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ABSTRACT
Intra-domain traffic engineering can significantly enhance
the performance of large IP backbone networks. Two im-
portant components of traffic engineering are understanding
the traffic demands and configuring the routing protocols.
These two components are inter-linked, as it is widely be-
lieved that an accurate view of traffic is important for op-
timizing the configuration of routing protocols and through
that, the utilization of the network.
This basic premise, however, never seems to have been

quantified – How important is accurate knowledge of traf-
fic demands for obtaining good utilization of the network?
Since traffic demand values are dynamic and illusive, is it
possible to obtain a routing that is “robust” to variations
in demands? Armed with enhanced recent algorithmic tools
we explore these questions on a diverse collection of ISP net-
works. We arrive at a surprising conclusion: it is possible
to obtain a robust routing that guarantees a nearly optimal
utilization with a fairly limited knowledge of the applicable
traffic demands.

Categories and Subject Descriptors
C.2 [Communication Networks]: C.2.2 Network Proto-
cols;C.2.3 Network Operations; F.2 [Analysis of Algo-
rithms]: F.2.2 Nonumerical Algorithms and Problems

General Terms
Algorithms,Design,Management,Performance,Reliability

Keywords
routing; TM estimation; demand-oblivious routing

1. INTRODUCTION
Intra-domain traffic engineering has gained a lot of pop-

ularity in the recent years – good traffic engineering tools
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can significantly contribute to the management and perfor-
mance of large operational IP networks [21, 2]. Two im-
portant components of traffic engineering are understanding
traffic flows, and configuring (and designing) routing proto-
cols. These two components are related – it is widely ac-
cepted that good understanding of the traffic matrix (TM)
and the dynamics of traffic flows can lead to better utiliza-
tion of link capacities through more appropriate routing of
traffic [9]. Theoretically, if the TM is known exactly, then an
optimal routing for it can be obtained by solving the corre-
sponding multi-commodity flow problem instance [16]; and
with OSPF/IS-IS, the most common intra-domain routing
protocol, link weights can be tuned according to the TM to
often yield near-optimal utilization [10].
Unfortunately, measuring and predicting traffic demands

are illusive problems [21, 2]. Flow measurements are rarely
available on all links and Egress/Ingress points of the net-
work, and it is even harder to estimate Origin-Destination
flow aggregates. Moreover, demands change over time – on
a diurnal cycle and less predictably as a result of special
events or failures internal or external to the network. These
problems were recently tackled with models and measure-
ment tools [5, 9, 8, 15, 19] that allow one to extrapolate and
estimate traffic demands. It seems, however, that the most
one can hope for is some approximate picture of demands,
and not necessarily even a very current one.
Even if current demands are known, their dynamic nature

poses a challenge: On one hand, it is desirable for the routing
to be efficient on the current traffic demands, thus, to be
adjusted as demands shift. On the other hand, one would
like to limit modifications to the routing, since changes can
potentially cause disruptions in service due to path shifts
and convergence time while the system reaches a consistent
state. For OSPF/IS-IS routing, this tradeoff was explored
in [11], which developed a technique that limits the amount
of change to the OSPF/IS-IS link weights (which determine
the routings) when the TM changes.
Good system engineering thus calls for a design that it

robust under a range of conditions. That is, a routing that
can perform nearly optimally for a wide range of applicable
traffic demands. Our primary goal is to explore the viability
of such a routing, that is, to understand the sensitivity of
the quality of attainable routing to the extent within which
we know the traffic demands. While both these basic traf-
fic engineering building blocks, routing and TM estimation,
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are intensively studied, their interaction, and its underlying
performance tradeoffs, are not well understood.
Although it is widely believed that understanding traffic

demands is necessary for achieving good utilization of the
network [21, 2, 9, 15], this belief was never carefully quan-
tified: How well can a routing designed with no knowledge
(or only ball-park knowledge) of the TM perform? That is,
how precise an estimate of traffic demands is needed in order
to guarantee good utilization? When traffic demands shift,
what range of change is tolerable within some performance
guarantees? How would a routing designed to be optimal
for a specific TM perform when the actual traffic demands
deviate from the presumed ones?
Lastly, we consider the performance of different routings

in the event of link failures. When failures occur, the op-
timal routing strategy can be recomputed from scratch, re-
sulting in optimal performance ratio but possibly in large
shifts in flow patterns. (This tradeoff between utilization
and traffic shifts, in the context of OSPF routing, is inves-
tigated in [11].) We thus compare the performance of the
existing routing on the “failed” network (where only traffic
flows which traverse the failed link are shifted), to the best
possible routing on the failed network.
The questions we raise concern fundamental limits and

tradeoffs for managed IP networks – we expect these issues
to remain relevant as routing protocols evolve – in particular
with deployment of more sophisticated tuning of OSPF/IS-
IS weights [10, 11], and with the gradual deployment of more
flexible protocols such as Multi Protocol Label Switching
(MPLS) protocol [1, 18] and its future successors.
The pursuit of answers to these questions requires a way to

measure how well a given routing performs on a range of traf-
fic demands and a way to design a routing which performs
well on an appropriately wide range of traffic demands. But
while previously known algorithms can obtain an optimal
routing for a specific TM (or a small set of TMs), they can
not be extended to work on a wide range of TMs. At the
heart of our work are novel algorithms, based on which we
built software for producing an optimal routing for a range
of possible TMs. This routing optimally balances the load
across the range of TMs – it minimizes the extent to which
the maximum link utilization of any TM deviates from the
best possible by the optimal routing that is tailored for that
TM. Our software also enabled us to compare different rout-
ings by computing the worst performance ratio obtained by
each routing on the range of applicable TMs.
Our evaluation utilizes maps of a diverse collection of

ISPs, made available by the Rocketfuel project [20, 14], and
the test network studied in [15]. The data is described in
Section 2 and our performance metrics and methodology
are described in Section 3 followed by evaluation results in
Section 4. The LP models we used are developed in Sec-
tion 5. Our evaluation is complemented with some asymp-
totic analysis on some simple network structures presented
in Section 6.

2. DATA
We describe the test topologies we used. Unfortunately,

ISPs regard their topologies as proprietary information, and
until recently, researchers had to settle for proprietary infor-
mation synthetic data; conclusions thus often suffered from
a lack of generality and verifiability. A recent breakthrough
was made by the Rocketfuel project [20], which developed a

new set of measurement techniques and released publicly-
available approximate router-level topologies of a diverse
and representative collection of ISPs. We used heuristics to
augment this data with link capacities and traffic matrices.

2.1 Topologies
We use the six ISP maps from the Rocketfuel dataset

which had accompanying (deduced) OSPF/IS-IS weights [14].
We then collapsed the topologies so that “nodes” correspond
to cities to obtain approximate PoP to PoP (Point of Pres-
ence) topologies. We also included the 14-node and 25-link
“Tier-1 PoP to PoP topology” evaluated in [15] (labeled as
“N-14” in the sequel). The studied topologies are listed in
Table 1.

2.2 Capacities
The topologies provided by Rocketfuel and in [15] did not

include the capacities of the links, which were needed for our
study. The Rocketfuel maps did include derived OSPF/IS-
IS weights of links [14], which were computed to match ob-
served routes. In the absence of any other information on ca-
pacities, we used the weights to associate hopefully compat-
ible capacities by “turning around” the Cisco-recommended
default setting of link weights according to capacities: The
Cisco default setting for OSPF weights is to set the weight
of each link to be inversely-proportional to its capacity [6].

2.3 Traffic matrices (TMs)
Accurate traffic matrices are not generally available. Not

only are they regarded as proprietary by ISPs, but, as noted
in the introduction, they are hard to obtain with reasonable
accuracy. We thus used two families of synthetic traffic ma-
trices, which we refer to as Bimodal and Gravity TMs:

Bimodal TMs. It was observed that only a fraction of Origin-
Destination (OD) pairs has very large flows [4]. This model
assumes that these flows dominate the points of congestion.
The random bimodal distribution samples randomly a frac-
tion of OD pairs and then assigns a demand for the pair
uniformly at random from some range.1 Random bimodal
distributions (and other random distributions) were used
in [15]).

Gravity TMs. Since networks are designed with some ex-
pectation of traffic demands in mind, it is desirable to eval-
uate the performance of different routings with respect to
such traffic demands. We used a Gravity model, similarly
to that suggested in [19], to generate demands that “cor-
respond” to the network. The work in [19] suggested a
way to extrapolate a complete TM from measurements of
incoming-outgoing flow into each PoP from the backbone.
The extrapolation then assumed that the fraction of traffic
sourced from a PoP is sinked at other PoPs proportionally
to the total sinked flow at these PoPs. According to [19] this
simple model is surprisingly accurate. Since we did not have
even these more restricted flow values, we used a capacity-
based heuristic, which assumes that the incoming/outgoing
flow from each PoP is proportional to combined capacity
of connecting links. We then applied the gravity model as
in [19] to extrapolate a complete TM.

1Distributions other than uniform or the particular param-
eter settings did not seem to make a qualitative difference
in the results.
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AS routers orig-links cities links reduced cities reduced links
Telstra (Australia) 1221 108 306 57 59 7 9
Sprintlink (US) 1239 315 1944 44 83 30 69
Ebone (Europe) 1755 87 322 23 38 18 33
Tiscali (Europe) 3257 161 656 50 88 28 66
Exodus (Europe) 3967 79 294 22 37 21 36
Abovenet (US) 6461 141 748 22 42 17 37
N-14 (MTSBD02) 14 25

Table 1: Topologies from Rocketfuel (with AS number and name) and [15] (the N-14) network. The table
lists the number of routers and links, the number of cities and inter-city links which we refer to as PoPs.
The last two columns (reduced cities and links) list the number of remaining cities and links if 1-connected
components (“hanging” trees) are removed. These components do not change the relative quality of different
routings (see Lemma 5.1), thus we were able to perform some computations faster on these reduced graphs.

3. METRICS AND METHODOLOGY

3.1 Routing
A routing specifies how traffic of each Origin-Destination

(OD) pair is routed across the network. Typically there is
path diversity, that is, there are multiple paths for each OD
pair, and each path routes a fraction of the traffic.
Open Shortest Path First (OSPF) or Intermediate System-

Intermediate System (IS-IS) protocols specify a routing through
a set of link weights. The traffic between each pair is al-
ways routed on shortest path(s) between the origin and des-
tination (with respect to these weights). Typically, there
are multiple shortest paths; when this happens, each router
splits the outgoing traffic evenly on all applicable interfaces.
By controlling the weights, many possible routings are pos-
sible. The Cisco-recommended default setting is to use link
weights that are inversely proportional to the link capaci-
ties [6]. With more fine-tuned traffic engineering it is typ-
ically possible to select weights that are expected to work
well on the projected TM [10]. The OSPF routing used in
our evaluation is the routing obtained by the OSPF/IS-IS
(estimated) link weights provided with our data. This rout-
ing should match reasonably closely the actual routing used
by these ISPs [14].
The MPLS protocol allows for a rich (general) specifica-

tion of routings and more fine tuned traffic engineering. Our
optimization is with respect to routings of this more general
form, that is, routing that can be implemented via MPLS
but not necessarily via OSPF/IS-IS.
For our purposes, the relevant characterization of each

routing is what fraction of traffic, for each OD pair, is routed
along each link. Thus, the routing is specified by a set of
values fab(i, j) that specifies the fraction of demand from a
to b that is routed on the link (i, j). Note that the values
fab(i, j) for a given OD pair a→ b, should specify a flow of
value 1 from a to b. When the routing routes a demand dab

for the OD pair a → b, the contribution of this demand to
the flow on a link (i, j) is dabfab(i, j).
Our optimization algorithm generates an optimal routing

with respect to a set of TMs. We next discuss our perfor-
mance metrics for the “goodness” of a routing.

3.2 Metrics
A common metric for the performance of a given routing

with respect to a certain TM is themaximum link utilization.
This is the maximum, over all links, of the total flow on the
link divided by the capacity of the link (see e.g. [10, 11]).
Formally, the maximum link utilization of a routing f on TM

D (where dab is the demand from a to b) is

max
(i,j)∈links

X

a,b

dabfab(i, j)/capij ,

where capij is the capacity of the link (i, j).
An optimal routing for a certain TM D is a routing which

minimizes the maximum link utilization. Formally, the op-
timal utilization for a TM D is given by

optU(D) =

min
f|f is a routing

max
(i,j)∈links

P
a,b dabfab(i, j)

capij

.

The performance ratio of a given routing f on a given TM
D measures how far is f from being optimal on the TM D. It
is defined as the maximum link utilization of f on D divided
by the minimum possible maximum link utilization on this
TM. Formally,

perf(f, {D}) =
max

(i,j)∈links
P

a,b dabfab(i, j)/capij

optU(D)
.

Note that the performance ratio is always at least 1; it is
exactly 1 if and only if the routing is optimal for D.
It is well known that the optimal routing for a given

TM can be computed by solving a corresponding multi-
commodity flow linear program (this routing was looked at
in [16]). Note that this routing is optimized for a specific
TM, thus, it does not provide performance guarantees for
other TMs. This is important, since, as mentioned earlier,
traffic patterns change over time and it is also not generally
possible to obtain a good estimate of the current TM.
The definition of the performance ratio follows the “com-

petitive analysis” framework where performance guarantees
of a certain solution are provided relative to the best possi-
ble solution. We now extend the definition of performance
ratio of a routing to be with respect to a set of TMs. Let D
be a set of TMs. The performance ratio of a routing f on D
is defined as

perf(f,D) = max
D∈D

perf(f, {D}) .

A routing f is optimal for the set D if and only if it mini-
mizes the performance ratio, that is, perf(f,D) is minimal.
The performance ratio perf(f,D) is always at least 1 – but
note that the best possible performance ratio on the set of
TMs D can be strictly larger than 1; since generally, a single
routing that is optimal for all TMs in the set may not exist.
When the set D includes all possible TMs, we refer to the

performance ratio as the oblivious performance ratio of a
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routing. The oblivious ratio is the worst performance ratio
a routing obtains with respect to all TMs. A routing with
a minimum oblivious ratio is an optimal oblivious routing,
and its oblivious ratio is the optimal oblivious ratio of the
network.
To better interpret the performance ratio, note that it is

invariant under scaling of the TMs in the set D or of the link
capacities. The performance ratio constitutes a comparative
measure of different routings, on a given topology and set
of TMs, but it is not a meaningful comparative measure
between different network topologies – it is defined relative
to the minimum possible maximum link utilization, but the
min max utilization itself varies with topology. Also note
that there can be many possible optimal routings and they
can differ in how they perform on specific TMs. Illustrative
examples and analysis of the optimal oblivious performance
ratio on some simple networks are provided in Section 6.

3.3 Computing an optimal routing
Until recently, known tools allowed for optimizing the

routing with respect to a given TM, but beyond specific
highly structured topologies (such as hypercubic networks),
not much was known about how to efficiently construct an
optimal routing with respect to a broad set of demands and
what are the optimal performance ratios. A recent break-
through work by Räcke [17] showed (existentially) a surpris-
ing upper bound: all symmetric networks (that is, networks
where link capacities are the same in both directions, as
is typically the case with large backbone networks) have a
routing with an oblivious ratio that is at most polylogarith-
mic in the number of nodes. Räcke’s existential bound trig-
gered the development of a polynomial time construction of
an optimal oblivious routing [3] for any network (symmetric
or not). The polynomial time algorithm in [3] is based on
applying the Ellipsoid algorithm to an exponential-size LP
model and as such is not practical for large networks. We
develop a novel simpler and faster algorithm (both asymp-
totically and implementation wise) for computing an opti-
mal oblivious routing that is based on a polynomial-size LP
formulation (see details in Section 5). We then extend our
model to optimize the routing with respect to range restric-
tions on OD-pair demands. In our simulations, we solve
these LPs using the CPLEX LP solver [7] (other public-
domain LP solvers could be applied as well).

3.4 Limitations
We conclude this section with discussion of limitations.

Our models and metrics do not capture the interaction be-
tween traffic demands and the resulting actual throughput,
we rather compare different routings through the maximum
link utilization obtained if all demands are indeed routed.
This is a reasonable metric as packet loss and congestion are
more likely when the utilization is higher.
Our evaluation focuses on point to point (OD pair) de-

mands rather than point-to-multipoint. Point-to-multipoint
demands are often relevant to large ISPs (e.g. when there
are multiple peering points to a different ISP and thus any of
a number of egress points can be used interchangeably [9]).
This point-to-point “restriction” stems mostly from the lim-
itations of our data and in principle our techniques and soft-
ware extend to cover point to multipoint demands.
Our optimizations are performed with respect to maxi-

mum link utilization and performance ratio. In specific im-

reduced oblivious ratio: time
ASN pops/links opt OSPF gravity-opt (seconds)
1221 7/ 9 1.425 4.16 3.50 0.12
N-14 14/ 26 1.972 7.74 7.58 9.20
1755 18/ 33 1.781 16.60 8.15 30.58
6461 17/ 37 1.910 13.41 20.10 49.12
3967 21/ 36 1.623 49.20 12.92 51.13
3257 28/ 66 1.803 51.18 16.24 925.89
1239 30/ 69 1.895 233.98 31.57 1897.89

Table 2: Oblivious performance ratio on different
topologies for the following routings: The optimal
oblivious routing, the OSPF routing, and a rout-
ing which is optimal for Gravity TMs. The table
lists the optimization time of computing the optimal
oblivious routing on a Compaq Alphaserver ES40
with 500MHz processors and 4GB of memory.

plementation contexts our methodology can be augmented
with other considerations (For example, when using MPLS,
beyond capacity utilization one may want to optimize MPLS
label stack size or the number of provisioned paths.).

4. EXPERIMENTS AND RESULTS
The first question we address is, what are the best per-

formance ratio guarantees attainable on our test networks
barring any knowledge of traffic demands? Table 2 lists the
oblivious performance ratio for 3 different routings: The op-
timal oblivious routing (computed using the LP formulation
in Section 5.3), and two other natural routings - the OSPF
routing (using the weights provided in the dataset.2.), and
the optimal routing for the Gravity TMs (computed by solv-
ing a multi-commodity flow LP). The performance ratio of
each given routing was computed using the “slave LP” for-
mulation in Section 5.2. The optimal oblivious performance
ratio on the evaluated topologies ranges from 1.425− 1.972,
which means that these networks have a routing that on any
TM is guaranteed to have maximum link utilization that
is at most 43%-97% larger than that of the best possible
routing that is tailored to this TM. The two other routings
evaluated have significantly worse (2-3 digit) oblivious ra-
tios, which means that on some TMs, they are very far from
the tailored optimal routing. These gaps indicate that it is
unlikely that an oblivious performance ratio that is close to
optimal can be obtained in an ad hoc manner, without the
use of our optimization tools.
A 43%-97% (worst case) overhead in max utilization is

far from being negligible to working ISPs – the good news,
however, is that such guarantees can be obtained with no
knowledge whatsoever on the traffic demands.

2Recall that these weights were such that the derived OSPF
routing is consistent with observed routes. Note that this
OSPF routing is different from the best OSPF-style routing,
that is, a set of link weights such that the corresponding
OSPF routing has a minimum oblivious ratio. An indepen-
dent interesting problem is to produce an optimal OSPF-
style routing and compare its performance to the optimal
MPLS-based routing on our test networks. The optimiza-
tion, however, seems highly non-trivial as it can no longer
modeled as an LP. Obviously, the OSPF-style optimal obliv-
ious ratio is at least as large as the optimal (MPLS-style)
oblivious ratio. Generally, the performance gap can be large
(e.g., on clique networks), but one study [10] argues that
“typically,” for a single TM, the best OSPF routing nearly
matches in performance the optimal MPLS routing.
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Fortunately, however, even though an exact current es-
timate of the TM is typically very hard to obtain, much
about the TM is known. The TM can vary within some
known range or can be estimated to within some known ac-
curacy. In this case, we would like a performance guarantee
with respect to all TMs that lie within some range. The
next question we examine is the sensitivity of the attain-
able performance ratio to the “error margin” within which
the TM is known. (Note that as we expand the set of TMs
with respect to which we compute the performance ratio,
the ratio can only increase).
In this set of experiments we consider a topology, a TM

(Bimodal or Gravity), and an error margin parameter w ≥
1. We consider a “base” TM, D (bimodal or gravity TM),
which can be thought of as our best “guess” of the actual
TM. The set of applicable TMs, Dw, includes each D′ such
that for all OD pairs (i, j), dij/w ≤ d′ij ≤ wdij . This set can
be thought of as including all TMs with respect to which we
want a performance guarantee.
In our evaluation we compute the performance ratio of

different routings on the set Dw (for different values of w.).
The performance ratio for each given routing is computed
with respect to all (infinitely many) TMs in the set Dw using
the “slave LP” formulation given in Section 5.2 with the
margin constraints added to it. The routings evaluated are:

• opt: An optimal routing for the range of demands Dw,
that is, a routing which minimizes perf(f,Dw). These
routings are computed via our LP models developed in
Section 5.4. (Note that there are potentially different
routings for different values of w.)

• no-margin-opt: An optimal routing for the base TM
(that is, a routing that minimizes perf(f, {D}) or equiv-
alently, the maximum link utilization when routing
D). This routing is computed by solving a multi-
commodity flow LP.

• OSPF: The OSPF routing (using the weights provided
in the dataset).

• global-opt: An optimal oblivious routing for the topol-
ogy (that is, a routing that minimizes the worst-case
performance ratio over all possible TMs). These rout-
ings are computed using the LP models developed in
Section 5.3.

• nm-gravity-opt: When the base TM D is Bimodal,
we also consider an optimal routing for Gravity TMs
(the reverse would not work, as routing for bimodal
TMs are defined only on subset of OD pairs). That
is, a routing f such that optU(DG) = perf(f, {DG})
(where DG is the gravity TM). This routing is com-
puted by solving a multi-commodity flow LP with re-
spect to the TM DG.

Results for a representative sample of topologies and TMs
are shown in Figure 1. The figures plot the performance ra-
tio of the different routings as a function of the margin w.
For all routing (as should be), the performance ratio (which
measures the worst ratio on the set of TMs) increases with
the margin w (as the set of TMs expands). Two of the rout-
ings, opt and no-margin-opt have an (optimal) performance
ratio of 1 when w = 1.

We observe that the routing optimized for the set of TMs
Dw significantly outperforms the other routings we evalu-
ated. Note that for larger margins (say in the range 4–10),
the best possible performance guarantee on the set Dw (that
is, the performance ratio of opt) often approaches the op-
timal oblivious ratio (hence, for this amount of uncertainty
one might as well use global-opt instead of opt). The worst
performers are the routings that are not even optimized for
the base TM D, OSPF and nm-gravity-opt on the Bimodal
demands. It is interesting to note that even when these
routings happened to perform well on the base TM D, the
performance guarantees still deteriorates quickly with the
margin w. Another interesting observation is that the no-
margin-opt routing which starts out with optimal perfor-
mance ratio of 1 for w = 1, quickly degrades with the error
margin, in some cases, under-performing OSPF routing for
larger margins.3 This behavior indicates that it is impor-
tant to take into account error margins when optimizing a
routing for specific TMs.
The optimal oblivious routing (global-opt) exhibits differ-

ent behavior patterns. On about half the topologies/base
TMs, it shows close to its global worst-case ratio even on
smaller margins. On others, it performs well on small mar-
gins, but eventually (with margin 1.5-2.5 obtains its near-
worst case ratio).
We also observe that the optimal routing (opt) generally

allows for fairly sizable margins (over 50%, that is w ≥ 1.5)
with performance ratio that is close to 1. Figure 2 summa-
rizes the fraction of topologies/base TMs that can tolerate
a certain error margin while guaranteeing a certain perfor-
mance ratio. The two performance ratios considered are 1.05
(guaranteed to be within 5% of optimal maximum utiliza-
tion) and 1.25 (guaranteed to be within 25% of optimal).
The figure shows the two cumulative fraction plots. The
optimal routing, in most cases, can have a margin of 50%
(w = 1.5) with 5% performance overhead (performance ratio
at most 1.05) and a margin of 100% (w = 2) with 25% over-
head (performance ratio of at most 1.25). The no-margin-
opt and OSPF routings do not perform nearly as well: With
OSPF routing, for the vast majority of instances, the per-
formance ratio exceeds 1.25 with margins smaller than 10%
(w = 1.1). The no-margin-opt deteriorates quickly and on
most instances has a performance ratio that exceeds 1.25 for
margins that are at most 30% (w = 1.3).
Our observations from the experiments are consistent across

the different topologies and TM generation methods. This
indicates that our conclusions are not likely to be sensitive to
various inaccuracies in our data (that stem from inaccurate
maps, heuristic capacities, and heuristic TMs).
We observed that all our test networks have an optimal

oblivious ratio smaller than 2. What can we take from this
observation ? Can we expect it to prevail when network
sizes scale up? It is known that some graphs with asym-
metric link capacities have optimal oblivious ratio that is
Ω(n0.5) [3] (n is the number of nodes in the graph). Räcke’s
has established [17] that the worst case for “symmetric” ca-
pacities is at most O(log3 n). It is also known that some
families of symmetric graphs have optimal oblivious ratio of
Ω(log n). Thus, the optimal oblivious ratio of arbitrary sym-

3A natural question is by how much in the worst case can the
performance ratio deteriorate as the margins increase. It is
not hard to see that for any f and D we have perf(f,Dw) ≤
w2perf(f,D) (and that this is asymptotically tight).
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Figure 1: Performance ratio versus margin for several routing strategies, topologies, and TMs.
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Figure 2: Cumulative fraction of networks/TMs for which a performance ratio of under 1.05% or 1.25% was
obtained below a certain error margin.

metric networks can grow logarithmically as they scale up.
Some supporting evidence, however, for the “asymptotics”
of our observation is that two natural and very different fam-
ilies of graphs: the cliques (all complete graphs on n nodes)
and the cycles (all cyclic paths on n nodes), have optimal
oblivious ratio of 2− 2/n, that is, the optimal oblivious ra-
tio remains smaller than 2 when the network sizes grow (see
Section 6).

Performance under link failures. We performed a pre-
liminary evaluation of the performance of different routings
under link failures. Since each PoP to PoP link typically
corresponds to several physical links, we simulated link fail-
ures where a random link “loses” 50% or 80% of its capacity.
Table 3 shows the performance ratio of different routings on
the “failed” network. The set of TMs considered are the
gravity TMs with an error margin of 2.5. The routings con-
sidered are (i) the optimal routing on the failed network,
(ii) the optimal routing on the original network, where only
flow that traverses a failed link is rerouted, and the rerouted
flow is routed proportionally to the unaffected part of the
routing of the same OD pair, (iii) the OSPF routing. These
results indicate that the optimal routing for the non-failed
network, although not optimized for failures, typically out-
performs OSPF routing under failures. The explanation is
that a good “oblivious” routing tends to use many avail-
able paths for each OD pair, a property that increases its
resilience to failures. An interesting open question is to de-
sign and evaluate routings that have guaranteed restoration
performance (eg, optimize performance under the constraint
that only affected flows are rerouted).

5. LP MODELS
We start by stating some lemmas we used for reducing the

size of the LP model. We then summarize a recent result [3]
which established that an optimal oblivious routing (and the
oblivious ratio) of a network can be computed in polynomial
time in the size of the network. We then develop a simplified
LP model that achieves considerably faster running times,
and adapt this model to handle interval restrictions on OD-
pair demands.

ASN fail opt non-fail-opt ospf
1755 50% 1.000 1.22 1.916
1755 80% 1.000 2.34 1.916
6461 50% 1.302 2.21 6.878
6461 80% 1.303 4.20 6.878
3967 50% 1.157 1.40 4.537
3967 80% 1.157 2.21 4.537

Table 3: Performance ratio of different routings un-
der link failures. Median performance ratio for fail-
ure of random link.

5.1 Basic lemmas
The following lemma shows that for the purpose of com-

puting performance ratio, we can “factor out” parts of the
network where path diversity is not possible (thus, all rout-
ing would perform the same.). We used this lemma to reduce
the size of the input topologies.

Lemma 5.1. Removal of degree-one nodes does not affect
the oblivious ratio of the network. Similarly, it does not
affect the optimal performance ratio with respect to any set
of TMs.

Lemma 5.1 is a corollary of the following Lemma:

Lemma 5.2. The optimal oblivious ratio of a network can
be computed by partitioning the network to 2-edge-connected
components and taking the maximum of the oblivious ratio
over these components.

Proof. If the network G is not 2-edge connected, it can
be partitioned to two non-empty components A and B that
are connected by an edge (a, b) where a ∈ A and b ∈ B.
It is easy to see that the optimal oblivious ratio of G is
at least that of the maximum optimal oblivious ratios of
A and B: The optimal performance ratio obtained on G
for TMs that have positive demands only at OD pairs that
both lie in A (respectively, both lie in B) is equal to the
optimal oblivious ratio of A (respectively, B). To see that,
observe that all flow leaving/entering A must go through
the edge (a, b), thus there is never an advantage to route
demand internal to A through the edge (a, b) and out of A,
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since this flow will have to traverse back on the same edge
and form a flow cycle (the symmetric argument holds for
B). The optimal oblivious ratio of G is at least the optimal
performance ratio on these more restricted set of TMs.
We now argue the converse, that the optimal oblivious ra-

tio on G is at most the maximum optimal oblivious ratio of
A and B. Let fA (respectively, fB) be an optimal oblivious
routing on A (respectively, B). We extend the routings fA
and fB to a routing fG on G as follows: all OD pairs inter-
nal to A or B are routed according to the respective routing.
The routing for OD pair (a′, b′) where a′ ∈ A and b′ ∈ B
(similar construction for pairs (b′, a′)) is routed by concate-
nating the routing fA from a′ to a with a flow of value 1 from
a to b with the routing fB from b to b′. Consider now a TM
DG on G. We will show that the performance ratio of fG
on G is at most the maximum optimal oblivious ratio of A
and B. We can assume (by scaling DG) that the maximum
edge utilization of the optimal routing of DG is 1. Thus,
the performance ratio of fG on DG is equal to the maximum
edge utilization. We now define the TMs DA and DB for A
and B, respectively; where DA is obtained by aggregating
all the demand into/from nodes in A from/into nodes in B
to demands from/into the node a (DB is similarly defined).
The maximum edge utilization of fG on DG is the max-

imum utilization over the edges of A, the edges of B, and
the edge (a, b). The utilization of the edge (a, b) is equal to
the aggregated demand between A and B. Since the uti-
lization must be at least that also for the optimal routing
for DG, from our scaling assumption it follows that the ag-
gregated demand is at most the capacity of (a, b), and thus
the utilization is at most 1. The maximum edge utilization
over the edges of A is equal to the utilization of fA on the
demands DA, which is at most the optimal oblivious ratio
of A (similar for B.) The symmetric argument for the edges
of B concludes the proof.

The following Lemma states that the optimal oblivious
ratio of a network with symmetric directed links (that is,
the link capacities are equal in both direction) is the same as
the oblivious ratio of an undirected network derived from it
by replacing each set of directed links by a single undirected
link with the same capacity. This lemma says that known
bounds for undirected graphs carry over to “real” networks
(where links are directed and symmetric). We also use this
lemma for reducing the size of our LP models.

Lemma 5.3. Consider an undirected network G, and a di-
rected network G′ derived from it by replacing each edge e
by two anti-parallel arcs that have the same capacity as e.
The two networks, G and G′ have the same optimal oblivi-
ous ratio. Moreover, G and G′ have (the same) symmetric
optimal oblivious routing.

5.2 The LP model of [3]
It was shown in [3] that an optimal oblivious routing can

be computed by solving a Linear Program (LP) with a poly-
nomial number of variables, but infinitely many constraints
(for every possible TM there is a set of constraints). We
refer to this LP in the sequel as the “master LP.” We use
the following notation: the term “link” for an undirected
edge, “edge” for a directed edge, and let link-of(e) be the
link corresponding to edge e. We use the notation

fij(l) =
X

e:link-of(e)=l

fij(e) .

We learn from Lemma 5.3 that the routing problem on sym-
metric directed networks (where the two directions of each
link have the same capacity) can be reduced to one on “undi-
rected” networks. We use this equivalence to reduce the
number of variables in our LP models.4

min r

fij(e) is a routing

∀ links l, ∀ TMs D with optU(D) = 1:
X

ij

fij(l)dij/cap(l) ≤ r (1)

Furthermore, given a routing fij(e), the constraints (1) can
be tested by solving, for each link l, the following “slave
LP,” and testing if the objective is ≤ r or not.

max
X

ij

fij(l)dij/cap(l) (2)

gij(e) is a flow of demands dij

∀ links m:
X

ij

gij(m) ≤ cap(m)

∀ demands i→ j: dij ≥ 0

Thus, the LPs (2) can be used as a separation oracle for
the constraints (1), giving polynomial solvability using the
Ellipsoid algorithm [12].

5.3 Deriving a simpler LP model
We derive a simpler LP model that enables us to efficiently

process larger networks. For presentation simplicity, our dis-
cussion focuses on computing the optimal oblivious routing ,
that is, a routing that provides performance guarantees with
respect to all possible TMs. We then state the generalized
LP model we used to support interval restrictions on OD
pairs demands.
The first simplification one might try to apply is to some-

how directly combine the master and slave LPs, to yield a
single polynomial size LP instance. However, there are two
obstacles: first, both fij(l) and dij would be variables in a
combination, resulting in quadratic (non linear) constraints,
and second, requiring that a maximum over an LP be ≤ r is
not readily modeled. Fortunately, the LP dual of the slave
systems (2) leads to a nice characterization:

Theorem 1. A routing fij(e) has oblivious ratio ≤ r if
and only if there exist weights π(l,m) for every pair of links
l,m such that

P1
P

m cap(m)π(l,m) ≤ r for every link l

P2 For every link l, for every demand i→ j, and for every
path h1, h2, . . . , hp from i to j,

fij(l) ≤ cap(l)

pX

k=1

π(l, link-of(hk)) .

P3 π(l,m) ≥ 0 for all links l,m

4To simplify our presentation we discuss “undirected” net-
works, but, similarly to the model in [3], our models can
be extended to directed-asymmetric networks (with a 2-fold
increase in the size of the LPs).
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Proof. The proof is essentially duality applied to the
slave problem. Requirements (P1)-(P3) are equivalent to
stating that the slave LP’s have dual objective values ≤ r.

(“if” direction): Let fij(e) be a routing, and π(l,m) be
weights satisfying requirements (P1)-(P3). Suppose (g, d)
is a flow of demands d with maximum utilization of 1, and
let l be a link. For each demand i → j, gij must contain
paths from i → j of total weight dij . From (P2) and (P3),
summing over all paths, we have

fij(l)dij ≤ cap(l)
X

h

π(l, link-of(h))gij(h) .

Summing over all demands i→ j, we have
X

ij

fij(l)dij ≤ cap(l)
X

ij

X

h

π(l, link-of(h))gij(h)

= cap(l)
X

m

(π(l,m)
X

ij

gij(m))

≤ cap(l)
X

m

π(l,m)cap(m)

The last inequality follows since g fits within the edge ca-
pacities (

P
ij gij(m) ≤ cap(m)), and from (P1)

X

ij

fij(l)dij ≤ cap(l)
X

m

π(l,m)cap(m) ≤ cap(l)r .

This says that for any demands d which can be routed with
congestion 1, f ’s utilization on any link l is at most r, which
is what we wanted.

(“only if” direction): Let flow fij(e) have oblivious
ratio ≤ r, and let l be a link. The dual of the slave LP (2)
for link l is:

min
X

m

cap(m)π(l,m) (3)

∀ demands i→ j: λij(l, j) ≥ fij(l)/cap(l)

∀ demands i→ j, ∀ edges e = i′ → j′:

π(l, link-of(e)) + λij(l, i
′)− λij(l, j

′) ≥ 0 (4)

∀ links m: π(l,m) ≥ 0

∀ demands i→ j, ∀ nodes k: λij(l, k) ≥ 0

∀ demands i→ j: λij(l, i) = 0

The variable λij(l, k) is the dual multiplier on the flow
conservation constraint for demand i → j at node k. Since
there is no flow conservation constraint in the primal at node
i, we have introduced λij(l, i), fixed at 0, for convenience.
The variable π(l,m) is the dual multiplier on the capacity
constraint for link m.
Since fij(e) has oblivious ratio ≤ r, the primal slave LP

for any link l must have optimum ≤ r, and hence also the
dual slave LP for link l must have optimum ≤ r. Hence,
the π(l,m) from the dual slave LPs satisfy (P1). Trivially,
they also satisfy (P3). Now, let i → j be a demand, and
h1, . . . , hp be a path from i to j. Summing up constraint (4)
over edges h1, . . . , hp, we have

pX

k=1

π(l, link-of(hk)) + λij(l, i)− λij(l, j) ≥ 0

Since λij(l, i) = 0,

pX

k=1

π(l, link-of(hk)) ≥ λij(l, j) ≥ fij(l)/cap(l)

so the π(l,m) satisfy (P2).

We next apply Theorem 1 to show that the problem can
be solved by a single polynomial-sized LP. This results in a
significant algorithmic performance gain, since it means the
problem can be solved by the more efficient Interior-Point
algorithm [13].

Theorem 2. The oblivious ratio of a network can be com-
puted by a single LP with O(mn2) variables and O(nm2)
constraints.

Proof. We introduce the variables pl(i, j), for each link
l and OD pair i, j. The variable pl(i, j) is the length of
the shortest path from i to j according to the link weights
π(�,m) (for all m). The introduction of these variables al-
lows us to replace the exponential number of constraints (for
all possible paths) in Requirement (P2) of Theorem 1 with
a small polynomial number of constraints.

min r (5)

fij(e) is a routing

∀ links l:
X

m

cap(m)π(l,m) ≤ r

∀ links l, ∀ pairs i→ j:

fij(l)/cap(l) ≤ pl(i, j)

∀ links l, ∀ nodes i, ∀ edges e = j → k:

π(l, link-of(e)) + pl(i, j) − pl(i, k) ≥ 0

∀ links l, m: π(l,m) ≥ 0

∀ links l, ∀ nodes i: pl(i, i) = 0

∀ links l,∀ nodes i, j: pl(i, j) ≥ 0

This LP has O(mn2) variables and O(nm2) constraints.

5.4 Interval restrictions on OD demands
To compute the oblivious ratio when demand i→j is re-

stricted to the range [aij , bij ], we modify the slave LP (2)
by replacing the constraint dij ≥ 0 with aij ≤ dij ≤ bij ,
and following that change through the dual LP (3) into the
single LP (5). This results in the introduction of the slack
variables s−l (i, j) and s

+
l (i, j) for the lower and upper bound

constraints on dij .

min r

fij(e) is a routing

∀ links l:
X

m

cap(m)π(l,m) ≤ r

∀ links l, ∀ pairs i→ j:

fij(l)/cap(l)− s+l (i, j) + s−l (i, j) = pl(i, j)

∀ links l, ∀ nodes i, ∀ edges e = j → k:

π(l, link-of(e)) + pl(i, j) − pl(i, k) ≥ 0

∀ links l:X

ij

(bijs
+
l (i, j) − aijs

−
l (i, j)) ≤ 0

∀ links l, m: π(l,m) ≥ 0

∀ links l, ∀ nodes i: pl(i, i) = 0

∀ links l, ∀ nodes i, j: pl(i, j) ≥ 0

∀ links l, ∀ nodes i, j: s−l (i, j) ≥ 0

∀ links l, ∀ nodes i, j: s+l (i, j) ≥ 0

This reduces to the single LP (5) if the bounds are [0,∞).
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6. CLIQUES AND CYCLES
We analyze the optimal oblivious ratio for two simple fam-

ilies of network topologies: The cycle topology Cn has n
nodes that are connected in a cycle pattern with unit ca-
pacity links. The clique topology Kn has n nodes connected
via a complete graph, that is, there is a unit capacity edge
connecting any two nodes.
Our interest in these networks is two-fold. First, we shall

see that these networks admit an optimal oblivious ratio
bounded by 2 (even for large values of n). This is in agree-
ment with the ratio computed for our ISP networks, and
provides some indication that a small “constant” optimal
oblivious ratio is possible as ISP networks scale up. Second,
we also use these simple topologies to better illustrate to the
reader our metrics and notion of a good “demand oblivious”
routing.
These two families of topologies are highly homomorphic

(“look the same” from any node). We will find the following
lemma useful for analyzing them:

Lemma 6.1. If two nodes u and v are homomorphic un-
der some homomorphism H, then there exists an optimal
oblivious routing such that the routing from u to a node w
on an edge e is equal to the routing from v = H(u) to H(w)
on the edge H(e).

Figure 3 uses the C6 topology (Figure 3 (a)) to illustrate
the issues in selecting a good routing. Consider first a TM
that constitutes of a positive demand on the single OD pair
0 → 1. The optimal routing for this TM (that is, the routing
that minimizes the maximum utilization) balances the load
on the two disjoint paths from 0 to 1: half the demand flows
on the direct edge (0, 1) and the other half on the 5-edge
path (0, 5, 4, 3, 2, 1) (this “even-split” routing is illustrated
in (b)). Observe that the shortest-path routing, which sends
the flow of each OD pair on the shorter of the two available
paths (that is, for our TM it would send all flow on the
direct edge (0, 1)), has performance ratio of 2 on our TM,
as the maximum link utilization obtained by this routing
is double that of the even-split routing. We next consider
another simple TM where there are unit demands on all
“consecutive” OD pairs i→ (i+ 1)mod 6 (for i = 0, . . . , 5),
and no demand on other pairs. We first consider routing
the demand of each OD pair evenly on the two available
paths (using the “even-split” routing we used in part (b)).
The flow routes of the routings on this TM are illustrated
in part (c) of the figure: The solid lines indicate the routes
used by the shortest-path routing. The solid and dotted
paths together are used by the even-split routing, which in-
duces a flow of half from every OD pair demand on every
edge. We thus obtain that the even-split routing has link
utilization of 3. In contrast, the shortest-path routing (solid
lines in (c)) would send on each edge only the demand due
to the very same OD pair, resulting in maximum link uti-
lization of 1. Thus, the performance ratio of the even-split
routing on this TM is at least 3 (in fact, it is exactly 3 since
the direct routing is optimal). The same argumentation can
be carried over to other cycle topologies Cn; it is not hard
to see that the even-split routing would have utilization of
n/2 and performance ratio of n/2 (since the shortest-path
routing has maximum utilization of 1).
What this means is that the even-split routing is a bad

oblivious routing. The next question to ponder about is
finding a good oblivious routing. We now consider general

TMs and argue that the shortest-path routing has oblivious
ratio of 2. The shortest-path routing for all OD pairs that
utilize the edge (0, 1) is illustrated in part (d) of the figure.
Consider an arbitrary TM, and the edge with highest utiliza-
tion according to the shortest-path routing. Without loss of
generality we can assume that this edge is (0, 1). We refer to
the edge (3, 4) as the “opposite edge” from (0, 1). (In general
for even valued n, the opposite edge of (i, (i+ 1)mod n) on
Cn is the edge (i+n/2, (i+1+n/2)mod n).) It is not hard
to verify the following property: for every OD pair that its
demand is routed by the shortest-path routing on the edge
(0, 1), the two edges (0, 1) and its opposite edge (3, 4) “dis-
connect” the pair (the two edges are “cut” edges). What
this means is that for any routing, the sum of flows that
are due to demand 0 → 1 on the edge (0, 1) and its oppo-
site edge must be at least the demand between 0 and 1. It
follows that for any routing, the maximum utilization over
the two edges (0, 1) and its opposite must be at least half
of the utilization of (0, 1) under shortest-path routing. We
thus obtain that the performance ratio of the shortest-path
routing is at most 2.

0
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51

(d)(c)(b)(a)

2
3

5 1

2
3

5 1
0

4

0

424
3

5 1
0

Figure 3: (a) The C6 topology. (b) The “even-split”
routing which is optimal for single OD pair unit de-
mand 0 → 1. (c) For unit demands on all OD pairs
i→ i+1, the even-split routing has maximum utiliza-
tion of n/2, whereas the optimal routing has utiliza-
tion 1. (d) The shortest-path routing for OD pairs
using the edge (0, 1).

We next provide a formal proof that states that the best
possible performance ratio for the cycle Cn is 2 − 2/n. We
shall see that the optimal oblivious routing will send some
flow along the longer path (but most flow along the shorter
path). We use the following notation: we number the nodes
of Cn as 0, . . . , n − 1, with node numbers taken modulo n,
so that the edges are (i, i+ 1) and (i+ 1, i). fa,b(i, j) is the
oblivious routing flow for demand a→ b on edge i→ j.

Lemma 6.2. The optimal oblivious performance ratio for
Cn (the cycle on n vertices) is 2− 2/n.

Proof. We first show that the ratio is at least 2 − 2/n:
From symmetry (see Lemma 6.1) and flow conservation con-
siderations, there is an optimal oblivious routing of the fol-
lowing form: for some xi ≥ 0,
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∀a, k ∈ [1, n− 1], ∀i ∈ [0, k − 1] :

fa,a+k(a+ i, a+ i+ 1) = xk

∀a, k ∈ [1, n− 1], ∀i ∈ [0, n− k − 1] :

fa,a+k(a− i, a− i− 1) = 1− xk

for all other a, b, c, d :

fa,b(c, d) = 0

∀k ∈ [1, n− 1] :

xk = 1− xn−k

For any a, a demand a → (a+ 1) of size 2 can be routed
within unit capacities, so from the load on edge (a, a + 1),
we have that the optimal ratio is at least

2 ∗ fa,a+1(a, a+ 1) = 2x1 .

On the other hand, a demand for all a→ a+1 (a = 0 . . . n−
1) of size 1 can also be routed within unit capacities, so from
the load on a particular edge (a, a+1), we have that the ratio
is at least

X

i=0...n−1

fa−i,a−i+1(a, a+ 1) = x1 + (n− 1)(1− x1) .

From the above two bounds we obtain that the optimal ratio
is at least

max{2x1, x1 + (n− 1)(1− x1)} ≥ 2− 2/n .

(the maximum is minimized when x1 = (n− 1)/n).
It remains to show that the optimal ratio is at most 2 −

2/n. Consider the routing obtained by setting xk = (n −
k)/n, we show that this routing has oblivious performance
ratio of at most 2−2/n. Consider, without loss of generality,
the edge (0, n− 1). A demand da,b, with 0 ≤ a < b ≤ n− 1,
must either be routed using the edge (0, n−1), or be routed
on the path (a, a + 1, . . . , b), using b − a edges. Similarly,
a demand db,a with 0 ≤ a < b ≤ n − 1 must either be
routed using the edge (n − 1, 0) or be routed on the path
(b, b− 1, . . . , a) using b− a edges. Consider now a TM that
can be routed such that each edge has at most 1 unit of flow
on it. It suffices to show that our routing has utilization
at most 1 − 2/n on that TM. Consider such demands and
supposed that the optimal routing for that TM is such that
none of the demands were routed on the edge (0, n−1). Then
the total edge load generated on the edges (0, 1, . . . , n − 1)
would be:

X

0≤a<b≤n−1

(b− a)(da,b + db,a) .

However, at most a total flow of 1 can be routed using the
edge (n−1, 0), so the combined flow on the other n−1 edges
must be at least

(
X

0≤a<b≤n−1

(b− a)(da,b + db,a))− (n− 1)

The total flow on those n− 1 edges must be less than their
total capacity, so we obtain that

(
X

0≤a<b≤n−1

(b− a)(da,b + db,a))− (n− 1) ≤ n− 1 .

The utilization on edge (0, n− 1) of our oblivious routing

for these demands is
X

0≤a<b≤n−1

(1− xb−a)(da,b + db,a)

=
X

0≤a<b≤n−1

(b− a)/n(da,b + db,a)

≤ 2(n− 1)/n = 2− 2/n .

For the clique topology, the shortest-path routing, where
the flow of each demand is routed on the direct edge, per-
forms very poorly, with performance ratio of n−1. We shall
see that the optimal oblivious routing for the clique topology
utilizes 2-hop paths.

Lemma 6.3. The optimum oblivious ratio forKn (the com-
plete graph on n vertices) is 2− 2/n.

Proof. We first show that the ratio is at least 2 − 2/n:
From symmetry (see Lemma 6.1) and flow conservation, we
know that there is an optimal oblivious routing with the
following form: for some x ≥ 0,

for all distinct a, b: fa,b(a, b) = x (6)

for all distinct a, b, c: fa,b(a, c) =

fa,b(c, b) = (1− x)/(n− 2)

for all other a, b, c, d: fa,b(c, d) = 0

The minimum s-t cut between any two nodes is n − 1.
Thus, for any given OD pair a, b, a demand a → b of size
(n − 1) can be routed such that the maximum flow on any
edge is 1. By considering such single OD pair demands
a→ b, and the edge (a, b), we obtain that the optimal ratio
is at least

(n− 1) ∗ fa,b(a, b) = (n− 1) ∗ x .
We now consider a TM such that there is a demand of

1 for each OD pair c → d (c < d). Such TM can also be
routed within unit capacities by routing each demand c→ d
on the “direct” edge (c, d). By considering the flow of our
routing on the edge a → b, we have that the optimal ratio
is at least

1 ∗ fa,b(a, b) +
X

c �∈{a,b}
fa,c(a, b) +

X

c �∈{a,b}
fc,b(a, b) =

x+ 2 ∗ (n− 2) ∗ (1− x)/(n− 2) .

from the above two constraints we obtain that the optimal
ratio is at least max{x ∗ (n − 1), 2 − x} ≥ 2 − 2/n (the
maximum is minimized when x = 2/n).
It remains to show that the optimal ratio is at most 2 −

2/n. We will use a routing of the form (6) with x = 2/n, and
show that its oblivious performance ratio is at most 2−2/n.
Consider a particular edge a→ b. Since a and b have degree
n − 1, any TM which can be routed with at most one unit
of flow on each edge must satisfy

X

c �=a

da,c + dc,a ≤ n− 1

X

c �=b

db,c + dc,b ≤ n− 1

Therefore,

2da,b + 2db,a +
X

c �∈{a,b}
(da,c + dc,a + db,c + dc,b) ≤ 2(n− 1)
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From (6), some optimal oblivious routing then satisfies
that the flow on the edge (a, b) is equal to

X

c,d

(dc,dfc,d(a, b) + dc,dfc,d(b, a))

=

P
c �=a,b(da,c(1− x) + db,c(1− x) + dc,a(1− x) + dc,b(1− x))

n− 2
+da,bx+ db,ax

By substituting x = 2/n we obtain that the flow on (a, b)
is P

c �=a,b(da,c + db,c + dc,a + dc,b) + (2da,b + 2db,a)

n
≤ 2(n− 1)/n = 2− 2/n

7. CONCLUSION
Traffic demands on IP networks are hard to estimate and

are dynamic in nature. Good system engineering thus de-
sires a routing that performs well “independently” of traf-
fic demands (or for a wide range of demands). The goal
of our study was to understand the viability of obtaining
such a routing, by exploring the tradeoffs between accuracy
of TM estimation and attainable utilization performance of
the routing. We arrive at perhaps unexpected conclusions.
First, it is possible to obtain a surprisingly good routings

with poor or no knowledge of the traffic demands: On cur-
rent ISP topologies, there exists a routing that guarantees
performance ratio that is less than 2 on any possible traffic
matrix. This “demand oblivious” routing is designed with
no knowledge of the traffic matrix taking only the topol-
ogy (along with link capacities) into account. With a very
limited knowledge of the TM we can do much better, often
obtaining a routing with performance ratio that is very close
to 1 even for error margins of 50%-100% in knowledge of the
traffic demands. Similarly, one can obtain a fixed routing
that would perform well on an expected range of demands,
thus, reducing the need for routing adjustments when traffic
demands shift.
Second, it is unlikely that such a “robust” routing can

be obtained via standard previously-existing tools, it seems
that obtaining close to optimal performance guarantees with
respect to a range of possible demands requires the algo-
rithmic tools we developed and employed here: The OSPF
routings based on the OSPF weights derived for our test net-
works performed badly as the set of demands grows. More-
over, and surprisingly so, even a routing designed to be opti-
mal on a specific TM deteriorates quickly with the margins
within which the actual demands deviate from the presumed
ones.
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