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Introduction – Necessity of Dereverberation

Distant-talking speech capturing

◮ Meeting speech recognition [techniques that allow the
accurate automatic transcription and higher-level processing
of multi-party meetings. Using prosody for extracting
beyond-the-words information]

◮ Automatic annotation of videos [linguistic tagging or
indexing]

◮ Speech-to-speech translation in teleconferencing

◮ Hands-free interfaces for controlling consumer products

◮ . . .
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Introduction – Necessity of Dereverberation /cont’d

Automatic speech recognition ASR in distant-talking scenarios

◮ Background noise, competing speakers (additive and
convolutional noise), microphone mismatch and room
reverberation

◮ Problem Reverberation cannot be captured by an additive or

multiplicative term in the feature domain because

reverberation has a dispersive effect on the speech feature

sequences

◮ In other words: Reverberation spans a number of consecutive

time frames and thus requires dedicated approaches
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Introduction – Methods for Combating Reverberation

Armin Sehr and Walter Kellermann

◮ Signal dereverberation and beam forming as preprocessing
techniques

◮ Robust feature extraction and adjustment of the acoustic
models to reverberation

◮ Reverberation modelling for speech recognition (combined
approach)

◮ Audio processing and speech recognition, mainly driven by
multidisciplinary approaches
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Introduction – Methods for Combating Reverberation
/cont’d

Audio processing

◮ Blind deconvolution
◮ Nonnegative matrix

factorisation

Speech recognition

◮ Noise robustness methods

◮ Novel ways for modelling
reverberant data
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Room Acoustics – Overview

Elements of room acoustics:

◮ Clean speech
◮ Room impulse response

y(t) =

Th
∑

τ=0

h(τ)x(t− τ) + d(t) = h(t) ⋆ x(t) + d(t)

◮ Reverberant speech signal
◮ Additive background noise

Blackboard . . .
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Room acoustics – Overview /cont’d

Early reflections: hi − Direct Sound

◮ Strong dependance on the
speaker and microphone
positions

◮ Occur within 50 ms after
the direct sound

Late reverberation: hl

◮ T60 . . . reverberation time
(from 200 to 1,000 ms)

◮ Decay exponentially and
are independent of the
positions
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Room acoustics – Overview /cont’d

The insensitivity of the late reverberation magnitude to the
speaker and microphone positions can be exploited to develop
algorithms that are robust against speaker movement.

The energy ratio of the combined portion consisting of the
direct sound and the early reflections to the late reverbera-
tion is measured by C50 and is highly correlated with speech
recognition performance. This ratio mainly depends on the
distance between the speaker and the microphone.
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Automatic speech recognition – Basic principles

◮ Extract the Mel-frequency cepstral coefficients (MFCCs):

y(t) −→ (ymfcc
n )n ∈ T

◮ Transcribe the feature vector sequence by searching the
sentence ω∗ that maximizes the posterior sentence
probability:

ω∗ = argmax
ω

p( y
mfcc
n )n∈T

feat.vec.seq.

| ω

u.sequence

)

acoustic model

p(ω)

language model
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Automatic speech recognition – Front-end

MFCCs

1) Take the STFT of the signal

2) Emphasise the higher
frequencies (increase the signal
energy in the higher frequencies)

3) Mel Filter Bank Processing
(please refer to next slide)

4) Take the DCT of the list of
Mel log powers, as if it were a
signal
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Automatic speech recognition – Front-end /cont’d

Mel Filter Bank Processing
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Automatic speech recognition – Front-end /cont’d

Underlying sequence of discrete states, (jn)n∈T:

p((ymfcc
n )n∈T|ω) =

∑

(jn)n∈T

∏

n∈T

p(ymfcc
n |jn)p(jn|jn−1, ω)

The conditional independence assumption means that the
current feature vector depends only on the current state while
the first-order Markov assumption means that the current
state depends only on the previous state.
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Reverberant speech recognition – Fundamental
problem

Clean and reverberant log Mel-frequency filter bank features
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Reverberant speech recognition – Fundamental
problem /cont’d

Basic idea: recast :)

early reflections

y(t) = hi(t) ⋆ x(t) + hl(t) ⋆ x(t−∆) = hi(t) ⋆ x(t) + r(t)

late reverberation

late reverberation component

Assumption: r(t) is uncorrelated to x(t) (additive noise).
This approximation is partly justified by the fact that the
autocorrelation coefficients of a clean speech signal are very
small for time lags greater than 50 ms.
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Reverberant speech recognition – Fundamental
problem /cont’d

Taxonomy of methods
Parallel model combination (PMC)

} extr.nonstat.
Vector Taylor series (VTS) compensation

Matched training

} acoustic context
Multistyle training

HMMs } conditional independence assumption
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Reverberant speech recognition – Fundamental
problem /cont’d

Extreme non-stationarity of the late reverberation r(t)

Renders almost all noise robustness techniques ineffective for
computing late reverberation due to the fact that all techniques
assume stationary or slowly varying noise to make noise
parameter estimation and compensation possible

Account for the long-term acoustic content

Renders most of the training-based approaches as insufficient to
successfully cope with reverberation.

Problem
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Reverberant speech recognition – Fundamental
problem /cont’d

Account for the long-term acoustic content

Assumption: The mismatch between training and deployment
environments can be reduced by the fact that it is expected
similar or identical rooms to the target one to be included in the
training environment

The conditional independence assumption between neighbouring
feature vectors prevents the HMMs from effectively modelling the
dependencies between reverberant feature vectors over several hun-
dred milliseconds.
Solution: Use of dynamic features and extended feature vectors
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Reverberant speech recognition – Fundamental
problem /cont’d

Extending the left context for each HMM state

Increasing the left context by using tryphones is sadly not sufficient
for this purpose ⇒ use polyphones! But the number of polyphone
models that would be needed to describe reverberant data would
make a reliable training of the HMM parameters a computationally
very challenging one, if not impossible.
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Reverberant speech recognition – Fundamental
problem /cont’d

Method comparison

◮ Problem stems from the assumption of conditional
independence

◮ Late reverb is a very non-stationary additive interference and
is predictable from past speech frames

◮ Long-term dependency is important
◮ Option 1: Remove the effect of late reverberation from

observed feature vectors (long-term acoustic context) and
Option 2: Change the acoustic model and decoder to deal
directly with reverberant feature vectors
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Reverberant speech recognition – Improvement
Measures

Approaches What to change

Linear filtering Waveforms or STFTs

Spectrum enhancement Power spectra

Feature transformation Feature vectors

HMM adaptation HMM parameters

Context-aware decoding Decoding algorithm
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Front-end-based Approaches – Overview

Categorization

◮ Linear filtering . . .
dereverb. TD signals or
STFT coeffs.

◮ Spectrum enhancement . . .
dereverb. corrupted power
spectra (ignores signal
phases)

◮ Feature enhancement . . .
removes reverb. directly
from the corrupted feature
vectors
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Linear Filtering – Introduction

Basic approach

◮ Exploit both the amplitudes and phases of the signal
(reverberation is a superposition of numerous time-shifted
and attenuated versions of the clean signal)

◮ Exploit acoustical differences between multiple microphone
positions

yn[k] ≈
∑T

τ=0 hτ [k]
∗xn−τ [k] . . . the effects of reverberation may

be represented as a one-dimensional convolution in each frequency
bin, so the sequence hn[k]0≤n≤T can be viewed as an STFT-domain
counterpart of the time-domain room impulse response.
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Linear Filtering – Blind deconvolution

Convolution of the room impulse response and the linear filter

fn =

TT
∑

τ=T⊥

g∗τ hn−τ

filter coefficients

room impulse response

Objective: Set G so that fn is nonzero if n = 0 and zero
otherwise, while G is the set of adjustable filter coefficients.
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Linear Filtering – Blind deconvolution /cont’d

Long-term linear prediction (LTLP)

◮ Leverages a speech model that defines the pdf of a clean
STFT coefficient xn (normal distribution with zero mean and
variance θn, where n is the frame index)

◮ Method of maximum likelihood (G, Θ = θnn∈T) where
Y = (yn)n∈T are the observed reverberant STFT coefficients

(Ĝ, Θ̂) = argmax log
(G,Θ)

p(Y |G,Θ)
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Linear Filtering – Blind deconvolution /cont’d

Long-term Tδ-step forward prediction (multistep prediction)

xn =

TT
∑

τ=T⊥

g∗τyn−τ . . . assume: g0 = 1 and gn = 0 for T⊥ ≤ n < Tδ

xn = yn +

TT
∑

τ=Tδ

g∗τyn−τ

yn = xn +

TT
∑

τ=Tδ

g∗τyn−τ

(Ĝ, Θ̂) = argmin
(G,Θ)

∑

n∈T







∣

∣

∣yn −
∑TT

τ=Tδ
g∗τyn−τ

∣

∣

∣

2

θn
+ logθn






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Linear Filtering – Summary of LTLP

Method comparison

20K words (WSJ); T60 = 0.78s; Speaker-to-mic distance of 2 m;
No background noise
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Spectrum Enhancement – Overview
◮ Basic idea: Given

(|yn[k]|
2)n∈T, restore the

the clean power spectrum
coefficients (|xn[k]|

2)n∈T
◮ Late reverberations are

insensitive to changes in
speaker and microphone
positions −→ high
robustness against speaker
movement

◮ Can be combined with
additive noise reduction
techniques
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Spectrum Enhancement – Overview /cont’d

Moving average estimator

Power spectrum reverberation model

yn[k] ≈
T
∑

τ=0

hτ [k]
∗xn−τ [k] −→ |yn[k]|

2 ≈
T
∑

τ=0

|hτ [k]|
2 |xn−τ [k]|

2

The power spectrum-domain representation of the room impulse
response is known!

Predictive reverberation estimator

|rn[k]|
2 = a[k] |yn−Tδ

[k]|2

T60 is known assuming a strict exponential decay of the late
reverberation magnitude
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Feature Enhancement – Overview

◮ Basic idea:
Dereverberate features
extracted from a reverberant
signal. Based on a Bayesian
framework, this technique
attempts to infer the
posteriori distribution of the
clean features given the
observation of all past
corrupted features.
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Feature Enhancement – Overview /cont’d
◮ The observation model relies

on a simplified stochastic
model of the RIR between
the speaker and the
microphone, having only two
parameters (RIR energy and
T60, which can be estimated
from the captured
microphone signal)

◮ A hypothesis of a
feature-domain model of
reverberation is needed!
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Back-end-based Approaches – Overview

Categorization

1. HMM adaptation: adjust
the parameters of the
acoustic model to the
statistical properties of
reverberant feature vectors
−→ use the adapted HMMs
to transcribe reverberant
utterances with a standard
Viterbi decoder.

2. Tailor the decoder to the
reverberant feature vector
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Back-end-based Approaches – Overview /cont’d

The functionality of the Viterbi decoder used in conventional speech
recognisers relies on the evaluation of the emission pdf pY (yn|j),
that is the likelihood of the observed feature vector yn given state
j.

It implies that the state likelihood is evaluated independently
of preceding reverberant feature vectors −→ HMMs cannot account
for the long-term acoustic context inherent in reverberant feature
vector sequences.

pY (yn|j, (yτ )τ<n) is an emission pdf, in which the dependency on
the feature vectors is explicitly stated.
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Back-end-based Approaches – Overview /cont’d

Acoustic Context-Dependent Likelihood Evaluation

Frame-wise adaptation I

◮ Adjusts the means and the covariance matrices of the HMMs
at each frame with regards to the preceding reverberant
feature vectors

yn ≈ log(exp( h + xn) + exp( rn ))

early reflection portion of the RIR
late reverberation component of the reverberant speech
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Back-end-based Approaches – Overview /cont’d

Acoustic Context-Dependent Likelihood Evaluation

Frame-wise adaptation II

◮

predictor . . . predicts the current late reverberation vector
from the previous observed feature vector

rn ≈ a + yn−1

◮ h is a random variable with a normal distribution; a is
determined from the observed data (yn)n∈T using maximum
likelihood estimation

◮ pY (yn|j, (yτ )τ<n) is modelled as a normal distribution with a
time-varying µY

n,j and
∑Y

n,j at each frame
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Back-end-based Approaches – Overview /cont’d

Acoustic Context-Dependent Likelihood Evaluation

Frame-wise adaptation III

❞The assumption of time-invariant reverberation model parame-
ters is a drawback!

1. The characteristics of the early reflections depend strongly on
the speaker and microphone positions

2. Other time-varying errors in the approximation

−→ Use a time-varying model, i.e. statistical reverberation models,
from which the model parameters (h and a) are sampled anew at
each time frame

−→ Use REMOS!
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REMOS – Introduction

A time-varying model

⇒ Use a time-varying definition to specify the emission pdf
pY (yn|j, (yτ )τ<n)
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REMOS – Feature production model

A time-varying model

log(exp(hn + xn) + exp(rn + un))

◮ pH(h), pU (u)

◮ pH(h), pU (u) are learned
from a set of RIRs or
reverberant utterances

◮ Replace the predictive
reverberation estimator with
a moving-average
reverberation estimator rn =

log
(

∑T
τ=1 exp(µ

H
τ + xn−τ )

)
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REMOS – Feature production model /cont’d

A time-varying model

pY (yn|j, (yτ )τ<n) =
∫

pη(yn|xn, (yτ )τ<n) pλ(xn|j)dxn

effect of reverberation on the
clean vector xn

emission pdf of the clean HMM
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REMOS – Feature production model /cont’d

Marginalising all latent variables

pY (yn|j, (yτ )τ<n) =

∫

pη(yn|xn, (yτ )τ<n)pλ(xn|j)dxn

pη(yn|xn, (yτ )τ<n) =

∫ ∫

pH(hn)pU (un)

· δ(yn − fmismatch(xn, (x̂τ )τ<n, hn, un))dhndun

Marginalising all latent variables ⇒ Estimating all latent
variables!
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REMOS – Feature production model /cont’d

Estimating all latent variables

pY (yn|j, (yτ )τ<n) ≈ pH(ĥn)pU (ûn)pλ(x̂n|j)

(ĥn, ûn, x̂n) = argmax
(hn,un,xn)

pH(hn)pU (un)pλ(xn|j)

subject to yn = f(xn, (x̂τ )τ<n, hn, un)

For each frame n and each state j, the Viterbi score is calculated
by first solving the optimisation problem and then evaluating the
emission pdf.
yn is decomposed into contributions xn from the clean HMM, the
feature-domain of initial reflections hn and rn depending on state
j.
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REMOS – Conclusions

Different clean feature estimates for different states by
leveraging the statistical model of reverberation parameters

✉High word accuracies even in severely reverberant
environments

✉High flexibility to changes of speaker positions and room
changes

✉Possible expansion by adding a noise model to the
REMOS framework

❞Requires a recogniser trained on a static log
Mel-frequency filter bank features and single Gaussian
densities
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REMOS – Conclusions /cont’d
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Summary & Conclusio – I

Pros & Cons : front-end

✉Making changes @front-end
doesn’t require any modifications
@back-end

✉Computational complexity is
independent of the acoustic
model size

✉Easily combined with
advanced recognition techniques
such as fMPE

❞Estimation errors degrade the
decoder’s performance

Pros & Cons : back-end

✉Less prone to estimation
errors

✉Coherent performance of
both speech recognition and
reverberation compensation

❞Computational complexity
proportional to acoustic model
parameters

❞Conventional features make
them hardly to combine with
advanced techniques
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Summary & Conclusio – II

XReverberation can be modelled as additive interference

XThe main difference from common noise and interference is its
extreme non-stationarity −→ fundamental problem

XLong-term dependency is important: strong relationship between
long-term consecutive reverberant frames is an essential clue to
compensate for reverberation
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Future Research Topics

◮ Reverberant speech recognition as subproblem of
transcribing distant-talking speech

◮ Combination of different approaches & extension to
state-of-the-art-systems that use discriminative or
posterior-based features such as fMPE (Minimum Phone
Error)

◮ Joint compensation of additive noise and reverberation
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