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The past decade has seen researchers develop and apply novel

technologies for biomolecular detection, at times approaching

hard limits imposed by physics and chemistry. In nearly all

sensors, the transport of target molecules to the sensor can

play as critical a role as the chemical reaction itself in

governing binding kinetics, and ultimately performance. Yet

rarely does an analysis of the interplay between diffusion,

convection and reaction motivate experimental design or

interpretation. Here we develop a physically intuitive and

practical understanding of analyte transport for researchers

who develop and employ biosensors based on surface capture.

We explore the qualitatively distinct behaviors that result,

develop rules of thumb to quickly determine how a given

system will behave, and derive order-of-magnitude estimates

for fundamental quantities of interest, such as fluxes,

collection rates and equilibration times. We pay particular

attention to collection limits for micro- and nanoscale sensors,

and highlight unexplained discrepancies between reported

values and theoretical limits.

A wide range of measurements in the life sciences require analytes in
solution to react with receptors on a surface. For example, DNA and
protein microarrays1,2, which capture specific genetic sequences and
proteins, are ubiquitous in drug discovery and systems biology
applications; label-free technologies, such as surface plasmon reso-
nance (SPR) sensors (e.g., Biacore), monitor binding in real time and
are used to measure binding affinity3,4; and immunoassays based on
protein capture are used routinely for medical diagnostics5,6. In many
situations, it is desirable to quantify surface binding within small fluid
volumes to analyze precious samples or to make a large number of
measurements from a single sample.

To address these needs, researchers are exploring miniaturized
sensors to achieve rapid, sensitive, label-free and small-volume analy-
sis. Examples on the microscale include microcantilevers that translate
biomolecular interactions into mechanical bending7,8, silicon field-
effect sensors that measure intrinsic biomolecular charge9–11, electro-
chemical sensors that translate biomolecular adsorption to changes in
redox current12,13 and microchannel resonators for measuring mass14.

Sensors on the nanoscale, such as silicon nanowires15,16, require far
fewer target molecules, and protein detection on the femtomolar level
has been reported17,18. Recently, sub-femtomolar detection with
single-molecule resolution was achieved with a micron-sized optical
cavity resonator19. Irrespective of the sensing modality, microfluidic
systems are of great importance as they provide efficient delivery of
target molecules to the sensor surface20 and enable a high degree
of automation21.

As sensing pushes into such extremes of size and concentration, it is
natural to ask whether and when fundamental physical limits will take
over. With extremely dilute solutions, how long will the first target
molecule take to bind? How many will eventually bind? Can one
extract kinetic parameters from measured binding rates? How can
one design a system to detect a target molecule most quickly? Can
one design a system to bind every target molecule, if they are
extremely rare?

Indeed, a variety of recent papers have asked these questions. For
example, Sheehan and Whitman22 theoretically examined diffusive
transport of target molecules to small sensors, and argued that sub-
picomolar concentration detection using nanoscale sensors would
require impractically long time scales (hours to days). On the basis
of numerical calculations, they further concluded that flow would help
only marginally with small sensors. By contrast, experiments with
nanowires show a clear signal within seconds to minutes after B10-fM
target solutions are introduced17,18. Can these results be reconciled?

An important difficulty is that these systems exhibit an extremely
rich and varied set of behaviors, with multiple effects competing for
dominance. Target molecules diffuse randomly within the solution
and are convected along with flowing solutions, free target molecules
may chemically bind to an adjacent surface, and bound target
molecules may unbind to reenter solution. At least eight (dimen-
sional) parameters are required to describe any such system, and
different systems will generally behave in ways that vary substantially,
both quantitatively and qualitatively. Exact solutions are not available
for any but the simplest of systems, and numerical computations
developed for one system are only useful for a second system if the two
are analogous in a meaningful way. Advanced mathematical techni-
ques were developed during the past century to handle these kinds of
problems23,24, but require extensive mathematical training. The che-
mical engineering community has grappled with these problems, as
reaction engineering with heterogeneous (wall-bound) catalysts
requires one to understand systems in which convection, diffusion
and reactions all occur25–27.

A central goal of this article, then, is to provide a physically intuitive
description of these competing physical processes and how they drivePublished online 7 April 2008; doi:10.1038/nbt1388
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target transport within biosensors of various sizes. Detailed solutions
are always required to interpret results in a fully quantitative fashion;
however, if one can not say anything about one’s system without a
sophisticated numerical computation, then it will be difficult to
design, optimize or work around bottlenecks. Computers and algo-
rithms may be getting faster, cheaper and easier, but they simply
cannot handle a blind search through the eight-or-more-dimensional
parameter space. We thus aim to motivate and develop effective ‘rules
of thumb’ that quickly determine in which qualitative behavioral
regime a system will operate (e.g., reaction limited versus diffusion
limited, rapid collection versus full retention) and thus to develop
robust approximate relations that convey how various quantities scale
as parameters change. More generally, we hope that this article will
serve to bridge two largely distinct communities: those developing and
employing new biotechnologies, and those who have developed and
mastered techniques for understanding these physicochemical effects
(albeit in the context of different systems).

Before beginning, however, we would like to dwell on the obvious.
Nothing can be large except by comparison with something else. A
retrovirus is too small to see, yet is enormous from an atomic
standpoint. Similarly, flows are neither fast nor slow, solutions neither
concentrated nor dilute, and sensors neither big nor small without
standards for comparison. Meaningful ‘apples to apples’ comparisons
can be made only between quantities with the same physical units—
for example, length versus length. The (dimensionless) ratios of two
effects under comparison are incredibly informative and play an
extremely important role in the study of fluids and transport. Fluid
mechanics is replete with dimensionless numbers; those most perti-
nent to microfluidics have been recently reviewed and explored by
Squires and Quake28.

In what follows, we examine the effects of convection, diffusion and
reactions through a paradigmatic model system (Fig. 1), with the
idea of providing a comprehensive and unifying treatment of these
competing effects. Target solution flows with volumetric flow rate
Q through a channel of height H and width Wc , one wall of which
contains a sensor of width Ws, and length L in the flow direction.
The sensor is functionalized with bm receptors per unit area, and
the solution contains target molecules with concentration c0, and
diffusivity D. For simplicity, we assume that target molecules in
solution only bind receptors on the sensor with binding constants
kon and koff, and do not bind to the sensor substrate. Because channel
widths Wc are typically much larger than heights H, we assume
concentrations to be uniform across the channel (in the H direction).
As such, all numerical computations and most scaling arguments
presented are two-dimensional, and we identify cases when this
approximation may fail.

This system is the simplest one that contains all of the relevant
ingredients—and yet it is not at all simple. We emphasize approxi-
mate scaling solutions that give order-of-magnitude estimates
for behaviors (e.g., binding time) and how they scale as parameters
(e.g., flow rates, concentration or geometry) are varied. Five relevant
dimensionless parameters arise naturally and intuitively for this
system, various values of which give rise to qualitatively different
behavioral regimes. We complement these intuitive pictures and
semiquantitative scaling arguments with finite-element computations
using Matlab and COMSOL to both support and extend our
results. Our presentation is meant to appeal to intuition, and
details about the governing equations and details of the simulations
we perform can be found in the Supplementary Notes online. (In
particular, see Supplementary Figure 1 for a definition sketch for
the computations.)

Random walks

To build this intuition, we start with the simplest possible sensing
system: target molecules that diffusively wander through solution and
bind immediately upon encountering the sensor. As Sheehan and
others have argued22, this ‘perfect collection’ case represents the
ultimate collection limit for nonconvective systems—finite reaction
rates only slow down binding.

Diffusion involves random and uncorrelated steps, giving target
molecule displacement that does not grow linearly in time, but like the
square root of time (see ref. 29 for an intuitive, biologically inspired
introduction). The time for a target molecule to diffusively reach a
sensor thus scales statistically like the square of its distance away.
Rather than treating and tracking individual target molecules, each
taking independent and random steps, one can describe collections of
individual target molecules statistically. This approach yields a con-
centration field c that represents an ensemble average of the stochastic
behavior of individual target molecules, as would be obtained by
averaging many single-molecule experiments (or simulations). This
ensemble average is naturally reproduced by concentrated solutions,
which involve a great many target molecules acting simultaneously
within the relevant experimental window. Experiments with extremely
dilute solutions, on the other hand, may contain too few target
molecules to resemble this ensemble average at any given time. For
example, a femtomolar solution contains about one target molecule
per nanoliter (that is, per cube of size 100 mm). At any given time,
concentration profiles measured in, for example, femtomolar solu-
tions will appear grainy on these length scales (e.g., in any microfluidic
experiment) and will thus not seem to resemble the smooth profiles
presented here. However, averaging the results of many such experi-
ments or simulations would, indeed, yield the smoothly varying
concentration fields depicted and described in this article.
Figure 2 shows the behavior of this ideal sensor. As target molecules

are collected by the sensor, a depleted zone forms with ‘size’ d �
ffiffiffiffiffiffi
Dt

p
.

The depletion zone starts relatively flat (Fig. 2a), until its thickness d
becomes comparable to the sensor size L (after time L2/D). It then
grows radially for a time scale tD¼ H2/D until it spans the channel
(Fig. 2b), after which it extends into the channels, with a length
d �

ffiffiffiffiffiffi
Dt

p
that grows indefinitely (Fig. 2c).

How many target molecules are collected as the depleted zone
develops? Target molecules diffuse down concentration gradients with
flux (molecules per area per time) jD ¼ �Drc. For scaling purposes,
the gradient rc can be simply estimated as the change in concentra-
tion (here Dc ¼ c0) divided by the distance d over which it changes, so
that jD B Dc0/d. As well, the total collection rate JD (molecules/time)
scales roughly like the target flux jD multiplied by the area through
which it proceeds. For times t { L2/D, where the depletion zone is

Wc

Ws

bm

kon

H

Q

~U t

(Dt)
1/2

L

U

c0

koff

Figure 1 Model system studied here. Solution with target concentration c0

flows with velocity U and volumetric flow rate Q B HWcU through a channel

of height H and width Wc over a sensor of length L and width Ws that is

functionalized with bm receptors per unit area.The kinetic rate constants for

the (first-order) binding reaction are kon and koff, and the diffusivity of the

target molecules is D.
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basically planar, JD � ðDc0=dÞLWs � LWsc0

ffiffiffiffiffiffiffiffi
D=t

p
. When the deple-

tion zone extends into the channels, that is, for times t c H2/D, the
flux jD proceeds along the channels (with cross-sectional area HWc),
giving a collection rate JD � ðDc0=dÞHWc � HWcc0

ffiffiffiffiffiffiffiffi
D=t

p
that is

largely independent of the sensor size L.
To plot these results in a general way, we introduce scales for time

and flux. Because tD represents a natural time scale in this system,
we ‘measure’ time in units of tD. For example, a target protein with
D ¼ 10 mm2/s takes tD B10 s to diffuse across a 10-mm channel.
Similarly, a natural scale for the total flux JD is Dc0Ws. In Figure 2, a
dimensionless flux function F, defined by

F ¼ JD
Dc0Ws

ð1Þ

is plotted against dimensionless time ~t ¼ t=tD ¼ Dt=H2 for different
dimensionless sensor lengths l ¼ L/H. In so doing, Figure 2 is valid
for any such system, irrespective of c0 H, D, L or t. For example, at
‘long’ times (compared with tD), the (dimensionless) diffusive flux for
all three sensor sizes collapses onto a single limiting curve with (log-
log) slope �1/2, indicating F � ~t�1=2. This occurs when the deple-
tion region is so long that it poses the major impediment to collection,
as discussed above. To connect these dimensionless quantities back to
real numbers for specific systems, one must simply compute the
dimensional versions, that is, JD ¼ Dc0WsF and t ¼ H2~t=D.

Before moving on to treat flow, we note a few things. First, steady
state is never reached in these two-dimensional systems (which
become effectively one-dimensional as depletion zones extend far
into the channels). The depletion zone grows ever larger, dif-
fusive flux gets ever smaller, and collection ever slower. Second, this
result depends crucially on the dimension of the sensor:
sensors whose size is limited in all three dimensions—for example,
the depletion zones around spherical beads or microarray spots
do reach a steady state, with sizes set roughly by the size of the

sensor. For example, the steady collection rate for a sphere of
radius L is given by JD

s ¼ 4pDc0L (ref. 29).

Going with the flow

Thus far, we have discussed purely diffusive transport—the random
motion of target molecules through the surrounding fluid. We now
add convective transport—the motion of target molecules along with
a fluid flow with velocity,

u ¼ 6Q

WcH3
zðH � zÞ ð2Þ

which we assume to be pressure-driven Poiseuille flow with volumetric
flow rate Q, and parabolic dependence on the height z above the
sensor. This apparently simple addition complicates the mathe-
matical solution tremendously, admitting exact solutions only in
rare circumstances. The difficulty is that these systems often contain
some regions where diffusion dominates, and others where convection
dominates. Mathematically speaking, any approximation scheme
that works in one region is bound to fail in the other. ‘Matched
asymptotic’ techniques employ different approximations in different
regions, and require them to ‘match’ seamlessly into each other. We
use here the spirit (but not the detail) of matched and multi-scale
asymptotics to arrive at intuitive and quantitative scaling relations,
and refer the interested reader to graduate texts in transport26,27

or asymptotics23,24.

Fundamental, qualitative changes are seen when flow is introduced
into our ideal sensor. Imagine now that we pump a target solution
through the channel with an extremely slow rate Q. (The attentive
reader should be asking, ‘‘slow compared to what?’’ We’ll return to this
shortly.) Recall that the purely diffusive depletion zone grows like
d �

ffiffiffiffiffiffi
Dt

p
indefinitely into the channels, collecting target molecules

ever more slowly (Fig. 2c). Convection halts this growth, giving a
steady depletion zone with just the right length ds for the target flux
delivered by convection (JC ¼ c0Q, in molecules/s) to precisely
balance the diffusive flux through the upstream depletion zone
(JD BDc0HWc/ds), giving ds B DHWc/Q (Fig. 3). If the depletion
zone d(t) at some time is smaller than this steady value ds,
the diffusive flux is too strong for convective flux to keep up, causing
d to grow and reign in diffusion. By contrast, if d(t) 4 ds,
diffusion cannot keep up convective delivery of target mol-
ecules, and the depletion zone is compressed. For slow enough flow
rates, the sensor collects every target molecule that is injected, so that
JD E Qc0.

So when is a flow ‘extremely slow’? Diffusion always dominates
close to the sensor, and convection always wins far away. However, the
above picture requires diffusion to win over a region that extends
substantially upstream: ds B DHWc/Q must be much larger than the
channel height H, limiting the flow rate to Q { DWc. The same
condition can be understood from a molecular standpoint. Does it
take longer for a target molecule to diffuse across the channel (tD), or
to be swept downstream (with average velocity Q/HWc) that same
distance? The ratio of these two time scales,

diffusive time

convective time
� H2=D

H2Wc=Q
� Q

DWc
� PeH ð3Þ

is called the Peclet number25–27, here with subscript H to specify the
channel height as the relevant length scale. When PeH { 1, diffusion
wins, and a depletion zone does indeed propagate upstream a distance
ds B H/PeH (Fig. 3c). When PeHc1, on the other hand, the picture
changes substantially (Fig. 3d–i).
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Figure 2 Purely diffusive flux to sensors of three different sizes (l ¼ L/H ):

l ¼ 10 (top), l ¼ 1 (middle), and l ¼ 1/10 (bottom), computed using

COMSOL. We plot a dimensionless flux F ¼ JD /(Dc0Ws) as a function of

dimensionless time ~t ¼ Dt=H2, assuming for simplicity the sensor is as wide

as the channel. Inset plots i–iii show the depletion zones for various relevant

times for a sensor with l ¼ 1: (i) t { L2/D, where the depletion zone is

essentially planar; (ii) t B H2/D, when it ‘feels’ the finite channel height,

and (iii) tcH2/D, where it extends far into the channels and is essentially

uniform across the channel. At these long times, the collection flux F is

independent of sensor size. Note that no steady state is ever reached.
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As above, we plot and report the collection flux in terms of a
dimensionless flux function F from which the (dimensional) flux can
be obtained via JD E Dc0WsF. (In the mass-transport literature, this
nondimensionalized flux is known as the Sherwood number.) With
‘extremely slow’ flows (PeH { 1), all target molecules are collected
and F B PeH (Fig. 3).

So we turn to the opposite extreme of ‘extremely fast’ flows, where
target molecules are swept downstream before they can diffuse very
far, and the only target molecules that stand a chance of collection lie
in a thin layer above the sensor. In this case, the relevant target
molecules do not ‘see’ the full parabolic flow in the channel, but only
the linear shear flow u ¼ .gz at a height z above the sensor, where
.g ¼ 6Q=H2Wc. How thick is the steady depletion zone ds in this case?
Target molecules that flow a distance ds above the sensor (that is, right
at the edge of the zone) require tc � L=ð .gdsÞ to convect past the
sensor. The ‘thickness’ of the depletion zone (in a scaling sense) is that
value ds where the time tc to convect past the sensor is just enough for
the target molecules to diffuse across the distance ds and be collected
(that is, tc B ds

2/D). The depletion zone thus has thickness

ds

L
� D

.gL2

� �1=3

� DH2Wc

QL2

� �1=3

� 1

Pes

� �1=3

ð4Þ

where

Pes ¼
.gL2

D
¼ 6l2PeH ð5Þ

is a second Peclet number that depends upon shear rate and sensor
length. Pes must be large for this picture to hold. The flux through the
depletion zone can be estimated as

JD � Dc0

d
WsL; soF � Pe1=3

s ð6Þ

as can be seen in Figure 3 for large Pes. Newman30 computed the full
problem more accurately, obtaining

FðPes � 1ÞE0:81 Pe1=3
s + 0:71 Pe�1=6

s � 0:2 Pe�1=3
s . . . ð7Þ

The total mass transport varies only weakly with flow rate in this
limit: flow rates must be increased 1,000-fold to enhance flux by
a factor of ten.

Two Peclet numbers, PeH and Pes, naturally emerge from this
analysis. Each describes a distinct competition between convection
and diffusion, and each says something qualitatively different about
the depletion zone itself. The former describes the sensor’s ‘range of
influence’: the depletion zone extends far upstream if PeH { 1, but is
thinner than the channel if PeHc1. The second, Pes, indicates whether
the depletion zone is thick or thin relative to the sensor itself.

This distinction is particularly important when the sensor and
channel have different characteristic scales—for ‘small’ sensors (L{H,
as with nanowires): the depletion zone can be thicker than the sensor,
but thinner than the channel (that is, PeHc1 but Pes { 1). Any
convection prevents the depletion zone from growing indefinitely,
giving a thickness that scales like L/Pes

1/2 and a collection flux

F � pðlnð4=Pe1=2
s Þ+ 1:06Þ�1 ð8Þ

that vanishes extremely slowly as Pes - 0, as calculated by Ackerberg
et al.31. This treatment assumes the depletion zone to be nearly two-
dimensional, which will generally work so long as the sensor is much
wider than the depletion zone is thick (WscL/Pes

1/2). The above
formulae also hold for microarray pixels (where Ws B L) so long as
Pesc1. When Pes { 1, however, the third dimension matters and
disks become more appropriate models than strips. Approximate
low-Pes

31 and high-Pes
30 formulae for mass transport to strips

and disks under shear flow are treated and discussed by
Zhang et al.32. A ‘phase diagram’ showing the qualitatively different
depletion zones, and their corresponding collection fluxes, is shown in
Figure 3. We saw above that at sufficiently low PeH, all target
molecules that enter the channel are collected by the sensor. A plot
of this ‘retained’ fraction for various PeH and l appears as Supple-
mentary Figure 2 online.

Having treated both convection and diffusion, one can now simply
compute the dimensionless numbers Pes and PeH to determine
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Figure 3 Mass transport and steady-state flux.

(a) ‘Phase diagram’ for mass transport in our

model sensing system. ‘Full collection’ occurs at

sufficiently low PeH (and large enough sensor l),
corresponding to region i. In region ii, a depletion

zone (ds � LPe�1=3
s ) forms that is thin compared

to both the sensor length L and the channel

height H, with collection flux given by equation 7
in main text. In region iii, the depletion zone

(ds � L=Pe1=2
s ) is thinner than the channel, but

thicker than the sensor, with flux given by

equation 8. Region iv has not, to our knowledge,

been studied thus far. The boundaries between

these regions are described in Supplementary

Notes. (b) COMSOL computations of the total

steady-state flux to the sensor under

both convection and diffusion, plotted as a

dimensionless quantity F ¼ JD /(Dc0Ws). Results

are shown for a variety of sensor sizes l ¼ L/H,

and compared with approximate formulas for full

collection (black dashed line), thin depletion zone

at PeH c 1 and Pes c 1 (red dashed line, from

Newman30), PeH c 1, Pes { 1 (blue dashed

line, from Ackerberg et al.31). (c–i) Steady

concentration profiles are shown for different

values of PeH and l, corresponding to the stars in

a and b. White arrows denote flow direction, and
the sensor has the same width as the channel.
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Box 1 Example microscale and nanowire sensors

We first consider a microscale sensor, modeled as a flat square of

width L ¼ 50 mm and length Ws ¼ 50 mm, in a microchannel of

height H ¼ 100 mm and width Wc ¼ 100 mm, through which a

solution of target protein with concentration c0 ¼ 10 fM and

diffusivity D ¼ 10 mm2/s flows with rate Q ¼ 10 ml/min. First-order

reaction kinetics are assumed with kon ¼ 106 M–1 s–1 and

kon ¼ 10�3 s–1, giving KD ¼ 1 nM, and binding-site density is

assumed to be optimized at bm ¼ 2 � 1012 sites/cm2.

Mass transport: convection and diffusion limits. The channel Peclet

number, PeH ¼ Q/WcD ¼ 1.7 � 105, indicates that the depletion

zone is much thinner than the channel. Using l ¼ L /H ¼ 0.5, the

shear Peclet number is Pes ¼ 6l2PeH ¼ 2.5 � 105. The large value

of Pes indicates that the depletion zone is much thinner than the

sensor—ds B Ls/Pes
1/3 B 800 nm. The (dimensionless) mass-trans-

port flux is then given by equation 7 to be F E 50. In dimensional

terms, JD ¼ Dc0WsF ¼ 0.15 molecules per second, or one molecule

every 6 to 7 s. This represents an upper limit imposed on analyte

collection by mass transport, which may be further lowered by finite

reaction kinetics.

Reaction limits. The dimensionless concentration ~c ¼ c0=KD ¼ 10�5

is very low, indicating that only a small fraction beq=bm ¼ ~c=ð1+~cÞ �
10�5 of the available sites will actually be bound in equilibrium.

Because there are NR ¼ bmWsL ¼ 5 � 107 total binding sites, the

concentration at which approximately one molecule will be bound to

the sensor in equilibrium is given by c* ¼ KD/NR E 20 a.m., which is

500 times lower than c0. We thus expect an average number NB
R ¼

NRc0=KD ¼ 500 target molecules to be bound in equilibrium, irre-

spective of how the system reaches equilibrium.

The Damkohler number indicates how equilibrium is reached:

because Da ¼ konbmL/DF E 3 is neither large nor small, the micro-

sensor operates neither in the reaction-limited nor diffusion-limited

regime. The time to equilibrate the sensor can be read approximately

from Figure 5: at Da E 3, the time scale for equilibration tCRD is around

three to four times the reaction time scale tR tR � k�1
off or B1 h

(Fig. 4 (left)).

Next, we consider a nanowire sensor, modeled as a flat strip of

length L ¼ 10 nm and width Ws ¼ 2 mm. All other parameters are

the same as for the microsensor (Fig. 4 (right)).

Mass transport: convection and diffusion limits. As with the

microsensor, the channel Peclet number, PeH ¼ 1.7 � 105,

indicates that the depletion zone is much thinner than the channel.

The smaller sensor gives l ¼ 10�4 and Pes ¼ 10�2, indicating

that the depletion zone is thicker than the sensor

(ds � Ls=Pe1=2
s � 100 nm) and that the (dimensionless) mass-

transport flux FE 0.7 is given by equation 8 from the main text. In

dimensional terms, JD ¼ Dc0WsF ¼ 8 � 10�5 molecules bind per

second, or one molecule every 210 min. Again, this represents an

upper limit for collection imposed by mass transport alone.

Reaction limits. As for the microsensor, a small fraction

beq/bm E 10�5 of the available sites will actually be bound in

equilibrium. Given that there are NR ¼ bmWsL ¼ 400 total binding

sites, c* ¼ KD/NR E 2.5 pM. Because the target concentration

c0 ¼ 10 fM is much smaller than c*, we expect the sensor to

be essentially ‘empty’, even in equilibrium. In fact, the equilibrium

number of bound molecules is NB
R ¼ NRc0=KD ¼ 0:004: the

sensor will be bound to a single target molecule o1% of the

time. Again, these values hold irrespective of the kinetic approach

to equilibrium.

As for kinetics, the nanowire sensor is reaction limited because

Da ¼ konbmL/DF ¼ 0.03. Mass transport is thus essentially

instantaneous, and binding proceeds exponentially with time con-

stant k�1
off � 17 min. Actual experiments with individual nanowires

would look nothing like the Langmuir binding curve (equation 10 in

main text), however. Assuming single-binding events could be

clearly resolved experimentally, nothing would be bound 99.6% of

the time, with one target molecule bound 0.4% of the time. On

average, each measured binding event would last k�1
off � 17 min,

suggesting B17 min/.004 E 3 days between binding events. One

thousand nanowire experiments, run in parallel, would yield a total

of four bound target molecules, on average, at any given time.
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Figure 4 Example sensors: a microscale sensor (left) and a nanowire sensor (right). Shown are the steady-state depletion zone from the pure mass-

transport problem; both have very high PeH so that the depletion zone is substantially thinner than the channel itself. The depletion zone is thin compared

to the microsensor (from equation 4, ds B 800 nm) and thick compared to the nanowire (ds � LPe�1=2
s ¼ 100nm), as can be seen in the inset figures.

Reaction-limited binding onto the nanowire follows the Langmuir binding curve (inset, right) whereas the Da E 3 binding for the microsensor is neither

reaction nor diffusion limited, yielding an equilibrated sensor on a time scale three to four times longer than the reaction-limited time scale.
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the mass-transport regime in which a given device operates
(or, conversely, how to design a device to operate within a desired
regime). Box 1 and Figure 4 illustrate two example sensors with very
different length scales: a nanowire and a microsensor (e.g., an optical
microcavity or protein microarray pixel). The channel Peclet for
protein targets is large for both devices (PeH ¼ 1.7 � 105), yielding
depletion zones that are substantially thinner than the channel. The
sensor Peclet, however, differs for the two devices: Pes ¼ 2.5 � 10�2

for the nanowire, whereas Pes ¼ 2.5 � 105 for the microsensor. The
depletion zone is thus larger than the nanowire, but thinner than the
microsensor. The collection rate is given by equation 8 for the
nanowire, and by equation 7 for the microsensor. For target concen-
trations of 10 fM, the interval between binding events is B3 h for the
nanowire—substantially longer than experimental results, where
saturation (not just single events) has been reported to occur in
seconds to minutes17,18. Under similar conditions, the microsensor
requires 7-s intervals between binding events at 10 fM. This time scales
inversely with concentration—optical microcavities with some-
what smaller active sensing surfaces have detected binding intervals
of a few seconds19 in 100 aM solutions, whereas B10 min would be
expected from theory. A tenfold increase in flow rate reduces these
intervals by B25% for the nanowire and 50% for the microsensor,
insufficient to account for the many order-of-magnitude discre-
pancies between measured values and the mass-transport limits for
both nano- and microscale sensors. These discrepancies suggest that
other factors must be accelerating the binding, a topic to which we
return below.

Making it stick

One final hurdle remains before target molecules bind and are sensed:
the chemical reaction itself. Assuming first-order Langmuir kinetics
for simplicity, the surface concentration b(t) of receptors that are
bound by target molecules obeys

qb
qt

¼ koncsðbm � bÞ � koffb; ð9Þ

where bm is the surface concentration of receptors on the sensor.
Binding depends on the concentration of unbound sites (bm – b) and
on target concentration cs at the sensor surface, whereas target
molecules de-bind in proportion to the bound concentration. If
convective and diffusive transport supply target molecules much
more quickly than reactions can bind them, then transport is ‘reaction
limited’, cs E c0 and equation 9 can readily be solved:

bðtÞ
bm

¼ c0=KD

1 + c0=KD
ð1 � e�ðkonc0+koff ÞtÞ; ð10Þ

where the equilibrium dissociation constant KD ¼ kon/koff appears as
a natural concentration scale. Although this is probably familiar to
one trained in physical chemistry, we focus on a few key features here
for emphasis.

First, the fraction of bound receptors in equilibrium, beq, is given by

beq

bm
¼ c0=KD

1+c0=KD
� ~c

1 + ~c
ð11Þ

irrespective of how long the sensor takes to equilibrate. Here ~c ¼
c0=KD is the concentration, nondimensionalized by the natural con-
centration scale KD. Concentrated solutions (~c � 1, or
equivalently c0 c KD) effectively saturate the sensor, whereas dilute
solutions (~c � 1) bind only a fraction beq B c0bm/KD { bm.
Serious consequences can result for small sensors and dilute

solutions: a sensor with area A has NR ¼ bmA receptors, of
which the number NB

R that are bound in equilibrium is given
by NB

R � bmA~c ¼ bmAc0=KD. This naturally gives rise to a
critical concentration,

c� ¼ KD

bmA
ð12Þ

at which only one target molecule binds the sensor in equili-
brium. Less concentrated solutions (c0 o c�) yield a fraction of a
target molecule bound at equilibrium. This seemingly unphysical
result reflects the ensemble average that underlies this approach,
and simply indicates that a target molecule will be bound to the
sensor only this fraction of the time (or only in this fraction
of the experiments at any given time). Solutions that are not
appreciably more concentrated than c�, therefore, will inherently
involve noisy, time-fluctuating single-molecule binding and
debinding events.

For example, assuming an antibody binding affinity KD ¼ 1 nM,
c� can be estimated for sensors of various sizes. The density of
active binding sites, bm, depends strongly on the immobi-
lization procedure, and extensive effort has been directed toward
optimizing binding efficiency33. If only the antigen-binding
portion of the antibody is isolated and attached to the surface such
that it is well oriented, a near monolayer can be created with an
active site density as high as bm ¼ 2 � 1012/cm2. If, however, the
entire antibody is used and randomly attached to the surface
(thereby blocking many of the active sites), bm is reduced
by an order of magnitude or more. Assuming bm to be optimized, a
single 2 mm � 10 nm hemicylindrical nanowire has NR B 103

binding sites, giving c� B 10�3 and KD B1 pM. Target detec-
tion in more dilute solutions would require one to resolve
single-molecule binding events. By contrast, a 50 mm � 50 mm
microsensor has B5 � 107 binding sites and thus c� B 20 a.m. is
much lower.

The other key point from equation 10 involves the time scale

tR ¼ ðkoff + konc0Þ�1 ¼ k�1
off ð1 + ~cÞ�1 ð13Þ

required for the sensor to equilibrate in the reaction-limited case.
At high concentrations (~c � 1, or c0 c KD), nearly all sites must
be bound (beq B bm), so that the equilibration time reflects how long
the ‘on’ kinetics take to deliver sufficient target molecules. At low
concentrations (~c � 1, or c0 { KD), however, relatively few sites
are bound in equilibrium (beq { bm), and steady state is not achieved
by binding this many target molecules. Rather, equilibration requires
the on and off fluxes to balance, which effectively requires that those
target molecules that do bind have sufficient time to unbind. The
equilibration time for dilute solutions is thus determined solely by the
off rate: tR B koff

�1.

Bringing it all together

We have now encountered two independent ‘speed limits’ for target
collection. The mass-transport limit occurs when convection
and diffusion deliver target molecules so slowly that the time for
the reaction itself is negligible by comparison. This collection rate is
JD B Dc0WsF, where F can be read off of Figure 3 so long
as PeH and l are known. The reaction itself provides the other
limit, when mass transport would be much faster by comparison; in
this case the initial reactive flux is JR B konbmc0LWs. Collection
rates can never exceed either of these limits. In general, reaction
kinetics are determined by the fidelity of the immobilized
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reagents; and sensor size and flow rate can be more easily adjusted
to aim for the reaction-limited regime.

When is the reaction limit achieved? With the intuition developed
above, we now turn to the full convection-diffusion-reaction system,
and address the kinetic approach to equilibrium.

To illustrate, we start with the Pesc1 limit, where a thin
depletion zone forms above the sensor. Here, though, the concentra-
tion cs at the sensor surface (which is as yet unspecified) regulates the
two fluxes, as seen below. Diffusion cares only about gradients, not
absolute concentration, so that the mass-transport arguments devel-
oped above still hold, with (cs – c0) in place of c0. The mass-transport
flux through the boundary layer is thus

JD � Dðc0 � csÞL
d

Ws; ð14Þ

and the (initial) reactive flux is

JR � koncsbmLWs ð15Þ

Assuming binding occurs quasi-steadily (as discussed shortly), diffu-
sive flux through the depletion zone must balance the reactive flux
onto the sensor. This balance (JR ¼ JD) gives an expression for the
concentration at the surface,

cs

c0
� 1

1 + konbmd=D
¼ 1

1 + Da
; ð16Þ

wherein the Damkohler number, Da ¼ konbmd/D is a ratio of reactive
to diffusive flux. If Da c 1, mass transport is rate limiting—
correspondingly, cs is nearly zero to slow the reaction. If Da { 1,
on the other hand, then reactions are slow enough to restrain an
otherwise fast diffusive flux; the latter is slowed because cs B c0 and
concentration gradients are weak. This analysis corresponds directly to
the two-compartment model widely used to interpret SPR experi-
ments, wherein cs and c0 are interpreted as ‘inner’ and ‘outer’
compartments, between which molecules transport with the Pes

1/3

scaling characteristic of thin boundary layers34.

More generally, one can compute the surface concentration in
the quasi-steady limit by equating the reactive flux JR B koncsbmLWs

with the mass-transport flux JD B D(c0 � cs)WsF,
yielding

cs

c0
� 1 +

konbmL

DF

� ��1

; ð17Þ

and a general Damkohler number

Da ¼ konbmL

DF
ð18Þ

As before, kinetics are reaction limited if Da { 1 and mass
transport�limited if Da c 1. In the reaction-limited regime, mass
transport is largely irrelevant, and binding equilibrates on a time scale
tR (equation 13).

How long will equilibration take when Da c 1, when mass
transport through the bulk solution is rate limiting? The diffusive
flux is given by

jD � Dðc0 � csÞF
L

� Dc0F

L
; ð19Þ

since cs { c0 in diffusion-limited systems. Note that jD will
not depend appreciably upon cs or b so long as the system remains
diffusion limited. Once the bound receptor concentration b starts
to approach its equilibrium concentration beq ¼ bm~c=ð1 + ~cÞ,
surface reactions will slow, cs will increase, and the system will
leave the diffusion-limited regime. However, jD remains nearly
constant until b/beq becomes appreciable, which is when sensor
saturation begins to occur. The equilibration time in the convection-
reaction-diffusion system, tCRD, is given in the diffusion-limited
case by

tCRDðDa � 1Þ � beq

jD
� konbmL

DFðkoff + konc0Þ
¼ DatR; ð20Þ

and thus exceeds the reaction-limited time scale by a factor Da.
Example simulations showing how the bound concentration grows
in a reaction-limited system and a diffusion-limited system appear in
Supplementary Figure 3 online. Figure 5 plots equilibration time tCRD
against Da for a range of flow rates and conditions, for which tCRD
would vary by orders of magnitude if unscaled. Suitably scaling tCRD by
tR and plotting against Da, however, collapses this extraordinary
range of conditions to lie upon a single, universal curve. Reaction-
limited systems (Da { 1) equilibrate on the reaction time scale tR, and
diffusion-limited systems (Dac1) equilibrate on a longer time DatR.

To examine the effects of finite reaction kinetics upon example
micro- and nanosensors, we turn to Box 1. For typical flow rates
and kinetic parameters, nanowire sensors are reaction limited
(Da B 0.04) and equilibrate on time scales tCRD � k�1

off B 17 min
for low target concentration. This may seem at first to exceed the
mass-transport limit of 3 h between binding events in 10-fM
solution. Recall, however, that c� ¼ 2.5 pM for the nanowire; as
such, an unphysical ‘4 � 10�3 target molecules’ binds to the nanowire
in equilibrium in 10-fM solution. A more sensible interpretation is
that a single nanowire will bind a single target molecule B0.4% of the
time, or that 1,000 independent nanowire sensors will, on average,
find four target molecules bound at any given time. Because each
binding event lasts, on average, 17 min, one expects B3 days between
binding events. Our example microsensors, on the other hand, have
Da E 3 and thus operate strongly in neither limit. SPR devices, as
well, may operate in either the mass-transport limited or reaction-
limited regimes34.
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Figure 5 The equilibration time tCRD, normalized by the reaction time tR,

plotted as a function of the Damkohler number Da, as in equation 20 in
the main text. When Da { 1, tCRD B tR, as mass transport is essentially

irrelevant. When Da c 1, convection and diffusion are rate limiting,

extending the equilibration time to tCRD B DatR. Notably, a wide range of

concentrations and flow rates collapse onto a single, master curve. Here we

have chosen e{ 1 in order that the quasi-steady approximation holds;

otherwise, tCRD for ‘unsteady’ systems would be shorter.
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Coping with change

We have assumed that the sensor equilibrates slowly enough that
the depletion zone evolves ‘quasi-steadily’—that is, mass transport is
given by the steady-state flux F. The two-compartment model for
SPR devices makes a similar assumption34. When is it valid? The
time scale for the reactive flux to change appreciably (that is, tCRD)
must be much greater than the time scale for the depletion zone to
form (td B ds

2/D, where ds B Pes
–1/3L for Pesc1, ds B Pes

–1/2L
for Pes { 1 and PeHc1, and ds B H/PeH for PeH { 1). Requiring
td { tCRD gives

e ¼ td
tCRD

¼ KDð1 + ~cÞd2F

bmL
� 1: ð21Þ

This ratio e may be obtained in a different fashion as well. The
number of target molecules collected as the depletion zone is formed
(that is, Vdc0, where Vd is the volume of the depletion zone around the
sensor) must be substantially fewer than the number required to
saturate the sensor NR B beqLWs B bmc0LWs/(KD+ c0). All of our
computations have been run in the quasi-steady limit, although one
can certainly find systems where this limit is not appropriate.

So where are we? We have painted a fairly comprehensive picture
of a model biosensing system that accounts for convection, reaction
and diffusion in an intuitive manner, from which we have derived
accurate, order-of-magnitude scaling relations for fluxes and time
scales. For biosensor development, knowing the ‘speed limits’ can
be helpful for interpreting data. If binding events are measured to
be faster than these limits, then other transport mechanisms
must be occurring.

Breaking the limits

Situations where the speed limits we’ve discussed thus far are violated
are not without precedent in other systems. Electrostatic interactions
between charged molecules and oppositely charged surfaces or recep-
tor molecules can accelerate binding, particularly at low ionic
strengths where ‘screening lengths’ are large35. For example, the
association rate constant kon for the specific interaction of colicin
nucleases with their cognate immunity proteins have been shown to
be enhanced by more than 100-fold in buffers containing low salt
concentrations36. When the salt concentration is increased, electro-
static interactions are largely screened and the on-rate returns to the
diffusion limit37. The response time of DNA microarrays can also be
enhanced under certain conditions: under low salt concentration and
in low pH where the surface is positively charged, DNA hybridization
rates of 1-nM target concentration can be increased 80-fold38.
Although electrostatic interactions can increase kon and thereby
decrease the critical concentration c� at which one molecule is
bound, the diffusion limit is hardly changed. Even so, applying electric
currents can indeed alter mass transport to and from a surface39.

Other mechanisms besides electrostatics can enhance binding.
A striking example is the observation that the DNA binding
protein, LacI repressor, finds its target sequence at rates much
faster than the three-dimensional diffusion limit40. Clever single-
molecule experiments41 and theory42 have shown that an enhance-
ment of nearly 100-fold is due to a combination of one- and
three-dimensional diffusion that the protein performs in a
near-optimal fashion.

Alternatively, mass transport can be accelerated by actively decreas-
ing the depletion zone thickness. Strategies explored include ‘stirring’
the depletion zone using various mixing strategies43,44 and using a
waste channel to withdraw the depletion layer and thus bring fully
concentrated target solution to sensors downstream43.

Summary and conclusions

Throughout this article, we have explored sensor binding kinetics by
thinking in extremes. Using dimensionless ratios to indicate the
relative importance of competing effects, we have examined systems
with large or small values of these dimensionless parameters to

Box 2 Optimizing an HIV viral load measurement by

surface capture

Here we use the analysis to design a hypothetical sensor that

measures viral load for HIV by directly capturing virions to the

sensor surface, thereby eliminating the need for PCR. We will

consider the sensor to lie along the entire length of the channel and

will generally assume the bound molecules are enumerated by any

of the above-discussed methods (e.g., fluorescence, mass or

charge). By applying a pressure P ¼ 100 p.s.i. (e.g., limited by

mechanical failure of the device), we drive a sample volume

V ¼ 10 ml containing a threshold concentration for HIV,

c ¼ 10 virions/ml (for 105 total virions) through a microchannel

sensor of height H, width Wc ¼ 100 mm, and length L ¼ 10 mm.

The goal is to choose a channel height that will allow a sufficient

number of virions to be captured and sensed, and thus to measure

viral load as quickly as possible. For simplicity, we will assume that

virions are instantly captured upon encountering the surface and

remain bound indefinitely (that is, diffusion limited).

The pressure-driven volumetric flow through the channel is given by

Q ¼ H3Wc

12ZL
P ; ð22Þ

where Z is the fluid viscosity (1 cP for water at room temperature).

With this flow rate, a time

T ¼ V

Q
¼ 12ZLV

H3WcP
; ð23Þ

is required to drive the entire sample volume through the channel.

The mass transport is dictated by the channel and sensor Peclet

numbers (equations 3 and 5)

PeH ¼ H3P

12ZLD
and Pes ¼

HLP

2ZD
; ð24Þ

where D E 5 mm2/s is the diffusivity of a 50-nm radius virion in

water. To collect all virions during the measurement (e.g., region i

in Fig. 3a), the depletion zone must be thicker than the channel

height, LPes
�1/3

cH, or PeH { l, thus requiring

H � 12ZL2D

P

� �1=4

� 1:7mm ð25Þ

Indeed, all virions would be captured with a 1-mm tall channel;

however, B200 days would be required to complete the experi-

ment! Taller channels enable faster flows and quicker measure-

ments, but reduce the relative fraction of virions collected (which is

given by the ratio of collection flux to input flux, Pes
1/3/PeH). The

relative collection rate for a 10-mm channel is 0.017, such that

1.7% of the virions in the sample (that is, 1,700 virions) will be

collected, in an experiment that takes B5 h. A 100-mm channel, on

the other hand, requires o20 s for the measurement, but will yield

only four virions collected in total. It is evident that viral collection

and measurement times depend quite strongly upon channel height.

The optimal channel height for a specific experiment, then, will

depend sensitively upon how many virons must be captured to be

reliably measured over the noise specific to the sensor and also

upon constraints on total measurement time.
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develop intuition for qualitative behavior, and scaling relations for
quantitative understanding. These dimensionless parameters are
straightforward to compute, and are enormously useful in character-
izing and designing systems. Two Peclet numbers characterize the
nature of the mass-transport depletion zone around the sensor. The
first, PeH, indicates the sensor’s range of influence: the depletion zone
is thin compared to the channel if PeHc1, whereas it extends far
upstream if PeH { 1. The second, Pes, is relevant when PeHc1 and
indicates whether the depletion zone is thick or thin relative to the
sensor itself. These two parameters give rise to a (dimensionless) flux
F, plotted in Figure 3, from which the diffusion-limited collection
rate can be computed by JD ¼ Dc0WsF.

Chemical reaction kinetics gave rise to additional dimensionless
parameters and natural concentration scales. A sensor’s dynamic
range is effectively bounded from below by c�—the target concentra-
tion below which less than one molecule on average will be bound in
equilibrium—and from above by KD, above which the sensor is effect-
ively saturated. How quickly the sensor equilibrates depends upon the
dimensionless parameter Da (which itself depends upon mass-trans-
port flux F): if Dac1, then equilibration is limited by the rate of
target diffusion to the sensor, whereas the reaction itself limits sensor
kinetics if Da{1. Finally, e indicates whether the quasi-steady approx-
imation used throughout our presentation is valid—that is, whether
the sensor equilibrates before the depletion zone has a chance to form.

How can researchers use this information in examining real
biosensing systems? First and foremost, simply computing the above
dimensionless parameters will give a good sense for how a given
system behaves. Knowing the qualitative behavior regime enables one
to know which approximations are appropriate, and thus to compute
desired quantities using the scaling relations and figures here. The
dimensionless formulae presented here are generally applicable. One
must then ‘put the units back in’ to obtain reliable estimates for, for
example, time scales and collection rates in a specific system. This
approach will generally not help one to know whether 20 or 40 s will
be required for sensor equilibration, but will confidently tell whether
to expect 20 s or 20 min. In particular, such estimates are useful for
determining whether or not a given measurement breaks the classic
speed limit. Here, we have highlighted three reports in the literature
where convection-reaction-diffusion theory predicted binding times
that were two or more orders of magnitude longer than the measured
response. Such discrepancies suggest that additional, as yet undeter-
mined ingredients (beyond what we have incorporated here) must be
present in the experiments. Numerical computations using more
detailed experimental parameters will be required for more accurate
predictions; whereupon the qualitative understanding developed
here will help the interested researcher to choose appropriate
numerical strategies.

Second, the above analysis will be useful in designing new sensors.
No one sensor has emerged as optimal, or likely will, given the
diversity in sensing mechanisms and their intended applications.
Rather, optimizing sensor design requires collection performance (as
defined for a particular objective) to be maximized subject to various
constraints. The above analysis elucidates the design constraints
imposed by transport. In some applications, sample volume is not a
limiting factor (for example, in blood or saliva analysis), and ‘design-
ing’ the transport to be reaction limited (Da { 1) will yield
measurements as quickly as chemistry will allow. On the other
hand, sensing in integrated microdevices may involve very small
sample volumes, necessitating ‘full collection’ of the few target
molecules present in the sample (region i, Fig. 3a). Box 2 gives an
optimization example. For all cases, one must ensure the sensor has

enough sites for target molecules to actually bind—that is, so that
c 4 c� in equation 12—but also be mindful of signal/noise issues
specific to the sensor.

As a final note, these systems are extraordinarily rich, and there is
no way to cover all possibilities—even superficially—in a single article.
For example, Gervais and Jensen45 describe a convection-limited
regime in their comprehensive treatment of microchannel sensors
with LcH. When c0H { bm (that is, more binding sites on the wall
than target molecules in the channel above it, per unit area) and when
Da is high, target molecules only ‘survive’ in solution until they
reach an unbound section of the sensor, establishing a traveling wave
of equilibration.

We have attempted to treat the most common parameter regimes
for surface-based sensors, and hope that this work will serve as a
resource for many sensing systems. More broadly, however, we hope to
have conveyed an intuitive style of thinking about target transport in
these mathematically complex systems, thus enabling researchers to
more rationally conceptualize, understand, control and design new
sensing and reacting systems.

Note: Supplementary information is available on the Nature Biotechnology website.
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