A only

if LT ⊑ LA ⊑ L✪

T , and can observe or use A only if

LA ⊑ L✪

T . When launching a new thread, one must spec-

ify its address space and entry point. The system call

self set as also allows threads to switch address spaces.

When thread T takes a page fault, the kernel looks up the

faulting address in T ’s address space to find a segment

S = 〈D,O〉 and flags. If flags allows the access mode,

the kernel checks that T can read D and O (LD ⊑ L✪

T and

LO ⊑ L✪

T ). If flags includes writing, the kernel addition-

ally checks that T can modify O (LT ⊑ LO). If no map-

ping is found or any check fails, the kernel calls up to a

user-mode page-fault handler (which by default kills the

process). If the page-fault handler cannot be invoked, the

thread is halted.

Every thread has a one-page local segment that can be

mapped in its address space using a reserved object ID
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meaning “the current thread’s local segment.” Thread-

local segments are always writable by the current thread.

They provide scratch space to use when other parts of the

virtual address space may not be writable. For example,

when a thread raises its label, it can use the local segment

as a temporary stack while creating a copy of its address

space with a writable stack and heap.

A system call thread alert allows a thread T ′ to send

an alert to T , which pushes T ’s registers on an exception

stack and vectors T ’s PC to an alert handler. To suc-

ceed, T ′ must be able to write T ’s address space A (i.e.,

LT ′ ⊑ LA ⊑ L✪

T ′ ) and to observe T (i.e., LT ⊑ L✪

T ′ ). These

conditions suffice for T ′ to gain full control of T by re-

placing the text segment in A with arbitrary code, as well

as for T to communicate information to T ′.

3.5 Gates

Gates provide protected control transfer, allowing a

thread to jump to a pre-defined entry point in another ad-

dress space with additional privilege. A gate object G has

a gate label, LG (which may contain ⋆), a clearance, CG,

and thread state, including the container entry of an ad-

dress space, an initial entry point, an initial stack pointer,

and some closure arguments to pass the entry point func-

tion. A thread T ′ can only allocate a gate G whose label

and clearance satisfy LT ′ ⊑ LG ⊑CG ⊑CT ′ .

The thread T invoking G must specify a requested la-

bel, LR, and clearance, CR, to acquire on entry. T also

supplies a verify label, LV , to prove possession of cate-

gories without granting them across the gate call. Gate

invocation is permitted when LT ⊑ CG, LT ⊑ LV , and

(L✪

T ⊔ L✪

G)⋆ ⊑ LR ⊑ CR ⊑ (CT ⊔CG). The entry point

function can examine LV for additional access control.

Note that thread labels are always explicitly specified by

user code, and only verified by the kernel.

Gates are usually used like an RPC service. Un-

like typical RPC, where the RPC server provides the re-

sources to handle the request, gates allow the client to do-

nate initial resources—namely, the thread object which

invokes the gate. Arguments and return values are passed

across the gate in the thread local segment. Gates can be

used to transfer privilege; for example, the login process,

described in Section 6.2, uses gates to obtain the user’s

privileges. The use of gates in user-level applications is

discussed in more detail in Section 5.5.

4 KERNEL IMPLEMENTATION

Our implementation of HiStar runs on x86-64 proces-

sors, such as AMD Opteron and Athlon64 CPUs. The

use of a 64-bit processor makes virtual memory an abun-

dant resource, allowing us to make certain simplifica-

tions in our design, such as the use of virtual memory

for file descriptors, described in the next section.

The single-level store is inspired by XFS [24]. It uses

a B+-tree to store an on-disk mapping from object IDs

to their location on disk, and two B+-trees to maintain

a list of free disk space extents. The first one is in-

dexed by extent size and is used to find appropriately-

sized extents, and the other is indexed by extent loca-

tion and is used to coalesce adjacent extents. Our B+-

trees have fixed-size keys and values—object IDs and

disk offsets—which significantly simplifies their imple-

mentation. Write-ahead logging ensures atomicity and

crash-consistency. Disk space allocation is delayed until

an object is written to disk, making it easier to allocate

contiguous extents.

The kernel performs several key optimizations. It

caches the result of comparisons between immutable la-

bels. When switching between similar address spaces,

it also invalidates TLB entries with the invlpg instruc-

tion instead of flushing the whole TLB by re-loading the

page table base register. The invlpg optimization makes

switching between threads in the same address space effi-

cient: at worst, the kernel invalidates one page translation

for the thread-local segment.

4.1 Code size

One of the advantages of HiStar’s simple kernel interface

is that the fully-trusted kernel can be quite small. Our

kernel implementation consists of 15,200 lines of C code

(of which 5,700 lines contain a semicolon) and 150 lines

of assembly; this is roughly 45% fewer lines of C code

than the Asbestos kernel. The source code consists of the

following rough components:

• 3,400 lines of architecture-specific code, implement-

ing virtual memory and threads.

• 4,000 lines of code for B+-trees, write-ahead logging

and object persistence.

• 3,000 lines of code for device drivers, including PCI

support, DMA-based IDE, console, and three net-

work drivers.

• 4,800 lines of code for system calls, containers, pro-

filing, and other hardware-independent components.

In all aspects of the design we have tried to optimize

for a simpler and cleaner kernel. For example, IPC sup-

port, aside from shared memory and gates, is limited to

a memory-based futex [6] synchronization primitive, on

which the user-level library implements mutexes. The

kernel network API consists of three system calls: get

the MAC address of the card, provide a transmit or re-

ceive packet buffer, and wait for a packet to be received

or transmitted. There is no dynamic packet allocation

or queuing in the kernel, which simplifies drivers. Our

DMA-based Intel eepro100 driver is 500 lines of code,

compared to 2,500 in Linux and OpenBSD (not includ-

ing their in-kernel packet allocation and queuing code).

When hardware support for IO virtualization becomes

available, we expect to move many device drivers out of

the fully-trusted kernel.
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5 USER-LEVEL DESIGN

Unix provides a general-purpose computing environment

familiar to many people. In designing HiStar’s user-level

infrastructure, our goal was to provide as similar an envi-

ronment to Unix as possible except in areas where there

were compelling reasons not to—for instance, user au-

thentication, which we redesigned for better security. As

a result, porting software to HiStar is relatively straight-

forward; code that does not interact with security aspects

such as user management often requires no modification.

The bulk of the Unix environment is provided by a

port of the uClibc library [25] to HiStar. The HiStar

platform-specific code is a small layer underneath uClibc

that emulates the Linux system call interface, compris-

ing approximately 10,000 lines of code and providing

abstractions like file descriptors, processes, fork and

exec, file system, and signals. Two additional services—

networking and authentication—are provided by sepa-

rate daemons. A daemon in HiStar is a regular process

that creates one or more service gates for other processes

to communicate with it in an RPC-like fashion.

It is important to note that all of these abstractions are

provided at user level, without any special privilege from

the kernel. Thus, all information flow, such as the exit

status of a child process, is made explicit in the Unix li-

brary. A vulnerability in the Unix library, such as a bug in

the file system, only compromises threads that trigger the

bug—an attacker can only exercise the privileges of the

compromised thread, likely causing far less damage than

a kernel vulnerability. An untrusted application, such as

a virus scanner, can be isolated together with its Unix

library, allowing for control over Unix vulnerabilities.

We have ported a number of Unix software packages

to HiStar, including GNU coreutils (ls, dd, and so on),

ksh, gcc, gdb, the links web browser and OpenSSH, in

many cases requiring little or no source code modifica-

tions. The rest of this section discusses the design and

implementation of our Unix emulation library.

5.1 File System

The HiStar file system uses segments and containers to

implement files and directories, respectively. Each file

corresponds to a segment object; to access the file con-

tents, the segment is mapped into the thread’s address

space, and any reads or writes are translated into mem-

ory operations. The implementation coordinates with the

user-mode page fault handler to return errors rather than

SIGSEGV signals upon invalid read or write requests.

A file’s length is defined to be the segment’s length.

Extending a file may require increasing the segment’s

quota, which is done through a gate call if the enclos-

ing container is not writable in the current context. Ad-

ditional state, such as the modification time, is stored in

the object’s metadata.

A directory is a container with a special directory seg-

ment mapping file names to object IDs. Directory op-

erations are synchronized with a mutex in the directory

segment; for example, atomic rename within a directory

is implemented by obtaining the directory’s mutex lock,

modifying the directory segment to reflect the new name,

and releasing the lock. Users that cannot write a direc-

tory cannot acquire the mutex, but they can still obtain

a consistent view of directory segment entries by atom-

ically reading a generation number and busy flag before

and after reading each entry. The generation number is

incremented by the library on each directory update.

The container ID of the / directory is stored by the

Unix library in user space and passed to child processes

across fork and exec. The library also maintains a mount

table segment, which maps 〈directory,name〉 pairs onto

object IDs. The library overlays mounted objects on di-

rectories, much like Unix. Like Plan 9, a process may

copy and modify its mount table, for example at user lo-

gin. The kernel has a container get parent system call

which is used to implement parent directories.

Since file system objects directly correspond to HiStar

kernel objects, permissions are specified in terms of la-

bels and are enforced by the kernel, not by the untrusted

user-level file system implementation. The label on a

file segment is typically {r 3, w0, 1}, where categories

r and w represent read and write privilege on that file, re-

spectively. Labels are similarly used for directories; read

privilege on a directory allows listing the files in that di-

rectory, and write privilege allows creating new files and

renaming or deleting existing files.

5.2 Processes

A process in HiStar is a user-space convention. Fig-

ure 6 illustrates the kernel objects that make up a typical

process; although this may appear complex, it is imple-

mented as untrusted library code that runs only with the

privileges of the invoking user.

Each process P has two categories, pr and pw, that

protect its secrecy and integrity, respectively. Threads

in a process typically have a label of {pr ⋆, pw ⋆, 1},

granting them full access to the process. The process

consists of two containers: a process container and an

internal container. The process container exposes ob-

jects that define the external interface to the process: a

gate for sending signals and a segment to store the pro-

cess’s exit status; not shown is a gate used by gdb for

debugging. The process container and exit status seg-

ment are labeled {pw 0, 1}, allowing read but not write

access by threads of other processes (which do not own

pw). The signal gate has label {pr ⋆, pw ⋆, 1} and allows

other processes to send signals to this process. The in-

ternal container, address space, and segment objects are

labeled {pr 3, pw 0, 1}, preventing direct access by other

processes.
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Figure 6: Structure of a HiStar process. A process container is repre-

sented by a thick border. Not shown are some label components that

prevent other users from signaling the process or reading its exit status.

5.3 File Descriptors

File descriptors in HiStar are implemented in the user-

space Unix library. All of the state typically associated

with the file descriptor, such as the current seek position

and open flags, is stored in a file descriptor segment. Ev-

ery file descriptor number corresponds to a specific vir-

tual memory address. When a file descriptor is open in

a process, the corresponding file descriptor segment is

memory-mapped at the virtual address for that file de-

scriptor number.

Typically each file descriptor segment has a label of

{ fr 3, fw 0, 1}, where categories fr and fw grant read and

write access to the file descriptor state. Access to the

descriptor can be granted by setting a thread’s label to

{ fr ⋆, fw ⋆, 1}. Multiple processes can share file descrip-

tors by mapping the same descriptor segment into their

respective address spaces. By convention, every process

adds hard links for all of its file descriptor segments to

its own container. As a result, ownership of the file de-

scriptor is shared by all processes holding it open, and

a shared descriptor segment is only deallocated when it

has been closed and unreferenced by every process.

5.4 Users

A pair of unique categories ur and uw define the read and

write privileges of each Unix user u in HiStar, includ-

ing root. Typically, threads running on behalf of user

U have a label containing ur ⋆, uw ⋆, and users’ private

files would have a label of {ur 3, uw 0, 1}. One conse-

quence of this design is that a single process can pos-

sess the privilege of multiple users, or perhaps multiple

user roles, something hard to implement in Unix. On the

other hand, our prototype does not support access con-

trol lists. (Doing so would probably require a gate for

1
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2
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Internal Container
{dr 3, dw 0, 1}

Address
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Process P
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Return Gate
{pr ⋆, pw ⋆, 1}

Clearance: {r 0, 2}

Internal Container
{pr 3, pw 0, 1}
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Thread Tp
{pr ⋆, pw ⋆, r⋆, 1}

Thread Tp
{dr ⋆, dw ⋆, r⋆, 1}

Thread Tp
{pr ⋆, pw ⋆, r⋆, 1}

Daemon D
{dw 0, 1}

Service Gate
{dr ⋆, dw ⋆, 1}

Figure 7: Objects involved in a gate call operation. Thick borders

represent process containers. r is the return category; dr and dw are

the process read and write categories for daemon D. Three states of the

same thread object Tp are shown: 1) just before calling the service gate,

2) after calling the service gate, and 3) after calling the return gate.

every access control group.) The authentication service,

which verifies user passwords and grants user privileges,

is described in more detail in Section 6.2.

5.5 Gate Calls

Gates provide a mechanism for implementing IPC. As an

example, consider a service that generates timestamped

signatures on client-provided data; such a service could

be used to prove possession of data at a particular time.

A HiStar process could provide such a service by cre-

ating a service gate whose initial entry point is a func-

tion that computes a timestamped signature of the input

data (from the thread-local segment) and returns the re-

sult to the caller. Gates in HiStar have no implicit return

mechanism; the caller explicitly creates a return gate be-

fore invoking the service gate, which allows the calling

thread to regain all of the privileges it had prior to call-

ing the service. A return category r is allocated to pre-

vent arbitrary threads from invoking the return gate; the

return gate’s clearance requires ownership of the return

category to invoke it, and the caller grants the return cat-

egory when invoking the service gate. Figure 7 shows

such a gate call from process P to daemon D.

Suppose the caller does not trust the signature-

generating daemon D to keep the input data private. To

ensure privacy, the calling thread can allocate a new taint

category t and invoke the service gate with a label of

{dr ⋆, dw ⋆, r⋆, t 3, 1}—in other words, tainted in the new

category. A thread running with this label in D’s address

space can read any of D’s segments, but not modify them
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(which would violate information flow constraints in cat-

egory t). However, the tainted thread can make a tainted,

and therefore writable, copy of the address space and its

segments and continue executing there, effectively fork-

ing D into an untainted parent daemon and a tainted

child. Unable to divulge the caller’s data, the thread can

still compute a signature and return it to the caller. Upon

invoking the return gate, the thread regains ownership of

category t, allowing it to untaint the computed signature.

Resources for the tainted child copy must be charged

against some object’s quota. They cannot be charged to

D’s container, because the thread lacks modification per-

mission when tainted t 3 (otherwise, it could leak infor-

mation about the caller’s private data to D). Therefore,

before invoking the gate, the calling thread creates a con-

tainer it can use once inside D. In this example, Tp cre-

ates a container labeled {t 3, r 0, 1} inside P’s internal

container.

Forking on tainted gate invocation is not appropri-

ate for every service. Stateless services such as the

timestamping daemon are usually well-suited to forking,

whereas services that maintain mutable shared state may

want to avoid forking by refusing tainted gate calls.

5.6 Signals

Signals are implemented by sending an alert to a thread

in a process, passing the signal number as an argument

to the alert handler. The alert handler invokes the appro-

priate Unix signal handler for the raised signal. How-

ever, sending an alert requires the ability to modify the

thread’s address space object, which, because of pw, only

other threads in the same process can do. Therefore,

to support Unix signals, each process exposes a signal

gate in its process container. The gate has a label of

{pr ⋆, pw ⋆, 1} and an entry function that sends the ap-

propriate alert to one of the threads in the process, de-

pending on the requested signal number. The clearance

on the signal gate is {uw 0, 2}, where uw corresponds to

the user that is running this process. As a result, only

threads that possess the user’s privilege can send signals

to that user’s processes.

5.7 Networking

HiStar uses the lwIP [12] protocol stack to provide

TCP/IP networking. lwIP runs in a separate netd process

and exposes a single gate that allows callers to perform

socket operations. Operations on socket file descriptors

are translated into gate calls to the netd process. By

default, netd’s process container is mounted as /netd in

mount tables. As an optimization, a process can create a

shared memory segment with netd and donate resources

for a worker thread to netd. Subsequent netd interactions

can then use futexes to communicate over shared mem-

ory, avoiding the overhead of gate calls.

The network device is typically labeled {nr 3, nw 0,

i2, 1}, where nr and nw are owned by netd, and i taints

all data read from the network. Because netd cannot by-

pass the tainting with i or leak tainted data in other cat-

egories, it is mostly untrusted. A compromised netd can

only mount the equivalent of a network eavesdropping or

packet tampering attack.

5.8 Explicit Information Leaks

Unix was not designed to control information flow. Em-

ulating certain aspects therefore requires information

leaks. HiStar implements these leaks at user level,

through explicit untainting gates. By convention, when

spawning a tainted thread or tainting a thread through a

gate call, user code supplies the tainted thread with the

container entry of an untainting gate. The new thread

can invoke this gate to leak certain kinds of information,

such as the fact it is about to exit (so the parent shell can

reclaim resources and return to the command prompt).

Not all categories have untainting gates; whether or not

to create one is up to the category’s owner.

Currently our Unix library provides untainting gates

for up to three operations: process exit, quota adjust-

ment, and file creation. Of these, file creation has by

far the biggest information flow, declassifying the name

of the newly created file. Low-secrecy applications con-

cerned only with accidental disclosure allow these op-

erations. Higher-secrecy applications may choose to set

fixed quotas for tainted objects and only declassify pro-

cess exits. The next section shows examples of such ap-

plications.

6 APPLICATIONS

The Unix environment described in the previous sec-

tion allows for general-purpose computing on HiStar, but

does not provide any functionality qualitatively different

from Linux. HiStar’s key advantage is that it enables

novel, high-security applications to run alongside a fa-

miliar Unix environment. This section presents some ap-

plications that take advantage of HiStar to provide secu-

rity guarantees not achievable on typical Unix systems.

6.1 Anti-Virus Software

We have implemented an untrusted virus scanner, as sug-

gested in several examples, by porting ClamAV [3] and

using the wrap program to run it in isolation. To pro-

vide strong isolation, wrap does not create the standard

Unix untainting gate for category v. wrap also limits the

amount of data that can be leaked through covert chan-

nels by killing ClamAV after some period of time.

ClamAV and its database must be periodically updated

to keep up with new viruses. In HiStar, the update pro-

cess runs with the privilege to write the ClamAV exe-

cutable and virus database; however, it cannot access pri-

vate user data. Even if a compromised update installs ar-
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Figure 8: A high-level overview of the authentication system.

bitrary code in place of ClamAV, the label set by wrap

when running ClamAV ensures that private information

cannot be exported.

6.2 User Authentication

User authentication provides a good example of how Hi-

Star can minimize trusted code. Most operating systems

require a highly-trusted process to validate authentica-

tion requests and grant credentials. For example, the

Unix login program runs as superuser to set the appropri-

ate user and group IDs after checking passwords. Even

a privilege-separated server such as OpenSSH requires a

superuser component to be able to launch shells for suc-

cessfully authenticated users.

In contrast, HiStar authenticates users without any

highly-trusted processes, and allows users to supply their

own authentication services. Even if a user accidentally

provides his or her password to a malicious authentica-

tion service, HiStar ensures that only one bit of informa-

tion about the user’s password is leaked. Providing such

isolation under a traditional operating system would be

difficult.

Figure 8 shows an overview of the HiStar authentica-

tion facility. Logically, four entities coordinate to authen-

ticate a user: a login client, a directory service, a per-user

authentication service, and a logging service. Of these,

the logging service is simplest; the directory and user au-

thentication services trust it to maintain an append-only

log, while it trusts them not to exhaust space with spuri-

ous entries.

The login client initiates authentication. It typically

consists of an instance of the web server or sshd that

knows a username and password and wishes to gain own-

ership of the user’s read and write categories, ur and uw.

Login minimally trusts the directory to interpret the user-

name properly (without which authentication could fail

or return the wrong credentials). However, login does

not trust the other components, and importantly does not

trust anyone with the user’s password. Conversely, no

other component trusts login until it authenticates itself.

The directory service maintains a list of user accounts.

Its job is to map usernames to user authentication ser-

vice daemons. Login begins the authentication process
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Figure 9: A detailed view of the interactions between authentication

system components. The setup gate, check gate and grant gate (2, 3

and 4) are all part of the user’s authentication service.

by asking the directory for a particular username. The di-

rectory responds with the container entry of a gate to the

user’s authentication service. The directory is controlled

by the system administrator, but is untrusted except min-

imally by login and the logger as described above.

Each user runs an authentication service daemon that

owns ur and uw; the daemon’s job is to grant those

categories to login clients that successfully authenticate

themselves. Conceptually, this is simple: login sends the

password to the authentication service, which checks it

and, if correct, grants ur and uw back to login. Since the

authentication service is under the user’s control, it can,

at the user’s option, support non-password techniques

such challenge-response authentication.

The complication is that login does not trust the au-

thentication service with the user’s password. After all,

a mistyped username or malicious directory could con-

nect login to the wrong authentication service. Even the

right service might be compromised, which should re-

veal only the user’s password hash, not his password.

With challenge-response authentication, a similar man-

in-the-middle threat exists. The solution is for login to

invoke the authentication service three times: first to set

things up, second to check the password, and third to fi-

nally gain ownership of ur and uw. The second step runs

tainted, thereby protecting the secrecy of the password.

Figure 9 shows the authentication sequence in more

detail. In Step 1, login learns of the appropriate user’s

setup gate from the directory service. Then it allocates

two categories: πr, the password read category, protects

the password from disclosure. The sw category controls

write access to a login session container, which login

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 273



check gate

{ur ⋆, uw ⋆, x⋆, 1}

grant gate

{ur ⋆, uw ⋆, 1}
Clearance: {x0, 2}

login session container

{sw 0, 1}

retry count segment

{πr 3, uw 0, 1}

Figure 10: Objects created by the user’s setup gate in the session con-

tainer.

creates with label {sw 0, 1}.

In Step 2, login invokes the user’s setup gate, grant-

ing the user’s code sw ⋆. The setup gate logs the authen-

tication attempt and allocates a new category, x, to be

granted to login after successful authentication. Before

returning, the setup gate code (together with login, as

we will discuss later) creates three objects in the session

container, shown in Figure 10. The first is a retry count

segment, used to bound the number of password guesses

per logged invocation of the setup gate. The second is

an ephemeral check gate, used to check passwords while

tainted; its closure arguments specify the object ID of

the retry count segment. The third is an ephemeral grant

gate with clearance {x0, 2}.

In Step 3, login calls the check gate with the password,

tainting the thread πr 3. If the password is correct and

the retry count okay, the gate code grants x back to login.

(Optionally, the check gate may accept a verify label of

{rootw 0, 3} instead of a password, to emulate a Unix

users’ trust of root.) Once login owns x, it calls the grant

gate in Step 4 to obtain ur and uw. The grant gate logs

the authentication success before returning, which is why

it must be separate from the tainted check gate, which

cannot talk to the logging service.

In Step 2, creating the retry count segment, which is

labeled {πr 3, uw 0, 1}, requires combining the privileges

of two mutually-distrustful entities: login, with a clear-

ance of πr 3, and the user’s code, with a label of uw ⋆.

The user’s code will not grant uw ⋆ to login before a suc-

cessful authentication. Similarly, login does not trust the

user’s setup gate code with a clearance of πr 3.

To see why login cannot invoke the setup gate with

a clearance of πr 3, consider what malicious setup gate

code can do given such a clearance: It can create a long-

lived segment S labeled {πr 3, ur 3, 1}, and a long-lived

thread T labeled {πr 3, ur ∗, 1}. Both can be in a con-

tainer inaccessible to login. The setup code can further-

more point the check gate to a “trojaned” variant of the

password checker that writes the password to S. Finally,

T can read S and leak the password through a covert

channel over a long period of time. T and S will persist

long after login has destroyed all objects it knows about

with a clearance of πr 3.

To solve this problem, the developers of the user’s au-

thentication service and the login client agree ahead of

time on a function that both of them want to execute to

create the retry count segment. Then, before invoking

the setup gate, login creates a code segment containing

the code of the previously agreed-upon function, as well

as a gate G that invokes this code with a clearance of πr 3.

Additionally, login marks the code segment and address

space objects invoked by G as immutable in the kernel.

Because these objects are immutable, the user’s setup

gate code can verify their contents and be assured that

invoking G with uw ∗ will execute only the agreed upon

code and not somehow result in login usurping owner-

ship of uw. In this manner, two mutually-distrustful par-

ties can safely execute mutually agreed-upon code with

their combined privilege.

The authentication service implementation is fairly

small. The logging service comprises 58 lines of code;

the directory service comprises 188 lines, and the stan-

dard password-based user authentication service com-

prises 233 lines of code. Common library code that al-

lows combining privileges to create the retry count seg-

ment is 370 lines of C++ code, and the mutually agreed-

upon code to create the retry count segment is 30 lines

of assembly. Aside from security, another advantage of

privilege-separating authentication is that the processes

can keep relatively small labels, improving the perfor-

mance of label operations.

6.3 VPN Isolation

Many networks rely so heavily on firewalls for secu-

rity that the prospect of bridging them to the open In-

ternet poses a serious danger. Indeed, this is how

the Slammer worm disabled a safety monitoring sys-

tem at a nuclear power plant in 2003 [19]. At the

same time, it has become quite common for people to

connect home machines and laptops to otherwise fire-

walled networks through encrypted virtual private net-

works (VPNs). When VPNs let the same machine con-

nect to either side of a firewall, they risk having malware

either infect internal machines or (as the Sircam worm

did) divulge sensitive documents to the world.

In HiStar, however, one can track the provenance of

data with labels and precisely control what flows be-

tween networks. The bootstrap procedure already labels

the network device to taint anything received from the

Internet {i2, 1} and block from transmission anything

more tainted. One can analogously label all VPN input

{v2, 1} and block any more tainted VPN output. Such a

configuration completely isolates the two networks from

each other except as specifically permitted by the owners

of i and v. For example, users might be allowed to untaint

i (meaning import external data) when the file passes a

virus checker, such as the one in Section 6.1.

We have implemented VPN isolation around the pop-

ular OpenVPN package [16]. Figure 11 shows the com-

ponents of the system and their labels: The VPN runs

a second lwIP stack which talks to the OpenVPN client
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Internet

Web Browser

{i2, 1}{nr ⋆, nw ⋆, i2, 1}

Internet lwIP stack

Kernel Network Device

{nr 3, nw 0, i2, 1}

VPN Client

{i⋆, v⋆, 1}

VPN lwIP stack

{v2, 1}

Web Browser

{v2, 1}

Figure 11: Secure VPN application. The VPN client is trusted to taint

incoming VPN packets with {v2}, reject any outgoing packets tainted

in category i, and properly encrypt/decrypt data. The kernel network

device is completely trusted. Neither of the lwIP stacks is trusted.

over a tun device. Porting OpenVPN to HiStar required

implementing a tun character device in the file system li-

brary (200 lines of code) and a tun “device driver” for

lwIP (100 lines of code). OpenVPN swaps between v

and i taints on the data it encrypts. Users select which

network to use by mounting the appropriate lwIP pro-

cess on /netd (much like Plan 9). Not shown are untaint-

ing gates, which for this application allow processes to

leak exit, quota, and file creation events, as discussed in

Section 5.8.

VPN isolation is interesting because it applies a broad

policy potentially affecting most processes in the system,

yet requires only a localized change. This would be diffi-

cult to achieve in a capability-based system, for instance.

6.4 Web Services

The original motivating application for Asbestos was its

web server, which isolated different user’s data to tol-

erate buggy or malicious web service code. We have

built a similar web server for HiStar, with a few dif-

ferences. HiStar’s connection demultiplexer controls re-

sources granted to each worker daemon through con-

tainers. Authentication uses an instance of the daemon

described in Section 6.2. HiStar also has an experi-

mental privilege-separated database; unlike the Asbestos

database, it does not support standard SQL queries.

(Whether it will prove general enough for most web

services is still an open question.) Since the bene-

fits of Asbestos-style web services have been reported

elsewhere, this paper concentrates on other applications

whose architecture is more unique to HiStar.

7 PERFORMANCE

To evaluate the performance implications of HiStar’s ar-

chitecture, we compared it to Linux and OpenBSD un-

der several benchmarks. The benchmarks ran on three

identical systems, each with a 2.4 GHz AMD Athlon64

3400+ processor, 1GB of main memory, and a 40 GB,

7,200 RPM Seagate ST340014A EIDE hard drive. The

Benchmark HiStar Linux OpenBSD

IPC benchmark, per RTT 3.11 µsec 4.32 µsec 2.13 µsec

Fork/exec, per iteration 1.35 msec 0.18 msec 0.18 msec

Fork/exec, dynamic linking — 0.45 msec 0.38 msec

Spawn, per iteration 0.47 msec — —

LFS small, create, async 0.31 sec 0.316 sec 0.22 sec

. . . per-file sync 459 sec 558 sec —

. . . group sync 2.57 sec — —

LFS small, read, cached 0.16 sec 0.068 sec 0.14 sec

. . . uncached 6.49 sec 1.86 sec —

. . . no IDE disk prefetch 86.4 sec 86.6 sec —

LFS small, unlink, async 0.090 sec 0.244 sec 0.068 sec

. . . per-file sync 456 sec 173 sec —

. . . group sync 0.38 sec — —

LFS large, sequential write 2.14 sec 3.88 sec —

. . . sync random write 93.0 sec 89.7 sec —

LFS large, uncached read 1.96 sec 1.80 sec —

Figure 12: Microbenchmark results on HiStar, Linux and OpenBSD.

first machine ran HiStar; the second ran Fedora Core

5 Linux with kernel version 2.6.16-1.2080 FC5 x86 64

and an ext3 file system; the third ran 32-bit OpenBSD

3.9 i386 with an in-memory mfs file system—a 64-bit

version of OpenBSD 3.8 for amd64 performed strictly

worse in every benchmark. We did not run synchronous

file system benchmarks under OpenBSD, because we

could not disable IDE write caching.

7.1 Microbenchmarks

To evaluate the performance of specific aspects of Hi-

Star, we chose four microbenchmarks: LFS small-file

and large-file benchmarks [20], an IPC benchmark which

measures the latency of communication over a Unix pipe,

and a fork/exec benchmark that measures the latency

of executing /bin/true using fork and exec. All mi-

crobenchmarks and /bin/truewere compiled statically

to eliminate dynamic linking overhead. Figure 12 shows

the performance of the four microbenchmarks on three

different operating systems.

For the IPC benchmark, two processes are created,

connected by two uni-directional pipes; each process

sends any messages it receives back to the other pro-

cess. The benchmark measures the average round-trip

time taken to transmit an 8-byte message, over one mil-

lion round-trips. HiStar performs better than Linux in

this benchmark, but somewhat slower than OpenBSD.

HiStar’s performance noticeably suffers in the fork

and exec microbenchmark. In part, this is because Linux

and OpenBSD pre-zero memory pages, which HiStar

does not yet do. Moreover, while OpenBSD and Linux

require 9 system calls to fork a child, have the child ex-

ecute /bin/true, have /bin/true exit, and have the

parent wait for the child, the same workload requires

317 system calls on top of HiStar’s lower-level interface.

However, the flexibility provided by a lower-level inter-

face allows us to implement more efficient library calls,

such as spawn, which directly starts a new process run-
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ning a specified executable. The spawn function runs 3

times faster than the equivalent fork and exec combina-

tion, issuing only 127 system calls per iteration. We note

that use of dynamic linking would reduce the relative per-

formance difference between HiStar and Linux.

The LFS small file benchmark creates, reads, and un-

links 10,000 1kB-sized files and reports the total running

time for each of these three phases. We measured dif-

ferent variations of the phases, as shown in Figure 12.

The asynchronous and cached variations show HiStar

has comparable performance to the other systems for re-

quests that go to cache. The uncached read phase mea-

sures the time to read 10,000 small files from disk. Here

Linux significantly outperforms HiStar, averaging less

than 1/10th the disk’s 8.3 msec rotational latency to read

each file. We attribute this performance to read look-

ahead in the IDE disk [22], because Linux clusters files

from the same directory while HiStar does not. Disabling

lookahead, HiStar and Linux perform comparably.

In the synchronous unlink phase, HiStar performs sig-

nificantly worse than Linux. This is because we imple-

ment fsync of a directory by checkpointing the entire sys-

tem state to disk, whereas Linux only writes out the mod-

ified directory entry. Synchronous file creation in HiStar

also checkpoints the entire system state; however, its per-

formance is comparable to Linux because ext3 performs

more writes in this case. Write-ahead logging allows Hi-

Star to achieve acceptable fsync performance by queuing

updates in a sequential on-disk log. Logged updates are

applied in batches; during each run of the synchronous

small file benchmarks, the contents of the on-disk log

were applied to disk about 10 times (once for approxi-

mately every 1,000 synchronous operations).

The single-level store offers a new group sync consis-

tency choice not possible under Linux. In group sync,

the system state is checkpointed to disk only once at the

end of each benchmark phase. The single-level store

guarantees that the application either runs to comple-

tion or appears never to have started. Using group sync

in HiStar, some applications may achieve a significant

speedup over Linux, as high as a factor of 200 for appli-

cations similar to the LFS small file benchmark.

For the LFS large file benchmark, we evaluated three

phases. In the first phase, a 100MB file was created by

sequentially writing 8KB chunks, with a single call to

fsync at the end of the phase. HiStar achieves close to the

maximum disk bandwidth of 58MB/sec [22]; we suspect

that block-based (rather than extent-based) allocation in

ext3 accounts for Linux’s slightly lower performance.

The second phase tested random write throughput;

100MB worth of 8KB chunks were written to random

locations in the existing file, and the modifications were

fsynced to disk for each 8KB write. In the case of

pre-existing segments, HiStar allows modified segment

Benchmark HiStar Linux OpenBSD

Building HiStar kernel 6.2 sec 4.7 sec 6.0 sec

Transferring 100MB with wget 9.1 sec 9.0 sec 9.0 sec

Virus-checking a 100MB file 18.7 sec 18.7 sec 21.2 sec

. . . with isolation wrapper 18.7 sec — —

Figure 13: Application-level benchmark results.

pages to be flushed to disk (modified in-place) without

checkpointing the entire system state. As a result, the

performance is again quite close to that of Linux, since

each random write involves flushing two 4KB pages to

disk both in Linux and in HiStar.

The third phase of the large-file benchmark tested read

performance by sequentially reading the 100MB file in

8KB chunks. The performance is approximately the

same between HiStar and Linux. Currently the HiStar

prototype does not support paging in of partial segments,

so the entire 100MB file segment is paged in when the

file is first accessed—a limitation we plan to address in

the future. As a result, the performance of random reads

differs little from the sequential case.

7.2 Application Performance

For an application-level benchmark, we built the HiStar

kernel using GNU make 3.80 and GCC 3.4.5 on the three

operating systems; Figure 13 summarizes the results. Hi-

Star is somewhat slower than Linux and comparable to

OpenBSD. In HiStar, most of the CPU time in this

benchmark is spent in user space. Since most of our op-

timization efforts to date have focused on the kernel, we

expect HiStar to improve on this benchmark as we move

to optimizing the Unix library.

HiStar also achieves good network throughput. When

downloading a 100MB file using wget, the results show

all three operating systems could saturate a 100Mbps

Ethernet. Finally, we measured the time taken to check

a 100MB file containing randomized binary data for

viruses using ClamAV; HiStar performs competitively

with Linux and OpenBSD, both with and without the use

of the wrapper described in Section 6.1.

8 RELATED WORK

HiStar was directly inspired by Asbestos, but differs in

providing system-wide persistence, explicit resource al-

location, and a lower-level kernel interface that closes

known covert storage channels. While Asbestos is a

message-passing system, HiStar relies heavily on shared

memory. The HiStar kernel provides gates, not IPC,

with the important distinction that upon crossing a gate,

a thread’s resources initially come from its previous do-

main. By contrast, Asbestos changes a process’s label to

track information flow when it receives IPCs, which is

detectable by third parties and can leak information. As-

bestos highly optimizes comparisons between enormous

labels, which so far we have not done in HiStar.
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HiStar controls information flow with mandatory ac-

cess control (MAC), a well-studied technique dating

back decades [1]. The ADEPT-50 dynamically adjusted

labels (essentially taint tracking) using the High-Water-

Mark security model back in the late 1960s [10]; the idea

has often resurfaced, for instance in IX [13] and LO-

MAC [7]. HiStar and its predecessor Asbestos are novel

in that they make operations such as category alloca-

tion and untainting available to application programmers,

where previous OSes reserved this functionality for se-

curity administrators. Decentralized untainting allows

novel uses of categories that we believe promote better

application structure and support applications, such as

web services, not targeted by previous MAC systems.

Superficially, HiStar resembles capability-based

KeyKOS [2] and its successor EROS [23]. Both systems

use a small number of kernel object types and a single-

level store. HiStar’s container abstraction is reminiscent

of hierarchical space banks in KeyKOS. However, while

KeyKOS uses kernel-level capabilities to enforce labels

at user-level, HiStar bases all protection on kernel-level

labels. The difference is significant because labels

specify security properties while imposing less structure

on applications—for example, an untrusted thread can

dynamically alter its label to observe secret data, which

has no analogue in a capability system.

HiStar has no superuser. A number of previous sys-

tems have limited, partitioned [13], or virtualized [18]

superuser privileges. Several operating systems includ-

ing Linux support POSIX capabilities, which can permit

some superuser privileges while disabling others.

Plan 9 [17] also has no superuser. Administrative tasks

such as adding users can only be performed on the file

server console, virtually eliminating the threat of net-

work break-ins. On workstations, however, the console

user has special privileges, and on compute servers a

pseudo-user named “bootes” does. Plan 9 provides a

complete, working system with a trusted computing base

many times smaller than comparable operating systems.

It also provides per-process file namespaces, which in-

spired HiStar’s user-level mount table segments. How-

ever, Plan 9 was never intended to support MAC.

HiStar uses gates for protected control transfer, an idea

dating back to Multics [21]. However, HiStar’s protec-

tion domains are not hierarchical like Multics rings. Hi-

Star gates are more like doors in Spring [8].

Decentralized untainting, while new in operating sys-

tems, was previously provided by programming lan-

guages, notably Jif [14]. There are significant differ-

ences between a language and an operating system. Jif

can track information flow at the level of individual vari-

ables and perform most label checks at compile time. It

also has the luxury of relying on the underlying operat-

ing system for storage, trusted input files, administration,

etc., which avoids many issues HiStar needs to address.

Singularity [9] provides programming-language-

based security without an underlying operating system.

Somewhat like containers, Singularity addresses coher-

ent resource deallocation with a new abstraction called

Software-Isolated Processes (SIPs). Singularity does not

provide MAC, however.

SELinux [11] lets Linux support MAC; like most

MAC systems, policy is centrally specified by the admin-

istrator. In contrast, HiStar lets applications craft policies

around their own categories of information. Retrofitting

MAC to a large existing kernel such as Linux is poten-

tially error-prone, particularly given the sometimes ill-

specified semantics of Linux system calls. HiStar’s disci-

plined, small kernel can potentially achieve much higher

assurance at the cost of compatibility.

9 LIMITATIONS

We believe HiStar provides a good environment to de-

velop secure applications with small trusted code size.

Nonetheless, the system has limitations both in terms of

functionality and security. Some of these limitations are

artifacts of the implementation that we hope to correct,

while others are more fundamental to the approach.

Users familiar with Unix will find that, though HiStar

resembles Unix, it also lacks several useful features and

changes the semantics of some operations. For example,

HiStar does not currently keep file access times; although

possible to implement for some cases, correctly tracking

time of last access is in many situations fundamentally at

odds with information flow control.

Another difference is that chmod, chown, and chgrp

revoke all open file descriptors and copy the file or di-

rectory. Because each file has one read and one write

category, group permissions require a file’s owner to be

in the group. There is no file execute permission without

read permission, and no setuid bit (though gates arguably

provide a better alternative to both). Several other facil-

ities are missing, though we hope to add them, includ-

ing support for system-wide backup and restore, and a

user-level trampoline mechanism to allow upgrading of

software behind gates (since gate entries are fixed).

Though HiStar is intended to allow administration

without a superuser, we do not yet have experience ad-

ministering a production HiStar system. However, we

believe that to the extent it is needed, superuser privilege

should be implemented by convention—explicitly grant-

ing most privilege to the root user—not by design. A Hi-

Star administrator can still revoke all resources by virtue

of having write permission on the root container. This

provides a worst-case answer to uncooperative users that

refuse to grant the necessary privilege to root.

While the HiStar kernel provides consistency across

kernel crashes and restarts, a crashed or killed process
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can leave locked mutexes, such as the directory segment

mutex. We currently do not recover from such problems,

but foresee two potential solutions. The first is to do

write-ahead logging in memory; given some way of de-

tecting a dead or crashed process—for example, through

timeouts—other processes can recover the directory seg-

ment. The second is to prevent the thread from being

killed while it is holding the directory mutex, by adding

a hard-link to it in the directory container. If the thread is

unreferenced from other containers, it will continue exe-

cuting until removing itself from the directory container.

Because Asbestos labels are more general than capa-

bilities, they allow multiple objects to be protected by

the same category and multiple categories to place re-

strictions on the same object. Users familiar with capa-

bility systems will rightfully object that protecting multi-

ple objects with the same category limits the granularity

at which privileges can be enumerated. HiStar can be

used like a capability system by allocating a new cate-

gory pair for every object, but our Unix library does not

do this. However, as the VPN example showed, HiStar

has the advantage of allowing new policies to be overlaid

on existing software, which cannot be done as easily in

pure capability systems.

One security limitation is that HiStar does not sup-

port CPU quotas, though we hope to add these using the

container hierarchy. A more serious problem we do not

know how to solve is covert timing channels. Many net-

work services have to offer low response latency, and as a

result, it becomes increasingly practical to leak informa-

tion to outside observers by modulating response time.

10 SUMMARY

HiStar is a new operating system that provides strict in-

formation flow control without superuser privilege. Nar-

row interfaces allow for a small trusted kernel of less

than 16,000 lines, on which a Unix-like environment is

implemented mostly as untrusted user-level library code.

A new container abstraction lets administrators manage

and revoke resources for processes they cannot observe.

Side-by-side with the Unix environment, the system sup-

ports a number of high-security, privilege-separated ap-

plications previously not possible in a traditional Unix

system. Benchmarks show HiStar performs competi-

tively with Linux and OpenBSD.
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