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ABSTRACT Object detection has so far achieved great success. However, almost all of current state-of-

the-art methods focus on images with normal illumination, while object detection under low-illumination

is often ignored. In this paper, we have extensively investigated several important issues related to the

challenge low-illumination detection task, such as the importance of illumination on detection, the appli-

cabilities of illumination enhancement on low-illumination object detection task, and the influences of

illumination balanced dataset and model’s parameters initialization, etc. We further have proposed a Night

Vision Detector (NVD) with specifically designed feature pyramid network and context fusion network for

object detection under low-illuminance. Through conducting comprehensive experiments on a public real

low-illuminance scene dataset ExDARK and a selected normal-illumination counterpart COCO*, we on one

hand have reached some valuable conclusions for reference, on the other hand, have found specific solutions

for low-illumination object detection. Our strategy improves detection performance by 0.5%∼2.8% higher

than basic model on all standard COCO evaluation criterions. Our work can be taken as effective baseline

and shed light to future studies on low-illumination detection.

INDEX TERMS Object detection, image enhancement, low-illumination.

I. INTRODUCTION

Low illuminance environment is closely related to our life.

We spend almost half of every day in low illuminance envi-

ronment. It brings us many inconveniences, especially in the

field of security where the obtained low-illumination image

often contains valuable information. In low-illumination

environment, due to the dim light or insufficient exposure,

the low-illumination image has problems of low bright-

ness, low contrast and noise. One of straightest solutions

is to improve hardware, such as using infrared monitoring

or increasing the aperture of the camera. However, these

hardware improvements will make the cost too high. There-

fore, much research is still focused on software algorithmic

solutions.

Most of current works on low-illumination focus on image

enhancement, aiming to improve low-level visual qualities of

images. However, for high-level tasks, such as object detec-

tion in low-illumination environments, so far have not been
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received enough attention. Works on object detection under

low-illumination as shown in Figure 1 are still scarce.

Object detection in low-illumination environments is

very challenging. Due to insufficient reflected light under

low-illumination, image captured contains a lot of dark

areas and noise. Though many successful object detec-

tion algorithms have been proposed with developments of

deep learning, most state-of-the-art object detectors, such

as Faster-RCNN [1], SSD [2] etc., cannot perform their

best performance under low-illumination conditions. Even

with additional light source, due to the uneven distribution

of brightness, it is still impossible to distinguish object’s

details. The underlying reason we think is that current

mainstream detectors are designed for normal-illumination

data. So far, there is no special solution for vision tasks in

low-illumination environments.

As a natural idea, image enhancement can be straightfor-

wardly taken as pre-processing step before low-illumination

detection. Therefore, in this paper, we follow to attempt

the idea to implement different low-illumination enhance-

ment algorithms on ExDARK, a real low-illuminance scene

dataset which was lately developed by Loh and Chan [3].
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FIGURE 1. An example of low-illumination objects detection. Our
detector have achieved amazing results in some common scenes of
low-illumination.

We train state-of-the-art object detection models on the

illumination-enhanced data. However, we are depressed to

find that the detection performance of model trained on

the enhanced data is not better than the performance of

model trained directly on original dark data. The experiments

frustratedly imply that most of current image enhancement

algorithms though achieve visually pleasing results, could

not meet low-illumination computer vision tasks. Therefore,

we try to look into the causes and give some explanations

through visualizing impacts of illumination on feature preser-

vations at different convolution levels.

Going deeper, without loss of generality, we develop a

night vision detector based on a representative state-of-the-art

detector RFB-Net [4]. We introduce a specifically designed

feature pyramid network into backbone layers of RFB-Net

for hierarchical feature fusion. Context information are fused

to compensate loss of low-level textural/contour informa-

tion in deeper layers under low-illumination conditions. The

experiments on ExDARK dataset demonstrate that our night

vision detector achieves satisfied improvements on average

detection precisions.

The contributions of this paper are summarized as

followings:

• We have visualized impacts of illumination on fea-

ture preservations at different convolution levels and

explained the underlying reasons that why illumination

greatly affects the performance of detectors.

• We have evaluated a two-step strategy that performs

detection on illumination-enhanced images. The exper-

imental results give us some frustrated experiences that

most of current low-illumination enhancement algo-

rithms cannot meet real-time detection requirements,

and do not bring substantial performance improvements

on detectors.

• We have proposed a Night Vision Detector (NVD) with

specifically designed feature pyramid network and con-

text fusion network on basis of RFB-Net. We train and

test the proposed detector directly on ExDARK, a lately

published real low-light scene dataset. The experi-

ments show that our scheme can amazingly improve

the mean average detection precision performance in

low-illumination scenes.

• We have further experimented and discussed the

affects of data augmentation and parameters initial-

ization. We reach an experimental conclusion that

no matter which illumination bias is specified for

initial model, the converged model trained on the

illumination-balanced data consistently bias towards

low-illuminance scenes. Fine-tuning from pre-trained

parameters of normal-illumination model can benefit for

low-illumination performance improvements.
In summary, our investigations in this paper can offer a

good starting point for further studies on low-illumination

object detection.

In the following parts, we will briefly survey some related

work in Section II. Then we will discuss about the impor-

tance of illumination in SectionIII. In Section IV, we anal-

ysis the validation of current pre-enhancing strategies in

low-illumination detection tasks. After that, in Section V,

we describe the experiment settings of our developed night

vision detector. In Section VI, we perform experiments and

discussions on the affects of illumination-balanced data and

model’s parameter training. At last, we give our conclusions

in final Section VII.

II. RELATED WORK

A. LOW-ILLUMINATION IMAGE ENHANCEMENT

1) TRADITIONAL PIPELINE

The most classic techniques to enhance the contrast of

low-light images is the histogram equalization [5]. It is very

simple, having low computational complexity. However, gray

levels that characterize image details are easily lost due to

excessive gray merge.

Another classic technique is the γ -correction. It assumes

that the sensitivity value of human eyes to the external light

is exponentially related to the input light intensity. Under low-

illumination, it is easier for human eyes to recognize changes

in brightness; with illumination increases, it becomes difficult

for human eyes to distinguish changes in brightness. Through

gamma correction, the contrast effect of image illuminance is

more obvious. However, during image processing, it is diffi-

cult to automatically determine a reasonable gamma value to

correct the original image.

Inspired by the dark channel prior based defogging algo-

rithm [6], several low-illumination video enhancement algo-

rithms were proposed [7], [8]. Łoza et al. [9] proposed

a statistical modeling method based on image wavelet

coefficients for images with low-illumination and uneven

illumination.

2) RETINEX THEORY

The Retinex theory [10] from human vision system (HVS)

believes that the observed brightness of objects is composed

123076 VOLUME 8, 2020



Y. Xiao et al.: Making of Night Vision: Object Detection Under Low-Illumination

of illumination component and reflection component. It is

formulated as Equation 1:

S = I ◦ R (1)

where, S represents observed image, I represents its illumi-

nation component, R represents its reflection component, and

◦ represents element-wise multiplication.

Inspired from retinex theory, single-scale retinex (SSR)

[11], multi-scale retinex (MSR) [12] and multiscale retinex

with color restoration (MSRCR) [13] were successively pro-

posed. In recent, illumination map estimation like LIME [14]

was proposed to construct illumination map through finding

maximum intensity for image channels. Robust-Retinex [15]

were similarly proposed based on retinex theory [10]. How-

ever, the decompose of observed brightness is an ill-posed

problem that so far hasn’t been solved well.

3) DEEP-LEARNING BASED MODEL

Benefiting from the popularity of deep learning methods,

low-level image restoration research such as deblurring,

denoising, and super-resolution have made great break-

throughs. However, for low-illumination enhancement, it is

very difficult to obtain corresponding ground truth. Most

of current low-illumination enhancement methods are there-

fore trained on synthetic data. LLNet [16] was the first

deep auto-encoder-based approach to identify signals from

low-light images and adaptively brighten images without

over-amplifying the lighter parts in images. Tao et al. [17]

proposed a two-step strategy to enhance low-light images

based on atmospheric scattering lighting model.

Since Retinex theory is more suitable for human vision

characteristics, it becomes popular to combine deep learning

with retinex theory, such as LightenNet [18]. Shen et al. [19]

proved that multi-scale retinex is equivalent to a feedfor-

ward convolutional neural network with different gaussian

convolution kernels. They proposed a MSR-Net for directly

learning the end-to-end mapping between dark and bright

images. Wei et al. [20] proposed a Retinex-Net model

that contains DecomNet for decomposition and EnhanceNet

for lighting adjustment. Chen et al. [21] developed the

first real low-illumination RAW dataset, and developed an

enhanced network SID for processing low-light images.

Jiang et al. [22] proposed an unsupervised generative adver-

sarial network called EnlightenGAN to solve the training

without low/normal illumination image pairs. In the most

recent, amaximum entropy based retinexmodel [23] was pro-

posed through self-supervised learning. Hong et al. [24] pro-

posed to address spectral variability by applying a data-driven

learning strategy in inverse problems of hyper-spectral

unmixing.

B. OBJECT DETECTION

Following R-CNN [25] that use convolutional neural net-

works [26] for object detection, the object detection schemes

are divided into two categories: (1) two-stage detectors

such as R-CNN [25], Faster-RCNN [1], MS-CNN [27],

Mask-RCNN [28],etc. and (2) one-stage detectors such as

YOLO [29], SSD [2], DSSD [30], RFB-Net [4] and Reti-

naNet [31], etc.

The two-stage detection algorithm decomposes detection

process into two steps in which candidate regions (region

proposals) are first generated, then the candidate regions are

classified and object locations are refined. The two-stage

detection algorithm can achieve low recognition error rate,

but cannot meet real-time detection scenarios. The one-stage

detection algorithm does not require region proposal step.

It can directly generate the category labels and coordinate

positions of interested objects after a single detection, having

much faster speed than most of two-stage detection algo-

rithms. However, the detection accuracy of one-stage algo-

rithms are mostly inferior to that of two-stage algorithms.

With the development of computer vision, both detection

strategies have been greatly improved. The improvements

are well-known attributed to public dataset such as PASCAL

VOC1 or COCO.2 However, all these famous public data

contain less than 1% of low-illuminance images. As a result,

current detectors cannot fully exert their optimal performance

in low-illuminance scenes.

In some application areas, such as in optical remote sens-

ing imagery, specific auxiliary informations are utilized.

Wu et al. [32] propose an optical remote sensing imagery

detector through jointly considering the rotation-invariant

channel features constructed in frequency domain and the

original spatial channel features. Further, they proposed

a fourier-based rotation-invariant feature boosting frame-

work [33] to solve object deformation problem.

As we know, low-illumination scenes are closely related to

our life. Currently, the development of corresponding intelli-

gent vision systems is yet to be studied. In this paper, we are

concentrated to shed light to providing some feasible solu-

tions for improving the object detection performance under

low-illumination.

III. IMPORTANCE OF ILLUMINATION

In order to study the impacts of illumination on feature extrac-

tions at different convolution layers, in this section, we pro-

pose to experiment and visualize the impacts on different

illumination datasets.

Low-illumination data comes from ExDARK3 [3], with

a total of 7363 images, including 12 categories (‘bicy-

cle’, ‘boat’, ‘bottle’, ‘bus’, ‘car’, ‘cat’, ‘chair’, ‘cup’,

‘dog’, ‘motorbike’, ‘people’, ‘table’). Among these images,

4800 images are for training and 2563 images are for testing.

To construct normal-illumination counterpart, we ran-

domly select 600 images for each category that is defined in

ExDARK, from corresponding COCO category. As a result,

a total of 7200 images are selected, from which 4800 images

are used for training and 2400 images for testing. We denote

1http://host.robots.ox.ac.uk/pascal/VOC/
2http://cocodataset.org/
3https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
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TABLE 1. Models trained on different illumination datasets have limitations for different illumination scenarios. Train/Test represent training/testing
datasets.

FIGURE 2. Shallow illumination information affects high-level feature representation learning, which will also affect the final detect results.
‘Backbone-3’ represents the third layer of the backbone network output. (Red: undetected groundtruth, Green: detected groundtruth, Yellow:
proposed box).

the new collected dataset as COCO* to distinguish it from its

original COCO dataset.

Without loss of generality, we employ a lightweight

one-stage objection detection algorithm, representatively the

RFB-Net [4] for experiment. One of reasons for select-

ing one-stage strategy is that we can easily visualize the

intra-layer feature mappings of whole network from bottom

to top, which can benefit and simply our analysis process.

We train RFB-Net on ExDARK and COCO* respectively

with the same experiment setting, and obtain two variants:

RFB-Dark and RFB-Normal.

The detection performances are evaluated by using stan-

dard COCO evaluation APIs.4 Specifically, in COCO, 10 IoU

thresholds IoU = [.50 : .05 : .95] are use. Object is taken

as small if its area is less than 322, taken as medium if its

area is between 322 and 962, and taken as large if its area

is more than 962. The AP (Average Precision) is averaged

over multiple Intersection over Union (IoU) values and all

categories. The AP.50 and AP.75 are computed at a single IoU

of 0.50 and 0.75 respectively. The APs, APm, APl are AP for

small objects, medium objects, and large objects respectively.

The AR (Average Recall given a fixed number of detections

per image) is also averaged over all categories and IoUs.

In COCO, three thresholds [1, 10, 100] on max detections per

image are given in default for AR1, AR10 and AR100 respec-

tively. Similarly, ARs, ARm and ARl are computed across

scales for objects of different size respectively.

4https://github.com/cocodataset/cocoapi

In order to observe the impacts of different illumination

data on model’s robustness, we perform a cross-dataset test-

ing. Specifically, we train and test model on different illumi-

nation data. The cross-testing results are shown in Table 1.

As expected, performances of detector severely degrades

when it is tested on a dataset having different illumination

from its training data.

For deeper insight into the influence of illumination on

feature learning, we visualize feature maps at different

convolution levels. The comparisons between RFB-Dark

and RFB-Normal models are shown in Fig 2. It is obvi-

ous that, when dealing with low-illumination image, model

RFB-Dark and RFB-Normal extract very different fea-

tures at the same convolution layers. Features from RFB-

Dark is much richer and more semantic complete than ones

from RFB-Normal. Especially on high-level layers, unex-

pected less information is extracted by RFB-Normal. That’s

why the low-illumination model RFB-Dark can success-

fully detect objects in low-illumination environment, while

normal-illumination modelRFB-Normal can not. Therefore,

illumination as low-level information should be paid more

specific attention for model’s robustness.

IV. PRE-ENHANCEMENT MAYBE INVALID

Existing object detectors under normal-conditions are pow-

erless in face of extreme adverse environments such as fogy,

rainy, and night. A natural idea is to employ image enhance-

ment as preprocess stage before proceeding to high-level

vision task. This seems in line with the requirements

123078 VOLUME 8, 2020
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TABLE 2. Although the enhanced data has improved visually, it does not mean that the performance of computer vision tasks can be improved.

FIGURE 3. Comparison of object detection results before and after using image enhancement.
(Red: undetected groundtruth, Green: detected groundtruth, Yellow: predicted bounding-box).

of human vision. Therefore, we use traditional method

LIME5 [14], Retinex-Robust6 [15] and deep-learning based

method Retinex-Net7 [20] to respectively enhance original

low-illumination data, and obtain three resulted enhanced

datasets. We name them as the same as their respectively

constructor, LIME, Retinex-Rob, Retinex-Net for simplicity.

We train detection model respectively on these newly

constructed illumination-enhanced data. The detection per-

formances are shown in Table 2. We are frustrated to find

that, compared with performance directly training and test-

ing on original ExDARK data, all pre-enhanced data do not

improve detection performance, while decrease the perfor-

mance instead. Some visualization results are show in Fig 3.

More examples are shown in Appendix VII.

From these visual samples, we can easily find that

image enhancement algorithms can improve image’s bright-

ness visually. However, noises are inevitably introduced,

5https://github.com/Sy-Zhang/LIME
6https://github.com/martinli0822/Low-light-image-enhancement
7https://github.com/weichen582/RetinexNet

especially in Retinex-Net scheme. The Retinex-Robust and

LIME show relatively better than Retinex-Net. In spired of

that, their final detection performances are still worse than

detection performance on original ExDARK. Furthermore,

the enhancement process of Retinex-Robust takes too much

time (e.g. processing a 1080P high-resolution image spent

more than one minutes), which is impossible to serve as a

preprocessing step for real-time detection task. Therefore,

according to our experiment results, we reach a frustrated

conclusion that current image enhancement algorithms seem

helpless for low-level illumination detection task, except

improving image’s visual qualities. Pre-enhancement maybe

invalid.

V. MAKING OF NIGHT VISION

In this section, we describe and experiment our devel-

oped model which is specific for low-illumination detection

task. It is on basis of the state-of-the-art RFB-Net model.

We name our proposed detector as Night Vision Detec-

tor(NVD). As demonstrated in previous section III, valuable

informations are easily lost in deeper layers. Especially under

VOLUME 8, 2020 123079
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FIGURE 4. The architecture of our developed Night Vision Detector (NVS). The specific structure is based on RFB-Net. Feature pyramid net is introduced
for improvements on small object detection. Contextual information fusion is introduced for maximumly retain the limited and weak object information
in low-illumination image.

low-illumination, parts of the object are easily merged into

dark background during performing convolutions. Therefore,

in order to improve the detection performance under low-

illumination, we introduce feature pyramid fusion network

into detection layers. Context informations are fused into

the detection backbone to compensate for loss of low-level

textural and contour features. The architecture details are

shown in Fig 4.

A. NIGHT VISION DETECTOR

1) FEATURE PYRAMID FUSION NETWORKS

Feature Pyramid Network (FPN) [34] was first introduced

as an extension of Mask R-CNN [28] for better representing

objects at multiple scales. FPN improves the standard feature

extraction pyramid by adding a second pyramid that takes the

high level features from the first pyramid and passes them

down to lower layers. It is a general strategy that combines

top-down fusion with skip layer and pyramid predictions at

multi-scales.

The motivation of FPN is very suitable to adapt itself to

low-illumination object detection task, since it can generate

feature pyramids with strong semantic information without

obvious computation cost on all scales. Different from origi-

nal FPN [34], we give specific modification on the structure

of pyramid feature fusion process. The structure differences

are shown in Fig 5.

For the pyramid feature fusion modules illustrated by

dashed red rectangles in the Feature Pyramid Net of Figure 4,

from top to down, lower spatial resolution feature map (e.g.

the ‘‘conv11’’ layer) is interpolated to the same spatial size

of higher spatial resolution feature map (e.g. the ‘‘conv10’’

layer), and concatenated with the higher spatial resolution

feature map (e.g. herein the ‘‘conv10’’ layer), then fed into

a 1× 1 convolution layer. The output feature map is with the

same spatial and channel sizes as the considered higher spa-

tial resolution feature map (e.g. herein the ‘‘conv10’’ layer).

The motivation of our pyramid feature fusion process is

that we aim to maximumly utilize pre-trained channel infor-

mations. Through concatenation, semantic information in the

123080 VOLUME 8, 2020
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TABLE 3. The ablation performance comparisons of NVD for low-illumination object detection on ExDARK.

TABLE 4. Detector trained on ExDARK+COCO* except RFB-Normal and RFB-Dark. ‘Init R’ means that no interpolation parameters are used. When ‘R’ is a
number, it represents the value of α.

FIGURE 5. The structures of our proposed pyramid feature fusion module
and original module [34]. ‘BN+ReLU’ means ReLU after
BatchNormalization.

channels of lower spatial resolution feature maps and tex-

tural/contour information in the channels of higher spatial

resolution maps are redundantly preserved. 1 × 1 convolu-

tion operations learn optimal linear combination relationships

among these concatenated complementary informations. Our

process can be easily incorporated into any multi-scale net-

work structure, not limited to herein RFB-Net, as auxiliary

modules without any backbone structure changing.

In contrast, the ‘add’ operation in original FPN has lim-

itation that channel size of higher spatial feature map must

be compromised to the same as the one of lower spatial

feature map. We has tried the use of original FPN too, during

our many experimental attempts. Frustratedly, the training

process cannot converge, if we use original FPN structure.

In our later ablation experiments, we validate that the

proposed feature pyramid fusion network improve the perfor-

mances especially on small objects detection by 2.2%, when

compared basic RFB-Net.

2) CONTEXT FUSION (CF) NET

We observe that there are a lot of dark areas in the image

captured under low-illumination. The information of objects

in the image is often covered by dark areas or merged with

dark background. Affected by uneven light source, the sensor

often can only capture limited parts of objects’ contours

on image. In most cases, the captured contours are weak.

Conventional hierarchical convolutions inevitably lose valu-

able informations what there are little, such as informative

texture/contour details. Therefore, we introduce a context

fusion net in bottom-up way into backbone network for

feature compensation during the lower-level to higher-level

convolution process. The fusion process has similar structure

with pyramid feature fusion process.

Specifically, we select the ‘relu3_3’ feature map in the

backbone network (VGG-16) [35] and spatially interpolated

it down-scale to the same spatial size of its successive

‘relu4_3’. We denote the resulted feature map as ‘relu3_3_d’.

The size of ‘relu3_3’ is 75× 75× 256, and therefore the size

of ‘relu4_3_d’ is 38× 38× 256. Feature map ‘relu4_3_d’ is

concatenated with feature map ‘relu4_3’ whose size is 38 ×

38×512, and then fed into a convolution blockwhich contains

a 1 × 1 convolution, batch-normalization and ReLU acti-

vation. The output feature map, denoted as ‘relu4_3_new’,

has the same size with feature map ‘relu4_3’. We on one

hand replace the connection (dashed in Figure 4) between

VOLUME 8, 2020 123081
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FIGURE 6. Comparisons on detection results for images of 10 listed low-illumination types. From left to right, original
image, image enhanced by Retinex-Net, Robust-Retinex and image enhanced by LIME.

‘relu4_3’ and ‘conv_7’ with the new connection between the

‘relu4_3_new’ and ‘conv_7’. On the other hand, we feed

the ‘relu4_3_new’ to the next context fusion process with

feature map ‘conv_7’. At last, the again obtained feature

map, denoted as ‘conv_7_new’ is fed back to backbone net-

work, replacing the original connection between ‘conv_7’ and

‘RBF-1’. These fusion processes are illustrated in Figure 4.

B. EXPERIMENT

Since currently there is no special solution for low-

illuminance detectors, the experiments in this paper have to

be comparedwith our basicmodel RFB-Net.We directly train

model on ExDARK dataset and study the contributions of

each proposed component to the model. The experimental

results are shown in the Table 3.

123082 VOLUME 8, 2020
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FIGURE 7. Comparisons on detection results for images of 10 listed low-illumination types. From left to right, original
image, image enhanced by Retinex-Net, Robust-Retinex and image enhanced by LIME.

Compared with basic model RFB-Net, our proposed new

FPN component can improve the detection performance APs

of small objects greatly by 2.2%without decrease on all other

detection performances. The contribution of component CF

achieves performance improvements on almost all average

precisions. Finally, after incorporating both components, our

VOLUME 8, 2020 123083
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FIGURE 8. Comparisons on detection results for images of 10 listed low-illumination types. From left to right, original
image, image enhanced by Retinex-Net, Robust-Retinex and image enhanced by LIME.

proposedNVDmodel achieves improvements of 0.5%∼2.8%

according to the COCO standard evaluation criterions.

It should be point out that both our proposed components

are general that can be easily applied to anymulti-scale detec-

tion network. Our proposed scheme has effectively improved

the performance of object detection under low-illumination.

VI. THE EFFECTS OF ILLUMINATION-BALANCED DATA

AND PARAMETERS INITIALIZATION

As we know, the performance of data-driven deep model

is generally benefited from rich data and well-initialized

parameters. Therefore, in this section, we discuss the effects

of data augmentation and parameters initialization. Since the

discussed factors are not related specific model, we experi-

ment the discussions on basic RBF-Net for simplicity.

We augment training data by collecting training data from

both the two compared datasets COCO* and ExDARK, a total

of 9,600 training images.

We first train models on COCO*, ExDARK and

COCO*+ExDARK respectively with random initialized

parameters. The testing performances are shown in the first

three rows in Table 4. It is worth noting that in this experi-

ment, we haven’t made any model settings to favor any kind

of illumination data. Augmented training data benefits the

performance boosting. However, compared with the perfor-

mance improvement on normal illumination data COCO*,

for low-illumination scenes, the detection performance is

improved much greatly. We explain that model tend to learn

hard samples during training and the knowledge learned from

normal-illumination data benefits more for low-illumination

learning case.

Afterwards, we try to specify model bias through weighted

combination of pre-trained model’s parameters with different

types of lighting data. We interpolate the model parameters

by parameters pre-trained with normal-illumination data and

parameters pre-trained on low-illumination data. The formal

expression follows Equation 2.

θ init = (1 − α)θdark + αθcoco α ∈ [0, 1] (2)

where, θinit is the interpolated parameters. θdark represents the

RFB-Dark’s parameters, θcoco represents theRFB-Normal’s

parameters. α is to control the initial bias of model to some

specific illumination type data. α ∈ [0, 1]. The bigger the α

is, the more bias the initial mode is towards RFB-Normal.

We discretely take three α cases, α = {0.5, 0.7, 1} for

experiments.We train model on COCO*+ExDARK by using

the interpolated parameters as model’s initial parameters and

test the detector on COCO* and ExDARK test data respec-

tively. The performances are shown in the fourth to sixth rows

in Table 4. The results demonstrate that performance gains on

ExDARK have always been presented, when compared with

RFB-Dark (the second row in Table 4). It indicates that no

matter which illumination bias is specified for initial model,

the converged model trained on the illumination-balanced

data consistently bias towards low-illuminance scenes. When

α = 1, in other words, fine-tuning from pre-trained
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parameters of normal-illumination model achieves the best

detection performance. We explain that this result is reason-

able, since it is in line with our experience that we generally

rely on prior knowledge (e.g. shape, texture of object, etc)

learned at daytime to reason about unknown objects in dark.

Moreover, during experiments, we additionally find the train-

ing process with interpolated pre-trained parameters is more

stable, having better speed-up convergence.

VII. CONCLUSION

In this work, we have investigated several important issues

on object detection under low-illumination environment and

without loss of generality proposed a Night Vision Detec-

tor (NVD) based on RFB-Net for low-illumination envi-

ronments. We find that illumination information has great

impacts on feature learning. Different illumination data

should be modeled separately, since they would interfere

with each other during training. We further suggest that

current image quality driven enhancement methods could

be employed to improve visual quality, while helpless

for high-level real-time object detection tasks. Therefore,

our proposed NVD framework introduced feature pyramid

fusion net and context fusion net. The two components

take comprehensive considerations of informations that affect

low-illumination detection. The experiments demonstrate

that the proposed NVD achieves low-illumination detection

performance by 0.5%∼2.8% higher than basic RFB-Net on

all standard COCO evaluation criterions. Our work can pro-

vide baseline strategies and shed light to future studies on

low-illumination detection.

APPENDIX

More results are shown in Fig. 6, Fig. 7 and Fig. 8. Ten differ-

ent low-illumination scenes (Low,Ambient,Object, Single,

Weak, Strong, Screen, Window, Shadow, Twilight, please

refer to [3] for their specific definition), and correspond-

ing detection results after low-illumination enhancement are

listed. The results suggest that visually improvements after

enhancement show little benefits for high-level vision tasks.
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