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Abstract. We investigate the relationship between theoretical studies of leaking cryp-

tographic devices and concrete security evaluations with standard side-channel attacks.

Our contributions are in four parts. First, we connect the formal analysis of the mask-

ing countermeasure proposed by Duc et al. (Eurocrypt 2014) with the Eurocrypt 2009

evaluation framework for side-channel key recovery attacks. In particular, we re-state

their main proof for the masking countermeasure based on a mutual information metric,

which is frequently used in concrete physical security evaluations. Second, we discuss

the tightness of the Eurocrypt 2014 bounds based on experimental case studies. This

allows us to conjecture a simplified link between the mutual information metric and

the success rate of a side-channel adversary, ignoring technical parameters and proof

artifacts. Third, we introduce heuristic (yet well-motivated) tools for the evaluation of

the masking countermeasure when its independent leakage assumption is not perfectly

fulfilled, as it is frequently encountered in practice. Thanks to these tools, we argue that

masking with non-independent leakages may provide improved security levels in certain

scenarios. Eventually, we consider the tradeoff between the measurement complexity

and the key enumeration time complexity in divide-and-conquer side-channel attacks

and show that these complexities can be lower bounded based on the mutual information

metric, using simple and efficient algorithms. The combination of these observations

enables significant reductions of the evaluation costs for certification bodies.

Keywords. Side-channel analysis, Masking, Security proofs, Fair evaluations.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9277-0&domain=pdf


1264 A. Duc et al.

1. Introduction

Side-channel attacks are an important concern for the security of cryptographic hardware,

and masking is one of the most investigated solutions to counteract them. Its underlying

principle is to randomize any sensitive data manipulated by a leaking implementation

by splitting it into d shares, and to perform all the computations on these shared values

only. Intuitively, such a process is expected to force the adversary to combine several

leakages corresponding to the different shares in order to recover secret information. As

a result, it has first been shown by Chari et al. that the measurement complexity of a spe-

cialized attack—namely a single-bit Differential Power Analysis (DPA) [44] —against

a carefully implemented masked computation (i.e., where the leakages of all the shares

are independent and sufficiently noisy) increases exponentially with d [18]. Following

this seminal work, a number of progresses have been made in order to state the security

guarantee of masking in both general and rigorous terms. For example, Ishai, Sahai and

Wagner introduced a compiler (next referred to as the ISW compiler), able to encode any

circuit into an equivalent (secret-shared) one, and proved its security against so-called

probing adversaries, able to read a bounded number of wires in the implementation [41].

A practical counterpart to these results was published at Asiacrypt 2010, where Standaert

et al. analyzed the security of several masked implementations [72], using the informa-

tion theoretic framework introduced in [71]. While this analysis was specialized to a few

concrete case studies, it allowed confirming the exponential security increase provided

by masking against actual leakages, typically made of a noisy but arbitrary function of

the target device’s state. Following, Faust et al. attempted to analyze the ISW compiler

against more realistic leakage functions and succeeded to prove its security against com-

putationally bounded (yet still unrealistic) ones, e.g., in the AC0 complexity class [31].

Prouff and Rivain then made a complementary step toward bridging the gap between the

theory and practice of masking schemes, by providing a formal information theoretic

analysis of a wide (and realistic) class of so-called noisy leakage functions [60]. Eventu-

ally, Duc et al. turned this analysis into a simulation-based security proof, under standard

conditions (i.e., chosen-message rather than random-message attacks, without leak-free

components, and with reduced noise requirements) [27]. The central and fundamental

ingredient of this last work was a reduction from the noisy leakage model of Prouff and

Rivain to the probing model of Ishai et al.

Our contribution. In view of this state of the art, one of the main remaining question

regarding the security of the masking countermeasure is whether its proofs can be helpful

in the security evaluation of concrete devices. That is, can we state theorems for masking

so that the hypotheses can be easily fulfilled by hardware designers, and the resulting

guarantee is reflective of the actual security level of the target implementation. For

this purpose, we first observe that the proofs in [27,60] express their hypothesis for

the amount of noise in the shares’ leakages based on a statistical distance. This is in

contrast with the large body of published work where the mutual information metric

introduced in [71] is estimated for various implementations (e.g., [4,16,33,36,39,52,

61,62,67,74,78]). Since the latter metric generally carries more intuition (see, e.g., [3]

in the context of linear cryptanalysis), and benefits from recent advances in leakage

certification, allowing to make sure that its estimation is accurate and based on sound
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assumptions [28,29], we first provide a useful link between the statistical distance and

mutual information and also connect them with easy-to-interpret (but more specialized)

tools such as the signal-to-noise ratio (SNR). We then re-state the theorems of Duc et al.

based on the mutual information metric in two relevant scenarios. Namely, we consider

both the security of an idealized implementation with a “leak-free refreshing” of the

shares, and the one of a standard ISW-like encoding (i.e., capturing any type of leaking

computation).

Interestingly, the implementation with leak-free refreshing corresponds to the fre-

quently investigated (practical) context where a side-channel attack aims at key recov-

ery, and only targets the d shares’ leakage of a so-called sensitive intermediate variable

(i.e., that depends on the plaintext and key) [22]. So despite being less interesting from

a theoretical point of view, this scenario allows us to compare the theorem bounds with

concrete attacks. Taking advantage of this comparison, we discuss the bounds’ tightness

and separate parameters that are physically motivated from more “technical ones” (that

are most likely due to proof artifacts). As a result, we conjecture a simplified link between

the mutual information metric and the success rate of a side-channel adversary, which

allows accurate approximations of the attacks’ measurement complexity at minimum

(evaluation) cost. We further illustrate that the noise condition for masking has a simple

and intuitive interpretation when stated in terms of SNR.

Next, we note that the published results about masking (including the previously

mentioned theorems and conjecture) assume independence between the leakages corre-

sponding to different shares in an implementation. Yet, concrete experiments have shown

that small (or even large) deviations from this assumption frequently occur in practice

(see, e.g., [5,21,49,64]). Hence, we complete our discussion by providing sound heuris-

tics to analyze the impact of “non-independent leakages” which allow, for the first time,

to evaluate and predict the security level of a masked implementation in such imperfect

conditions.

Eventually, we consider the tradeoff between measurement complexity and time com-

plexity in the important context of divide-and-conquer attacks. Previously known ap-

proaches for this purpose were based on launching key enumeration and/or rank estima-

tion algorithms for multiple attacks, and to average results to obtain a success rate [75,76].

We provide an alternative solution, where success rates (possibly obtained from estima-

tions of the mutual information metric) are estimated/bounded for all the target key bytes

of the divide-and-conquer attack first, and the impact of enumeration is evaluated only

once afterward.

Summarizing, the combination of these observations highlights that the security evalu-

ation of a masked implementation boils down to the estimation of the mutual information

between its shares and their corresponding leakages. Incidentally, the tools introduced

in this paper apply identically to unprotected implementations, or implementations pro-

tected with other countermeasures, as long as one can estimate the same mutual in-

formation metric for the target intermediate values. Therefore, our results clarify the

long standing open question whether the (informal) link between information theoretic

and security metrics in the Eurocrypt 2009 evaluation framework [71] can be proved

formally. They also have important consequences for certification bodies, since they

translate the (worst-case) side-channel evaluation problem into the well-defined chal-

lenge of estimating a single metric, leading to significantly reduced evaluation costs.
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Notations. We next use capital letters for random variables, small caps for their real-

izations and hats for estimations. Vectors will be denoted with bold notations, functions

with sans serif fonts, and sets with calligraphic ones.

2. Background

2.1. Leakage Traces and Assumptions

Let y be a n-bit sensitive value manipulated by a leaking device. Typically, it could be

the output of an S-box computation such that y = S(x ⊕ k) with n-bit plaintext/key

words x and k. Let y1, y2, . . . , yd be the d shares representing y in a Boolean masking

scheme (i.e., y = y1 ⊕ y2 ⊕· · ·⊕ yd ). In a side-channel attack, the adversary is provided

with some information (aka leakage) on each share. Typically, this leakage takes the

form of a random variable L yi
that is the output of a leakage function L with yi and a

noise variable Ri as arguments:

L yi
= L(yi , Ri ) . (1)

The top of Fig. 1 represents a leakage trace corresponding to the manipulation of d shares.

Concretely, each subtrace L yi
is a vector of which the elements represent time samples.

Whenever accessing a single time sample t , we use the notation L
t
yi

= Lt (yi , R
t
i ). From

this general setup, a number of assumptions are frequently used in the literature. We will

consider the following three.

a. Selection of points-of-interest / dimensionality reduction. For convenience, a num-

ber of attacks start with a pre-processing in order to reduce each leakage subtrace L yi

Fig. 1. Leakage trace and reduced leakage trace of a d-shared secret.
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to a scalar random variable L yi
. Such a pre-processing is motivated both by popular

side-channel distinguishers such as Correlation Power Analysis (CPA) [14], which can

only deal with univariate data, and by the easier representation of small dimensional data

spaces. In this respect, even distinguishers that naturally extend toward multivariate data

(such as Template attacks (TA) [19], Linear Regression (LR) [69] or Mutual Information

Analysis (MIA) [34]) generally benefit from some dimensionality reduction. The latter

step can be achieved heuristically, for example, by detecting leakage samples where

one distinguisher works best, or more systematically using state-of-the-art tools such

as Principal Component Analysis (PCA) [2], Linear Discriminant Analysis (LDA) [70]

or Kernel Discriminant Analysis (KDA) [15]. An example of reduced leakage trace is

represented at the bottom of Fig. 1.

b. Additive noise. A standard assumption in the literature is to consider leakage functions

made of a deterministic part G(yi ) and additive noise N i :

L yi
= L(yi , Ri ) ≈ G(yi ) + N i . (2)

For example, a typical setting is to assume reduced leakages to be approximately gener-

ated as the combination of a Hamming weight function (or some other simple function

of the shares’ bits) with additive Gaussian noise [48,69].

c. Independence condition. A secure (serial) implementation of the masking counter-

measure requires that each leakage vector L yi
depends only on a single share. (Parallel

implementations were recently discussed in [7].) If respected, this condition ensures that

a d-share masking will lead to a (d−1)th-order secure implementation as defined in [22].

That is, it guarantees that every (d − 1)-tuple of leakage vectors is independent of any

sensitive variable. This means that any adversary targeting the implementation will have

to “combine” the information of at least d shares, and that extracting information from

these d shares will require to estimate a dth-order moment of the leakage distribution

(conditioned on a sensitive variable)—a task that becomes exponentially hard in d if the

noise is sufficient. In software implementations, independence typically requires avoid-

ing transition-based leakages (i.e., leakages that depend on the distance between shares

rather than directly on the shares) [5,21]. In hardware implementations, various physi-

cal defaults can also invalidate the independence assumption (e.g., glitches)[49]), which

motivates research efforts to mitigate this risk, both at the hardware level (e.g., [53]) and

algorithmic level (e.g., [56]).

Note that only this last (independence) assumption is strictly needed for the following

proofs of Sect. 3 to hold. By contrast, the previous assumptions (a) and (b) will be

useful to provide practical intuition in Sect. 4. Furthermore, it is worth noting that

slight deviations from this independence assumption (i.e., slight dependencies between

the shares’ leakages) may still lead to concrete security improvements, despite falling

outside the proofs’ formal guarantees. Such (practically meaningful) contexts will be

further analyzed in Sect. 4.2.
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2.2. Evaluation Metrics

Following [71], one generally considers two types of evaluation metrics for leaking

cryptographic devices. First, information theoretic metrics aim to capture the amount

of information available in a side-channel, independent of the adversary exploiting it.

Second, security metrics aim to quantify how this information can be exploited by some

concrete adversary. As will be clear next, the two types of metrics are related. For exam-

ple, in the context of standard DPA attacks [49], they both measure the prediction of the

(true) leakage function with some model, the latter usually expressed as an estimation

of the leakage Probability Density Function (PDF). Yet they differ since information

theoretic metrics only depend on the leakage function and model, while security metrics

also depend on the adversary’s computational power. For example, the capacity to enu-

merate key candidates may improve security metrics, but has no impact on information

theoretic ones. Our goal in the following is to draw a formal connection between infor-

mation theoretic and security metrics, i.e., between the amount of leakage provided by

an implementation and its (worst-case) security level.

In the case of masking, proofs informally state that “given that the leakage of each

share is independent of each other and sufficiently noisy, the security of the implemen-

tation increases exponentially in the number of shares.” So we need the two types of

metrics to quantify the noise condition and security level.

a. Metrics to quantify the noise condition. In general (i.e., without assumptions on

the leakage distribution), the noise condition on the shares can be expressed with an

information theoretic metric. The Mutual Information (MI) advocated in [71] is the

most frequently used candidate for this purpose:

MI(Yi ; LYi
) = H[Yi ] +

∑

yi ∈Y

Pr[yi ] ·
∑

l yi
∈L

Pr[l yi
|yi ] · log2 Pr[yi |l yi

] , (3)

where we use the notation Pr[Yi = yi ] =: Pr[yi ] when clear from the context. Note that

whenever trying to compute this quantity from an actual implementation, evaluators face

the problem that the leakage PDF is unknown and can only be sampled and estimated.

As a result, one then computes the Perceived Information (PI), which is the evaluator’s

best estimate of the MI [64]:

P̂I(Yi ; LYi
) = H[Yi ] +

∑

yi ∈Y

Pr[yi ] ·
∑

l yi
∈L

Pr
chip

[l yi
|yi ] · log2 P̂r

model
[yi |l yi

] , (4)

with Prchip the true chip distribution that can only be sampled and P̂rmodel the adver-

sary’s estimated model. For simplicity, we will ignore this issue and use the MI in our

discussions. (Conclusions would be identical with the PI [40].)

Interestingly, when additionally considering reduced leakages with additive Gaussian

noise, and restricting the evaluation to so-called “first-order information” (i.e., informa-

tion lying in the first-order statistical moments of the leakage PDF, which is typically the

case for the leakage of each share), simpler metrics can be considered [48]. For example,
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the SNR defined by Mangard at CT-RSA 2004 in [46] is of particular interest for our

following discussions:

SNR =
ˆvarYi

(

Êni
(LYi

)

)

ÊYi

(

ˆvarni
(LYi

)
)

, (5)

where Ê is the sample mean operator and ˆvar is the sample variance. Summarizing,

stating the noise condition based on the MI metric is more general (as it can capture any

leakage PDF). By contrast, the SNR provides a simpler and more intuitive condition in

a more specific but practically relevant context.

Eventually, the previous works of Prouff–Rivain and Duc et al. [27,60] consider the

following statistical distance (SD) to state their noise condition:

SD(Yi ; Yi |LYi
) =

∑

l yi
∈L

Pr[l yi
] · d(Yi ; Yi |l yi

) , (6)

with d the Euclidean norm in [60] and d(X1, X2)=
1
2

∑

x∈X | Pr[X1 = x] − Pr[X2 =
x]| in [27]. In their terminology, a leakage function L is then called “δ-noisy” if δ =
SD(Yi ; Yi |LYi

), which was useful to connect different leakage models.

As previously mentioned, some of these metrics can be related under certain condi-

tions. For example, in the context of univariate Gaussian random variables, the MI can

be approximated from Pearson’s correlation coefficient [48], which was also connected

to the SNR by Mangard [46]. The combination of those links corresponds to the classical

MI bound in Cover and Thomas [24]:

MI(Yi ; LYi
) ≈ −1

2
log

⎛

⎜

⎝
1 −

⎛

⎝

1
√

(1 + 1
SNR

)

⎞

⎠

2
⎞

⎟

⎠
≤ 1

2
log

(

1 + SNR
)

· (7)

In Sect. 3.1, we show that the MI and SD metrics can be connected as well.

b. Metrics to quantify the security result. Quantifying security requires defining the

adversary’s goal. Current side-channel attacks published in the literature mostly focus

on key recovery. In this context, one can easily evaluate the exploitation of the leakages

with a success rate, as suggested in [71], defined for any sensitive variable and adapted

to our masking context as follows:

Definition 1. (Key recovery success rate). Let y1, y2, . . . , yd be d leaking shares of

a sensitive value y, with corresponding leakages l y1 , l y2 , . . . , l yd
, and m a number of

measurements. We define the key recovery success rate SRkr as the probability that an

adversary A recovers the sensitive value y given m × d leakages subtraces, with the

leakages generated from random (uniform) plaintexts.

Key recovery is a weak security notion from a cryptographic point of view. As a result,

rigorous proofs for masking such as the one of Duc et al. in [27] rather define security

using the standard real-world / ideal-world paradigm, which consider two settings: the
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ideal world where the adversary attacks the algorithm of a cryptographic scheme in

a black-box way and the real world where he additionally obtains leakages. In this

context, a scheme is said to be secure if for any adversary in the real world there exists

an adversary in the ideal world. In other words, any attack that can be carried out given

the leakages can also be carried out in a black-box manner. A proof of security usually

involves constructing an efficient simulator that is able to simulate the leakages just

giving black-box access to the attacked cryptographic scheme. Whenever considering

this (standard) indistinguishability-based security notion, we will denote the adversary’s

success probability of distinguishing the two worlds with SRdist.

3. Making Proofs Concrete: Theory

In this section, we discuss theoretical tweaks allowing to improve the concreteness of

masking proofs. For this purpose, we recall three important leakage models that are

relevant for our work. First, the t-probing and ǫ-probing (aka random probing) models

were introduced in [41]. In the former one, the adversary obtains t intermediate values

of the computation (e.g., can probe t wires if we compute in binary fields). In the latter

one, he obtains each of these intermediate values with probability ǫ and gets ⊥ with

probability 1 − ǫ (where ⊥ means no information). Using a Chernoff-bound, it is easy

to show that security in the t-probing model reduces to security in the ǫ-probing model

for certain values of ǫ. Second, the noisy leakage model describes many realistic side-

channel attacks and allows an adversary to obtain each intermediate value perturbed

with a δ-noisy leakage function L [60]. As mentioned in the previous section, a leakage

function L is called δ-noisy if for a uniformly random variable Y (over the field F) we

have SD(Y ; Y |LY ) ≤ δ. In contrast with the conceptually simpler ǫ-probing model,

the adversary obtains noisy leakages on each intermediate variable. For example, in the

context of masking, he obtains L(Yi , Ri ) for all the shares Yi , which is more reflective

of actual implementations where the adversary can potentially observe the leakage of

all these shares, since they are all present in leakage traces such as in Fig. 1. Recently,

Duc et al. showed that security against probing attacks implies security against noisy

leakages (up to a factor |F|, where F is the underlying field in which the operations are

carried out) [27]. In the rest of this section, we first connect the statistical distance SD

with the mutual information metric MI, which shows that both can be used to quantify

the noise condition required for masking. Next, we provide alternative forms for the

theorems of Duc et al. and show (i) the security of the encoding used in (e.g., Boolean)

masking and (ii) the security of a complete circuit based on the ISW compiler.

3.1. From Statistical Distance to MI

The results from Duc et al. require to have a bound on the SD between the shares and

the shares given the leakage. For different reasons, expressing this distance based on the

MI metric may be more convenient in practice (as witnessed by the numerous works

where this metric has been computed, for various types of devices, countermeasures and

technologies—see the list in Introduction). For example, and as previously mentioned,

the MI metric is useful to determine whether the leakage model used in a standard
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DPA is sound [28]. Very concretely, Eqs. (3) and (4) are also expressed in a way that

requires summing over the intermediate values first and on the leakages afterward, which

corresponds to the way security evaluations are performed (i.e., fix the target device’s

state, and then perform measurements). Thus, we now show how to express the SD in

function of the MI. We use a previous result from Dodis [26] for this purpose, which

proofs follows [12], that we rephrase with our notations.

Lemma 1. ([26], Lemma 6) Let Yi and LYi
be two random variables. Then:

1

2

⎛

⎝

∑

(y∈Y,ℓ∈L)

∣

∣Pr[Yi = y, LYi
= ℓ] − Pr[Yi = y] Pr[LYi

= ℓ]
∣

∣

⎞

⎠

2

≤ MI(Yi ; LYi
) .

Using this lemma, we can now express the SD in function of the MI as follows.

Theorem 1. Let Yi and LYi
be two random variables. Then:

2 · SD(Yi ; Yi | LYi
)2 ≤ MI(Yi ; LYi

) .

Proof. The proof follows the proof of [11], Lemma 4.4. We have:

∑

(y∈Y,ℓ∈L)

∣

∣Pr[Yi = y, LYi
= ℓ] − Pr[Yi = y] Pr[LYi

= ℓ]
∣

∣ ,

=
∑

ℓ∈L

Pr[LYi
= ℓ]

∑

y∈Y

∣

∣Pr[Yi = y | LYi
= ℓ] − Pr[Yi = y]

∣

∣ ,

= 2 · SD(Yi ; Yi | LYi
) .

The final result directly derives from Lemma 1. �

3.2. Security of the Encoding

In this section, we analyze the security of an encoding when m measurements are taken

and the encoding is refreshed between each measurement using a leak-free gate. More

precisely, we assume that a secret y is secret-shared into d shares y1, . . . yd , using an

additive masking scheme over a finite field F. Between each measurement, we assume

that we take fresh y1, . . . , yd values such that y = y1 + · · · + yd (e.g., it could be

the Boolean encoding of Sect. 2.1). We also assume that this refreshing process does

not leak and first recall a previous result from [27] that relates the random probing

model to the noisy model. For conciseness, we call an adversary in the random-probing

model a “random-probing adversary,” an adversary in the δ-noisy model a “δ-noisy

adversary,” and an adversary having access to leakages such that MI(Y ; |LY ) ≤ δ a

“δ-MI-adversary.” However, note that the physical noise (and its quantification with the

MI) is a property of the implementation rather than of the adversary.
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Lemma 2. ([27], Lemma 3) Let A be a δ-noisy adversary targeting values in F
d . Then,

there is a δ · |F|-random-probing adversary S on F
d such that for every (y1, . . . , yd), A

and S produce the same view when applied on (y1, . . . , yd).

This result enables us to work directly in the random-probing model instead of the

noisy leakage model. Next, we study the security of the encoding. As mentioned in

Introduction, the adversary’s goal in this case is to recover the encoded value, which is

equivalent to key recovery if this value is a key. In order to make it completely comparable

with actual attacks, we also add the number of measurements m used by the adversary

as a parameter in our bounds.

Theorem 2. Let d be the number of shares used for a key encoding, m be the number

of measurements, and MI(Yi , LYi
) ≤ t for some t ≤ 2/|F|2. Then, if we refresh the

encoding in a leak-free manner between each measurement, the probability of success

of a key recovery adversary under independent leakage is:

SRkr ≤ 1 −
(

1 −
(

|F|
√

t/2
)d

)m

. (8)

Proof. In the random-probing model with parameter ǫ, an adversary learns nothing

about the secret if there is at least one share that did not leak. Since all the measurements

are independent and we use leak-free refreshing gates, we have:

SRkr ≤ 1 −
(

1 − ǫd
)m

. (9)

Let A be a t-MI-adversary on F
d . From Theorem 1, we know that A implies a

√
t/2-noisy

adversary on F
d and, by Lemma 2, we obtain a |F|√t/2-random-probing adversary on

F
d . Letting ǫ := |F|√t/2 in (9) gives us the result. �

Note that Equation (9) focuses on the impact of the adversary’s measurement com-

plexity m on the success rate, which is usually the dominating factor in concrete side-

channel analyses. However, the impact of time complexity when considering key enu-

meration, which is the standard way to exploit computational power in side-channel

analysis [75,76], will be discussed in Sect. 4.3. Besides, and for readability, we ig-

nore the additional terms corresponding to mathematical cryptanalysis (e.g., exhaustive

search, linear cryptanalysis, …) that should be added for completeness. In order to allow

us comparing this result with the case where we study the security of a complete circuit

encoded with the ISW compiler, we also write our result according to the following

corollary.

Corollary 1. Let d be the number of shares used for a key encoding and m the number

of measurements. Then, if we refresh the encoding in leak-free manner between each

measurement and for any α > 0, the probability of success of a key recovery adversary

under independent leakage is:

SRkr ≤ m · exp (−αd) , (10)
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if we have:

MI(Yi ; LYi
) ≤ 2

(

1

eα|F |

)2

. (11)

Proof. We have:

1 −
(

1 − ǫd
)m

≤ melog(ǫ)d .

We want log(ǫ) = −α. Hence, from Theorem 2, we get our result. �

3.3. Security of the Whole Circuit

In this section, we re-state the theorems from Duc et al. when securing a whole circuit

with the seminal ISW compiler. The main theorem from [27] bounds the probability

of success of a distinguishing adversary in the noisy leakage model. We provide an

alternative version of their theorem and, as in the previous section, we relate it to the

mutual information instead of the statistical distance.

Theorem 3. Suppose that we have a circuit of size |Ŵ| (i.e., with |Ŵ| gates) protected

with the ISW compiler with d shares. Then, the probability of success of a distinguishing

adversary under independent leakage is:

SRdist ≤ |Ŵ| · exp

(

− d

12

)

= |Ŵ| · 2

(

− d·log2(e)

12

)

≤ |Ŵ| · 2−d/9, (12)

if we have:

MI(Yi ; LYi
) ≤ 2 ·

(

1

|F | · (28d + 16)

)2

. (13)

The relation between the circuit size and concrete multivariate (aka horizontal) side-

channel attacks such as [9,38] is discussed in Sect. 4.1, Paragraph (c), together with its

impact regarding composability issues [6,23]. Similarly to what we did in the previous

section, we also write the following corollary.

Corollary 2. Suppose that we have a circuit of size |Ŵ| protected with the ISW compiler

with d shares. Then, if MI(Yi , LYi
) ≤ t , a distinguisher adversary under independent

leakage needs:

d ≥
1 − 16|F |

√

1
2

t

28|F |
√

1
2

t

(14)

shares in order to obtain:

SRdist ≤ |Ŵ| · exp

(

− d

12

)

≤ |Ŵ| · exp

⎛

⎝−
1 − 16|F |

√

1
2

t

336|F |
√

1
2

t

⎞

⎠ . (15)

Note that the ISW compiler can actually be used to efficiently compute any circuit. For

example, the work of Rivain and Prouff at CHES 2010 showed how to adapt the compiler



1274 A. Duc et al.

to |F | = 256 which leads to efficient masked implementations of the AES [66] (see also

various following works such as [17,37,67]).

4. Making Proofs Concrete: Practice

In this section, we complement the previous theoretical results with an experimental

analysis. Our contributions are threefold. First, we provide an empirical evaluation of

the encoding scheme in Sect. 3.2, which allows us to discuss the noise condition and

tightness of the bounds in our proofs. We use this discussion to conjecture a simple

connection between the mutual information metric and the success rate of a (worst-

case) side-channel adversary and argue that it can lead to quite accurate approximations

of the attacks’ measurement complexity. Next, we discuss possible deviations from the

independent leakage assumption and provide tools allowing one to analyze the security

level of concrete devices in such cases. Eventually, we consider the tradeoff between

measurement complexity and time complexity in the context of divide-and-conquer side-

channel attacks. We show how one can build a side-channel security graph (i.e., a plot of

the adversary’s success probability bounds in function of both parameters [76]), based

only on the estimation of the MI metric for each share of a masking scheme. Along these

lines, we additionally provide a formal justification for the physical security evaluation

framework proposed at Eurocrypt 2009 [71].

4.1. Experimental Validation

In order to discuss the relevance of the proofs in the previous section, we take the

(usual) context of standard DPA attacks defined in [48]. More precisely, we consider

the simple case where an adversary targets a single S-box from a block cipher (e.g.,

the AES) as specified in Sect. 2.1, and obtains leakage variables L yi
= L(yi , Ri ) for

1 ≤ i ≤ d (the case of multiple S-boxes will be studied in Sect. 4.3). For convenience,

we mainly consider the context of mathematically generated Gaussian Hamming weight

leakages, where L yi
= HW(yi ) + Ni , with HW the Hamming weight function and Ni

a Gaussian-distributed noise, with variance σ 2. In this respect, we note that we did

not mount concrete attacks since we would have had to measure hundreds of different

implementations to observe useful trends in practice. Our experiments indeed correspond

to hundreds of different noise levels. Yet, we note that devices that exhibit close to

Hamming weight leakages are frequently encountered in practice [47]. Furthermore,

such a simulated setting is a well-established tool to analyze masking schemes (see,

e.g., [67] for polynomial masking, [4] for inner product masking and [16] for leakage

squeezing). Besides, we also consider random Gaussian leakage functions, of which the

deterministic part corresponds to random functions over Y , to confirm that all the trends

we put forward are also observed with leakage functions that radically differ from the

usual Hamming weight one.

a. Computing the MI metric. In this DPA setting, we aim to compute the MI between

the key and the plaintext and leakages. For conciseness, we use the notations Y =



Making Masking Security Proofs Concrete 1275

Table 1. Computing key candidate probabilities for MI metric estimation.

Key candidates

State and leakage k∗
1 k∗

2 … k∗
Nk

(k, x1) � l1 p̂1
1 p̂2

1 … p̂
nk
1

(k, x2) � l2 p̂1
2 p̂2

2 … p̂
nk
2

… … … … …

(k, xnt ) � lnt p̂1
nt

p̂2
nt

… p̂
nk
nt

[Y1, . . . , Yd ] and LY = [LY1 , . . . , LYd
] for vectors containing the d shares and their

corresponding leakages. Then, we compute:

MI(K ; X, LY ) = H[K ] +
∑

k∈K

Pr[k] ·

∑

x∈X ,y∈Yd

Pr[x, y] ·
∑

l y∈Ld

Pr[l y |k, x, y] · log2 Pr[k|x, l y] . (16)

While this expression may look quite involved, we note that it is actually simple to

estimate in practice, by sampling the target implementation. Evaluators just have to set

keys k in their device and generate leakage traces corresponding to (known) plaintexts

x and (unknown) shares y. Say there are |K| = nk key candidates and we generate nt

leakage traces l i , then, one just assigns probabilities p̂
j

i to each key candidate k∗
j , for each

measured trace, as in Table 1. This is typically done using TA or LR. Following, if the

correct key candidate is k, the second line of (16) can be computed as Êi log2( p̂k
i ). Note

that whenever considering the standard DPA setting where the target operations follow

a key addition, it is not even necessary to sum over the keys since MI(K = k; X, LY ) is

identical for all k’s, thanks to the key equivalence property put forward in [48].

Intuitively, MI(K ; X, LY ) measures the amount of information leaked on the key

variable K . The framework in [71] additionally defines a Mutual Information Matrix

(MIM) that captures the correlation between any key k and the key candidates k∗. Using

our sampling notations, the elements of this matrix correspond to MIMk,k∗ = H[K ] +
Ei log2( p̂k∗

i ). More formally:

Definition 2. (Mutual Information Matrix (MIM)). For a random variable K , we

define the |K | × |K | mutual information matrix (MIM) such that to each key k and key

candidate k∗, we associate the value:

MIMk,k∗ = H [K ] +
∑

x∈X ,y∈Yd

Pr[x, y] ·
∑

l y∈Ld

Pr[l y |k, x, y] · log Pr[k∗|x, l y] . (17)
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This definition directly leads to the equality: MI(K ; X, LY ) = Ek(MIMk,k), i.e., the

mutual information is the average value of the diagonal elements of MIM.

b. Intuition behind the noise condition. Theorems 2 and 3 both require that the MI

between the shares and their corresponding leakage is sufficiently small. In other words,

they require the noise to be sufficiently large. In this section, we compute the MI metric

for both an unprotected implementation (i.e., d = 1) and a masked one (i.e., d = 2) in

function of different parameters.1 In order to illustrate the computation of this metric,

we provide a simple open-source code that evaluates the MI between a sensitive variable

Y and its Hamming weights, for different noise levels, both via numerical integration

(that is only possible for mathematically generated leakages) and sampling (that is more

reflective of the evaluation of an actual device) [1]. In the latter case, an evaluator

additionally has to make sure that his estimations are accurate enough. Tools for ensuring

this condition are discussed in [28]. In the following, this sufficient sampling is informally

confirmed by the smooth shape of our experimental curves.

We start with the simplest possible plot, where the MI metric is computed in function

of the noise variance σ 2. Figure 2 shows these quantities, both for Hamming weight

leakage functions and for random ones with output range Nl (in the latter context, the

functions for different Nl ’s were randomly picked up prior to the experiments, and stable

across experiments). We also considered different bit sizes (n = 2, 4, 6, 8). Positively,

we see that in all cases, the curves reach a linear behavior, where the slope corresponds

to the number of shares d. Since the independent leakage condition is fulfilled in these

experiments, this d corresponds to the smallest key-dependent moment in the leakage

distribution. And since the measurement (aka sampling) cost for estimating such mo-

ments is proportional to (σ 2)d , we observe that the MI decreases exponentially in d for

large enough noises. Note that this behavior is plotted for d = 1, 2, but was experi-

mented for d’s up to 4 in [72], and in fact holds for any d, since it exactly corresponds

to Theorem 2 in a context where its assumptions are fulfilled.

Negatively, we also see that the noise level that can be considered as high enough

depends on the leakage functions. For example, the random leakage functions in the right

part of the figure have signals that vary from approximately 2
4

for Nl = 2 to 16
4

for Nl =
16. It implies that the linearly decreasing part of the curves is reached for larger noises in

the latter case. Yet, this observation in fact nicely captures the intuition behind the noise

condition. That is, the noise should be high enough for hiding the signal. Therefore, a

very convenient way to express it is to plot the MI metric in function of shares’ SNR,

as in Fig. 3. Here, we clearly see that as soon as the SNR is below a certain constant

(10−1, typically), the shape of the MI curves gets close to linear. This corroborates the

condition in Theorem 2 that masking requires MI(Ki ; X, LYi
) to be smaller than a given

constant. Our experiments with different bit sizes also suggest that the |F| factor in

this noise condition is a proof artifact. This is now formally proven by Dziembowski,

Faust and Skorski in [30]. Of course, and as mentioned in Sect. 2.2, the SNR metric is

only applicable under certain conditions (univariate Gaussian leakages). So concretely,

an evaluator may choose between computing it after dimensionality reduction (leading

1For the masked case, we consider univariate leakages corresponding to the parallel setting in [10], for

which computing the MI is slightly faster than in the serial one.
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Fig. 2. MI metric in function of σ 2. HW (left) and random (right) leakages.

Fig. 3. MI metric in fct. of the shares’ SNR. HW (left) and random (right) leakages.

to a heuristic but intuitive condition), or to directly state the condition in function of

the MI. For completeness, we also plot the MI metric for an unprotected and masked

implementation in function of the share’s MI in Appendix, Fig. 11. It clearly exhibits

that as the share’s MI decreases, this reduction is amplified by masking (exponentially

in d).

c. Tightness of the bounds. Given that the noise is high enough (as just discussed),

Theorems 2 and 3 guarantee that the success rate of a side-channel adversary can be

bounded based on the value of the share’s leakage, measured with MI(Ki ; X, LYi
). This

directly leads to useful bounds on the measurement complexity to reach a given success

rate, e.g., from (8) we can compute:

m ≥ log(1 − SRkr)

log

(

1 −
(

|F|
√

MI(Ki ;X,LYi
)

2

)d
) · (18)



1278 A. Duc et al.

Fig. 4. Measurement complexity and bounds/approximations for concrete TA.

Note that in our standard DPA experiments where we consider bijective S-boxes,2 we

have that MI(Ki ; X, LYi
) simplifies into MI(Yi ; LYi

), i.e., the security only depends on

the leakage of the target intermediate variables Yi ’s. We now want to investigate how

tight this bound is. For this purpose, we compared it with the measurement complexity

of concrete key recovery TA (using a perfect leakage model). As previously mentioned,

the |F| factor in this equation can be seen as a proof artifact related to the reduction in

our theorems—so we tested a bound excluding this (possibly significant) factor (e.g., it

would typically be equal to 256 in the AES case). For similar reasons, we also tested

a bound additionally excluding the square root loss in the reductions (coming from

Theorem 1).

As illustrated in Fig. 4, the measurement complexity of the attacks is indeed bounded

by Equation (18), and removing the square root loss allows the experimental and the-

oretical curves to have similar slopes. The latter observation fits with the upper bound

MI(Yi ; LYi
) ≤ |F|

ln(2)
· SD(Yi ; Yi | LYi

) given in [60] that becomes tight as the noise

increases.3 As expected, the bounds become meaningless for too low noise levels (or

too large SNRs, see Appendix, Fig. 12). Intuitively, this is because we reach success

rates that are stuck to one when we deviate from this condition. For completeness, we

added approximations obtained by normalizing the shares’ MI by H[K ] to the figure,4

which provide hints about the behavior of a leaking device when the noise is too low.

Interestingly, these results also allow us to reach a comprehensive view of the param-

eters in Theorem 3, where the security of a complete circuit encoded according to the

ISW compiler is proven. That is, in this case as well we expect the |F| and 1/9 factors in

Equation (12) to be due to proof technicalities. By contrast, the |Ŵ| factor is physically

2Our attacks exploit the leakages of an S-box output, as specified in Sect. 2.1. We took the PRESENT

S-box for n = 4, the AES one for n = 8, and picked up two random S-boxes for n = 2, 6, as we did for the

random leakage functions.

3Since their inequality comes from a log(1 + x) < log(x) inequality that gets close to an equality when

x gets close to 0, which happens for large noise levels.

4And multiplying the measurement complexity by a constant: see Equation (21).
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motivated, since it corresponds to the size of the circuit and fits the intuition that more

computations inevitably means more exploitable leakage. The d factor appearing in the

noise condition of Equation (13) can also be explained, since it directly relates to the

fact that in the ISW compiler, any multiplication will require to manipulate each share d

times (which allows the adversary to average the shares’ leakages before the estimation

of a higher-order statistical moment, as recently discussed in [9,38]). Taking all these

observations into account, we summarize the concrete security provided by any masking

scheme with the following informal conjecture.

Informal conjecture. Suppose that we have a circuit of size |Ŵ| masked with d shares

such that the information leakage on each of these shares (using all available time

samples) is bounded by MI(Yi ; LYi
). Then, the probability of success of a distinguishing

adversary using m measurements and targeting a single element (e.g., gate) of the circuit

under independent and sufficiently noisy leakage is:

SRdist
1 ≤ 1 −

(

1 − MI(Yi ; LYi
)d

)m

, (19)

and the probability of success targeting all |Ŵ| elements independently equals:

SRdist
|Ŵ| ≤ 1 − (1 − SRdist

1 )|Ŵ| . (20)

Note that Equation (19) is backed up by the results in [3] (Theorem 6) where a

similar bound is given in the context of statistical cryptanalysis. By additionally using the

approximation log(1−x) ≈ −x that holds for x’s close to 0, Equation (19) directly leads

to the following simple approximation of a standard DPA’s measurement complexity for

large noise levels:

m ≥ log(1 − SRdist
1 )

log(1 − MI(Yi ; LYi
)d)

≈ cst

MI(Yi ; LYi
)d

, (21)

where cst is a small constant that depends on the target success rate.

In this conjecture, the words “using all the available time samples” refer to the fact

that in order to evaluate the (worst-case) information of the shares, one should exploit

multivariate attacks or dimensionality reduction techniques (e.g., such as PCA, LDA,

KDA), as mentioned in Sect. 2.1, Paragraph (a).

Besides, Equation (20) (like Theorem 3) assumes that the leakages of the |Ŵ| gates

(or target intermediate values) are exploited independently. This perfectly corresponds

to the probing model in which the adversary gains either full knowledge or no knowl-

edge of such computing elements. By contrast, translating this modeling (that exploits

all the leakages in an implementation) into concrete and efficient side-channel attacks

is not straightforward. For example, standard DPA can optimally combine multiple op-

erations depending on the same (enumerable) part of key [48,51], but are therefore

limited to exploiting the leakage of the first rounds in a block cipher implementations.

Algebraic/analytical side-channel attacks mitigate this computational limitation and can

heuristically exploit all the information leakages of an implementation (see [63,77] and

follow ups). Their formal connection with masking proofs is an interesting open problem.
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Eventually, we recall that the protection of large circuits additionally needs to en-

sure composability (e.g., as recently formalized in [6]). That is, a sufficient amount of

refreshing gadgets is required to prevent attacks such as [23].

d. Relation with the Eurocrypt 2009 evaluation framework. The evaluation of leaking

cryptographic implementations with a combination of information and security metrics

was put forward by Standaert et al. at Eurocrypt 2009 [71]. In this reference, the authors

showed a qualitative connection between both metrics. Namely, they proved that the

model (i.e., the approximation of the leakage PDF) used by a side-channel adversary is

sound (i.e., allows key recoveries) if and only if the mutual information matrix (defined

in Paragraph (a) of this section) is such that its diagonal values are maximum for each

line. By contrast, they left the quantitative connection between these metrics as an open

problem (i.e., does more MI imply less security?). Our results provide a formal founda-

tion for this quantitative connection. They prove that for any implementation, decreasing

the MI of the target intermediate values is beneficial to security. This can be achieved

by ad hoc countermeasures, in which case it is the goal of an evaluation laboratory to

quantify the MI metric, or by masking, in which case we can bound security based only

on the value of this metric for each share taken separately (of course assuming that the

independent leakage assumption holds to a sufficient extent, as more carefully discussed

in the next section).

4.2. Beyond Independent Leakage

The previous section evaluated an experimental setting where the leakage of each share

is independent of each other, i.e., L yi
= G(yi ) + Ni . But as discussed in Introduction,

this condition frequently turns out to be hard to fulfill and so far, there are only limited

(even informal) tools allowing to analyze the deviations from independent leakages that

may be observed in practice. In order to contribute to this topic, we first launched another

set of experiments (for 2-share masking), where the leakage of each share can be written

as:

L y1 = G1(y1) + f · G1,2(y1, y2) + N1 ,

L y2 = G2(y2) + f · G2,1(y1, y2) + N2 .

Here the Gi functions manipulate the shares independently, while the Gi, j functions

depend on both shares. We additionally used the f (for flaw) parameter in order to

specify how strongly we deviate from the independent leakage assumption. As in the

previous section, we considered Hamming weight and random functions for all G’s (and

we used Gi, j (yi , y j ) = G(yi ⊕ y j ) for illustration). Exemplary results of an information

theoretic analysis in this context are given in Fig. 5 for the n = 4-, and 8-bit cases (and

in Appendix, Fig. 13 for the n = 2- and 6-bit S-box cases). We mainly observe that as

the noise increases, even small flaws are exploitable by an adversary. Indeed, breaking

the independence condition makes smaller-order moments of the leakage distribution

key-dependent. Consequently, for large enough noise, it is always this smaller-order

moment that will be the most informative. This is empirically confirmed by the slopes

of the IT curves in the figures that gradually reach one rather than two.
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Fig. 5. MI metric for masked implementation with flaw (n = 4, 8).

Following these experiments, let us consider a chip that concretely exhibits such a

flaw for a given noise level σ 2
exp (corresponding to its actual measurements). Despite

falling outside the masking proofs’ guarantees, an important question is whether we

can still (approximatively) predict its security level based on sound statistical tools.

In this respect, a useful observation is that the MI metric cannot directly answer the

question since it captures the information lying in all the statistical moments of the

leakage PDF. So we need another ingredient in order to reveal the informativeness of

each moment of the leakage PDF, separately. The moments-correlating DPA (MC-DPA)

recently introduced in [54] is a natural candidate for this purpose. We now describe how

it can be used to (informally) analyze the security of a flawed masked implementation.

In this context, we first need to launch MC-DPA for different statistical moments,

e.g., the first- and second-order ones in our 2-share example. They are illustrated by

the circle and square markers in the left part of Fig. 6. For concreteness, we take the

(most revealing) case where the second-order moment is more informative than the first-

order one. Assuming that the noise condition in our theorems is fulfilled, the impact

of increasing the noise on the value of the MC-DPA distinguisher can be predicted as

indicated by the curves of the figure. That is, with a slope of 1/2 for the first-order

moment and a slope of 1 for the second-order one.5 Hence, we can directly predict

the noise level σ 2
exp + � such that the first-order moment becomes more informative.

Eventually, we just observe that concrete side-channel attacks always exploit the smallest

key-dependent moment in priority (which motivates the definition of the security-order

for masking schemes [22]). So starting from the value of the MI at σ 2
exp (represented

by a circle in the right part of the figure), we can extrapolate that this MI will decrease

following a curve with slope 2 until σ 2
exp +� and a curve with slope 1 afterward. Taking

advantage of the theorems in the previous sections, this directly leads to approximations

of the best attacks’ measurement complexity. Furthermore, extending this reasoning to

5Slopes are divided by 2 when considering Pearson’s correlation rather than the MI since this correlation

is essentially proportional to the square root of the SNR. This is also reflected by the measurement complexity

of CPA that is proportional to the inverse of the squared correlation versus the inverse of the MI for TA [73].
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Fig. 6. Evaluating non-independent leakages with MC-DPA (left) and MI (right).

more shares and higher-order statistical moments is straightforward: it just requires to

add MC-DPA curves in the left part of Fig. 6, and to always consider the one leading

to the highest MC-DPA value to set the slope of the MI curves, in the right part of the

figure. To the best of our knowledge, such figures (despite informal) provide the first

concrete tools to approximate the security level in such contexts.

Note finally that the shape of the non-independent leakages (i.e., the Gi, j functions)

observed in practice highly depends on the implementations. For example in software,

the most usual issue (due to transition-based leakages, which actually corresponds to our

exemplary function Gi, j (yi , y j ) = G(yi ⊕ y j )) is easy to analyze [5]. It typically divides

the order of the smallest key-dependent moment in the leakage distribution by two, which

corresponds to the additional square root loss in the security bounds of Duc et al. when

considering leakages that depend on two wires simultaneously (see [27], Section 5.5). By

contrast in hardware, multiple shares can leak jointly in a hardly predictable manner, for

example due to glitches [49] or couplings [20]. Yet, even in this case (and in general) the

important conclusion of this section is that (independence) flaws due to physical defaults

are always relative to noise. For example, in the latter reference about couplings, we

have that for the noise level of the authors’ measurement board, higher-order leakages

are more informative than lower-order ones, just as analyzed in Fig. 6. So in this case,

and up to noise levels such that lower-order leakages become more informative, we can

conclude that the (coupling) flaw does not reduce the concrete security level of their

masked implementation.

4.3. Exploiting Computational Power

In this section, we finally tackle the problem of divide-and-conquer DPA attacks, where

the adversary aims to combine side-channel information gathered from a number of

measurements and computational power. That is, how to deal with the practically critical

situation where the number of measurements available is not sufficient to exactly recover

the key? As discussed in [75,76], optimal enumeration and key ranking algorithms

provide a concrete answer to this question. They allow building security graphs, where

the success rate is plotted in function of a number of measurements and computing
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Fig. 7. Exemplary lines of the mutual information matrix MIMk,− (low noise).

power, by repeating attacks multiple times. We next discuss more efficient and analytical

strategies.

a. Why MI is not enough? Whenever trying to exploit both side-channel leakage and

brute-force computation (e.g., key enumeration) the most challenging aspect of the

problem is to capture how measurements and computation actually combine. This is

easily illustrated with the following example. Imagine two hypothetical side-channel

attacks that both succeed with probability 1/100. In the first case, the adversary gains

nothing with probability 99/100 and the full key with probability 1/100. In the second

case, he always gains a set of 100 equally likely keys. Clearly, enumeration will be pretty

useless in the first case, while extremely powerful in the second one. More generally,

such examples essentially suggest that the computational cost of an enumeration does

not only depend on the informativeness of the leakage function (e.g., measured with

the MI) but also on its shape. For illustration, a line of the mutual information matrix

computed from Hamming weight leakages for two different values of k is given in

Fig. 7, where we can clearly identify the patterns due to this leakage model (i.e., close

key candidates k∗ are those for which the Hamming distance HW(k ⊕ k∗) is low).

Similar plots for a larger noise are given in Appendix, Fig. 14. While MIMk,k only

corresponds to a single value of the matrix line (here for k = 111 and k = 211), which

bounds the measurement complexity to recover the corresponding key without additional

computation (as previously discussed), how helpful is enumeration will additionally

depend on the relative distance between the MIMk,k and MIMk,k∗ values [80]. Therefore,

this example incidentally puts forward some limitations of the probing leakage model

when measuring computational cost, since it describes an all-or-nothing strategy—as

already mentioned in Sect. 4.1, Paragraph (c)—which is not the case for the noisy

leakage setting. Hence, whereas the probing model is easier to manipulate in proofs and

therefore useful to obtain asymptotic results, noisy leakages are a more accurate tool to

quantify concrete security levels as in this section.

b. Measurement and computational bounds per S-box. Interestingly, one can easily

derive heuristic bounds for attacks combining side-channel measurements and enumer-

ation power against a single S-box, by re-using the same material as we anyway need
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to estimate the MI metric for a single secret share. For this purpose, the main idea is

to define a new “aggregated key variable” K c
agg such that each time a leakage l y is ob-

served for an intermediate value y, the probability of the aggregated key corresponds

to the probability of the c most likely candidates y∗. Concretely, this first requires to

characterize the distance between any intermediate candidate y and its close candidates

y∗, which can be done by computing a MIM for the random variable Y , defined as:

MIMy,y∗ = H [Y ] +
∑

y∈Yd

Pr[y] ·
∑

l y∈Ld

Pr[l y |y] · log Pr[y∗|l y] · (22)

The latter can be computed as explained in Sect. 4.1, Paragraph (a), Equation (17). We

then sort its lines in order to obtain vectors sy = sort(MIMy,−).6 We further denote

with k∗
sy(1)

the key candidate giving rise to the correct y value, k∗
sy(2)

the key candidate

giving rise to the y∗ candidate that is the closest to y, k∗
sy(3)

the key candidate giving

rise to the y∗ candidate that is the second closest to y, …. For example, in the case of

Hamming weight leakages as in our previous experiments, the close y∗’s are the ones

with Hamming weight HW(y∗) close to HW(y).7 Based on these sy vectors, we can

compute the conditional probabilities of the aggregated key variable K c
agg as follows:

Pr[K c
agg = k|x, l y] =

∑c
i=1 Pr[K = k∗

sy(i)
|x, l y]

∑

k∗∈K Pr[K = k∗|x, l y]
· (23)

This means that for a leakage vector l y , the probability of the aggregated key variable

corresponds to the sum of the probabilities for the key candidates corresponding to the

c most likely y∗ candidates given by MIMy,y∗ . Based on these probabilities, we finally

compute the normalized aggregated MI (NAMI) as:

NAMI(K c
agg; X, LY ) = H[K ]

H[K c
agg]

(

H[K c
agg] +

∑

k∈K

Pr[k] ·
∑

x∈X ,y∈Yd

Pr[x, y] ·

∑

l y∈Ld

Pr[l y |k, x, y] · log2 Pr[K c
agg = k|x, l y]

)

, (24)

where H[K c
agg] = − log(c/2n) for uniformly distributed keys that we will denote

NAMI(c) for short. It captures the (normalized) amount of information the adversary

6For low noise levels for which this value is not defined (because of y∗ candidates with probability 0),

simpler (e.g., Euclidean) distances can serve as heuristic alternatives.

7It is worth mentioning that the distribution of the values of MIMk,− is independent of the value of k,

because of the key equivalence property discussed in [48]. Intuitively this is because for each k, MIMk,−
is computed by summing over all the 2n possible x’s and y’s. By contrast, the distribution of the values of

MIMy,− depend on the value of y, since this time the MIM is computed for a fixed value of x and y which

may lead to more or less informative leakages (see Appendix, Fig. 15).
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obtains about a set of c key candidates that he then has to enumerate. Two important

properties of the NAMI are that it preserves the full informativeness of the leakages

(i.e., if MI(K ; X, LY ) = H[K ], then NAMI(c) = H[K ] for all c’s) and their non-

informativeness (i.e., if MI(K ; X, LY ) = 0, then NAMI(c) = 0 for all c’s). These

properties are best illustrated with examples. First, say we have a (non-informative) con-

ditional probability for a 2-bit key Pr[k|x, l y] = 1
4

, such that MI(k; x, l y) = 0. Then,

aggregation with c = 2 leads to Pr[kc
agg|x, l y] = 1

2
, corresponding to NAMI(c) = 0

(since both the entropy and the conditional entropy of the aggregated key are reduced

to 1). Second, say we have a (fully informative) conditional probability for a 2-bit key

Pr[k|x, l y] = 1, such that MI(k; x, l y) = 2 (i.e., NAMI(1) = 2 thanks to normalization).

Then, the aggregation with c = 2 leads to Pr[kc
agg|x, l y] = 1, which again corresponds

to NAMI(c) = 2.

Note that as in Sect. 4.1, Paragraph (c), we could normalize the aggregated MI with
1

H[K c
agg] in order to have better approximations even in the case of low-noise leakages

(although only the normalization with H[K ]
H[K c

agg] stricly follows the bounds). Note also that

the NAMI is not always increasing with c.

The next step is to translate the NAMI into success rate curves for a single S-box. Here,

we obtain (pessimistic) bounds by simply assuming that the adversary can test (i.e., brute

force) the c candidates, each of them having a probability of success defined by NAMI(c).

That is, assuming a single measurement, the success rate SRdc(m = 1, c = 1) ≤ MId of

Sect. 4.1 becomes SRdc(m = 1, c) ≤ 1 − (1 − NAMI(c)d)c, which equals MId in case

c = 1. Here, the dc superscript recalls the specialization to divide-and-conquer attacks.

We then generalize this success rate to multiple measurements as in Equation (19),

leading to:

SRdc(m, c) ≤ 1 −
(

1 − SRdc(m = 1, c)
)m

+ c

2n
,

≤ 1 −
(

1 − NAMI(c)d
)m·c

+ c

2n
, (25)

where the additional term c
2n corresponds to the exhaustive search in case leakages are

not informative. A couple of such bounds are given in Fig. 8 for illustration, where we

can see the impact of increasing the number of shares d, number of measurements m and

noise level (here reported with the SNR). For example, the linearly shaped curves (as in

the lower right plot, for m = 19) typically indicate that the leakages are not informative

enough and that the additive exhaustive search term c
2n dominates in the success rate

equation.

Note that despite requiring similar characterization efforts, these bounds are con-

ceptually different from the previous approaches to approximate the success rate of

side-channel attacks. In particular, works like [25,32,45,65] are specific to popular dis-

tinguishers (and usually require specialized assumptions about the distribution of these

distinguishers), while our results directly connect to security proofs that are indepen-

dent of the adversarial strategy and hold for any leakage distribution. In other words,

these related works bring a different tradeoff by providing more accurate and specific
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Fig. 8. Single S-box key recovery success rate derived from the approximated NAMI, in function of the time

complexity c for various SNRs and number of measurements m.

estimations.8 They are anyway complementary, since the only requirement to analyze

the combination of multiple S-boxes as proposed in the next paragraph (c) is to have

success rates curves for each S-box. So while the previous proposal and Equation (25)

provide an efficient way to build such curves, the following contribution is general, and

could be used together with any security evaluation obtained for separate S-boxes.

c. Combining multiple S-boxes. We finally generalize our analysis of the previous

paragraph to the case where we target Ns S-boxes (e.g., Ns = 16 for the AES), gained

information about their respective input key bytes, and want to recover the full master

key. We assume that we perform the same amount of measurements m on each S-box.

This can be easily justified in practice, since a leakage trace usually contains samples

corresponding to all S-boxes. By contrast, we make no assumption about how informative

the leakages of each S-box are. For example, it could happen that one S-box is very leaky,

8How specific is the estimation actually depends on the distinguishers. For example, if the estimated

success rate corresponds to a template attack, such as discussed in [45], Section 6, it is then very similar to

the previous information theoretic estimations and may be use to obtain tighter estimations than given by our

bounds.
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and another one perfectly protected (so that enumeration is the only option to recover its

corresponding key byte). For this purpose, we first characterize the measurement versus

complexity tradeoff with Ns success rate matrices SRdc
i (m, ci ) such that 1 ≤ i ≤ Ns

and 1 ≤ ci ≤ 2n (as just explained). We then aim to bound or approximate the total

success rate SRdc(m, c), such that 1 ≤ ci ≤ 2Ns ·n .

The problem of evaluating the remaining time complexity for brute-forcing a key af-

ter some partial knowledge has been obtained thanks to side-channel analysis has been

introduced in the literature as the “rank estimation problem” [76]. Intuitively, it can be

viewed as the evaluator’s counterpart to the (adversary’s) problem of “key enumera-

tion” [75]. The main difference between rank estimation and key enumeration is that

in the first case, the value of the key is known to the evaluator (as in the discussions

of this paper) and the algorithm is only looking for its position in the list of all key

candidates. By contrast, in the second case the key is unknown and the goal of the al-

gorithm is to list the most likely candidates up to some bounded rank (corresponding

to the adversary’s computing power). Concretely, rank estimation usually takes vec-

tors of key bytes probabilities as input, from which it estimates a rank for the master

key. Several efficient solutions have been introduced for this purpose, e.g., [13,35,50].

Yet, in order to produce a security graph, it is then needed to repeat attacks and rank

estimation multiple times in order to estimate a success rate—a task that can become

cumbersome as the security of an implementation increases. Motivated by this draw-

back, Ye et al. proposed an alternative solution, where the success rate is first estimated

for every key byte independently, and then combined—but could only derive success

rate lower bounds [82]. More recently, Poussier et al. proposed a collection of tools

allowing to derive lower and upper bounds on the adversary’s global success rate based

on the key bytes’ success rates [58]. In the following, we will combine these tools

with our bounds or approximations of the S-box success rates, in order to produce

different types of security graphs. More precisely, we will consider the following four

combinations:

1. MI bound, SR bound, where we use the single S-box success rate bound (with

the aggregated MI normalized with H[K ]
H[K c

agg] ) and the multiple S-boxes success rate

upper bound in [58], which corresponds to a worst-case scenario.

2. MI bound, SR heuristic, where we use the single S-box success rate bound and the

multiple S-boxes success rate lower bound in [58], which leads to a less pessimistic

view from the time complexity point-of-view.

3. MI approximation, SR bound, where we use the single S-box success rate approxi-

mation (with the aggregated MI normalized with 1
H[K c

agg] ) and the multiple S-boxes

success rate upper bound in [58], which leads to a less pessimistic view from the

measurement complexity point-of-view.

4. MI approximation, SR heuristic, where we use the single S-box success rate ap-

proximation and the multiple S-boxes success rate lower bound in [58], which leads

to a less pessimistic (and hopefully realistic) view from both the time complexity

and the measurement complexity points-of-view.
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Algorithm 1 Metric-based success rate lower bound.

Input: Lists of success rates S Ri .

Output: A lower bound on the master key success rate.

S Rlow ← downs log(S R0);

for i = 1 to Ns − 1 do

S Ri
low

← downs log(S Ri );

S Rlow ← comb log(S Rlow, S Ri
low

);

end for

return S Rlow

Concretely, the lower and upper bounds for the multiple S-boxes success rates are

obtained with simple manipulations of the single S-box success rate curves, namely

logarithmic downsampling, logarithmic combination, logarithmic indexing and convo-

lution (see the details in [58]). For completeness, we provide a high-level description of

their computation in Algorithms 1 and 2.

Algorithm 2 Metric-based success rate upper bound.

Input: Lists of derivative success rates �S Ri .

Output: An upper bound on the master key success rate.

L Icurr = index log(�S R0);

for i = 1 to Ns − 1 do

L Ii ← index log(�S Ri );

L Icurr ← conv(L Icurr , L Ii );

end for

S Rup[0] ←
∑ j= 1

w −1

j=0
L Icurr [ j];

for i = 1 to Ns · n − 1 do

S Rup[i] ← S Rup[i − 1] +
∑ j= 1

w ·(i+1)−1

j= 1
w ·i

L Icurr [ j];

end for

S Rup[n] ← S Rup[n − 1]+ L Icurr [n];
return S Rup

Examples of security graphs are given in Fig. 9 for d = 1 and d = 2 shares, and in

Fig. 10 for d = 3 and d = 4 shares, where the upper (resp. lower) parts of the figures

correspond to our first (resp. second) combination. They lead to a number of interesting

observations. First, they confirm the exponential security increase that masking provides

thanks to noise amplification. Second, they show that even taking conservative bounds,

it is possible to obtain acceptable security levels under reasonable parameters (although

larger than usually considered in the state-of-the-art literature, e.g., SNR = 0.01 and

d > 4). Third, they illustrate that the upper bound of Algorithm 2 is quite pessimistic

(as witnessed by the “plateau” regions in Fig. 10, where leakages are not informative

enough and success is obtained thanks to exhaustive search—which should only succeed

for complexities close to Ns · n as in the lower part of the figure). Finally, and most
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Fig. 9. Example of security graph for security orders d = 1, 2.

Fig. 10. Example of security graph for security orders d = 3, 4.

importantly, these figures were all obtained in seconds of computations using a prototype

code that we also release in open source for further evaluations [1]. So the tools proposed

in this final section are perfectly suited to efficiently capture the main security parameters

of a leaking implementation. Additional security graphs are given for the same SNR and

number of shares but using combinations 3 and 4 in Appendix, Figs. 16 and 17, which

naturally leads to less conservative estimations of the security level. Finally, and using

the same combinations (3 and 3), we also evaluated the security for a lower SNR = 0.1

in Figs. 18 and 19.

5. Conclusion

Our results show that the (complex) task of evaluating the worst-case security level

of a masked implementation against side-channel attacks can be simplified into the
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evaluation of a couple of MI values, even in contexts where the independence assumption

is not fulfilled. This provides a solid foundation for the Eurocrypt 2009 evaluation

framework. It also makes it easier to perform comprehensive evaluations of divide-and-

conquer DPA since in this case, success rate curves for full keys can now be derived

from the MI values as well, rather than sampled experimentally by repeating (many)

subkey recovery experiments and key rank estimations, which is an expensive task.

Taking advantage of the tools in this paper therefore allows reducing both the number of

measurements and the time needed to evaluate leaking devices. Applying these tools to

concrete implementations protected with various types of countermeasures, in particular

for contexts where the independence assumption is not perfectly respected (as discussed

in Sect. 4.2), is an interesting scope for further investigation.
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Appendix

See Figs. 11, 12, 13, 14, 15, 16, 17, 18 and 19.

Fig. 11. MI metric in fct. of the shares’ MI. HW (left) and random (right) leakages.
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Fig. 12. Measurement complexity and bounds/approximations for concrete TA.

Fig. 13. MI metric for masked implementation with flaw (n = 2, 6).

Fig. 14. Exemplary lines of the mutual information matrix MIMk,− (medium noise).
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Fig. 15. Exemplary lines of the mutual information matrix MIMy,− (medium noise).

Fig. 16. Example of security graph for security orders d = 1, 2.

Fig. 17. Example of security graph for security orders d = 3, 4.
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Fig. 18. Example of security graph for security orders d = 1, 2.

Fig. 19. Example of security graph for security orders d = 3, 4.
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