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Abstract
Among all classes of parallel programming abstractions,

lock-free data structures are considered one of the most scal-
able and efficient because of their fine-grained style of syn-
chronization. However, they are also challenging for develop-
ers and tools to verify because of the huge number of possible
interleavings that result from fine-grained synchronizations.

This paper address this fundamental problem between per-
formance and verifiability of lock-free data structures. We
present TXIT, a system that greatly reduces the set of possi-
ble interleavings by inserting transactions into the implemen-
tation of a lock-free data structure. We leverage hardware
transactional memory support from Intel Haswell processors
to enforce these artificial transactions. Evaluation on six pop-
ular lock-free data structures shows that TXIT makes it easy
to verify lock-free data structures while incurring acceptable
runtime overhead. Further analysis shows that two inefficien-
cies in Haswell are the largest contributors to this overhead.

1. Introduction
Parallel programs have become increasingly pervasive, driven
by the rise of multicore hardware and the massive computa-
tions needed by the cloud and big data applications. A crucial
building block for these programs is lock-free data structures,
which export high-level, intuitive interfaces, such as a stack,
queue, or hash table interface, and synchronize concurrent
operations via only low-level primitives of shared memory
accesses and atomic instructions. For instance, a lock-free
stack’s push operation may get the current stack top, append
the new element, set the stack top to the new element using
an atomic compare-and-swap instruction (CAS), and repeat if
the CAS fails. (See §2 for a code example.)

Compared to typical lock-based code, lock-free data struc-
tures offer two key advantages. First, they often run faster
and scale better with the number of cores, especially under
high contention [32, 24]. The reason is that they synchro-
nize in a more fine-grained manner, eliminating unnecessary
waits and context switches when operations access different
parts of shared memory. Second, they guarantee system-wide
progress regardless of scheduling, by definition. This lock-
freedom property soundly eliminates deadlocks, live locks,
convoying, and priority inversions that plagued lock-based
code [25].

Because of these advantages, it is unsurprising that
lock-free data structures are used in widespread applica-

tions such as MySQL1 and at companies such as Face-
book [4]. Almost every high-level programming lan-
guage/system has a (semi-)standard lock-free library, in-
cluding C++’s boost::lockfree [3], and portions of C#’s
System.Collections.Concurrent namespace [2] and Java’s
java.util.concurrent package [5].

Despite their importance, lock-free data structures remain
extremely hard to get right, even for the experts, as evidenced
by subtle bugs in a substantial amount of lock-free code pub-
lished at good magazines and referred journals [7]. A key
reason is that current executions of the operations produce a
vast set of possible shared memory access interleavings, or
schedules, whose number grows exponentially with the num-
ber of shared memory accesses. Each schedule may lead to a
different, sometimes correct vs buggy, result, so all schedules
must be validated for correctness, a daunting task for devel-
opers.

While much effort is dedicated to building effective tools
to check parallel programming, few handle lock-free data
structures. For instance, implementation-level model check-
ers [22, 42, 34, 49, 48, 35, 28, 44, 45] enumerate through
different orders of high-level synchronizations (e.g., lock op-
erations) for bugs. While they may be adapted to check
schedules involving fine-grained shared-memory accesses,
the number of these schedules would simply explode, far be-
yond what can be exhaustively checked—an instance of the
well-known state space explosion problem. State space re-
duction techniques [21, 20, 36, 23] alleviate this problem by
classifying schedules into equivalent classes so that only one
schedule of each class needs to be checked for a desired prop-
erty. However, their effectiveness is limited [17] because it
is extremely hard to find equivalence for schedules of gen-
eral programs. StableMT systems [17, 46, 47] shrink the set
of schedules by over-constraining the order of high-level syn-
chronizations, such as enforcing a round-robin ordering for
all lock operations. They do not work well with lock-free
data structures because enforcing an order of all shared mem-
ory accesses incurs prohibitive overhead.

This paper presents TXIT, a system that simplifies the ver-
ification of lock-free data structures. It dramatically reduces
the set of schedules by instrumenting the code of a lock-free
data structure to group instructions into artificial transactions,
each of which is guaranteed by TXIT to run atomically. These
transactions are added post facto after developers have writ-
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ten the code, hence we call them artificial. A tool now needs
to verify only the schedules of artificial transactions, an ex-
ponential reduction from the set of all shared memory access
schedules. Once the data structure is deployed, TXIT contin-
ues to enforce these transactions for correctness. To reduce
the overhead of enforcing transactions, TXIT leverages hard-
ware support. TXIT thus automatically offers high assurance
for legacy and new applications that use lock-free data struc-
tures, while retaining performance better than typical lock-
based code.

A key challenge TXIT faces is correctness: making arbi-
trary groups of instructions atomic may introduce deadlocks
or live locks, as demonstrated in prior work [13]. Fortunately,
we show that TXIT does not suffer from this problem by prov-
ing that adding transactions preserves lock-freedom. We fur-
ther explain the correctness and completeness of TXIT (§3).

A second challenge TXIT faces is the tradeoff of perfor-
mance vs verifiability (i.e., the number of schedules). The
granularity of artificial transactions determines the perfor-
mance and verifiability of a lock-free data structure. Larger
transactions yield fewer schedules, making the data structure
much easier to verify. However, larger transactions also in-
crease the probability of transaction conflicts, causing higher
overhead for handling transaction aborts and retries. Thus, it
is crucial for TXIT to select a good plan to place transactions
such that (1) all schedules of the data structure can be verified
given a testing time budget and (2) the data structure with the
inserted artificial transactions gives close to maximum perfor-
mance under this testing budget. We present an analytical
model for better understanding this tradeoff, and a heuristic
search engine for empirically finding a high-performing trans-
action placement plan given a testing budget (§4).

We implemented TXIT for C/C++ lock-free data struc-
tures. It leverages the LLVM compiler [29] to instrument
programs and insert artificial transactions, the Pyevolve ge-
netic programming engine [9] to search for an optimal trans-
action placement plan, the dBug model checker [40] to
systematically check schedules of transactions, and TSX –
the hardware transactional memory support readily avail-
able in the 4th generation Intel Core processors (codenamed
“Haswell”) [10] –to enforce artificial transactions (§5).

Evaluation on six popular lock-free data structures (§6)
shows that:
1. TXIT computes transaction placement plans such that the

resultant data structures on the given test cases can be ver-
ified within several minutes by dBug.

2. The normalized execution time of TXIT ranges from 1.55–
4.30× using Haswell TSX.

3. According to our micro-benchmarking results, the over-
head is due to performance pathologies in Haswell TSX.
For instance, transactional reads are (1) up to 1.63×
slower than non-transactional ones and (2) always slower
than transactional writes. We suggest two ideas to improve
Haswell TSX.

void push(stack *s, element *e) {

do {

push.1: element *top = s->top;

push.2: e->last = top;

push.3: } while (CAS(&s->top, top, e) != top);

}

element *pop(stack *s) {

element *top;

do {

pop.1: top = s->top;

pop.2: element *last = top->last;

pop.3: } while (CAS(&s->top, top, last) != top);

return top;

}

(a)

stack *s is initialized as A→B→C→D

thread 1 thread 2
element *x, *y;

t1.1: x = pop(s);

t1.2: y = pop(s);

t1.3: free(y)

element *x, *y;

t2.1: x = pop(s);

t2.2: y = pop(s);

t2.3: push(s, x);

t2.4: free(y)

(b)

Figure 1: A lock-free stack (a) and its test case (b).

Contributions. To the best of our knowledge, TXIT is the
first system that leverages transactional memory to aid veri-
fication of lock-free data structures. Our additional contribu-
tions include the idea of artificial transactions, the reasoning
of TXIT’s correctness, the analytical model for understanding
the performance vs verifiability tradeoff, the heuristic search
engine for placing transactions, the results of verifying sev-
eral popular lock-free data structures, and the discovery of
the performance pathologies in the Haswell TSX support and
our suggestions for improvements which we believe will ben-
efit others wanting to use this feature.

2. Overview
In this section, we show a lock-free data structure example
to illustrate the difficulty in writing and verifying such data
structures; how TXIT makes it easy to verify the example;
and the recommend usage of TXIT.

2.1. An Example

Figure 1 shows a lock-free stack example and a test case
exercising the stack. The push and pop operations appear
correctly implemented because they use CAS to detect that
the stack top is changed and retry accordingly. However, the
code actually suffers from a subtle bug that causes the same
element to be popped twice.

Figure 2 shows a schedule triggering the bug. After thread
1 gets the stack top and set last to point to element B, thread
2 pops two elements and the pushes back element A. Now,
when thread 1 runs the CAS instruction to detect conflicts, the
stack top is still A, so the CAS succeeds but incorrectly sets
the stack top to point to B. When thread 1 continues to pop
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[thread 1] [thread 2]
t1.1: x = pop(s) {
pop.1: top = s->top;
pop.2: last = top->last;

// now last points to B
t2.1: x = pop(s) { ... } // pop A
t2.2: y = pop(s) { ... } // pop B
t2.3: push(s,x) { ... } // push A

pop.3: while (...) // loop ends
}
t1.2: y = pop(s) { ... } // B

t2.4: free(y); // B
t1.3: free(y); // B again. ERROR

Figure 2: A schedule causing a double-free error.

the next element, it gets B, causing a double free. This bug
is the classic ABA bug [1, 31], which is common in lock-free
data structure implementations.

Finding this bug is hard because even the simple test case
has an enormous number of schedules, estimated by dBug
to be 9 × 1022. Even with state-of-the-art state space re-
duction techniques such as dynamic partial order reduction
(DPOR) [20], the number of schedules is still estimated to be
2×107.

2.2. TXIT Work Flow

We describe how to make the stack example easy to verify
with TXIT. To reduce the set of schedules, TXIT inserts ar-
tificial transactions. It starts by transforming each operation
of the stack into a transaction, maximizing verifiability. Con-
cretely, TXIT makes push and pop transactions, reducing the
number of schedules down to only 10. In addition, since
pop is now atomic, the transformation eliminates the sched-
ule shown in Figure 2.

This baseline transaction placement plan may incur high
overhead, so TXIT performs a search to find a good transac-
tion placement plan. It guides the search using an evaluation
function that (1) quantifies performance by measuring the ex-
ecution time of the test case and (2) ensures that the estimated
number of schedules is smaller than the testing budget (“es-
timated” because counting the precise number requires fully
exploring the schedules).

After TXIT finds an optimal plan with good performance
and a verifiable set of schedules, it outputs a new stack im-
plementation with transactions inserted. Developers then run
their favorite tools to verify the correctness of this imple-
mentation, and deploy the implementation in production envi-
ronments. To reduce the overhead of enforcing transactions,
TXIT leverages hardware transactional memory.

2.3. Recommended Usage

While in principle developers can use TXIT in any develop-
ment stage, we recommend a specific stage—after traditional
testing, but before deployment—because we believe TXIT is
the most useful in this stage. During active development, the
code frequently changes, and for each version of the code,
TXIT may produce a different transaction placement plan, so
its usefulness is limited. TXIT provides high assurance by

Boolean flagA = false, flagB = false;

// thread 1 // thread 2

while(!flagA) {} flagA = true;

flagB = true; while(!flagB) {}

Figure 3: A two-thread barrier program which executes cor-
rectly without transactions (assuming a fair scheduler), but
deadlocks if both threads are made transactional.

reducing the set of schedules, and the removed schedules
may effectively hide bugs. Thus, developers should do test-
ing/verification as usual without TXIT to find as many bugs
as possible, and turn on TXIT at last to get high assurance in
production environments.

3. Why Adding Transactions Is Valid

We have seen that grouping together multiple instructions into
artificial transactions greatly reduces the number of possible
schedules. However, it may be unsafe to add transactions,
as shown in prior work [13]. For instance, Figure 3 shows
one example taken from prior work where adding transactions
causes a deadlock. When executed without transactions, this
example cannot deadlock (barring an unfair scheduler which
only executes one thread, or a memory model that prevents
writes from being seen). If both threads are spinning, the sec-
ond thread must have set flagA to true, so thread 1 will even-
tually make progress as soon as it gets a time step and sees
this write. However, when all of the code shown for thread 1
is placed into one transaction, and all of the code for thread 2
into another, the system deadlocks. There is no schedule that
allows either thread to proceed, because neither thread can
execute its statements atomically without statements from the
other thread being interleaved.

This section addresses this issue. We start with preliminar-
ies. We use P to denote a program, and P′ the program after
transactions are added. We use I to denote an input, S a sched-
ule of instructions resulting from running P or P′ on an input.
For ease of discussion, we call deadlocks or livelocks liveness
bugs because they effectively make the executions dead, and
all other bugs safety bugs.

We assume a reasonable transaction runtime that does not
unnecessarily lose liveness. For instance, given two transac-
tions that conflict when run in parallel but can both complete
when run in serial, the transaction runtime should not keep
aborting the transactions and then concurrently retrying them
(so they have to be aborted again). This assumption is real-
istic, matching virtually all practical transaction runtime sys-
tems, such as the one implemented in TXIT (§5.3).

A schedule of P′ may contain instructions from aborted
transactions. Because of transactional atomicity, the instruc-
tions can be removed from the schedule without leading to a
different output. Thus, we consider only the schedules with
no aborted transactions.
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We now address the correctness issue by arguing two
claims.

Correctness Claim: adding transactions to an arbi-
trary program does not introduce safety bugs. Al-
ternatively, any safety bug in P′ is a safety bug in
P.

Adding transactions restricts schedules because it forces
instructions in each transaction to execute atomically. How-
ever, each schedule of P′ is still a schedule of P. In addition,
adding transactions does not alter the operational semantics
of an instruction, so running P′ on input I with schedule S
produces the same output as running P on I with S. If a tool
finds a safety bug by running P′ on I with S, this bug must
be in P, too, because P on I with S produces the same out-
put. However, the reverse is not true: P may have a safety
bug, but the transactions in P′ kill the corresponding buggy
schedule, effectively hiding the bug. Correctness is preserved
because TXIT enforces the same transactions in production
environments.

Liveness Claim: adding transactions to a lock-
free data structure does not introduce liveness bugs.
More precisely, adding transactions preserves lock-
freedom.

It is possible that adding transactions to an arbitrary pro-
gram removes all schedules that terminate, introducing live-
ness bugs as shown in Figure 3. However, we prove that this
problem does not exist for lock-free data structures.

Formally, a lock-free program has the property that, regard-
less of scheduling, it always makes system-wide progress.
Suppose after adding transactions, P′ is no longer lock-free,
i.e., there exists a schedule S that causes P′ to make no
progress. This liveness issue cannot be caused by the transac-
tion runtime based on our assumption, so it must be caused by
some (spin or block) waiting instruction in P′ inherited from
P. Thus, the same schedule S can also cause P to make no
progress, contradicting with the condition that P is lock-free.
An alternative way to understand this claim is, if a tool finds
a liveness bug in P′, then either the bug also exists in P or P
is not lock-free.

Note that the above argument can be easily extended to
show that adding transactions preserves other similar prop-
erties, such as wait-freedom (each operation completes in a
bounded number of steps for any schedule; stronger than lock-
freedom) and obstruction-freedom (any thread will make
progress if run in isolation; weaker than lock-freedom).

TXIT can work with different verification tools, but it may
inherit a tool’s limitations on correctness and completeness.
In our current implementation, TXIT leverages dBug to sys-
tematically test schedules. To check a lock-free data structure
which essentially is a library, dBug requires a test case pro-
gram and an input to exercise the library. Thus, it may miss

bugs that cannot be triggered by the test case or input. To mit-
igate this limitation, developers can write representative test
cases which appear straightforward for lock-free data struc-
tures because their interfaces are simple. One way to com-
pletely remove this limitation is to integrate TXIT with a static
verifier.

4. Performance vs Verifiability Tradeoff

The granularity of the transactions affects verifiability (i.e.,
the number of schedules) and performance. Larger transac-
tions yield fewer schedules but potentially higher overhead
because they increase the chance of conflict. It is thus crucial
for TXIT to select a good plan to insert transactions that make
a sensible performance vs verifiability tradeoff. This section
presents an analytical model to better understand this tradeoff
(§4.1) and a search engine for finding an optimal transaction
placement plan (§4.2).

4.1. Analytic Model

We assume an ideal program with t threads, each running a
total of n instructions. We assume a transaction placement
plan with fixed-size transactions of size m.

The verifiability is captured by the total number of sched-
ules. For this ideal program, each thread has n

m transactions,
and transactions of different threads can run in different or-
ders, so the total number of schedules is (t( n

m ))!/(
n
m )!

t , a
number between t

n
m and tt n

m . The larger the m, the more ver-
ifiable the program is. For clarity, we represent verifiability
with m in the remainder of this subsection.

The performance is determined by two costs. The first cost,
we call conflict cost, comes from concurrent executions of
transactions. We define the dependency of a transaction as
all shared memory locations it touches during its execution.
Here two transactions are dependent if and only if there exist
a shared memory location that is touched by both transactions,
and at least one transaction modified it. Running two depen-
dent transaction in parallel is called a conflict and must be
serialized by some concurrency control, which causes at least
one of the transactions to be aborted. Larger transactions usu-
ally contain more data dependencies. Moreover, larger trans-
actions run for a longer period of time, increasing the timing
window in which a conflict may occur. In both cases, larger
transactions may result in a higher abort rate, degrading the
parallelism of the transactions and resulting in lower system-
wide throughput.

To understand the cost of conflicts, we introduce p as the
uniformly independent probability for a pair of instructions
to be dependent. Given a transaction of m instructions, all of
its instructions must run without conflicts for the transaction
to commit. Since each other thread is concurrently running a
transaction of size m, each instruction has m(t − 1) other in-
structions it may conflict with. Thus the probability for each
instruction to have no conflict is (1− p)m(t−1). The proba-
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bility s(m) for a transaction of size m to have no conflict is
thus

s(m) =
[
(1− p)m(t−1)

]m
= (1− p)(t−1)m2

= sm2

p

where sp = (1− p)(t−1) which does not depend on m.
The second cost, we call operational cost, comes from the

hardware implementation of transactions. To start and end
a transaction, the hardware often needs to flush its pipeline
and any modified cache lines. We represent this fixed per-
transaction overhead with parameter c (we assume transac-
tions have a working set of cache lines, so the number of
modified cache lines and the overhead of flushing them will
be relatively fixed). When running an instruction within a
transaction, the hardware may have to do more bookkeeping,
such as logging an overwritten value [33]. We represent this
per-instruction overhead with a slowdown factor r which of-
ten approaches 1 for efficient hardware transaction implemen-
tations. The running time of a single transaction of size m
without conflict is thus c+ rm.

Given the two costs, we now compute the total running
time of our ideal program. Considering conflicts, the run-
ning time of a transaction is 1

s(m) (c+ rm). Each thread has
n instructions and n

m transactions. The expected overhead of
transactional over non-transactional execution is thus

E [overhead] =
1
n
· n

m
· 1

s(m)
(c+ rm)

= s−m2

p

( c
m
+ r

)

We show several sample curves in Figure 4 to give a repre-
sentative view of the model. We set sp = 0.99995 and r = 1
but vary c = {5,10,15,20} because in our experience c mat-
ters the most. However, the shape of the curves do not change
much for different constants. In general, large m incurs more
overhead because of conflicts. However, if m becomes suf-
ficiently small compared to the fixed per-transaction cost c,
the overhead also increases because no matter the size of a
transaction, it must still pay the fixed cost c. A curve with a
non-zero c has a single turning point showing the optimum
transaction size for performance, whereas the optimum trans-
action size for the c = 0 curve is 1.

4.2. Searching for an Optimal Placement Plan

In practice, not only the transaction size, but also the locations
in which transactions are placed affects performance and ver-
ifiability. To illustrate, consider Figure 5. In (a), two synchro-
nizations are wrapped along with a computation block that op-
erates on thread-local data. In (b), the computation blocks are
isolated as single transactions. Though (b) has more transac-
tions, it has fewer pairs of dependent transactions, producing
a smaller schedule space. On the other hand, in (a), the trans-
actions containing the computation blocks are large, increas-
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Figure 4: Performance curves for different c. When c> 0, each
function shows a single turning point (solid points) to get the
best performance.

ing the chance of aborts, so (a) may have worse performance
than (b).

Figure 5: Two transaction placement plans for the same code.
X and Y are both shared variables. Brackets on the side denote
transactions. Lines between brackets denote pairs of depen-
dent transactions.

Given the verifiability constraint on the number of sched-
ules, the essential problem is to find appropriate code loca-
tions to place transactions for the good performance. We for-
malize the solution space for this search as follows. We first
set up the initial plan where each operation of a lock-free data
structure is a single atomic transaction. We then refine the
plan by inserting sync points which split existing transactions
into smaller ones.2 Thus, the search algorithm can composite
all possible placement plans by inserting sync points in the
data structure code.

To reduce the solution space, we identify locations of
shared memory accesses that may interfere with other threads
by running the test case before the search. We insert sync
points only before or after these locations. Thus, given n lo-
cations of shared memory accesses, the search space is essen-
tially all bit-vectors with length 2n, where a 1 bit indicates a
sync point. In our experiments, the vectors are from 10 to 100
bits.

2Functions are inlined so that inserting a sync point to a callee function
does not accidentally split transactions in another caller; see §5.2.
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We guide the search toward a solution with (1) the best pos-
sible performance and (2) the number of schedules smaller
than the testing budget sbudget. For (1), we estimate the num-
ber of schedules sest(x) using dBug. If sest(x) > sbudget, we
discard x immediately. For (2), we run the test case to mea-
sure the actual running time.

We solve this search problem with a genetic algorithm [18]
because the solution space can be large. This technique ex-
plores the solution space by evolving the current solution
(called a generation) with mutation and crossover. Given the
full set of bit-vectors as the solution space, the genetic algo-
rithm mutates a solution by randomly flipping one bit in the
solution, and crossovers two solutions by exchanging their
segments at the same location. We generate the initial solu-
tion by set each bit with 1 with a low probability (0.05 in our
experiments). We used the Pyevolve [9] framework.

5. Implementation

In this section, we show how we utilize the architecture sup-
port and model checker to build TXIT, shrinking the schedule
space of lock-free algorithms using artificial transactions. We
will first describe an overall architecture, then explain each
component in detail.

5.1. Architecture

TXIT takes a lock-free data structure and a test case for in-
put. The lock-free data structure is given as a library with
exported interface functions. The whole workflow is shown
in Figure 6.

Figure 6: The architecture of TXIT. Placement plans are
synthesized into a proposed program, which is profiled and
checked, and which feeds into new placement plans.

Taking the data structure and test case as input, TXIT
gradually improves the current placement plan by synthesiz-
ing checkable and runnable programs, feeding them into the
model checker and profiler, and using the results as feedback.
After a number of iterations, the system outputs the best place-
ment plan it found.

Note that the system does not fully verify the source pro-
gram. It finds a transaction placement plan and performs ver-
ification on the reduced set of schedules that arises. The goal
is to get the best performance with a set of schedules that is
still verifiable.

5.2. Pre-processing

Given the data structure as a code library, it needs to be
pre-processed before synthesizing and profiling. All the pre-
processing are done using LLVM IR transformation.

We first try to flatten the library so that most function calls
are inlined. We want to do this because it expands the control
flow and data flow, so they become clearer and easy to deal
with statically. Due to theoretical and resources constraints on
the compiler, not all function calls can be expanded; in that
case we leave them untouched. Note that this may add more
load to the L1 code cache. Since the lock-free data structures
are relatively small, in our experiments we did not observe
any slowdown due to this.

Another transformation that needs to be performed is to
eliminate all calls to the interface functions from within the
library. This makes it easy to identify the boundary of the data
structure and the test case (and avoid accidentally creating
nested transactions). Doing so is trivial: for each exported
function f in the library, we replace it with a dummy f_ext

that takes the same arguments, and which passes on all its
arguments to the actual function. In this way the boundary
processing (entering/exiting transaction mode) can be placed
in the begining and end of each dummy function.

After function level transformations, we identify all mem-
ory accesses in the library, and intercept them by appending
hook functions. This is much more heavyweight than the orig-
inal memory accesses. We only enable them during model
checking.

5.3. Intel Haswell TSX Runtime

Our work utilizes transactional memory as the architecture
support to enforce transactions. Transactional Memory has
been researched for many years. The newest Haswell micro-
architecture from Intel brings the first hardware transactional
memory—called the TSX extension—onto consumer-level
processors, which makes arbitrary transaction enforcement
feasible and efficient.

To utilize the TSX, we wrapped the instruction level inter-
face into to routine, tx_begin and tx_end. The tricky thing
is how TSX deals with conflicts. TSX detects the conflicts
in its cache coherence protocol. By our speculation, when a
transaction is executing, TSX monitors the cache line states
for all local cache lines that have been touched by the trans-
action. Once a local cache is requested to be invalidated
or degraded (e.g. from “exclusive” state to “shared” state),
TSX will discover the conflict against transactions in other
threads, and abort the local transaction to resolve the conflict.
This makes the local transaction exits transactional mode, and
jump to a fallback branch prepared before the transaction.

The way how TSX resolves conflict does not guarantee the
progress of transactions. One could let failed transactions
retry until success, which could lead to live lock. A simple
example is shown in figure 7.
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Figure 7: An example of livelock caused by retrying after
aborts. Crosses denote the aborts by conflicting operations.

The optimization guidelines of TSX [26] require the pro-
grams to always provide a non-transactional fallback path for
each transaction and must not simply let the transaction re-
tries. Since the lock-free code are not aware of transaction en-
forcement, we need to provide our own fallback path. we in-
volved exponential back-off strategy to resolve the contention
in decentralized way. The major reason for using back-off
strategy rather than fall back to global critical sections is the
scalability. Transactions can conflict on splitted set of objects
instead of a single set.

For example, consider a queue with multiple producers and
consumers. At a point of time, producers may conflict on the
tail of the queue, while consumers conflict on the head. In this
situation a global critical section will still serialize all opera-
tions, while the back-off strategy will adapt the transactions
into two set of serialized operations, increasing the parallism.

There are some situations which fundamentally cannot be
handled by retrying. For example, accessing an unmapped
page will cause a page fault and cause an abort unless in a
non-transactional fallback. TSX provides a value in EAX to
identify such situations, where our runtime will fallback to a
global critical section.

5.4. Model Checker Enhancement

To perform model checking on the program under a given
transaction placement, we leverage the model checker dBug.
dBug intercepts the synchronization functions (such as
pthread_mutex_lock) to track control the scheduling. But
it is not aware of any instruction level memory accesses,
nor transactions. We modified dBug to support the se-
mantics of transactions. More specifically, we extend the
dBug with two synchronization primitives: TXBegin() and
TXEnd(read_set, write_set). TXBegin starts a transac-
tion and TXEnd commits the transaction with read/write sets
collected. dBug simulates the schedule by enforcing the total
order of all synchronizations. During the checking TXBegin

suspends all other threads so that only one transaction can be
active for a given time.

To collect the read/write set of the transactions, we hook
each memory access to report the current operation to the run-
time with type (read/write/read-and-modify) and address.

TXIT leverages dBug to evaluate verifiability of a place-
ment plan. This is done by extracting the schedule space
estimation from dBug. dBug computes this by getting the
probability sum of all explored states based on the assump-
tion that each branch has the same probability to be taken at
every node, then finds the total state space size by number of

states explored divided by their probability sum.

6. Evaluation
Our evaluation focuses on three research questions:
• Can artificial transactions reduce the number of schedules

effectively?
• Can TXIT find transaction-placement plans that offer good

verifiability and performance?
• Does TXIT perform well with current hardware transac-

tional memory? If not, why?

6.1. Evaluation Setup

Our evaluation machine is a work station with 16 GB of
memory and Intel(R) Core(TM) i7-4770. This CPU has four
cores and up to two hyper-threads per core, but we disabled
hyper-threading per recommendation of the Intel manual. We
locked the CPU frequency to 3 GHz to avoid imprecise mea-
suring caused by frequency scaling. The workstation runs
Debian with Linux 3.11.

We selected 6 popular open source implementations of
lock-free data structures, shown in Table 1.

Library Data Structures Selected
boost::lockfree [3] stack (BLFS), queue (BLFQ)
folly (Facebook) [4] producer-consumer-queue (FPCQ)
liblfds [6] stack (LFDSS), queue (LFDSQ)
nbds [8] skiplist (NBDSSL)

Table 1: Evaluated lock-free data structures.

The folly from Facebook contains two data structures
claimed to be lock-free, including FPCQ and atomic hash ar-
ray. However, TXIT detects a deadlock after adding transac-
tions to the atomic hash array. It turns out this data structure
contains a bug: it spin-waits on hash array slots, violating
lock-freedom. We thus leave this data structure out in our
evaluation.

We used the following test cases to exercise the data struc-
tures. For multiple consumers and producers stack and queue,
the test cases spawn three threads, where each thread pushes
two elements onto the stack/queue and then pops them out.
For single consumer and producer queue (FPCQ), the test
case spawns a producer thread and a consumer thread, where
each of them pushes/pops the queue six times. For skip-list,
the test case spawns three threads, where thread i ∈ {0,1,2}
inserts an element with keys {i, i+3, i+6} into the skip-list,
allowing threads to be fully interleaved in the insertion pro-
cess.

6.2. Reduction on the Number of Schedules

Here we evaluate how artificial transactions reduce the num-
ber of the schedules without applying any search. Specif-
ically, we show how the number of schedules grows (or
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shrinks) as the transaction size varies. For each test, we group
every n shared memory accesses into a transaction and use
dBug to determine the number of schedules. Here sest(1)
indicates that each instruction is in its own transaction, and
sest(∞) indicates that all instructions within an operation of
the lock-free data structure are in one transaction. We run
dBug for up to 104 iterations to estimate the number of sched-
ules; any Sest smaller than 104 is a exact result. Figure 8
shows the result with y-axis in log scale, demonstrating huge
reduction in the number of schedules as the transaction size
grows.
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Figure 8: Number of schedules (in log scale) vs transaction
size. The horizontal line is at 104, and any result below this
line is exact.

6.3. Performance and Verifiability Tradeoff Results

In this section, we evaluate how well TXIT makes the perfor-
mance and verifiability tradeoffs. Given different testing bud-
gets sbudget expressed as the number of schedules that devel-
opers afford to test, TXIT’s heuristic search engine explores
the possible transaction placement plans, evaluates the plan
according to the search criteria in §4.2, and evolves them us-
ing genetic algorithms. In a few cases, increasing the testing
budget did not improve performance because a solution for a
smaller budget is faster (§4). We To better understand these
cases, we adjusted the evaluation criteria slightly to direct the
search toward a solution whose number of schedules is close
to the budget. We used the following genetic search param-
eters: 70 populations and 80 generations, resulting in 5600
iterations for each data structure and testing budget.

Table 2 shows the results. Each cell shows the normalized
overhead of running a test case with transactions over with-
out. The baseline column shows the normalized overhead for
the starting point of the search, i.e., when each operation of
the data structure is made one transaction and the verifiability
is maximized. TXIT did not find a valid placement plan for

FPCQ when sbudget = 2× 103 because that baseline solution
already has more schedules than the budget.

Budget Base-
line

2×
103

2×
104

2×
105

2×
106

FPCQ 2.458 N/A 2.363 2.601 1.553
NBDSSL 2.166 2.142 1.952 2.355 1.935

BLFQ 3.649 3.628 3.232 3.321 3.063
BLFS 3.747 3.521 3.133 3.308 3.126

LFDSQ 3.184 4.304 2.705 2.569 2.565
LFDSS 2.481 2.776 1.956 2.916 2.047

Table 2: Normalized execution time of the test cases with
transactions over without, the smaller the better. The baseline
column shows the normalized execution time at the starting
point of the search for each data structure when every opera-
tion is made a transaction.

Running the parallel test cases on these placement plans
shows that our searching system are able to improve the per-
formance of the baseline enforcement, by the percentage of
10.7% to 36.8%. Compared to the original performance with-
out transactions, the numbers show the factors from 155.3%
to 403.4% across all placement plans from search.

To understand what costs contributed to the overhead, we
rerun these plans but using test cases that spawns only one
thread; results from these experiments measure the overhead
of the transactions without any conflicts (operational cost in
§4.1).

Budget Base-
line

2×
103

2×
104

2×
105

2×
106

FPCQ 1.273 N/A 1.539 1.530 1.863
NBDSSL 1.155 1.159 1.193 1.363 1.222

BLFQ 1.291 1.369 1.326 1.409 1.443
BLFS 1.299 1.399 1.404 1.476 1.378

LFDSQ 1.080 1.380 1.491 1.440 1.584
LFDSS 1.090 1.175 1.253 1.405 1.392

Table 3: Normalized execution time of single-threaded test
cases with transactions over without, the smaller the better.

Table 3 shows the results. Operational costs are quite high,
ranging from 17.5% to 53.9%. Even if we insert only one
transaction for each operations, as in the baseline, the opera-
tional cost is still observable (8% to 29.9%). The implication
is that Haswell the operational cost of Haswell transactional
memory is relatively large compared to the size of the transac-
tions we insert. Next subsection examines this cost in greater
detail.

6.4. Understanding Haswell TSX overhead

We have seen that transactions in the current Haswell im-
plementation, carry significant overhead even if there is no
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conflict. Since the operations of the evaluated lock-free
data structures take hundreds to thousands of cycles, we
wrote a microbenchmark at this scale to study the behavior
of Haswell transactions. We discovered two performance
pathologies that we believe are the culprit for the high op-
erational cost. First, Haswell transactions are slow to start
and end (roughly 70 cycles). Second, if a transaction writes
or even reads a L1 data cache line modified pre-transaction,
Haswell flushes this cache line to the L2 cache, each flushing
costing roughly 12 cycles. These pathologies together make
even transactional load instructions (1) up to 1.63× slower
than non-transactional and (2) slower than transactional store
instructions. The remaining of this section shows our detailed
microbenchmarking results.

Microbenchmark. We designed the microbenchmark to be
memory intensive to resemble the behavior of lock-free data
structures. The benchmark consists of auto-generated func-
tions that access a given work space of memory that fits in
L1 data cache (2 KB in our experiments). We first generate a
instruction sequence that access the work space with a given
stride, then we generate the benchmark function by repeat-
ing the sequence up to a given total instruction length. The
structure of the microbenchmark is shown in Figure 9:

1 MOVL %eax, 0x000(%rdi) ---- start of the first pass

2 MOVL %eax, 0x008(%rdi)

3 MOVL %eax, 0x010(%rdi)

...

256 MOVL %eax, 0x1F8(%rdi) ---- end of the first pass

257 MOVL %eax, 0x000(%rdi) ---- repeat (second pass)

258 MOVL %eax, 0x008(%rdi)

...

Figure 9: Microbenchmark for evaluating TSX overhead.

When running the benchmark function in a transaction, ini-
tially the read/write set of the transaction is empty. During
the first pass of the sequence the read/write set will be filled
up. By comparing the first pass to other pass we can observe
the cost of bringing new cache lines into read/write set.

Cache Settings To compare the performance under differ-
ent cache settings, we prepare a separate memory space to fill
out the L1 cache, so that we can observe the overhead com-
parison of cold and warm cache. We place data in L1 for the
warm case and in L2 for the cold case (to avoid L3 or main
memory delay). We also run tests where the relevant L1 cache
lines are all initially in a modified state, and where they are in
an exclusive state, because there is a significant flushing cost
(compared to cache hit without eviction) when evicting mod-
ified cache lines, since TSX needs to flush dirty cache lines
even for cache hits. Taking all combinations into account,
we have four cases: WarmModified (WM), WarmExclusive
(WE), ColdModified (CM) and ColdExclusive (CE).

We measured the TSX characteristics in each case. Accord-
ing to the structure of the microbenchmark, there ought to be
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Figure 10: Running cycles for (a) read instructions and (b)
write instructions, with transactions.

Cache Setting CE CM WE WM
TX Mode? Mem Op

Yes Write 1.20 1.17 1.07 1.70
No Write 1.17 1.17 1.07 1.07
Yes Read 1.45 1.44 1.13 1.42
No Read 1.10 1.13 0.54 0.54

Table 4: Transactional load and store instruction costs under differ-
ent cache conditions.

two phases, where the first phase touches all cache line in the
read/write set, incurring extra cost, and after that the perfor-
mance stays stable. In the experiments, the first phase lasts
from line 1 to 256, which can also be observed in Figure 10.
For comparison, Figure 11 shows the running cycles of the
microbenchmark without transactions.

Based on data contained in these figures, we calculate the
per-instruction overhead for the first phase. Table 4 shows
the results. Transactional load and store instructions are quite
costly in TSX in almost all cases:
• Transactional read operations are 27% to 163% slower than
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Figure 11: Running cycles for (a) read instructions and (b)
write instructions, without transactions.

normal mode, especially when cache is warm but modi-
fied. Based on performance counters, we believe this un-
expected high cost on WarmModified comes from saving
original data when bring new cache lines into read/write
set, which causes cache write-backs even when cache hits.

• When cache is warm but modified, write operations in
transactions also have significant overhead (59%).

• TSX shows an average of 70 cycles of constant overhead
per transaction in all experiments. This may come from the
memory barrier effect on the boundaries of transactions.

Summary of TSX overhead Based on our microbench-
mark results, we believe the performance pathologies of TSX
come from two sources:
• Memory Barrier. According to Intel’s manual [27], a suc-

cessful executed transaction has the same memory ordering
semantic as “lock” prefixed instructions. We suspect that
the actual ordering semantic will be stronger because of
the transaction isolation requirement. When TSX is used
heavily, memory throughput will be reduced because of the
effect of memory operation serializing.

• Cache Impact. In order to isolate the memory accesses
of transactions, TSX keeps the write set in local cache,
which means the original value must be saved somewhere
else. When instructions in a transaction region access a
local cache line which has been previously modified but
not touched in the current transaction, the CPU needs to
backup the value to lower level cache in order to save the
original value. This is similar to evicting dirty cache lines,
but here the CPU is “cleaning” the dirty cache line. This
only happens in transactional mode, and make a L1 cache
hit effectively a write back to L2.
We expect these issues to be fixed in the next generation of

TSX.

Suggestions to Reduce TSX overhead. One suggestions
is to add a Transactional Write Back Buffer in hardware for
buffering all pre-transactional data and gradually writing it
back into L2, eliminating the L2 write-back latency. For a suc-
cessful transaction, the buffer can be immediately discarded
even if there is modified data because this data has been over-
written by the transaction. Aborted transactions need to wait
for the buffer to be fully flushed before jumping the abort
handler, which ideally incur a single L2 latency. Since trans-
actions succeed much more often than not, we can avoid the
L2 latency in most cases.

Another suggestion that may ameliorate the operational
cost is to implement a Transaction Checkpointing Mecha-
nism, which essentially combines a transaction end and an
immediately following transaction start into one instruction.
Thus, instead of paying the overhead of two memory barri-
ers, we pay only one. The architecture may even pipeline the
successive checkpoints, speeding up consecutive transactions
that TXIT uses.

7. Related Work
Verification of Concurrent Programs. As concurrent pro-
grams have become more widespread, techniques have been
developed to perform verification on them. Checkfence [14]
converts C source code into a SAT formula, which is given
to a standard SAT solver to prove correctness under relaxed
memory models. Sinha et al. [41] focus on improving the way
that model-checkers can represent multithreaded programs as
SAT formulae. Line-Up [15] can establish linearizability for
concurrent methods. All of these techniques focus on convert-
ing a program (or an abstraction thereof) into a format such
as a SAT formula that can be analyzed by a model-checker.
These tools are orthogonal to TXIT, and may be plugged into
TXIT to check lock-free data structures after artificial transac-
tions are added. Since TXIT dramatically reduces the set of
schedules, these tools may become more powerful with TXIT.

State Space Reduction. To address the state space explo-
sion problem, a number of reduction techniques have been
proposed. Partial order reduction [21, 20] exploits the com-
mutativity of transitions, eliminating redundant schedules
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that produce the same state. Interface reduction [23] parti-
tions the system into components and interfaces, eliminating
state coupling. Symmetric reduction [36] exploits the struc-
tural symmetries of states in the system. These techniques
are all orthogonal to ours, since they assume all schedules
are possible and attempt to eliminate redundant ones. On the
other hand, TXIT reduces the possible set of schedules with-
out requiring equivalence. Instead, it outputs a transformed
program which is still correct (because the original was lock-
free) and for which it is possible to verify.

Closely related to TXIT are StableMT systems [17, 46, 47],
which restrict the possible schedules that can be executed,
and deterministic multithreading (DMT) systems [12, 37, 19],
which establish a single schedule for each input. However,
these systems often work by over-constraining the order of
high-level synchronizations, which performs well for lock-
based code but would be prohibitively expensive when ap-
plied to lock-free code, because ordering would need to be
performed at the granularity of shared memory accesses.

Similarly, the schedule specialization framework proposed
by Jingyue et al [43] restrains program execution to follow
a set of allowable schedules (collected from real execution
traces). Then static analyses can be performed on those al-
lowed schedules, in the knowledge that those are the only
schedules that will occur. Again, this schedule-restriction
mechanism works at the level of high-level synchronizations,
while we approach the problem of lock-free data structures.

Artificial Transaction Enforcement. Because of the use-
ful guarantees that transactional memory provides, many sys-
tems leverage it to improve program reliability. BulkSC
[16] proposes an implementation of a sequentially consis-
tency memory model over the underlying relaxed memory
model. This is achieved by having the hardware dynami-
cally group instructions into “chunks”, which are executed
at native speed in the relaxed memory model. The “chunks”
effectively provide artificial transactions which appear as a
stronger memory model to the program. A system based on
BulkSC called Atomic-Aid [30] proposes an architecture to
hide atomic violations that have the potential to expose data
races, by setting up “chunks” through dynamic analysis re-
sults. Both of these systems improve the program reliability
through enforcing transactions. However, these systems can-
not directly aid verification tools because the transactions are
added to the dynamic execution streams of instructions, and
may change for each execution subject to unpredictable run-
time factors. Moreover, these systems lack the correctness
guarantees TXIT provides, and they are not designed to solve
the fundamental tradeoff of performance and verifiability.

Speculative Lock Elision. A technique related to TXIT
is speculative lock elision. When transactional memory is
used to elide locks in a lock-based data structure, the sys-
tem speculatively skips the locking process, increasing per-
formance [38, 39, 11]. It improves the performance of both

coarse-grained and fine-grained locking, but not the difficulty
of verification—the lock elision transformation is transparent
and does not change locking semantics, so the set of possible
schedules remains the same.

To visualize how these techniques compare, we show the
performance and verifiability characteristics for each solution
in Figure 12. Coarse-grained locking, fine-grained locking,
and lock-free data structures gradually increase both in perfor-
mance and the difficulty of verification. This trend is due to
the increasingly fine granularity of synchronizations used by
these techniques; the implicit synchronizations of lock-free
data structures make them run even faster but are hardest of
all to verify. While the speculative lock elision (dashed ar-
rows) allows a one-way transformation to improve the perfor-
mance of lock-based data structures, our approach (the solid
line) makes lock-free data structures become verifiable, grad-
ually improving performance with increasing verification ca-
pability. We can provide several points along this line in the
solution space using different transaction granularities.

Figure 12: How speculative lock elision (SLE), applied to both
coarse-grained locking and fine-grained locking, compares
with our method.

8. Conclusion

We have presented TXIT, a system for making it easy to ver-
ify lock-free data structures, one of the most scalable and effi-
cient among all classes of parallel programming abstractions.
The key idea is to insert artificial transactions to reduce the
set of schedules, while enforcing the transactions in produc-
tion environment for correctness. Leveraging recent advances
in hardware transactional memory support specifically Intel
Haswell TSX, TXIT achieves acceptable performance. We
have shown that adding transactions to arbitrary programs in-
troduce no safety bugs, and adding transactions to lock-free
data structures introduce no liveness bugs. The granularity of
artificial transactions affects the performance and verifiability
as larger transactions yield fewer schedules and better verifia-
bility, but they reduce performance because they increase the
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probability of transaction aborts. We have shown an analyt-
ical model for understanding this fundamental tradeoff and
a practical search engine for finding a transaction placement
plan that optimizes performance given a verifiability budget.
In our evaluation, we have demonstrated that TXIT reduces
the set of schedules enough that tools can exhaustively check.
In understanding the performance TXIT, we have also uncov-
ered several performance pathologies in TSX, knowing which
will help other (potential) TSX users.
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