
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:2988–3028

https://doi.org/10.1007/s11227-021-03839-9

1 3

Making legacy Fortran code type safe through automated
program transformation

Wim Vanderbauwhede
1

Accepted: 21 April 2021 / Published online: 14 July 2021

© The Author(s) 2021

Abstract

Fortran is still widely used in scientific computing, and a very large corpus of legacy

as well as new code is written in FORTRAN 77. In general this code is not type

safe, so that incorrect programs can compile without errors. In this paper, we pre-

sent a formal approach to ensure type safety of legacy Fortran code through auto-

mated program transformation. The objective of this work is to reduce programming

errors by guaranteeing type safety. We present the first rigorous analysis of the type

safety of FORTRAN 77 and the novel program transformation and type checking

algorithms required to convert FORTRAN 77 subroutines and functions into pure,

side-effect free subroutines and functions in Fortran 90. We have implemented

these algorithms in a source-to-source compiler which type checks and automati-

cally transforms the legacy code. We show that the resulting code is type safe and

that the pure, side-effect free and referentially transparent subroutines can readily be

offloaded to accelerators.

Keywords Fortran · Type safety · Type system · Program transformation ·

Acceleration

1 Introduction

1.1 The enduring appeal of Fortran

The Fortran programming language has a long history. It was originally proposed by

John Backus in 1957 for the purpose of facilitating scientific programming, and has

since become widely adopted amongst scientists, and been shown to be an effective

language for use in supercomputing. Even today, Fortran is still the dominant lan-

guage in supercomputing.

 * Wim Vanderbauwhede

 wim.vanderbauwhede@glasgow.ac.uk

1 School of Computing Science, University of Glasgow, Glasgow, UK

http://orcid.org/0000-0001-6768-0037
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03839-9&domain=pdf

2989

1 3

Making legacy Fortran code type safe through automated program…

According to Yamamoto [1], 68% of the utilisation of the K computer (one of the

largest supercomputers in the world) in 2014 was Fortran (using invocations of the

compiler as a proxy). The monthly usage statistics of Archer, the largest supercom-

puter in the UK,1 illustrated in Fig. 1 show an even higher ratio.

Fortran is still actively developed, and the most recent standard is Fortran 2018

(ISO/IEC 1539:2018), released in November 2018 [14]. However, adoption of recent

standard is quite slow. Figure 2 shows the relative citations (citations per revision

normalised to sum of citations for all revisions) for Google Scholar and ScienceDi-

rect for each of the main revisions of Fortran. We collected results for the past 10

years (2006–2016) and also since the release of FORTRAN 77 (1978–2019). As an

absolute reference, there were 15,100 citations in Google Scholar mentioning FOR-

TRAN 77 between 2009 and 2019. It is clear that Fortran-77 is still widely used and

that the latest standards (2003, 2008, 2018) have not yet found widespread adoption.

Based on the above evidence (confirmed by our own experience of collaboration

with scientists), the current state of affairs is that for many scientists, FORTRAN 77

Fig. 1 The monthly usage of the UK Archer supercomputer per programming language (July 2016; more

recent data not made available)

1 http:// www. archer. ac. uk/ status/ codes/.

http://www.archer.ac.uk/status/codes/

2990 W. Vanderbauwhede

1 3

is still effectively the language of choice for writing modells. Even if the code adopts

Fortran 90 syntax, in practice very few of the semantic extensions are used, so that

from a semantic perspective the code is FORTRAN 77. There is also a vast amount of

legacy code in FORTRAN 77. Because the FORTRAN 77 language was designed with

assumptions and requirements very different from today, code written in it has inherent

issues with readability, scalability, maintainability and parallelisation. A comprehen-

sive discussion of the issues can be found in [18]. As a result, many efforts have been

aimed at refactoring legacy code, either interactive or automatic, and to address one or

several of these issues. Our work is part of that effort, and we are specifically interested

in automatically refactoring Fortran for offloading to accelerators such as GPUs and

FPGAs.

1.2 Acceleration by offloading matters

Hardware accelerators have proven extremely effective in accelerating scientific code.

Of the Green Top 10, eight systems use accelerators. However, in practice the accelera-

tors have their own memory, and the most common compute modell is still to offload

part of the calculation to the accelerator and copy the results back to the host memory.

Even if the accelerator is cache-coherent with the host memory, having the code to be

run on the accelerator in a separate memory space is still advantageous as it results in

reduced coherency traffic.

Fig. 2 Literature mentions of different revisions of Fortran using Google Scholar and ScienceDirect

2991

1 3

Making legacy Fortran code type safe through automated program…

1.3 The need for pure functions

Because of the separation of memory spaces and the absence of an operating system

on the accelerator, the code units offloaded to the accelerator must be self-contained:

• No shared memory space (COMMON blocks)
• No system calls in general and no I/O operations in particular
• No library calls except intrinsic ones

A routine which meets these requirement is equivalent to a pure function: for a given

set of input values, it always produces the same outputs values, and it only influ-

ences the rest of the world through these output values. Therefore, any other mecha-

nism to share data (specifically COMMON blocks) is not allowed.

A kernel offloaded to an accelerator is in general expected to behave as a pure

function: the inputs are the data copied to the accelerator’s memory and the out-

puts the data copied from the accelerator’s memory. Therefore, a key requirement

for offloading code units to accelerators is that they are pure functions. Note that this

implies “no I/O system calls” because these would cause the function to be impure.

The restriction on library calls is a practical one because they can’t be incorporated

into the binary for the accelerator. From a “pure function” perspective, calls to

library functions are acceptable if the library functions themselves are pure.

1.4 The case for type safety

1.4.1 What is type safety

In his paper, “A Theory of Type Polymorphism in Programming” [10], Robin Mil-

ner expressed the notion of type safety as “Well typed programs cannot go wrong.”

By “going wrong”, we mean in general not computing the expected result. There are

several components contributing to this behaviour: one is the language’s type sys-

tem, the other is the type checker, and finally there is the actual program code.

In a type-safe language, the language’s type system ensures programs cannot per-

form operations that are not compatible with the types of the operands involved, i.e.

there are no type errors in a well-typed program written in a type-safe language.

By type error, we mean an error arising from the fact that a variable (or constant or

function) with a given type is treated as if it has a different type.

A type checker is called sound if it only accepts correctly typed programs. How-

ever, the fact that a sound type checker accepts a correctly typed program does not

mean the program is correct.

1.4.2 Type safety in Fortran

In the context of Fortran, the type system as specified in “ANSI X3.9-1978—Ameri-

can National Standard Programming Language FORTRAN” [2], hereafter called the

2992 W. Vanderbauwhede

1 3

“f77 specification”, is not type-safe. It is possible to write programs which the type

checker accepts but are nonetheless incorrect from the perspective of the type sys-

tem. The key culprit for this is the loss of type information which occurs when data

are handled via COMMON blocks or EQUIVALENCE statements.

2 Related work

2.1 Formalisation of Fortran

There has been surprisingly little research into Fortran’s type system. There is

some work on formalisation of data abstraction, specifically encapsulation to cre-

ate abstract arrays in FORTRAN 77 [3] and on the formal specification of abstract

data types implemented through derived types in Fortran 90 [9, 16]. There is also

some work on the formalisation of Fortran 95 semantics using VDM [15] but there

is no publication on the final outcome. Specifically with regards to the type system,

the only work that we are aware of is on the extension of Fortran 90 types with an

attribute reflecting the unit of measurement [4]. According to our survey, a formali-

sation of the FORTRAN 77 type system or an analysis of its type safety has not been

reported before.

2.2 Source-to-source compilation and refactoring

There are a number of source-to-source compilers and refactoring tools for Fortran

available. However, very few of them actually support FORTRAN 77. The most well

known are the ROSE framework2 from LLNL [8], which relies on the Open Fortran

Parser (OFP3). This parser claims to support the Fortran 2008 standard. Further-

more, there is the language-fortran4 parser which claims to support FORTRAN 77

to Fortran 2003. A refactoring framework which claims to support FORTRAN 77 is

CamFort [11], according to its documentation it supports Fortran 66, 77 and 90 with

various legacy extensions. That is also the case for the Eclipse-based interactive

refactoring tool Photran [12], which supports FORTRAN 77—2008. These tools are

very useful, indeed both CamFort and Photran provide powerful refactorings. As we

shall discuss in more detail below, for effective refactoring of common blocks, and

determination of data movement direction, whole-source code (inter-procedural)

analysis and refactoring is essential. A long-running project which does support

inter-procedural analysis is PIPS,5 started in the 1990’s. The PIPS tool does support

FORTRAN 77 but does not supported the refactorings, we propose. For complete-

ness, we mention the commercial solutions plusFort6 and VAST/77to907 which both

2 http:// www. rosec ompil er. org/ index. html.
3 http:// fortr an- parser. sourc eforge. net/.
4 https:// hacka ge. haske ll. org/ packa ge/ langu age- fortr an.
5 http:// pips4u. org/.
6 http:// www. polyh edron. com/ pf- plusf ort0h tml.
7 http:// www. cresc entba ysoft ware. com/ compi lerte ch. html.

http://www.rosecompiler.org/index.html
http://fortran-parser.sourceforge.net/
https://hackage.haskell.org/package/language-fortran
http://pips4u.org/
http://www.polyhedron.com/pf-plusfort0html
http://www.crescentbaysoftware.com/compilertech.html

2993

1 3

Making legacy Fortran code type safe through automated program…

can refactor common blocks into modules but not into procedure arguments. In con-

clusion, there are many projects that provide refactoring program transformations.

However, none of them focus on the type safety of the resulting programs.

3 Contribution

We present in this paper a formal analysis of the type safety of normalised FOR-

TRAN 77 programs (Sect. 4) and a series of algorithms for program transformation

into normalised form (Sect. 6). We also present additional type checks for COM-

MON blocks and EQUIVALENCE associations (Sect. 7), as a precondition to the

program transformation.

These algorithms are implemented in our source-to-source compiler8 which can

automatically rewrite FORTRAN 77 programs into Fortran 90 so as to remove all

COMMON and EQUIVALENCE statements, provide full referential transparency

and ensure that all functions marked for offloading to accelerators are pure[19]. The

conversion from FORTRAN 77 to Fortran 90 is necessary because we rely on For-

tran 90 features (most notably INTENT and IMPLICIT NONE) for the improved

type safety. It does not impact the performance of the program.

We further show that (with a small number of additional restrictions) the result-

ing code is type safe when type checked against the type system which we present

and well typed programs adhering to these restrictions will not go wrong if they are

accepted by the type checker. What this means is that if an original FORTRAN 77

program is accepted by the type checker of our source-to-source compiler then the

Fortran 90 program which it generates can be type checked with an ordinary Fortran

compiler9 with all type-based warnings turned into errors, and the code will type

check cleanly.

We have validated our source-to-source compiler against the NIST (US National

Institute of Standards and Technology) FORTRAN 78 test suite10 which aims to

validate adherence to the ANSI X3.9-1978 (FORTRAN 77) standard. Furthermore,

we tested the compiler on a simple 2-D shallow water modell and a simple Coriolis

force modell from [7], on the NASA Chemical Equilibrium with Applications pro-

gram,11 used to calculate e.g. theoretical rocket performance[5] and on the Large

Eddy Simulator for Urban Flows,12 a high-resolution turbulent flow modell [17].

8 https:// github. com/ wimva nderb auwhe de/ Refac torF4 Acc.
9 We have tested this with GNU Fortran 9.3.0 and PGI/Nvidia Fortran 20.11-0 and verified the behav-

iour of the Intel, SunSoft/Oracle and Fujitsu/Lahey compilers from their documentation.
10 http:// www. itl. nist. gov/ div897/ ctg/ fortr an_ form. htm.
11 https:// www1. grc. nasa. gov/ resea rch- and- engin eering/ ceaweb/.
12 https:// github. com/ wimva nderb auwhe de/ LES.

https://github.com/wimvanderbauwhede/RefactorF4Acc
http://www.itl.nist.gov/div897/ctg/fortran_form.htm
https://www1.grc.nasa.gov/research-and-engineering/ceaweb/
https://github.com/wimvanderbauwhede/LES

2994 W. Vanderbauwhede

1 3

4 Formal analysis of the type safety of normalised Fortran programs

In this work, a normalised FORTRAN 77 program is a program that consists of pure

functions (see Sect. 4.2 for a formal definition) and where all variables, parameters

and functions are explicitly typed. We discuss in Sect. 6 how to achieve fully explic-

itly typing and under which conditions a procedure can be made pure.

4.1 Type systems concepts and notation

A type is a formal mechanism to provide information about the expected form of the

result of a computation. More precisely, if e is an expression, a typing of e as e.g. an

integer is an assertion that when e is evaluated, its value will be an integer. Such an

assertion is called a typing judgment. For such a typing judgement to be meaning-

ful, e must be well typed. For any expression this means that it must be internally

consistent as well as consistent with its context, i.e. if the expression e contains free

variables, they must be declared with the right type in the context of the code unit.

We will use the term type statement (as used in the f77 specification) or type decla-

ration (more common in type theory) for the statements that declare the type of a

constant, variable or function.

We will use the standard notation for typing rules as used for example in [13],

which can be summarised as:

• The assertion “the expression e has type � ” is written as e ∶ �

• If an assertion must hold for a certain context, i.e. a set of expressions with

declared types such as a code unit, the context is conventionally denoted as Γ ,

and the operator ⊢ (called “turnstile” in type theory) is used to write an assertion

of the form “assuming a context Γ then the expression e has type � ” is written as

Γ ⊢ e ∶ � .
• The double arrow (⇒) is used to put additional constraints on a type and is read

as “these constraints must apply to the type for the type judgement to hold”
• The type of a function of a single argument is written as f ∶ �in → �out , and the

function itself is written without parentheses, so y = f x rather than y = f (x).
• We will write the type declaration for a tuple (ordered set) of m expressions as

(e1,… , e
m
) ∶ (�1,… , �

m
) or for brevity as �

�
∶ �

�
.

We deviate slightly from the terminology used in the f77 specification in favour of

the more common terminology: we will refer to the symbolic name of a datum as a

variable rather than a variable name, and we will refer to what the f77 specification

calls a variable as a scalar. Thus, a variable can be a scalar or an array.

4.2 The definition of a pure function

If a function is pure, then it must return a least one datum as a result, because oth-

erwise it means it did not compute anything and can be removed as dead code.

2995

1 3

Making legacy Fortran code type safe through automated program…

Furthermore, a pure function without input arguments is effectively a constant, so

we can also assume that the there is at least a single input variable. Therefore, we

can without loss of generality assume that a function takes as a single argument a

tuple of expressions and returns a tuple of expressions.

Let Γ be the context of a given program, i.e. the set of all variables with their type

that are declared in a code unit. Consider a function

This function is pure iff

In words, for any given context Γ where �
��,�

 and �
���,�

 are declared, then if �
��,�

 is a

given set of argument values of the correct type, the function will always return the

same values �
���,�

 regardless of the rest of the content of Γ . Note that the fact that

Γ is the same for the inputs�
��,�

 , and the results of the function call �
���,�

 implies that

the function does not modify Γ . We will see in Sect. 6 and following how any For-

tran procedure can be transformed into a pure function.

4.3 Specification of FORTRAN 77 data types

According to §4.1 Data Types of the f77 specification,

The six types of data are:

1. Integer

2. Real

3. Double precision

4. Complex

5. Logical

6. Character

The f77 specification discusses each of these types in terms of their storage units.

According to §2.13 Storage:

A storage unit is either a numeric storage unit or a character storage unit.

An integer, real, or logical datum has one numeric storage unit in a storage

sequence. A double precision or complex datum has two numeric storage units

in a storage sequence. A character datum has one character storage unit in a

storage sequence for each character in the datum. This standard does not spec-

ify a relationship between a numeric storage unit and a character storage unit.

If a datum requires more than one storage unit in a storage sequence, those

storage units are consecutive.

Thus

f ∶ �
��,�

→�
���,�

�
���,�

= f �
��,�

∀Γ, ∀�
��,�

∈ Γ, ∃ �
���,�

∈ Γ ∶ �
���,�

= f �
��,�

2996 W. Vanderbauwhede

1 3

• An integer or real has one storage unit
• A double precision datum has two consecutive numeric storage units in a storage

sequence (§4.5 Double Precision Type).
• A complex datum is a processor approximation to the value of a complex number.

The representation of a complex datum is in the form of an ordered pair of real

data. The first of the pair represents the real part of the complex datum, and the

second represents the imaginary part. Each part has the same degree of approxi-

mation as for a real datum. A complex datum has two consecutive numeric stor-

age units in a storage sequence; the first storage unit is the real part, and the

second storage unit is the imaginary part (§4.6 Complex Type).

As quoted above, the f77 specification does not specify the size of a storage unit.

However, the consensus amongst the major Fortran compilers13 is as follows:

Various extensions exists such as byte, double complex, etc. Technically,

the use of kinds in type statements (e.g. integer*8) is not part of the f77 speci-

fication. It is however widely used and supported by all current Fortran compilers,

specifically the open source GNU Fortran compiler g77. In this paper, we effectively

consider FORTRAN 77 to be defined by the f77 specification combined with the

g77 extensions.14

We will treat the kind as the number of bytes of storage as in Table 1 and define

the scalar types as (Typename, Kind) tuples. Moreover, we define a character storage

unit as 1 byte. This allows us the simplify the types to integer, real, complex and

logical, because we can define a double precision as (real,8) and a character as (inte-

ger,1). For the rest of the discussion, we will treat the character type as an integer

with a kind of 1 and a character string as an array of characters. We will not discuss

any special cases for characters because it would needlessly complicate the discus-

sion without adding anything material in terms of the type system.

Table 1 Relationship between storage unit, kind and bytes for FORTRAN 77 types

Type Size in bytes (kind) #Storage units (numeric)

integer 4 1

real 4 1

double precision 8 2

complex 8 2

logical 4 1

Size in bytes #Storage units (character)

character 1 1

13 GNU, PGI/Nvidia, Intel, SunSoft/Oracle, Lahey/Fujitsu.
14 https:// gcc. gnu. org/ onlin edocs/ gcc-3. 4.6/ g77/ Langu age. html.

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Language.html

2997

1 3

Making legacy Fortran code type safe through automated program…

4.4 Formalising the FORTRAN 77 type system

With the conventions from Sect. 4.3 and the above assumptions, we can describe

Fortran’s type system using sets of entities. The formal definition is given in

“Appendix 1”.

The general form of a type � in FORTRAN 77 is constructed from the

following:

• Primitive types (scalars or arrays)
• Tuple types
• Function types
• void

• Type variables

Tuple types are ordered sets of types, denoted as (�1, �2,…) and used to represent

the type of the arguments of a function or subroutine.

Function types represent the entire type of a function declaration. So �
1
→ �

2
 is

the type of a function that takes an input of a given type �
1
 and returns a result of

a given type �
2
.

The void type is used in the typing rules for subroutine calls and assignments,

as these are statements that do not have a type. A subroutine declaration therefore

has type � → void.

Type variables are variables that can represent any type. They arise a result of

the polymorphism of the arithmetic and relational operators, as well as of some

intrinsic functions, discussed in Sect. 4.4.6.

To investigate the type safety of this type system, we need to consider the typ-

ing rules for

• Constants
• Scalar and array declarations and accesses
• Function and subroutine declarations and applications
• Assignments
• Expressions

Furthermore, we need to consider specifically how Fortran handles subtypes,

which arise in the context of what the f77 specification calls type conversion, also

commonly known as type coercion.

4.4.1 Constants

The forms of numeric constants are described in words in §4 Data Types and

Constants of the f77 specification. “Appendix A1.1” provides a formal descrip-

tion. We define the set of constants of for each type, for example for integers as

IntegerConstants, and thus the typing rule is smily that a constant belongs to a

given set.

2998 W. Vanderbauwhede

1 3

4.4.2 Scalars

The typing rule for a scalar s is simply that any access of a scalar variable, this vari-

able must have the same type, which must be the type from its declaration in the cur-

rent context (code unit) Γ and be a scalar. In a Fortran expression, this means that all

variables with a type statement in a code unit will be of the type determined by that

statement.

4.4.3 Arrays

The typing rule for an array declaration is that in addition to being of a valid Scalar

type

• It must have a valid dimension attribute d = ((b1, e1),… , (b
i
, e

i
),… , (b

k
, e

k
))

• And for any array access a(j1,… , jk), ji ∈ [bi, ei]

• The number indices must k = #d,
• The type must be the scalar type

Note that the additional condition of validity of the range of the array indices

a(j1,… , ji,… , jk), ∀ i ∈ [1, k]|ji ∈ [bi, ei] is not a type checking condition but an

run-time range checking condition, so it is not part of the typing rules.

Array slicing Fortran 90 allows array slicing using the notation (b
s
∶ e

s
∶ s

s
) , and

it is quite common in FORTRAN 77 style code. For example:

Example 1 Array slicing

integer a, s

dimension a(5,7), s(3)

s = a(2,1:5:2)

The array s will be populated with the values from a(2,1), a(2,3) and a(2,5). From

a type checking perspective, we need to check if the slice has the correct type, in this

case the same type as the array to which it is assigned.

For a given tuple (b
i
, e

i
) from d, a slice is valid (i.e. within bounds) if

b
s
≥ b

i
, e

s
≤ e

i
, s

s
≤ e

i
− b

i
 . We will call the set of indices in the slice a DimSlice,

and it is given by

, and we’ll denote this as DimSlice b e s.

The type of a sliced array is determined from the DimSlice as follows:

• let the array a has Dim d, d = (p1,… , pi,… , pk) , and we slice the tuple pi with a

valid slice s
i
= DimSlice b

s
e

s
s

s
.

• Then this results in a new p�
i
= (1, #si)

• and therefore a new Dim d’, d� = (p1,… , p�
i
,… , pk)

DimSlice = {idx|idx ∈ [b, e] ∧ (idx − b)mod }

2999

1 3

Making legacy Fortran code type safe through automated program…

• and thus a new array type with the same scalar type as a and dimension d′

To be type safe, the size of the DimSlice must be known at type check time. This

implies that the components b, e, s of the slice must be constant. If so, we can deter-

mine the size of the slice and thus check that the new type is correct given the con-

text. In practice, our compiler performs aggressive linear constant folding, which

means that an linear expression with constants as leaf nodes will be reduced to a

constant. If the size of the DimSlice is only known at run time, our compiler allows

to insert run-time checks as explained in “Appendix A2.1”.

Arrays as indices Fortran also allows arrays to be indexed by other arrays, for

example

Example 2 Arrays as indices

integer a(5,5), b(3), k(3)

k = (/ 1, 5, 2 /)

b = a(2, k)

The array b will contain the values from a(2,1), a(2,5) and a(2,2) in that order.

The array to be used for indexing must be an array of rank 1 that contains the

indices of the locations to be accessed, just like a DimSlice. Thus, the requirement

for type safety is the same (the size of the array), and the criterion for the array to be

valid for indexing is that all elements must be in the valid index range for the given

array index. If the index range is only known at run time, our compiler allows to

insert run-time checks as explained in “Appendix A2.2”.

Bounds checking Fortran checks constant array bounds at type check time, and

our compiler performs a more aggressive constant folding so that any index reduc-

ible to a constant with linear arithmetic will be considered constant. However,

in general array indices are not known at type check time and therefore even in a

well typed program, it is still possible to have out-of-bound errors. Fundamentally,

index checking is not type checking because it concerns the actual values and has

to be performed at run time. All modern Fortran compilers provide this option, e.g.

-fcheck=bounds in the GNU gfortran.

4.4.4 Subroutines and functions

As explained in Sect. 4.2, every Fortran subroutine or external function can be trans-

formed into a pure function. Intrinsic functions are pure by definition. From a type

checking perspective, the difference between a Fortran function (external or intrin-

sic) and subroutine is that a function call can occur in an expression, and therefore

has a return type, and a subroutine call is a statement and so has no return type. As

explained before, we consider both subroutines and functions to be pure in the sense

that any interaction with the code is via the arguments and return value.

• The subroutine declaration typing rule is that every dummy argument must be of

a valid Fortran type. A subroutine does not return a type, we denote this by using

void.

3000 W. Vanderbauwhede

1 3

• The subroutine application (call) typing rule is that every call argument and

every dummy argument must have the same type. Because a subroutine call is a

statement, it does not return a type.
• The external function declaration typing rule is that every dummy argument

must be of a valid Fortran type. An external function must have a return a type.
• The function application typing rule is also that every call argument and every

dummy argument must have the same type. In that case, the function application

is of the type of the return type.

Higher-order functions In the above, we have glossed over one important detail: sub-

routines and external functions can take the names of other subroutines or external

functions as arguments. The case of an external functions is covered by the above

typing rules because the function passed as argument has as type the return type and

as such is indistinguishable from a variable. A subroutine passed as an argument

however does not have a type, so we have to add void to the set of types that can are

valid for arguments of a subroutine or function.

The f77 specification §8.7 EXTERNAL Statement requires that any external func-

tion or subroutine used as an argument is declared using the EXTERNAL statement.

Omitting this declaration results in a type error.

Strictly speaking this means that External is a type attribute for functions or

subroutines. However, for the purpose of this paper we will not extended type but

instead group the EXTERNAL functions in a separate context. The actual type

checking of higher-order functions is not possible at compile time. In “Appen-

dix A2.3”, we present an algorithm for run-time type checking via the construction

of a sum type of the higher-order functions in a compute unit.

4.4.5 Assignments

Because in Fortran the assignment is a statement, it does not return a type. There-

fore, the type check rule for an assignment of a variable v declared in the code unit

Γ to an expression e which may contain any variable v
i
 declared in the code unit Γ is

that the variable and the expression must be of the same type.

According to the f77 specification, only assignments to variables and array ele-

ments are valid, but the extension to arrays as in Fortran 90 is very common. The

above typing rule does not limit the type check to scalars, so array assignments will

type check if the types match.

4.4.6 Expressions

Expressions can consist of constants, variables, operators and calls to intrinsic or

external functions.

Polymorphic numeric operators Numeric operators in Fortran are polymorphic,

i.e. they can handle operands of any numeric type. We write ‘any numeric type’

using a type variable and a constraint: Num a

• The operators +,-,* have type:

3001

1 3

Making legacy Fortran code type safe through automated program…

 For any type a that is a valid numeric type (see Definition 1 in “Appen-

dix A1.1”), the operator takes two arguments of that type a and returns an argu-

ment of that type a.

• The operator ** also has the type

 except when the exponent is an integer, in which case the type is:

 i.e. raising any numeric type to an integer power preserves the type.
• The unary - operator is also polymorphic with type

• In Fortran 90, all the above operators also work on arrays
• Comparison operations .lt., .le.,.eq.,.ne.,.gt.,.ge. are all of type

Polymorphic intrinsics Many intrinsic functions are also polymorphic. For the types

of intrinsic functions, we refer to Table 5 in the f77 specification.

• Intrinsics are either of type

 except for

 or of type

 except for

• The intrinsics min and max take a list of arguments of a given type and unde-

termined length (denoted by […])

 except

Num a ⇒ a → a → a

Num a ⇒ a → a → a

Kind k, Num a ⇒ a → Integer ∗ k → a

Num a ⇒ a → a

Num a ⇒ a → a → Bool

Num a ⇒ a → a

���� ∶ Kind k ⇒ Complex ∗ k → Real ∗ k

Num a ⇒ a → a → a

����� ∶ Real ∗ 4 → Real ∗ 4 → Real ∗ 8

Num a ⇒ [a] → a

�����, ����� ∶ [Integer ∗ 4] → Real ∗ 4

����, ���� ∶ [Real ∗ 4] → Integer ∗ 4

3002 W. Vanderbauwhede

1 3

Expression type rule

The expression forms a tree of applications of either operators or intrinsic func-

tions, with the leaves being constants or variables. Type checking is performed via

recursive descent.

4.4.7 Type conversions for polymorphic operators

The f77 specification defines specific intrinsic functions int, real, dble and

cmplx for the purpose of type conversion (Table 5), and the Fortran 90 specifica-

tion extends these to include the kind (thereby making dble redundant). Their sig-

natures are, respectively:15

As the name and the kind argument identify a Num type, for the typing rules we use

the generic notation16

Fortran allows implicit type conversions (coercion) for operators and assignments,

according to some simple subtyping rules.

A type �
1
 is a subtype of a type �

2
 if it is safe to use a term of type �

1
 in an context

that expects a term of type �
2
 . We denote this as �

1
<∶ �

2
 .

The following (transitive) subtyping relations apply to numeric Fortran types:

Therefore, we can generalise the type conversion rules from Table 2 Type and Inter-

pretation of Result for x
1
+ x

2
 of the f77 specification formally as:

if�
1
<∶ �

2
then the type conversion rule is cast⟨�

2
⟩ e

1
op e

2
 so the type of the

expression is �
2
 ; if �

2
<∶ �

1
 then it is e op cast⟨�

1
⟩ e

2
 and the type of the expression

is �
1
 , with op = +,-,*,/ or **.17

As for the relational operators .lt., .le., .eq., .ne., .gt., .ge., according to the f77

specification §6.3.3 Interpretation of Arithmetic Relational Expressions:

��� ∶ Num a, Kind k ⇒ a → k → Integer ∗ k

���� ∶ Num a, Kind k ⇒ a → k → Real ∗ k

����� ∶ Num a, Kind k ⇒ a → k → Complex ∗ k

cast⟨�2⟩ ∶ Num �1, �2 ⇒ �1 → �2

Integer ∗ k <∶ Real ∗ k, k ∈ Kind

Real ∗ k <∶ Complex ∗ k

t ∗ k1 <∶ t ∗ k2, k1 < k2 ∈ Kind, t ∈ NumType

15 The actual signature for cmplx is more complicated because it can be used to construct a complex

number from two reals, but for the purpose of type conversion, the presented signature suffices.
16 In Fortran 90, the type conversion functions can take an array operand:

cast⟨�2⟩ ∶ Num �1, �2, Dim d ⇒ Array �1 d → Array �2 d.
17 Unless the exponent of ** is an integer, in which case there is no type conversion.

3003

1 3

Making legacy Fortran code type safe through automated program…

If the two arithmetic expressions are of different types, the value of the rela-

tional expression e1 relop e2 is the value of the expression ((e1) -

(e2)) relop 0

Therefore, the type conversion rules are very similar, the only difference is that the

type of the expression is Bool.

4.4.8 Type conversion of assignments

For assignments, the f77 specification states that the assignment is typed according

the following rules:

Execution of an arithmetic assignment statement causes the evaluation of the

expression e by the rules in Sect. 6, conversion of e to the type of v , and defi-

nition and assignment of v with the resulting value, as established by the rules

in Table 4.

This means that e is implicitly converted to the type of v even if the conversion is

unsafe. Strictly speaking, this is a type error, and if we type check e.g. Example 3

using the GNU Fortran compiler with flags as shown in Example 4, we do indeed

get a type error.

Example 3 Unsafe coercion

program unsafeCoercion

 integer i1,i2

 real r1

 r1 = 0.14159

 i1=3

 i2 = i1+r1

end

Example 4 Output from g77 for program unsafeCoercion

g77 -fsyntax-only -Werror=conversion

test_type_coercion.f

test_type_coercion.f:6:11:

6 | i2 = i1+r1

| 1

Error: Possible change of value in conversion from REAL(4) to INTEGER(4) at

(1) [-Werror=conversion]

However, this behaviour is so common that by default, Fortran compilers only

warn about unsafe conversions, and then only when warnings are enabled. Our com-

piler warns by default and converts the implicit type conversion to an explicit con-

version as shown in Example 5. Thus the resulting code is type safe, and we assume

that the explicit conversion is what the programmer wants.

3004 W. Vanderbauwhede

1 3

Example 5 Explicit conversion

program unsafeCoercion

 integer :: i1,i2

 real :: r1

 r1 = 0.14159

 i1=3

 i2 = int(i1+r1,4)

 end program unsafeCoercion

4.5 Conclusions regarding the type safety of the Fortran type system

Based on the above analysis, we conclude that FORTRAN 77 programs that are

explicitly typed and consist of pure functions are type safe, except for three specific

constructs: array slicing and array indexing with values that are unknown at com-

pile time and higher-order functions. Current compilers guarantee type safety if the

slice indices or the arrays used as index are constant, and also if the array used for

indexing is of the wrong rank. However, if the indices are non-constant expressions,

potentially unsafe programs pass without warning or error. Our compiler will issue

a type error, which can be relaxed to warning or run-time type check, rather than

ignoring the potential unsafe behaviour.

Calls to functions passed as arguments to other functions (i.e. higher-order func-

tions) are fundamentally unsafe because the type signature of Fortran functions and

subroutines does not contain the information about the types of the arguments. We

present a novel run-time check which is equivalent to constructing a sum type for all

external functions and type checking the variants.

In principle, some type coercions are also unsafe. However, unsafe type coercions

are recognised by current compilers, and the compiler can produce a warning or

error if the option is enabled. So type coercions don’t compromise the type safety.

Our compiler follows this convention.

In conclusion, FORTRAN 77 programs that are explicitly typed and consist of

pure functions are almost entirely type safe at compile time and can be made entirely

type safe through the addition of run-time type checks for array slicing and array

indexing with values that are unknown at compile time and higher-order functions.

In the next sections, we discuss the transformations required to ensure that the

resulting programs are explicitly typed and consist of pure functions.

5 The problem for type safety: loss of type information

From the perspective of this paper, the main problem with COMMON blocks and

EQUIVALENCE associations is that they are not type safe: the f77 specification

does not mention any typing rules and in practice, any datum stored in a common

block loses all type information.

3005

1 3

Making legacy Fortran code type safe through automated program…

This means in particular that there is no type coercion between real (and by

extension complex) and integer values in COMMON blocks. The same is true for

EQUIVALENCE statements: they associate different names with the same memory

location, but the type of the word written to the memory location is erased. There-

fore, the following is legal and does not generate any warnings, but is incorrect

Example 6 Loss of type information in EQUIVALENCE

integer*4 i1

real*4 r1

equivalence (i1,r1)

i1 = 42

print *, r1 ! prints 5.88545355E-44

r1 = 42

print *, i1 ! prints 1109917696

What happens is that there is a sequence of four bytes stored in memory and ref-

erenced by both i1, which results in it being interpreted as a 32-bit signed integer in

2’s complement format, and r2, which results in it being interpreted as a 32-bit real,

i.e. an IEEE 754 single-precision floating point number. There is no information in

the sequence of four bytes to indicate which interpretation is the correct one.

6 Program transformations for type safety

In the preceding sections, we analysed the type safety of a FORTRAN 77 program

that consists of pure functions and where all variables, parameters and functions are

explicitly typed. In this section, we show how any FORTRAN 77 program can be

transformed into an equivalent program with these properties. First, we show how

to transform side-effect-free procedures into pure functions. Then we discuss how

to remove COMMON blocks in a type-safe manner. Because of the assumptions

that our procedures do not contain I/O calls or external library calls, the COMMON

blocks are the only source of potential side effects.

6.1 Transforming side-effect-free Fortran subroutines into pure functions

A side-effect-free FORTRAN 77 subroutine can be translated into a pure function as

shown in Algorithm 1, which is linear in the number of subroutine arguments:

3006 W. Vanderbauwhede

1 3

In words, a’ does no longer contain any element with INTENT InOut; y is the tuple

of all elements from a’ with intent Out and a” is the tuple of all arguments of a’ with

INTENT In. In this way, we have identified the function arguments and the function

return value and their types. So regardless of the subroutine syntax, with this infor-

mation it is now a pure function as far as its arguments are concerned. For an exter-

nal function, the algorithm is the same but the return value tuple includes the original

return value.

6.2 Inferring the INTENT of procedure arguments

Because the subroutines to be offloaded cannot contain external calls or I/O calls, once

all COMMON variables have been transformed into subroutine arguments, we can

infer the INTENT of all procedure arguments by recursive descent into nested calls, as

shown in Algorithm 2:

3007

1 3

Making legacy Fortran code type safe through automated program…

The INTENT reflects if a subroutine argument is accessed read-only (In),

write-only (Out) or read-write (InOut) in the subroutine. To determine the

INTENT of an argument in a leaf subroutine, we use Algorithm 3:

• Inspect every statement that accesses one or more of the subroutine arguments

(i.e. all expressions and procedure calls, including intrinsic calls) in order of

occurrence.
• Based on the type of statement, it is possible to determine how a variable is

accessed (Read, Write or Read-Write).

• Initially, the INTENT of an argument is Unknown because the f77 specifi-

cation does not support the INTENT attribute.
• Based on the access pattern in the subroutine, set the INTENT to In, Out or

InOut.
• Once an INTENT has been set to InOut, there is no need to look at any

remaining statements.
• If the INTENT is set to In or Out, further statements can result in a change

to InOut. In that case,inspect all further statements in the subroutine.

• The INTENT of an argument is determined based on its access in a statement

using Algorithm 4.

The combined algorithm has linear complexity in terms of the total number of

nodes in the call tree and the number of arguments of each subroutine.

3008 W. Vanderbauwhede

1 3

6.3 Transforming IMPLICIT typing into explicit typing

According to §4.1.2 Type Rules for Data and Procedure Identifiers of the f77 speci-

fication, in FORTRAN 77 a variable

may have its type specified in a type-statement (8.4) as integer, real, double

precision, complex, logical or character. In the absence of an explicit decla-

ration in a type-statement, the type is implied by the first letter of the name.

A first letter of I, J, K, L, M or N implies type integer, and any other letter

implies type real, unless an IMPLICIT statement (8.5) is used to change the

default implied type.

An IMPLICIT statement specifies a type for all variables that begin with any letter

that appears in the specification. From a type safety perspective, the problem with

this typing discipline is no referential transparency, i.e. if the name of a variable

changes then the result of a computation may change. As our aim is to create pure

functional code, our compiler infers explicit type declarations (“type-statements” in

the f77 specification) for all implicit typed variables.

The algorithm for this (Algorithm 4) is straightforward. It is linear in terms of the

number of undeclared variables in the code unit.

6.4 Transforming COMMON blocks into procedure arguments

The f77 specification defines the semantics of the COMMON statement in §8.3

COMMON Statement:

The COMMON statement provides a means of associating entities in different

program units. This allows different program units to define and reference the

same data without using arguments, and to share storage units.

The f90 specification (§5.5.2 COMMON statement) has a slightly different wording:

3009

1 3

Making legacy Fortran code type safe through automated program…

The COMMON statement specifies blocks of physical storage, called common

blocks, that may be accessed by any of the scoping units in a program. Thus,

the COMMON statement provides a global data facility based on storage asso-

ciation.

Storage sequences are used to describe relationships that exist among vari-

ables, common blocks and result variables. Storage association is the asso-

ciation of two or more data objects that occurs when two or more storage

sequences share or are aligned with one or more storage units.

As explained above, the main reason to remove COMMON blocks is to create pure

functions that don’t share a memory space with their caller code unit. This is an

essential requirement for offloading to accelerators. However, type-safe removal of

COMMON blocks and rewriting of EQUIVALENCE statements also guarantees

that the resulting code is type-safe.

Our approach is to convert COMMON block variables into subroutine argu-

ments. The more common approach of conversion into module-scoped variables

is not suitable for our purpose because it does not result in pure functions. (Fur-

thermore, because of the difference in semantics of storage association and module

scoped variables, this approach only works for COMMON blocks where all vari-

ables are aligned, whereas COMMON blocks allow overlapping sequences). One

of the main contributions of this paper is in this conversion and the associated type

checks, presented in the next section (Sect. 7).

In the following sections, we use suffix or subscript c to indicate variables from

the caller and l to indicate variables local to the callee.

6.4.1 Construct the COMMON block chain

In a subroutine call chain, it is not necessary for a COMMON blocks to occur in the

caller. It is sufficient that the COMMON block used in a called subroutine occurs

somewhere in the call chain. As a consequence, it is not generally possible to asso-

ciate the COMMON block variables in a called subroutine with those of the caller.

For example:

Example 7 COMMON block chain

program ex1

 common /bf2/x

 common /bf1/y

 call f1

end program ex1

subroutine f1

 common /bf1/y1

 call f2

end subroutine f1

subroutine f2

3010 W. Vanderbauwhede

1 3

 common /bf2/x2

end subroutine f2

In this example, x2 in f2 is associated with x in the main program

Example 8 Passing arguments through the call chain

program ex1

 call f1(x,y)

end program ex1

subroutine

 f1(x,y1)

 call f2(x)

 ! ...use y1 ...

end subroutine f1

subroutine f2(x2)

 ! ...use of x2

end subroutine f2

So, the argument for f2 has to be passed via f1 from the main program. Therefore,

we need to analyse the code for the call chain paths between disjoint COMMON

blocks and pass all arguments via the intervening calls. This also requires check-

ing if the names are unique an renaming if necessary. The result of this analysis

is that for every called subroutine, we have a pair consisting of the common block

sequence that will become the call arguments, and the common block sequence that

will become the dummy arguments.

6.4.2 Associate COMMON block variables in procedure calls with the caller

To create the call arguments and dummy arguments, we need to identify which vari-

able in the caller sequence matches which in the subroutine call sequence (called the

‘local’ sequence for brevity). This is complicated by the fact that storage sequences

are allowed to overlap and do not follow the normal type checking rules. For exam-

ple, the following is acceptable:

Example 9 Overlapping sequences

! caller

real xc(8),z1c,z2c

complex yc

common yc,xc,z1c,z2c

! local real xl(2),zl(4)

complex yl(3)

common yl,xl,zl

3011

1 3

Making legacy Fortran code type safe through automated program…

The COMMON statements in Example 9 leads to following associations:

complex yl(1) complex yc(1)

complex yl(2) real xc(1), xc(2)

complex yl(3) real xc(3), xc(4)

xl real xc(5:6)

zl(1:2) real xc(7:8)

zl(3) real z1c

zl(4) real z2c

Given that the associations type check correctly, then it follows that for every

variable in a COMMON block declared in the caller, there is a corresponding

variable in the called subroutine. In practice, these variables can be either arrays

or scalars. Whereas for the purpose of type checking, we have assumed that all

variables are scalar, again without loss of generality, we will now assume that all

variables are arrays. A scalar s is simply syntactic sugar for the first element of an

array of size 1, s(1). This is merely to keep the rules more compact. As before, we

traverse every array using a linear index starting at 1.

Because it is possible for arrays from the caller and arrays in the called subrou-

tine to overlap in both directions, our strategy for converting the COMMON vari-

ables into dummy parameters is as shown in Algorithm 5. This algorithm is linear

in terms of the total number of matching sequences in all common blocks, which

is of the same order as the number of variables in the blocks but much smaller

than the total storage size of the blocks.

The compiler maintains a global state record. The state information of each

subroutine, st, is used in updateDim for evaluation of the array bounds.

the sequence cseq consists of tuples of the type declaration decl and the linear

index idx in the COMMON block

cseq = (decl1, idx1),… , (decli, idxi),…)

3012 W. Vanderbauwhede

1 3

For every array variable, the type declaration contains a Dim field d which is an

array of (start index, end index) tuples, with total size sz.

The list of equivalence pairs eqps contains the matched up declarations of the

original COMMON block variables of the called subroutine and the COMMON

block variables of the caller that constitute the new arguments to the subroutine. The

caller variables are prefixed with the name of the block and the caller subroutine.

The matching algorithm traverses the local sequence cseq
c
 and matches each ele-

ment to one or more elements of the caller sequence cseql . The algorithm (Algo-

rithm 6) is iterative and stops when the local sequence has been consumed and

returns eqps.

In the calls to updateDim, the subscript e in idx
l|c,e

indicates the end of the com-

mon block sequence; 1 is the start of the sequence. The ∙ separates an element from

the rest of a list. On the left-hand side, it means the element is removed from the list,

on the right-hand side it means the element is added.

6.5 Removal of EQUIVALENCE statements

According to §8.2 EQUIVALENCE Statement of the f77 specification,

An EQUIVALENCE statement is used to specify the sharing of storage units

by two or more entities in a program unit. This causes association of the enti-

ties that share the storage units. If the equivalenced entities are of different

data types, the EQUIVALENCE statement does not cause type conversion or

imply mathematical equivalence. If a variable and an array are equivalenced,

the variable does not have array properties, and the array does not have the

properties of a variable.

This is another form of storage association, with the same issue that it is not type-

safe. For example, the equivalence between vb2 and d1 or r1 in Example 10 is a type

error but passes silently because the f77 specification does not mandate an error or

even a warning.

3013

1 3

Making legacy Fortran code type safe through automated program…

Example 10 Unsafe equivalence

program test_equivalence

 implicit integer (i,v)

 dimension vb2(8)

 logical l2(8)

 double precision d1(4)

 real*4 r1(8)

 ! not type safe, in fact plain wrong

 equivalence (vb2,d1)

 equivalence (vb2,r1)

 ! This is OK

 equivalence (vb2,l2)

 equivalence (r1,l2)

 ...

end

Therefore, EQUIVALENCE statements also need to be refactored. They come

with their own flavour of complications.

6.5.1 Transitivity

If a line has multiple tuples, a variable can occur in more than one tuple, e.g.:

(v1,v2),(v2,v3)

So, we must effectively do a transitivity check across all tuples. We do this by

checking if an element of a tuple occurs in another tuple. It is sufficient to do this

for a single element because the transitivity means that every element from the one

tuple will be associated with every element from the other.

6.5.2 Quadratic complexity

Furthermore, the tuples (called lists in the spec) can have more than two elements.

(v1,v2,v3),(v3,v4,v5)

then this effectively means (v1,v2,v3,v4,v5), and each of these variables is

associated with all the others, so there are 10 unique associations in this example. In

general, for a tuple of n values, there will be (n − 1).n∕2 associations.

This algorithm therefore has quadratic complexity but fortunately the number of

associated variables in a program is never very large.

6.5.3 Overlapping ranges

A final complication is that overlapping is allowed, e.g.:

3014 W. Vanderbauwhede

1 3

Example 11 Overlap in EQUIVALENCE

dimension rade11(5), rade12(5)

equivalence (rade11(4), rade12(2))

Because the arrays start at 1, and they overlap, this actually creates an equiva-

lence between RADE11(3), RADE12(1) and RADE11(5), RADE12(3) as

well. So, we have to equate the overlapping ranges.

6.5.4 Equivalence pairs

Taking the above into account, we can create a set of pairs identifying the scalar

variables or array accesses that are equivalent. We call these “equivalence pairs”.

To be able to remove the EQUIVALENCE statements, we must insert additional

assignment after every statement where one of more of the variables that is part of

an equivalence pair gets modified. The possible cases are

• If the one of the variables in an equivalence pair, v
l
 , is local, and the other is an

argument a that results from refactoring a COMMON block, then we need an

initial assignment v
l
= a.

• Any variable on the left-hand side of an assignment
• Any argument to a subroutine or function call that is used with INTENT Out or

InOut.

The construction if the equivalence pairs is shown in Algorithm 7. As before, we

consider array accesses as syntactic sugar for indexed scalars, so that we don’t need

to distinguish between scalars and arrays. The algorithm constructs a set of pairs

EquivalencePairs from the original tuples in the EQUIVALENCE statements, tak-

ing into account transitivity. It then groups the pairs into pairs tuples Equivalence-

Sets. The set EquivalenceVars is the set of the first element of each pair.

3015

1 3

Making legacy Fortran code type safe through automated program…

The algorithm to replace the EQUIVALENCE statements by assignments is

shown in Algorithm 8. It is linear in the number of occurrences in the code unit of

variables that occur in the set of equivalence pairs.

3016 W. Vanderbauwhede

1 3

6.6 Summary of program transformations

The algorithms presented in this section transform the code units of a FORTRAN 77

program into side-effect-free pure functions. All arguments and local variables are

explicitly, statically typed using the algorithm from Sect. 6.3.

As a prerequisite to the actual transformation into pure functions (Sect. 6.1), we

inferring the INTENT of procedure arguments using the algorithm from Sect. 6.2.

3017

1 3

Making legacy Fortran code type safe through automated program…

To ensure type safety of the transformations, the type checks presented in Sect. 7

are performed before the COMMON and EQUIVALENCE statements are elimi-

nated using the algorithms presented in Sects. 6.4 and 6.5.

7 A novel type checking algorithm for COMMON blocks
and EQUIVALENCE associations

In Sect. 4, we analysed the type safety of a FORTRAN 77 program that consists

of pure functions and where all variables, parameters and functions are explicitly

typed. In Sect. 6, we have presented the algorithms to transform any FORTRAN

77 program into an equivalent program with these properties. In particular, we dis-

cussed how to remove COMMON blocks and EQUIVALENCE associations. In

this section, we present a novel algorithm to type check variables in COMMON

and EQUIVALENCE statements. If the type check passes, then COMMON and

EQUIVALENCE statements can be safely removed. Otherwise, it means the code

is not type safe and in practice most likely incorrect. If the original code passes the

type check then the transformed code without COMMON and EQUIVALENCE

statements will be type safe when checked with any of the major Fortran compilers.

As discussed in Sect. 5, COMMON blocks and EQUIVALENCE associations

simply associate memory storage with variable names, but do no preserve the origi-

nal type information, nor do they attempt type conversion. Because of this, the type

checks presented here are different from the type checks discussed in Sect. 4.

For the purpose of type checking, and without loss of generality, we assume that

all variables are scalar: an array a is considered as syntactic sugar for an ordered

collection of scalars with names a(i). We further assume all arrays are linear and

traversed using an index starting at 1.

The rules for type soundness of COMMON and EQUIVALENCE statements are

shown in Algorithm 9. The suffix l refers to the sets and variable local to a proce-

dure, the suffix c to variable in the code unit of the the caller of the procedure. This

algorithm has linear complexity in terms of the total number of variables in all com-

mon blocks in a program.

3018 W. Vanderbauwhede

1 3

• Kind matching (rule-kind) A scalar type is atomic, and therefore we cannot split

the type, which would be the case if we attempted to map types with different

kinds. If K
c
 and K

l
 are the ordered sets of the kinds of all variables associated via

the COMMON block then

• No COMMON block extension in the called subroutine (rule-size) A word is a

sequence of bytes. The ordered set of kinds indicates the size of each word in

the ordered set of words in a COMMON block. The ordered set of words in a

COMMON block accessed from a subroutine must be no larger than the size of

K
c,i = K

l,i, ∀i ∈ #K
l

3019

1 3

Making legacy Fortran code type safe through automated program…

the COMMON block in the caller, because otherwise the caller would not have

declared the corresponding typed variables. If W
l
 and W

c
 are the ordered sets of

all words associated via the COMMON block then

• Logical coercion (rule-logical) The default rule (rule-default, see below) is that

all types must match between the sequence of variables in the caller and the

called subroutine. However, this rule is too strict: there are two cases in which

type coercion is sound. Let T
c,i

 and T
l,i

 be the types of corresponding words in the

ordered sets associated via the COMMON block. The first case involves logicals:

 A logical is false when coerced from 0 and true otherwise. Therefore interpret-

ing a logical as an integer gives 1 or 0, and interpreting an integer or real as a

logical will return correct values of .true. or .false.. Therefore, interpret-

ing a logical as a real is only correct for .false. because the value of .true.

interpreted as a real is a non-zero number that depends on the kind of the real. As

this is quite non-intuitive, our type checker therefore throws an error on attempts

to interpret a logical as a real.
• Complex coercion (rule-complex) The second case involves complex numbers,

which can be coerced to and from two contiguous real numbers:

• Default rule (rule-default) In all other cases, the types must match:

• Thus the overall type check rule becomes:

With these type checking rules, we can type check the soundness of associations

in COMMON blocks and EQUIVALENCE statements. If the associations are cor-

rectly typed, we can proceed to remove them as discussed in Sect. 6.1.

8 Conclusions

In this paper, we have formally analysed the type safety of FORTRAN 77 pro-

grams. We have shown that FORTRAN 77 programs that are explicitly typed

and consist of pure, side-effect-free functions are type safe at compile time with

the exception of array slicing and array indexing with values that are unknown

#W
l
≤ #W

c

⎧
⎪
⎨
⎪
⎩

T
c,i = logical ∧ T

l,i = integer

T
c,i = integer ∧ T

l,i = logical

T
c,i = real ∧ T

l,i = logical

{

T
c,i = complex ∧ T

l,i = real ∧ T
l,i+1 = real

T
c,i = real ∧ T

c,i+1 = real ∧ T
l,i = complex

T
l,i = T

c,i ,∀i ∈ #K
l

rule-kind ∧ rule-size ∧(rule-logical ∨ rule-complex ∨ rule-default)

3020 W. Vanderbauwhede

1 3

at compile time, and higher-order functions, and that even these features can be

made entirely type safe through the addition of run-time type checks for these

features.

We have presented the algorithms for transforming arbitrary FORTRAN 77

programs into explicitly typed, type-safe code consisting of pure, side-effect-free

functions.

We have created a source-to-source compiler which implements the transfor-

mations and type checks presented in this paper and generates fully type safe For-

tran 90 code.

That FORTRAN 77 programs can be made entirely type safe through program

transformations is a significant finding in its own right. However, our work has

considerable benefits. The obvious benefit of type safety is fewer errors. Further-

more, our compiler transform legacy FORTRAN 77 code into modern, type safe

Fortran 90. And finally, because the resulting code consists of self-contained pure

functions, each of these functions can also be offloaded more easily to accelera-

tors such as GPUs or FPGAs. This is demonstrated by our work on automated

parallelisation and GPU-offloading [20].

Appendix 1: Formal de�nition of the FORTRAN 77 type system
and typing rules

A1.1: Set de�nitions of Fortran types and constants

With the conventions from Sect. 4.3, we can construct the sets of valid types for

FORTRAN 77 using set theory.

De�nition 1 The FORTRAN 77 type system

Type = {Integer, Real, Complex, Logical}

NumType = {Integer, Real, Complex}

Kind = {2n| n ∈ [0, 5]}

Scalar = {Type × Kind} , an element is denoted as Scalar t k or t*k

Num = {NumType × Kind} , an element is denoted as Num a

Bool = {Logical × Kind} , an element is denoted as Bool

Dim =
{

((b
i
, e

i
),… , (b

i
, e

i
),… , (b

k
, e

k
)),∀k, i ∈ [1, 7], b

i
, e

i
∈ ℤ, b

i
≤ e

i

}

 , so Dim

is a set of ordered sets of tuples, we denote an element as Dim d

Array = {Scalar × Dim} , and we denote an element of this set as Array (Scalar t

k) (Dim d)

FortranType = Scalar ∩ Array

Tuple = (�1 ×⋯ × �i ×⋯ × �k), ∀ i ∈ [1, k] | �i ∈ FortranType and we’ll write

Tuple t, where t = (�1,… , �
k
)

3021

1 3

Making legacy Fortran code type safe through automated program…

The forms of numeric constants are described in words in §4 Data Types and

Constants of the f77 specification. Using Extended Backus-Naur Form (EBNF,18),

we can describe them formally as show in Definition 2.

De�nition 2 EBNF for numeric constants

integer-constant ::= [sign] {digit}+

sign ::= + | -

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

real-constant ::= [sign] {digit}* decimal-point {digit}* [real-exponent]

| [sign] {digit}+ [decimal-point {digit}*] real-exponent

decimal-point ::= .

real-exponent ::= E [sign] {digit}+

double-constant ::= [sign] {digit}* decimal-point {digit}* [double-exponent]

| [sign] {digit}+ [decimal-point {digit}*] double-exponent

double-exponent ::= D [sign] {digit}+

complex-constant ::== (real-constant , real-constant)

logical-constant ::== .TRUE. | .FALSE.

numeric-constant ::== integer-constant | real-constant | double-constant | com-

plex-constant | logical-constant

We define the set of numeric constants in terms of the above:

The general form of a type � in Fortran 77

De�nition 3 General form a type � in Fortran 77

A1.2: Fortran typing rules

With the above definitions for the types, the typing rules for FORTRAN 77,

described and discussed in Sect. 4, can be formally expressed as follows:

NumConstants = {n | n is a numeric constant}

(7)

�∶∶ =

FortranType primitive type

|Tuple tuple type

|� → � function type

|void non-type

|a type variable

18 https:// www. w3. org/ TR/ 2008/ REC- xml- 20081 126/# sec- notat ion.

https://www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

3022 W. Vanderbauwhede

1 3

n ∶ Num
.∀ n ∈ NumConstants [CONST]

Γ ⊢ s ∶ �s = Scalar t k
[SCALAR]

Γ ⊢ a ∶ �a = Array (Scalar ta ka) (Dim d)
[ARRAY DECL]

k = #d

Γ ⊢ a ∶ �a Γ ⊢ ji ∶ Integer,∀ i ∈ [1, k]

Γ ⊢ a(j1,… , ji,… , jk) ∶ �s = Scalar ta ka

[ARRAY ACCESS]

FortranType ∩ {void}�
�
⇒ sf ∶ �

�
→ void

[SUB DECL]

FortranType ∩ {void}�
�
⇒ sf ∶ �

�
→ void Γ ⊢ �

�
∶ �

�

Γ ⊢ ���� sf ek ∶ void
[SUB CALL]

FortranType�
�
, �f ⇒ f ∶ �

�
→ �f

[FUN DECL]

FortranType�
�
, �

�
⇒ f ∶ �

�
→ �f Γ ⊢ �

�
∶ �

�

Γ ⊢ f �
�
∶ �f

[FUN CALL]

Γ ⊢ v ∶ � Γ(vi) ⊢ e(vi) ∶ �

Γ ⊢ v ← e ∶ void
[ASSIGN]

binop ∈ {+,−, ∗, ∕, ∗∗}

Num a Γ ⊢ e1 ∶ a Γ ⊢ e2 ∶ a binop ∶ a → a → a

Γ ⊢ binop e1e2 ∶ a
[EXPR]

op ∈ {+,−, ∗, ∕, ∗∗}

Num �1, �2

�1 <∶ �2

Γ ⊢ e1 ∶ �1 Γ ⊢ e2 ∶ �2 op ∶ Num a ⇒ a → a → a

Γ ⊢ op cast⟨�2⟩ e1 e2 ∶ �2

[BINOP]

relop ∈ {<,≤,=,≠,>,≥}

Num �1, �2

�1 <∶ �2

Γ ⊢ e1 ∶ �1 Γ ⊢ e2 ∶ �2 relop ∶ Num a ⇒ a → a → Bool

Γ ⊢ op cast⟨�2⟩ e1 e2 ∶ Bool
[RELOP]

Num �1, �2

�2 <∶ �1

Γ ⊢ v ∶ �1 Γ(xi) ⊢ e(xi) ∶ �2

Γ ⊢ v ← cast⟨�1⟩ e ∶ void
[ASSIGN SAFE CONV]

Num �1, �2

�1 <∶ �2

Γ ⊢ v ∶ �1 Γ(xi) ⊢ e(xi) ∶ �2

Γ ⊢ v ← cast⟨�1⟩ e ∶ void
[ASSIGN UNSAFE CONV]

3023

1 3

Making legacy Fortran code type safe through automated program…

Appendix 2: Run-time type checks

There are a few cases where type safety can’t be guaranteed at compile time. For

these cases, our compiler allows to insert run-time type checks.

A2.1: Run-time size checking for arrays slicing

If it is not possible to determine the size of the slice, our compiler will issue a type

error. This can be relaxed to warning, in which case the compiler will insert a run-

time check, for example:

Example 12 Run-time check for array slicing

integer a, s, i

dimension a(5,7), s(3)

! compute a, s, i

 if (size(s)==size(a(2,1:i:5)) then

 s = a(2,1:i:5)

 else

 print *, ’Type error: s and a(2,1:i:5) have a different SIZE’

 call exit(0)

 end if

In this way type, safety of non-constant array slices can be enforced at run time.

Because the array slice assignment performs a data copy, the overhead of the if con-

dition, which only performs a size check, is negligible.

A2.2: Run-time size checking for arrays as indices

If it is not possible to determine the size of the array, the compiler will issue a

type error. This can be relaxed to warning, in which case the compiler will insert a

run-time check. This is simply an if-then-else with the condition that size(lhs

expr) == size(rhs expr). For example:

Example 13 Run-time check for arrays as indices

integer a(5,5), b(3), k(5), i

! compute a, b, k, i

 if (size(b)==size(a(2,k(3:i)))) then

 b = a(2,k(3:i))

 else

 print *, ’Type error: b and a(2,k(3:i)) have a different SIZE’

 call exit(0)

 end if

3024 W. Vanderbauwhede

1 3

In this way type, safety of non-constant array accesses can be enforced at run

time. Because the use of arrays as indices results in a data copy, the overhead of the

if condition, which only performs a size check, is negligible.

A2.3: Run-time checking of higher-order subroutines and functions

As subroutines and external functions can take the names of other subroutines or

external functions as arguments, FORTRAN 77 has limited supports higher-order

functions. The issue with the Fortran implementation of higher order functions is

how they are typed. Recall that we can transform any function or subroutine into a

pure function as discussed in Sect. 6.

Essentially, when a function f
1
(x) with type

is passed as argument to a function f
2
(f) , the type of f

2
 is

because in Fortran, only the return type of the passed function is used. The complete

type would be

So in Fortran the type of the argument(s) of f
1
 is not considered. Which means that

code can easily be unsafe, as illustrated in Example 14.

Example 14 Unsafe code with higher-order function call

t3 function f2(f)

 t2 :: f,y

 external f

 t1 :: x

 t4 :: z

 logical :: c

 ...

 if (c) then

 y = f(x)

 else

 y = f(z,x)

 end if

end function

The call to f(z,x) in the example, while patently wrong, will pass silently. For sub-

routines the situation is the same, the only difference is that there is no return type so

we use void as the type of the subroutine passed as argument.

Because the type information is incomplete, it is not possible to catch this type

of error at compile time. However, we propose here a novel approach to detect the

f
1
∶ t

1
→ t

2

f
2
∶ t

2
→ t

3

f
2
∶ (t

1
→ t

2
) → t

3

3025

1 3

Making legacy Fortran code type safe through automated program…

behaviour at run time and throw an error. To do so, we construct a so-called sum

type [6] at compile time. This is one kind of type used by many functional program-

ming languages called algebraic data types (the other kind are product types, i.e.

records), and it allows you to define a type with variants, so we can say “the type of

this expression either be A or B or C, etc.” . In particular, we use a sum type where

every type variant is a function type, something like

Then the type of the argument in the call becomes F but we can check which variant

has been selected because effectively each argument is tagged with the name of the

type variant. Fortran does not have such a type, but using an appropriate program

transformation we can achieve the same effect. The approach is as follows:

• The types of all functions that are allowed to be passed as argument are known

because these are the functions marked as EXTERNAL in the code unit contain-

ing the call (see Example 15)

Example 15 External

program functions_as_arguments

 external f3

 external f4

 t3 :: v1, v2, f2

 v1 = f2(f3,...)

 v2 = f2(f4,...)

end

t3 function f2(f,...)

 t2 :: f

 external f

 ...

end

t2 function f3(x)

 t1 :: x

 ...

end

t2 function f4(z,x)

 t1 :: x

 t4 :: z

 ...

end

• Make a list of the type signatures of these functions:

datatype F = F
1

t
1
→ t

2
|F

2
t
4
→ t

1
→ t

2
|F

3
…

F = [t1 → t2, t4 → t1 → t2,…]

3026 W. Vanderbauwhede

1 3

• The index in this list is a unique identifier for that type, F(1) refers to the first

type, F(2) to the second, etc.
• We add the index variable as an additional argument to the calling function

(Example 17) and use the index corresponding to the called function in the actual

call (Example 16)

Example 16 Indexed external functions

program functions_as_arguments

 external f3 ! 1

 external f4 ! 2

 t3 :: v1, v2, f2

 v1 = f2(1,f3,...)

 v2 = f2(2,f4,...)

end

t3 function f2(idx,f,...)

 integer :: idx

 t2 :: f

 external f

 ...

end

t2 function f3(t1)

 t1 :: x

 ...

end

t2 function f4(t4,t1)

 t1 :: x

 t4 :: z

 ...

end

• We can now use this index to identify the selected type variant, as shown in

Example 17. Every call to the function argument f is guarded by an if-then-else

statement checking if the index idx matches the actual index corresponding to

the variant. If this is not the case, a run-time type error is thrown. The variant

is determined by matching the signature of the call to the signatures in the sum

type.

Example 17 Identifying type variants using indexing

t3 function f2(idx,f)

 integer :: idx

 t2 :: f,y

 t1 :: x

3027

1 3

Making legacy Fortran code type safe through automated program…

 t4 :: z

 logical :: c

 ...

 if (c) then

 if (idx==1) then

 y = f(x)

 else

 print *, ’Type error: call does not match signature’

 call exit(0)

 end if

 else

 if (idx==2) then

 y = f(z,x)

 else

 print *, ’Type error: call does not match signature’

 call exit(0)

 end if

 end if

end function

This algorithm is formalised for subroutines as Algorithm 10; functions are

entirely analogous. In this way, type safety of higher-order functions can be enforced

at run time.

This algorithm has linear complexity in the number of functions passed as argu-

ments to a call. The run time overhead of the if condition is negligible for all but the

most trivial function calls.

Acknowledgements The author acknowledges the support of the UK EPSRC under Grant EP/L00058X/1

and Dr. C. Brys for improving the structure and flow of the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen

ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3028 W. Vanderbauwhede

1 3

References

 1. Abramson D, Lees M, Krzhizhanovskaya V, Dongarra J, Sloot PM, Yamamoto K, Uno A, Murai

H, Tsukamoto T, Shoji F, Matsui S, Sekizawa R, Sueyasu F, Uchiyama H, Okamoto M, Ohgushi N,

Takashina K, Wakabayashi D, Taguchi Y, Yokokawa M (2014) In: 2014 International conference

on computational science the k computer operations: experiences and statistics. Procedia Computer

Science, vol 29, pp 76–585

 2. ANSI A (1978) Standard x3. 9-1978, programming language Fortran (revision of ansi x2. 9-1966).

American National Standards Institute. Inc., NY, 197(8)

 3. Colbrook A, Smythe C (1990) Formal specification of data abstraction in Fortran 77: abstract

arrays. Softw Eng J 5(3):151–159. https:// doi. org/ 10. 1049/ sej. 1990. 0017

 4. Contrastin M, Rice A, Danish M, Orchard D (2016) Units-of-measure correctness in Fortran pro-

grams. Comput Sci Eng 18(1):102–107

 5. Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium.

NASA reference publication 1311

 6. Hudak P, Hughes J, Peyton Jones S, Wadler P (2007) A history of Haskell: being lazy with class.

In: Proceedings of the third ACM SIGPLAN conference on history of programming languages, pp

12–1–12–55

 7. Kämpf J (2009) Ocean modelling for beginners: using open-source software. Springer, Berlin

 8. Liao C, Quinlan DJ, Panas T, De Supinski BR (2010) A rose-based openmp 3.0 research compiler

supporting multiple runtime libraries. In: International workshop on OpenMP. Springer, Berlin, pp

15–28

 9. Maley D, Kilpatrick P, Schreiner E, Scott N, Diercksen G (1996) The formal specification of

abstract data types and their implementation in Fortran 90: implementation issues concerning the

use of pointers. Comput Phys Commun 98(1):167–180. https:// doi. org/ 10. 1016/ 0010- 4655(96)

00093-8

 10. Milner R (1978) A theory of type polymorphism in programming. J Comput Syst Sci 17(3):348–375

 11. Orchard D, Rice A (2013) Upgrading Fortran source code using automatic refactoring. In: Proceed-

ings of the 2013 ACM workshop on refactoring tools, WRT’13. ACM, New York, NY, USA, pp

29–32. https:// doi. org/ 10. 1145/ 25413 48. 25413 56

 12. Overbey J, Xanthos S, Johnson R, Foote B (2005) Refactorings for fortran and high-performance

computing. In: Proceedings of the second international workshop on Software engineering for high

performance computing system applications. ACM, pp 37–39

 13. Pierce BC, Benjamin C (2002) Types and programming languages. MIT Press, Cambridge

 14. Reid J (2018) The new features of Fortran 2018. In: ACM SIGPLAN fortran forum, vol 37. ACM

New York, NY, USA, pp 5–43

 15. Reid N, Wray J (1999) A prescriptive semantics of fortran 95. In: ACM SIGPLAN fortran forum,

vol 18. ACM New York, NY, USA, pp 2–3

 16. Scott N, Kilpatrick P, Maley D (1994) The formal specification of abstract data types and their

implementation in Fortran 90. Comput Phys Commun 84(1):201–225. https:// doi. org/ 10. 1016/ 0010-

4655(94) 90212-7

 17. Takemi T, Yoshida T, Horiguchi M, Vanderbauwhede W (2020) Large-eddy-simulation analysis of

airflows and strong wind hazards in urban areas. Urban Clim 32:100625

 18. Tinetti FG, Méndez M (2012) Fortran legacy software: source code update and possible parallelisa-

tion issues. In: ACM SIGPLAN fortran forum, vol 31. ACM, pp 5–22

 19. Vanderbauwhede W (2018) The glasgow Fortran source-to-source compiler. J Open Source Softw

3(32):865

 20. Vanderbauwhede W, Davidson G (2018) Domain-specific acceleration and auto-parallelization of

legacy scientific code in Fortran 77 using source-to-source compilation. Comput Fluids 173:1–5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1049/sej.1990.0017
https://doi.org/10.1016/0010-4655(96)00093-8
https://doi.org/10.1016/0010-4655(96)00093-8
https://doi.org/10.1145/2541348.2541356
https://doi.org/10.1016/0010-4655(94)90212-7
https://doi.org/10.1016/0010-4655(94)90212-7

	Making legacy Fortran code type safe through automated program transformation
	Abstract
	1 Introduction
	1.1 The enduring appeal of Fortran
	1.2 Acceleration by offloading matters
	1.3 The need for pure functions
	1.4 The case for type safety
	1.4.1 What is type safety
	1.4.2 Type safety in Fortran

	2 Related work
	2.1 Formalisation of Fortran
	2.2 Source-to-source compilation and refactoring

	3 Contribution
	4 Formal analysis of the type safety of normalised Fortran programs
	4.1 Type systems concepts and notation
	4.2 The definition of a pure function
	4.3 Specification of FORTRAN 77 data types
	4.4 Formalising the FORTRAN 77 type system
	4.4.1 Constants
	4.4.2 Scalars
	4.4.3 Arrays
	4.4.4 Subroutines and functions
	4.4.5 Assignments
	4.4.6 Expressions
	4.4.7 Type conversions for polymorphic operators
	4.4.8 Type conversion of assignments

	4.5 Conclusions regarding the type safety of the Fortran type system

	5 The problem for type safety: loss of type information
	6 Program transformations for type safety
	6.1 Transforming side-effect-free Fortran subroutines into pure functions
	6.2 Inferring the INTENT of procedure arguments
	6.3 Transforming IMPLICIT typing into explicit typing
	6.4 Transforming COMMON blocks into procedure arguments
	6.4.1 Construct the COMMON block chain
	6.4.2 Associate COMMON block variables in procedure calls with the caller

	6.5 Removal of EQUIVALENCE statements
	6.5.1 Transitivity
	6.5.2 Quadratic complexity
	6.5.3 Overlapping ranges
	6.5.4 Equivalence pairs

	6.6 Summary of program transformations

	7 A novel type checking algorithm for COMMON blocks and EQUIVALENCE associations
	8 Conclusions
	Acknowledgements
	References

