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Ontologies offer shared vocab-
ularies. They’re key to agent 
cooperation and seamless 

integration of knowledge systems, and 
they’re fundamental to the Semantic 
Web. They let us precisely define the 
domain of a knowledge-based system. 
And they’re increasing in number. With 
this increase, the need for new tools 
and techniques to reconcile different 
ontologies becomes crucial.

Ontology matching and alignment 
help establish agreement between dif-
ferent knowledge representations. The 
essays here exemplify some of the cre-
ative ways researchers are extending 
the state of the art in algorithms that 
can establish correspondences between 
different but related ontologies. The 
essays are based on six of the 12 papers 
accepted for the First Workshop on On-
tology Alignment and Visualization, held 
in conjunction with the 2008 Interna-
tional Conference on Complex, Intelli-
gent, and Software-Intensive Systems. 
The approaches described make original 
use of techniques such as queries, tag-
ging, graph theory, and information 
visualization.

Ontology Interoperability 
and Matching Applications

Besides concepts, properties, and in-
stances, axioms are essential ontology 
components. Frédéric Fürst and Francky 
Trichet describe a way for ontology 
matching to effectively take these axi-
oms into account. They introduce the 
Ontology Conceptual Graphs Language, 
a graph-based knowledge representa-
tion and reasoning formalism. Their 
TooCom tool supports the definition of 
concepts and relations and the speci-
fication of axioms in a graphical way. 

They apply graph-theoretic operations 
to detect analogies between axioms of 
different ontologies.

Horst Kargl and Manuel Wimmer 
describe how to improve the quality of 
the simple one-to-one correspondences 
that constitute the typical output from 
automatic schema-matching tools. In an 
effort to address some shortcomings as-
sociated with existing schema-matching 
approaches, the authors present Smart-
Matcher, an orthogonal extension of 
these approaches that uses real-world 
examples to evaluate and improve com-
puted alignments. They also introduce 
their prototype implementation for 
schemas defined in the Eclipse Model-
ing Framework.

For users to see ontology mapping as 
a benefit rather than an inconvenience, 
Colm Conroy, Declan O’Sullivan, David 
Lewis, and Rob Brennan look at interac-
tion processes and user interfaces. Their 
focus is ontology mapping for casual 
Web users. They break the mapping 
process down into small tasks and apply 
a tagging approach. A small user experi-
ment indicates that nonexperts can use 
their approach to produce mapping re-
sults on a par with ontology experts.

Challenges and Visions  
in Ontology Matching

José Ángel Ramos-Gargantilla and 
Asunción Gómez-Pérez survey differ-
ent approaches to ontology mapping. 
They have designed an XML schema 
representation for covering mappings 
and their uses in the Semantic Web. Ac-
cordingly, their approach can be used 
to represent mappings that include not 
only ontologies but also other knowl-
edge representations such as relational 
databases, thesauri, and so on.

Jérôme Euzenat, Axel Polleres, and 
François Scharffe propose to extend 
the SPARqL query language to express 
mapping between ontologies. They 
use SPARqL queries as a mechanism for 
translating RDF data of one ontology 
to another. Such functionality lets us-
ers exploit instance data described in 
one ontology while they work with an 
application that’s been designed for an-
other. The authors present an example 
translation of FOAF (friend-of-a-friend) 
files into vCards that shows how to use 
queries to extract data from the source 
ontology and generate new data for 
the target ontology.

Ontology alignment and matching 
still raise more questions than practical 
solutions for a broader audience. With 
the last essay, Konstantinos Kotis and 
Monika Lanzenberger give an overview 
of current dilemmas and crucial chal-
lenges in ontology matching. Their essay 
includes a sidebar for further resources, 
including the proceedings from which 
these essays originated. 

Although further research is neces-
sary for improving state-of-the-art al-
gorithms and tools, ontology matching 
offers many ideas for supporting data 
interoperability. We hope you enjoy 
reading about some of them here.
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Strategies for matching ontologies are di-
verse, but most of them consider only align-
ment between lightweight ontologies—that 
is, ontologies composed of concept and re-
lation taxonomies. Heavyweight ontologies 
additionally include axioms to represent a 
domain’s full semantics.1 Not many real-
world ontologies currently make substan-
tial use of axioms, but the full functioning 
of the Semantic Web requires computers 
to have access both to structured collec-
tions of information and to sets of inference 
rules that support automated reasoning. So 
we think the need to develop heavyweight 
ontologies will inevitably increase. The 
World Wide Web Consortium’s work to-
ward standardizing the Semantic Web Rule 
Language, for example, is one instance of 
this trend.

We’re working to define an ontology-
matching approach based on the explicit 
use of all components of a heavyweight on-
tology. Our approach requires the explicit 
representation of axioms at the concep-
tual level, as opposed to the operational 
level, where most ontological engineering 
represents them. For instance, the Protégé 
knowledge-modeling environment uses the 
Protégé Axiom Language (PAL) to repre-
sent axioms directly via rules or constraints 
with fixed and predefined operational 
semantics. 

Semantically speaking, finding a match 
for an axiom’s operational form is difficult. 
At the conceptual level, an axiom has a for-
mal semantics but not an operational one. 
At the operational level, an axiom has both 
formal and operational semantics, and the 
latter clearly limits reuse. An axiom’s oper-
ational semantics, represented through a set 
of rules and constraints, expresses the way 
a computer can use the axiom to reason, 
whereas the formal semantics expresses 
how the axiom constrains the interpretation 
of its primitives—that is, the concepts and 
relations.2

Ontology Conceptual  
Graphs Language
To represent heavyweight ontologies at the 
conceptual level, we use the Ontology Con-

ceptual Graphs Language (OCGL).2 This 
modeling language is based on a graphi-
cal syntax inspired by conceptual graphs 
(CGs). First introduced as an operational 
knowledge-representation model,3 CGs 
belong to the semantic-networks field and 
are mathematically grounded in both logics 
and graph theory.

OCGL is based on three building blocks: 
concepts, relations, and axioms. Represent-
ing an ontology in OCGL consists mainly 
in specifying a domain’s conceptual vo-
cabulary and specifying this vocabulary’s 
semantics through axioms.

The conceptual vocabulary consists of 
a set of concepts and a set of relations that 
can be structured using well-known con-
ceptual properties (schemata axioms) and 
domain axioms. Schemata axioms repre-
sent classical concept and relation proper-
ties, whereas domain axioms are totally 
specific to a domain. In our work, the term 
axiom means the union of these two axiom-
atic properties.

Figure 1 shows the OCGL graph rep-
resenting the axiom “The enemy of my 
friend is my enemy.” This is a domain ax-
iom that can’t be represented using clas-
sical properties. Compare it to the axiom 
“The friend of my friend is my friend,” 
which is an OCGL schemata axiom that’s 
represented by the transitivity of the rela-
tion called Friend(Human, Human).

OCGL has been implemented in Too-
Com (Tool to Operationalize an Ontology 
with the Conceptual Graph Model), a tool 
for editing and operationalizing domain 
ontologies. TooCom is available under the 
GNU GPL license at http://sourceforge.net/
projects/toocom. It supports the definition 
of concepts and relations and the specifica-
tion of schemata and domain axioms in a 
graphical way.4

MetaOCGL:  
An Ontology of Representation
To detect analogies between axioms rep-
resented as graphs, and then to detect 
analogies between the primitives corre-
sponding to the graph nodes, axioms are 
transcribed from OCGL to a more abstract 
form that preserves the graphs’ topological 
structures. These abstract representations 
are based on MetaOCGL, an ontology of 
representation. MetaOCGL expresses the 
OCGL language ontology in OCGL and 
is therefore a metalevel ontology.5 Meta-
OCGL includes

MetaOCGL concepts to represent OCGL 
primitives,
MetaOCGL relations to represent the 
links between OCGL primitives, 
MetaOCGL schemata axioms used 
mainly to describe the properties of 
OCGL relations, and 
MetaOCGL domain axioms to express 
the formal OCGL semantics.

A MetaOCGL instance—that is, a Meta-
OCGL graph—can represent a domain 
ontology, just as OCGL graphs can repre-
sent domain facts. The MetaOCGL graph 
representing an ontology contains one part 
dedicated to the concept hierarchy’s repre-
sentation, one part dedicated to the relation 
hierarchy’s representation, and as many 
parts as axioms in the ontology. 

Figure 2 (see next page) shows the Meta-
OCGL graphs representing two axioms—
“The enemy of my enemy is my friend” and 
“The enemy of my friend is my enemy”—
and their corresponding metagraphs in 
MetaOCGL. TooCom automatically pro-
vides the MetaOCGL representation of an 
OCGL ontology. Correspondences between 
the domain-level and metalevel concepts 
appear in gold. The type-identity links 
denote domain-level nodes that are simi-
lar—that is, they have the same type. At 
the metalevel, the two graphs are similar 
without considering type-identity links; but 
with these links, they differ because the 
relations of the axiom Enemy-Enemy have 
the same type but the relations of the axiom 
Enemy-Friend do not.

The CG projection operator performs the 
comparisons between axioms represented 
in MetaOCGL. The projection operator is a 
graph-theoretic operation corresponding to 
homomorphism, which is sound and com-
plete with regard to deduction in first-order 
logic. A projection from a graph G1 into a 
graph G2 is a specific graph morphism that 
can restrict the labels of the vertices; it cor-
responds to a logical implication between 
G1 and G2.

•

•

•

•

Figure 1. Representation of an axiom  
in TooCom.
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Given two graphs G1 and G2, 
which represent two axioms A1 and 
A2 in MetaOCGL, if two projections 
exist from G1 into G2 and from G2 
into G1, then A1 and A2 have the 
same structure. In this case, A1 and 
A2 express the same property type, 
and the analogy between the two axi-
oms can extend to the primitives that 
appear in the axioms.

Axiom-Based  
Semantic Matching
Ontology matching aims to discover 
and evaluate semantic links between 
conceptual primitives of two given 
ontologies supposedly built on re-
lated domains. Our approach relies 
on using the ontologies’ axiomatic level to 
discover semantic analogies between primi-
tives that will reveal identities between 
them and calculate the similarity coeffi-
cient of these identities.

We use both schemata axioms and 
domain axioms to evaluate or discover 
primitive matchings. Each OCGL sche-
mata axiom owns a predefined weight 
that modulates the axiom’s influence on 
the matching process. The end user can 
modify the set of weights according to 
the kinds of ontologies or subjective pref-
erences. Thus, these weights are algo-
rithm parameters that users can change 
graphically to improve their results’ 
precision.

Space limitations prevent us from pre-
senting details on the use of the schemata 
and domain axioms to evaluate matchings, 
but details are elsewhere.6 

Experimental Results
Figure 3 shows an extract from applying our 
approach to two ontologies related to family 
relationships. This limited domain includes 
these notions: father, mother, grandfather, 
grandmother, son, daughter, cousin, nephew, 
niece, uncle, aunt, sister, brother, wife, hus-
band, friend, and enemy. This example is 
easy to understand and necessarily requires 
domain axioms for defining such notions as 
“An aunt is either a female sibling of one of 
one’s parents or the wife of an uncle who is 
the male sibling of a parent,” and for speci-
fying relations between notions such as “The 
enemy of my enemy is my friend.” In other 
words, schemata axioms aren’t sufficient 
for representing all the domain knowledge. 
It also means that OWL can’t represent the 
ontologies (available in the XML storage 
format used for OCGL at http://sourceforge.
net/projects/toocom).

In Figure 3, all the weights have the value 

50. The TooCom interface (upper 
part of Figure 3) makes it possible to 
directly visualize the consequences 
(on the matchings) when modifying 
the values of the matching algo-
rithm’s property weights. This shows 
that the matching process itself is not 
sensitive to the weights assigned to 
the OCGL properties. 

Moreover, it shows that TooCom 
provides a first step toward cogni-
tive support for ontology mapping.7 
Indeed, very little research has ad-
dressed cognitive support for ontol-
ogy mappings; researchers have fo-
cused on improving the performance 
of the algorithms themselves, largely 
ignoring the issue of end-user tools. 

To deal with this new problem, Sean 
Falconer, Natalya Noy, and Margaret-Anne 
Storey have identified a set of 13 end-
user tasks for an ontology-mapping tool.7 
Although our user-centered interface is 
perfectible, the current TooCom version 
already supports many of these tasks—for 
example, incremental navigation, browsable 
lists of candidate mappings, and conflict 
resolution/inconsistency detection.

Our method has the advantage of in-
corporating most descriptive features of a 
heavyweight ontology into the matching 
process, whereas current methods usually 
cover only subsets of a lightweight ontol-
ogy. Of course, we know that our method, 
although applicable, isn’t efficient for light-
weight ontologies. However, as the need 
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for developing heavyweight ontologies in-
creases over time, so will the need to focus 
on developing matching techniques dedi-
cated to the reasoning power these ontolo-
gies can bring to the Semantic Web.
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SmartMatcher: Improving 
Automatic Matching Quality
Horst Kargl and Manuel Wimmer,  
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Information integration deals with the 
problem of building a general view on 
different kinds of data. Its long history 
in computer science is rooted in database 
engineering from the early 1980s, when 
autonomous databases started to feder-
ate.1 More recently, the Semantic Web 
and its schema-based technologies for 
describing, storing, and exchanging data 
have intensified the need to automate in-
tegration tasks. 

Researchers have proposed several auto-
mated matching approaches and tools over 
the years. In general, these approaches 
fall into one of three categories.2 Schema-
based approaches use only schema infor-
mation as input for the matching process, 
instance-based approaches use only in-
stances as input, and hybrid approaches 
use schema and instance information. 
The typical outputs are simple one-to-
one alignments, based mostly on schema 
information such as element name and 
structure similarities. These alignments, 
however, can’t handle schema heterogene-
ities, which therefore remain problems that 
must be resolved manually. Furthermore, 
current tools can’t automatically evaluate 
the alignment quality at the instance level 
because their matching approaches aren’t 
bound to a specific integration scenario, 
such as transformation, merge, synchroni-
zation, or search.

The main requirement for matching so-
lutions is to produce complete and correct 
mappings between schemas. Three prob-
lems complicate meeting this requirement:

Different mapping-execution scenar-
ios. Current matching approaches are 
general—that is, they apply to different 
kinds of integration problems. Because 
each integration scenario entails differ-
ent conditions and interpretation, this 
generality makes it hard to cover all 
aspects of each scenario. Furthermore, 
most approaches lack a binding to an 
execution environment, which the actual 
integration solution will need.
Schema heterogeneity. Matching ap-
proaches produce alignments that ex-
press correspondences between elements 
belonging to different schemas. Most 

•

•

schemas share similar semantics but 
describe their semantics with different 
structures. Current one-to-one align-
ments can’t handle schema heterogene-
ities, so users must interpret and refine 
the alignment results manually.
Unreliable matching results. Matching 
results are suggestions and not wholly 
reliable. In reality, the results often in-
clude mistakes, such as wrong or missed 
alignments. Assertions about alignment 
quality require quality measures.3 To 
calculate these quality measures, the 
user must give all correct alignments, 
which means the user first has to solve 
the integration problem manually.

To tackle these problems, we’ve developed 
the SmartMatching approach to extend 
existing matching approaches orthogonally 
with a self-tuning component and thereby 
to improve the quality of automatically 
produced alignments for the transforma-
tion scenario. SmartMatcher is a hybrid 
approach that uses a real-world example 
to develop instances of the schema to be 
integrated. The example supports auto-
matic evaluation of matching tools and 
improvement of their output results. We’ve 
implemented a prototype for schemas de-
fined in the Eclipse Modeling Framework 
(EMF) Ecore metalanguage (www.eclipse.
org/modeling/emf).

The SmartMatching Approach
Figure 1 (see next page) presents an over-
view of the SmartMatcher architecture and 
its integration process. Its three core com-
ponents are the Initial Matcher, the Map-
ping Engine, and the Fitness Function. The 
workflow is an eight-step process.

1. Develop example instances. In this 
step, the user develops instances of seman-
tically equivalent elements for each of the 
schemas to be integrated. Figure 2 (see 
next page) shows the general idea: the user 
must first define a real-world example that 
uses most of the schema elements. Describ-
ing the same real-world example with both 
schemas generates instances of semanti-
cally equivalent schema elements; nonover-
lapping schema elements are filtered out.

Concrete examples are core elements of 
improving the mapping quality and sup-
porting the SmartMatching self-tuning 
mechanism. The cloud at the bottom of 
Figure 2 stands for a real-world example 

•
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of a specific domain. The user must de-
scribe this example in natural language and 
develop instances representing it for both 
schemas. 

Other instance-based approaches also 
compare instance values to find similarities 
between schema elements. However, term 
ambiguities such as synonyms and hom-
onyms keep the results of such a compari-
son from being trustworthy. Using the same 
real-world example and the same terms for 
the same concepts avoids these kinds of 
ambiguities.

The SmartMatcher uses the concrete 
examples to increase the completeness and 
correctness of found alignments. Compar-

ing the actual instances generated by the 
transformation to the target instances de-
veloped by the user also supports evalua-
tion of the mappings between two schemas. 
At the end of the SmartMatching process, 
the actual and target instances should be 
the same. If this is the fact, all automati-
cally found mappings are correct.

2. Generate initial matching. We use ex-
isting matching tools to create basic align-
ments between similar schema concepts. 
We require the alignments to be expressed 
in the INRIA alignment format.4 This lets 
us use all matching tools that deliver this 
format.

3. Interpret initial mappings. We can 
translate the alignments produced in step 
2 to an initial mapping model based on 
the element types referenced by the align-
ments. The Initial Matcher increases Map-
ping Engine’s performance by reducing the 
search space, compared to beginning with 
an empty mapping model.

4. Derive transformation. From the map-
ping model, a transformation is automati-
cally generated, which transforms instances 
of one schema into instances of the other. 
In general, it’s possible to generate different 
kinds of transformations from the mapping 
model to suit the schema languages. In our 
case, we generate transformations based on 
colored Petri nets5 for transforming EMF-
based models. 

5. Transform instances. The execution 
environment is responsible for reading the 
instances conforming to one schema and 
transforming them into instances conform-
ing to the other schema, according to the 
derived transformations.

6. Calculate differences. The Fitness 
Function compares the actual and target 
instances by means of their attribute values. 
Then it links and collects the differences in 
a diff model, which can be used to evalu-
ate the quality of the mappings between 
Schema A and Schema B. Furthermore, in 
step 6 we have two termination conditions 
for the SmartMatching process. The first 
occurs when no further differences exist 
between the actual and target instances; 
in other words, the mapping is complete. 
The second termination condition occurs 
if the differences remain the same over 
several iterations; in this case, the process 
has reached a final point for a certain set of 
example instances.

7. Propagate differences. In this step, 
SmartMatcher propagates the differences 
calculated by the Fitness Function back to 
the Mapping Engine. More specifically, it 
propagates back missing and wrong values, 
expressed in the diff model of the actual 
and target instances.

8. Interpret differences and adjust map-
ping model. The Mapping Engine analyzes 
the propagated differences and adapts the 
current mappings between Schemas A and 
B by searching for and applying appropri-
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ate mapping operators for missing or wrong 
mappings.

After step 8, a new iteration starts at step 
4 until step 6. In step 6 the actual and the 
target models are compared again. If there 
are no more differences, the process is fin-
ished; otherwise the iteration continues un-
til step 8, where a new iteration begins.

Compared with other automatic match-
ing approaches, SmartMatcher needs more 
work in the preparation phase to establish 
the example instances. However, we hy-
pothesize that building the instances for the 
real-world example costs less than manual 
evaluation and rework of alignments pro-
duced by other approaches. Furthermore, 
the real-world examples become available 
for reuse in other integration scenarios.

The SmartMatcher prototype we’ve 
implemented for EMF/Ecore implements 
a simple Initial Matcher component using 
the CAR (classes, attributes, and relation-
ships) mapping language.6 The proto-
type provides an import functionality for 
alignment models based on the INRIA 
alignment format. It also includes a Fit-
ness Function implementation to compare 
the target model with the transformed 
actual model. The implementation can 
propagate differences between target and 
actual models to the Mapping Engine, 
which produces CAR mapping models 
that can be automatically converted to 
transformation definitions based on col-
ored Petri nets.5

Using our first prototype implementa-
tion, we’ve evaluated our hypothesis that 
the SmartMatcher preparation is less work 
than the standard rework phase. First re-
sults have shown that the hypothesis holds 
true, especially in scenarios where the 
schemas to be integrated use different lan-
guages, naming conventions, or jargons. 
We also plan to conduct empirical experi-
ments to evaluate our approach relative to 
completeness and correctness of the map-
pings as well as to verify the performance 
in terms of different mapping strategies’ 
execution times. Furthermore, we’re im-
proving our prototype to support the de-
velopment of appropriate test instances 
from real-world examples. 

For additional information, see the 
SmartMatcher project homepage at http://
big.tuwien.ac.at/projects/smartmatcher.
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Ontology Mapping  
for the Masses:  
A Tagging Approach
Colm Conroy, Declan O’Sullivan,  
David Lewis, and Rob Brennan, 
Trinity College Dublin

As ontologies become more commonplace, 
the need increases for tools to cope with 
their diversity and heterogeneity. A variety 
of techniques can automatically match a 
user’s personal ontology to other domain 
models.1 The research challenge lies in how 

to derive ontology mappings from the can-
didate matches. Fully automatic derivation 
of mappings isn’t yet feasible,2 and most 
state-of-the-art ontology-mapping tools rely 
on a classic side-by-side presentation of 
two ontologies’ class hierarchies and some 
means for a user to express the mappings.3 
Moreover, most tool interfaces assume the 
user is an ontology engineer who performs 
the work during long mapping sessions.

We’ve developed an early prototype of 
an interface that makes ontology mapping 
as unintrusive and natural as possible. We 
want to engage casual Web users in ontol-
ogy mapping by designing a process that 
doesn’t require ontology-engineering expe-
rience and that, moreover, makes the ben-
efits of mapping clear.

Mapping-Process Design
To make the mapping process less daunt-
ing, we deconstructed it so that it can oc-
cur over multiple sessions. This lets users 
see the impact of their decisions between 
sessions and correct or enhance their map-
pings over multiple sessions.

The mapping-process design has four 
main steps with rules for presenting map-
ping tasks to the user and a feedback loop 
to evaluate the user responses.

Step 1: When to present the mapping 
task. Calculating when to present a map-
ping task to the user is a key to making the 
process less intrusive. Because mapping 
generation occurs over multiple sessions, 
the mapping system must determine when 
to present each task. Example rules for this 
step include specifying regular time inter-
vals, such as once every hour, or specifying 
“just-in-time” schedules, such as each time 
users want to submit a query but need to 
map their own ontology to another one for 
the query to work.

In each presentation case, the process 
should signal users that a mapping task is 
pending and ask if they wish to perform the 
task at this time.

Step 2: What mapping task to present. 
Deciding which mapping task to present is 
the second step. Several strategies are avail-
able. Priority-based rules are one example. 
Mapping tasks relevant to the user’s current 
Web-browsing context is another.

Step 3: How to present the mapping 
task. Displaying the mapping informa-
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tion in a way that’s most natural to the user 
requires rules that can reflect user prefer-
ences. Example rules in this area include 
natural language versus graphical display 
and/or choices among various information 
filters.

Step 4: What mapping interaction to use. 
Given the mapping information available, 
what is the best design for the user interac-
tion that generates mappings? One example 
is to ask questions that the user could an-
swer with a simple yes or no. Another is to 
let the user “drag and drop” graphical con-
nections. A third approach is to have users 
add a semantic tag representing the seman-
tic relationship between the matching pairs.

Initial Process Implementation 
We’ve been experimenting with implemen-
tations of this four-step design process over 
the past two years.

Our first experiment focused on the third 
and fourth steps.4 To move away from clas-
sical approaches that typically assume a 
knowledge engineer, we adopted a natural 
language question-and-answer (Q&A) ap-
proach. This lets us introduce small dis-
crete mapping sessions more easily. We 
also hypothesized that natural language 
would help a nontechnical user under-
stand the information better than graphical 
structures.

Our initial implementation’s main 

purpose was to test the usability of our 
prototype natural-language mapping tool 
and compare it to a current state-of-the-art 
graphic-based tool—specifically, we se-
lected COMA++ for our experiment.3 We 
split the user test group into three distinct 
groups: ontology-aware users had ontol-
ogy work experience, technology-aware 
users had database or UML modeling ex-
perience but no ontology experience, and 
nontechnical users had basic computer 
experience but no database modeling or 
ontology experience.

On the positive side, results from this 
experiment suggested that ordinary users 
compared well with ontology-aware users 
in mapping effectiveness and efficiency. 
Using natural language seemed to help peo-
ple understand the mapping information, 
and the Q&A approach helped in navigat-
ing through the mapping task.

On the negative side, ordinary users 
found the narrow range of mapping ter-
minology to be limiting when answering 
questions. In addition, some users were 
unclear about the benefit of engaging in the 
mapping task.

To address the negative concerns, we fo-
cused the next phase of our research on how 
to be less restrictive in the way users could 
express mappings and how to overcome 
confusion about the rationale for undertak-
ing the mapping task by clearly demonstrat-
ing benefits.

Tagging-Approach Design
Social networking sites like del.icio.us 
(http://del.icio.us) have become popular 
because people can use their own language 
to tag a link and so associate their own 
meaning with it. We decided to explore 
whether enabling users to map ontologies 
by tagging would make the mapping pro-
cess easier and perhaps even lead to more 
expressive mappings.

In this approach, once a user chooses a 
tag, the system categorizes it according to 
top-level categories and their conceptual 
subcategories:

equivalent—the same, subclass;
equivalent sometimes—superclass, one 
of, union, intersection;
different—different from, complement 
of, disjoint; and
corresponds/unknown.

These categories align the user tags with 
the reasoning primitives typically used 
to express and execute mappings. The 
decision-making rules for assigning a 
matching pair to a top-level category are 
configurable. For example, a “majority 
rules” configuration would assign a match-
ing pair to the “equivalent” category if 
the user submits a tag from each of “the 
same,” “subclass,” and “union” subcatego-
ries for the pair.

The fourth category accepts matching 
pairs that the system can’t assign to one of 
the other three categories.

Tagging-Approach Implementation
The prototype currently uses the same de-
fault rules for each user. It generates the 
matches with the INRIA alignment API.5

Presentation: Browser extension. To 
make the mapping process as natural as 
possible, we used a Firefox browser exten-
sion to display the mapping information. 
The mapping question appears on a trans-
parent interface over the Web page the user 
is currently browsing, as shown in Figure 
1. The concepts appear in a specific type 
of natural language that represents their 
parents, siblings, and properties via bullet 
points and fixed statements, such as “A is a 
B” and “C is a type of A.” 

We modified the natural language used 
in our previous experiment to remove some 
confusing ontological terms (for example, 
“Thing”). We also limited the number of 

•
•

•

•Figure 1. The tagging interface. The concepts appear in a specific type of natural 
language, and users characterize their relation by either entering a new tag or 
choosing from existing tags.
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properties shown to avoid cognitive over-
load. Future experiments might use differ-
ent constructions.

Interaction: Tagging interface. The user 
has to tag the matching-pair relation with 
the tags they think represent the relation-
ship. They can either type in a new tag or 
choose from an existing list that contains 
suggested tags. The top-level categories 
are equivalent, equivalent sometimes, and 
different. Users can enter multiple tags for 
the relationship if they wish.

Evaluate user response: Tag analyzer. 
After the user submits tags for a match-
ing pair, a tag analyzer applies rules to the 
set of user-specified tags, categorizing the 
matching pair. The rules are configurable, 
but at present we set the same default 
rules for each user—for example, major-
ity wins and a tie goes to the first specified 
category. 

When a matching pair is categorized 
into “corresponds/unknown” via unde-
fined tags, the system checks the tags to 
see if the matching pair is an object-prop-
erty relationship; if so, the system will 
construct a new matching pair. In future 
experiments, we plan to categorize the 
unknown matching pairs through obser-
vation of other users and user-interaction 
patterns. Additionally, if a user isn’t see-
ing any benefit from a mapping, we want 
to flag it as possibly incorrect.

To clarify the benefits of engaging in the 
mapping task, we’re currently testing our 
prototype by offering users specific RSS 
items selected on the basis of mappings 
that users generate between their personal 
ontology and the domain ontology used by 
the RSS feeds. The user is alerted to new 
RSS feed information via a message in the 
browser extension—just like the message 
used to alert the user of pending mapping 
tasks. Users can ignore the message until 
later if they wish. The user test group is 
split into the same three group types as in 
the initial experiment.

This experiment is nearing completion. 
Some initial indications and feedback in-
dicate that users have found the mapping 
prototype to be neither disruptive nor in-
terfering. However, they would prefer that 
the alerts not display when they’re busy. 

Most people think the mapping tasks are 
efficient, given their breakdown into small 
sessions. They liked the tagging approach 
because it was simple enough to use, al-
though the quality of the generated tags has 
yet to be analyzed. Our next experiment 
will allow the user’s browsing context to 
support adaptation of the mapping process. 
A wide-scale user trial over the Web is also 
planned.
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Mappings 
for the Semantic Web
José Ángel Ramos-Gargantilla 
and Asunción Gómez-Pérez,  
Universidad Politécnica de Madrid

Mappings usually relate two similar 
 knowledge-aware resources. Mapping 
examples abound in thesauri, databases, 
and ontologies. Additionally, mapping sys-
tems can relate two different knowledge 
resources, such as databases and ontolo-
gies. All these mappings are operationally 
different and are sometimes named differ-
ently—for example, correspondences, se-
mantic bridges, transformations, semantic 
relations, functions, conversions, and do-
main-method relations.

We’ve analyzed some of the existing 
mapping definitions and representations in 
the ontology world and its semantic neigh-
borhood, and we propose a new definition 
and model to address the Semantic Web 
and its needs for format, access, and re-
source heterogeneity.

Knowledge- 
Representation Definitions
Drawing on the idea of mappings as a 
structured representation, Semantic Web 
research has focused mapping definitions 
on ontologies. For example, in 2002, Xiao-
meng Su gave this definition:

Given two ontologies A and B, mapping one 
ontology with another means that for each 
concept (node) in ontology A, we try to find 
a corresponding concept (node), which has 
the same or similar semantics in ontology B 
and vice versa.1

In Su’s definition, the mapping elements 
are ontology concepts. Because mapping 
involves only two ontologies, the relation 
between elements is bidirectional and the 
semantics of the relation is of similarity or 
identity. Su’s definition includes no idea of 
a conversion or transformation of elements.

In that same year, Alexandre Maedche 
and his colleagues proposed a definition 
that picked up on the transformation idea. 
They also extended the process vocabulary 
by introducing the term “semantic bridge” 
for mappings in which the transformation 
was not equivalent:

An ontology mapping process is the set of 
activities required to transform instance 
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of a source ontology into 
instances of a target ontology 
…. The mapping must define 
the two ontologies being 
mapped. Additionally, one 
may specify top-level seman-
tic bridges which serve as 
entry points for the translation 
even if they are not mandato-
ry. In this case the translation 
engine starts executing the 
Individual-Individual bridge.2

In 2003, Monica Crubézy 
and Mark Musen introduced 
yet another new dimension— 
namely, mapping between a 
domain and a problem-solving 
method (PSM) ontology:

Our mapping ontology pro-
vides the basis for expressing 
the adaptation knowledge 
needed to configure a PSM 
for a certain application. 
In that sense, our mapping 
ontology extends the notion 
of domain-PSM bridges in the 
UPML [Unified Problem-
Solving Method Descrip-
tion Language] framework 
by providing a structured 
and operational set of pos-
sible mapping axioms that 
bridge the ontologies of both 
 components.3

This definition isn’t classified into map-
pings or semantic bridges according to the 
complexity of functions. Mappings focus 
on configuring a PSM that will execute on 
concrete domain elements. The transforma-
tion idea is missing.

In 2004, a specification deliverable, led 
by Jerome Euzenat and Pavel Shvaiko for 
the EU’s Knowledge Web project, pro-
vided a new definition of mapping between 
ontologies:

A formal expression that states the semantic 
relation between two entities belonging to 
different ontologies. When this relation is 
oriented, this corresponds to a restriction of 
the usual mathematical meaning of mapping: 
a function (whose domain is a singleton).4

Again, mapping is defined here as an 
expression, without an explicit transforma-

tion objective. This definition upgrades the 
set of ontology components by extending 
Su’s restricted mappings (only between 
concepts), and covers all complexity levels 
of expressions. Additionally, a new element 
appears—direction associated to the map-
ping when the relation is a function. This 
direction contradicts Su’s bidirectional defi-
nition (because it covers only similarity and 
identity relations).

In their 2005 survey, Yannis Kalfoglou 
and Marco Schorlemmer defined ontology 
mapping as follows:

A morphism, which usually will consist of 
a collection of functions assigning the sym-
bols used in one vocabulary to the symbols 
of the other.5

They distinguished two mapping types: 
one oriented to correspondence between 

representation languages and 
the other oriented to corre-
spondence between vocabu-
laries. Such mappings have 
functions that assign the terms 
of one ontology to the terms of 
another. Therefore, their defi-
nition covers the mappings be-
tween PSM and domain ontol-
ogies, although it’s restricted 
to only two ontologies.

Semantic  
Web Mappings
All these definitions between 
ontologies apply within the 
Semantic Web area. Although 
ontologies are the main 
knowledge representation of 
the Semantic Web, they aren’t 
the only one. Integrated in the 
Semantic Web are systems 
and applications that work 
with other formats such as 
databases, natural language 
documents, annotated docu-
ments, Web pages, semantic 
networks, graphs, and naviga-
tion models. These knowl-
edge-aware resources can be 
mapped with ontologies or 
between them.

Additionally, the Semantic 
Web includes systems that ex-
ecute PSMs to obtain different 
results with different domain 
ontologies. So, Semantic Web 

mappings need to cover directional and not-
predefined functions.

The Ontology Engineering Group at 
Universidad Politécnica de Madrid (UPM) 
has developed a mapping definition that 
covers the Semantic Web resources and 
functions:

A mapping is a formal explicitation of a 
relation between elements, or a set of ele-
ments, of different knowledge resources 
(models and data).

In this definition, “explicitation” refers 
to a relation that’s both explicit and formal, 
as in “machine-readable,” and “element” 
refers to all components of a resource 
(concepts, nodes, columns of a table, value 
of an attribute in an instance, and so on). 
This definition doesn’t limit the relation 
to a reciprocal function or declarative 

Alignment

AlignmentId: String
OriginalAuthor: String
CreationDate: Date
LastModificationAuthor: String
LastModificationDate: Date

Mapping

MappingId: String
Reference: String
Certainty: Double

MappingRelation

Name: String
Description: String
Formalization: String
Reference: String

*

*

*

ConceptualizationElement

KR: String
Id: String

RelatedElement

ElementGroup

1

Figure 1. Mapping-model proposal. Mappings define relations 
between knowledge representations and their associated 
information (such as certainty, reference, and metadata).
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transformations, as shown in the model in 
Figure 1. However, it supports mappings 
between all knowledge representation ele-
ments in any type of resource, without 
restriction to the number of elements or 
resources. Moreover, it encompasses all 
mappings that are part of Semantic Web 
processes, such as ontology alignment, 
heterogeneous-resource integration, and 
annotation.

Mapping Models
The literature offers several mapping mod-
els. For example, the Common Warehouse 
Model (CWM) represents mappings that 
are both generic and expressive,6 but this 
model is also complex. It’s composed of 
classes—Transformation, Transformation-
Map, ClassifierMap, FeatureMap, Classi-
fierFeatureMap, TypeMapping—and their 
properties and characteristics.

The RDF Transformation (RDFT) meta-
ontology is based on the CWM. The RDFT 
specifies a small language for DTD (Docu-
ment Type Definition) mappings of XML to 
RDF Schema and vice versa.7 Its main class 
is Bridge, although it also includes Map, 
EventMap, Interface, Roles, Event2Event, 
DocumentMap, XMLBridge, Vocabulary-
Map, and RDFBridge.

OWL defines equivalentClass and equiv-
alentProperty as primitives, both of which 
can be considered mapping explicitations.8

C-OWL is a mapping-language proposal 
that can express relatively simple align-
ments between ontologies. The constructs 
in C-OWL are called bridge rules, and they 
can express a family of semantic relations 
between concepts/roles and individuals. 
C-OWL mappings provide eight semantic 
relations: equivalence, containment (con-
tains and is contained in), overlap, and their 
negations.9

The SEKT (Semantically Enabled 
Knowledge Technologies) mapping lan-
guage provides a set of constructs to ex-
press mappings between ontology classes, 
attributes, relations, and instances.10 Sev-
eral other languages express mappings, 
although we focus here on the language 
that is the most similar to our mapping 
concept—that is, INRIA’s alignment 
format.11

Mapping Model Proposal
Starting from common elements of these 
models and taking into account that map-
ping could exist between elements of dif-

ferent types of resources, we designed a 
simple model for covering mappings and 
their uses in the Semantic Web. Figure 1 
shows this model.

This model is independent of the knowl-
edge resource; we can therefore use it to 
represent mappings between ontologies, 
between relational databases and ontolo-
gies, between some thesauri, and so on. 
Furthermore, mapping managers can define 
the relations they need because mapping re-
lations are not limited. The model includes 
component metadata such as LastModifica-
tionDate and Reference, mainly for tracing 
information flow.

For making this representation us-
able, we present it as an XML Schema 
Definition.

UPM has a bilateral agreement with 
the Spanish National Geographic Institute 
(IGN) to integrate current heterogeneous 
databases using the definition and represen-
tation proposals presented here. IGN has 
four databases with geographic information 
in different scales. This information is clas-
sified into phenomena that have tremen-
dously different granularity—for example, 
one catalog has 22 phenomena and another 
has 560. UPM and IGN have jointly de-
veloped an ontology of phenomena, called 
PhenomenOntology, and they are develop-
ing an automatic mapping discoverer be-
tween the ontology and the relational data-
bases. Such mappings are represented using 
the model presented in Figure 1.

Additionally, the Ontology Engineering 
Group is working on extracting mappings 
of concept classification from textual se-
mantic annotations. Such mappings could 
be used in ontology-learning or ontology-
alignment applications, and we are repre-
senting them following our mapping model.
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Heterogeneity between ontologies is often 
handled by establishing correspondences 
between the ontologies’ entities and trans-
forming data according to these correspon-
dences, whether for integrating heteroge-
neous data sources or exchanging messages 
between services. Relations between aligned 
entities can be very complex, so we devel-
oped an alignment language for expressing 
such complexities.1 The language  
is independent of concrete knowledge- 
representation and processing languages, but 
transforming concrete data requires process-
ing the correspondences expressed in the 
alignment language. In particular, it requires 
translating the source ontology’s data in-
stances to instances of the target ontology.

   We expect this scenario to become 
more common as an increasing number 
of ontologies and data are developed and 
published on the Web using the Resource 
Description Framework (RDF). A query 
language is a natural choice for translating 
data because it allows both data extrac-
tion and data transformation. Hence, while 
RDF, RDF Schema, and the Web Ontology 
Language (OWL) are the standards for de-
scribing data and ontologies on the Web, the 
Simple Protocol and RDF Query Language 
(SPARQL) seems the natural candidate for 
expressing and processing ontological cor-
respondences.2 However, SPARQL in its 
current version isn’t yet powerful enough to 
cover the full expressivity of the alignment 
language we developed. We therefore pro-
pose combining two recent SPARQL exten-
sions to handle complex alignments:

SPARQL++ provides aggregates, value-
generating built-ins, and (possibly recur-
sive) processing of mappings expressed 
in SPARQL,3 and 
PSPARQL provides queries on path ex-
pressions by allowing regular expression 
patterns.4

We illustrate our proposal with a data-
translation problem between two com-
monly used ontologies: friend-of-a-friend 
(FOAF, http://xmlns.com/foaf/0.1) and 

•

•

vCard (www.w3.org/2006/vcard/ns). Both 
vocabularies describe information about 
persons and organizations, and both are 
used extensively on the Web. They cover 
complementary as well as overlapping as-
pects of personal information.

Alignment Representation
The alignment format is an extensible for-
mat for expressing alignments in XML/
RDF.5 It supports interchange between 
alignments created using ontology-match-
ing algorithms and native representation of 
simple correspondences between ontologi-
cal entities. The format is associated with 
an Alignment API,6 which is organized 
around a small set of constructs that let 
users describe alignments through sets 
of correspondences, together with related 
metadata such as the alignment’s purpose 
or the way it was built. Each set of cor-
respondences gives a description of the 
alignment entities. Figure 1 shows a sample 
correspondence, expressing the equivalence 
between a vCard and a FOAF person.

   The expressive alignment language we 
developed extends the alignment format so 
that it can represent more elaborate corre-
spondences.1 In particular, it offers

operators to relate an entity in one ontol-
ogy to a combination of entities in the 
other, 
conditions to restrict an entity’s scope, and 
transformations for property values such 
as aggregations, functions, and data-type 
conversions.

The language provides a high-level descrip-
tion of ontology alignments and a conve-
nient exchange format for matching algo-
rithms, GUIs, and mediation languages.

Grounding
Ontology mediation is a complex mediation 
process involving two main phases.7 

First, the alignment is constructed at de-
sign time. Typically, ontology engineers use 
matching algorithms to automatically dis-
cover correspondences between ontologies. 
Graphical mapping interfaces assist the 
process of refining these correspondences, 
which eventually involve correspondence 
patterns.8 An expressive exchange format 
must carry the precise meaning of the 
correspondences.

Second, at runtime, the previously built 
alignments are executed in a mediation task 

•

•
•

using a specific target formalism. Ground-
ing is the term we use for transforming the 
alignment expressed in an alignment-repre-
sentation formalism—such as our expres-
sive alignment language—into the concrete 
language or algorithm executable on the 
particular knowledge representation.

When translating instance data in RDF, 
SPARQL has advantages compared with 
upcoming rules language standards such 
as the Rule Interchange Format. SPARQL 
is declarative and already widely used 
for querying RDF Web data. This makes 
SPARQL-based data translation a more 
natural tool for Semantic Web users than 
rule-based languages or XML-based ex-
traction techniques at the moment.

We can illustrate the process of ground-
ing to concrete SPARQL expressions for 
data translations by using the example 
FOAF-vCard correspondences in Figure 1.

Data Translation Using SPARQL
SPARQL is the W3C recommendation for 
querying RDF.2 Typically, SPARQL queries 
are used to select bindings of RDF terms to 
variables from a set of source RDF graphs 
(also called the dataset) according to a 
graph pattern. In a slightly simplified view, 
such a query follows the general structure: 

   
CONSTRUCT { result pattern }
FROM dataset 
WHERE { graph pattern } 
   
Answers to a SPARQL query Q rely on 

computing the set of possible homomor-
phisms from Q’s basic graph pattern(s) into 
the RDF graph representing the knowl-
edge base (that is, the dataset). The result-
ing variable bindings for instantiating the 
pattern in the WHERE part are then used 
to construct a new graph by instantiating 
the result pattern. So, if we want to reuse 
instance data described in one ontology 
when our application has been designed 
for another one, we can use such SPARQL 
CONSTRUCT queries as a translation 
mechanism. This is a natural mechanism 
for writing mapping rules between RDF 
vocabularies. For instance, the query in 
Figure 2(a) illustrates a CONSTRUCT 
query translating a foaf:Person into a vc:VCard. 
However, this query only covers the simple 
concept correspondence. We must com-
plete this correspondence to additionally 
translate—possibly recursively—a person’s 
properties, such as name, address, or tele-
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phone number. CONSTRUCT queries can 
likewise be used for these subcorrespon-
dences. For example, Figure 2(b) shows 
how we can extend the Figure 2(a) query 
to also map names in vCard addresses to 
FOAF. Figure 2(c) shows a CONSTRUCT 
statement that models a more complex sub-
mapping of the correspondence in Figure 1.

We can then execute these queries on a 
set of instance data represented in RDF to 
yield the transformed ontology instances 
in the target ontology. However, in practi-
cal use cases, it turns out that the available 
constructs in SPARQL still aren’t sufficient 
for an expressive mapping language as re-
quired by complex applications.

SPARQL Extensions  
for Accurate Translation
Three features that SPARQL currently 
lacks would be particularly useful for pro-
cessing alignments—namely, aggregate 
computation, individual generation, and 
path expressions.

Aggregates. Definition of a Project (DOAP, 
http://trac.usefulinc.com/doap) is an open 
source project to create an XML/RDF vo-
cabulary to describe software projects. The 
DOAP vocabulary contains a revision prop-
erty—that is, version numbers of released 
project versions. With an aggregate function 
MAX, you could map DOAP information into 
the RDF Open Source Software Vocabu-
lary (http://xam.de/ns/os), which provides a 
latest-release property, as Figure 3a shows. 
Other aggregates, such as count, average, 
or sum, might be needed for complex and 
complete mappings.

Individual generation. Completing the 
mapping between vCard and FOAF, if we 
try mapping from vc:workTel to foaf:phone, 
we observe that the former is a data-type 
property and the latter an object property 
in OWL/RDF. Basically, a mapping needs 
a conversion function, generating a new 

URI from a literal. Figure 3b shows such a 
mapping.

SPARQL doesn’t allow such value gen-
erations at the moment, but they are defined 
and implemented in a recent extension 
called SPARQL++.3 SPARQL++ also pro-
vides aggregates. Therefore, we consider 
SPARQL++ to be a valid basis for such a 
mapping language, but it doesn’t yet address 
all the issues in complex relations. For exam-
ple, RDF’s blank nodes, which correspond to 
existential variables in CONSTRUCT que-
ries, involve additional complications, which 
are discussed in more detail elsewhere.3

Paths. Another missing part for expressing 
complex mappings is path expressions over 
RDF graph patterns, which aren’t express-
ible in SPARQL. This is fairly surprising for 
a language that claims to be a graph query 
language. Here, PSPARQL—another recent 
extension—SPARQL allows to replace the 
basic graph patterns—that is, RDF graphs 
with variables—by graphs with variables 
and regular path expressions in place of 
predicates.4 We can view path expressions 
as complementary to aggregations: where 
aggregations join pieces together, path ex-
pressions extract them individually.

The example PSPARQL query in Fig-
ure 3c exhibits two path expressions in the 
WHERE clause using the indefinite com-
position (+) operator, extending SPARQL’s 

existing simple bracketed path expressions. 
This query maps to the class of potential 
salespersons for Innsbruck,  by picking per-
sons that indirectly know someone working 
in for a company based in Innsbruck. 

We demonstrated that a query lan-
guage is an adequate means for transform-
ing RDF data according to some ontology 
alignment. However, the current SPARQL 
specification isn’t yet powerful enough 
for supporting this task with the complex 
mappings that are necessary for describing 
alignments between ontologies on the in-
stance level. The combination of SPARQL 
extensions—SPARQL++ and PSPARQL—
can serve as a basis to ground expressive 
ontology alignments in concrete executable 
mappings between data RDF graphs adher-
ing to different, overlapping ontologies.

To implement a complete align-
ment framework, we propose two things: 
first, an implementation of a SPARQL 
data transformation engine integrat-
ing PSPARQL and SPARQL++ and, 
second, a grounding of an abstract, ex-
pressive alignment language to this new 
PSPARQL++. We are currently working 

CONSTRUCT { ?x rdf:type foaf:Person } 
WHERE { ?x rdf:type vc:VCard } 
(a)

CONSTRUCT { ?X foaf:name ?FN . } 
WHERE { ?X vc:FN ?FN . 
    FILTER isLiteral(?FN) } 
(b)

CONSTRUCT { ?X rdf:type foaf:Person.
    ?X foaf:based_near “Grenoble”ˆˆxsd:string. } 
WHERE { ?X rdf:type v:VCard . 
           OPTIONAL {?X v:workTel ?PH.}
    OPTIONAL {?X v:workAdr [v:locality ?L]}
    FILTER ( startsWith(?PH, “+33476”)
           OR ?L = “Grenoble”) }
(c)

Figure 2. SPARQL data-translation 
examples: (a) simple mapping from vCard 
to the FOAF person concept, (b) simple 
mapping of  that concept’s related 
properties, and (c) combined mapping 
including combination of properties 
(Examples omit FROM clauses.)

CONSTRUCT { ?P os:latestRelease
    MAX(?V : ?P doap:release ?R.
                    ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }
(a)

CONSTRUCT {?X a foaf:phone
    xsd:anyURI( 
        fn:concat(“tel:”,fn:encode-for-uri(?T))).}
WHERE { ?X vc:tel ?T . } 
(b)

CONSTRUCT { ?X rdf:type ex:PotentialSalesPerson }
WHERE {?X foaf:knows+ [ foaf:worksFor 
           [ vc:adr [ vc:city “Innsbruck”]]] }
(c)

Figure 3. Example SPARQL extensions 
for accurate translation: (a) using 
aggregates to map DOAP to the Open 
Source Software Vocabulary, (b) using 
value-generation in CONSTRUCTs 
to map vCard telephone numbers 
(represented as strings) to FOAF 
telephone numbers (represented as 
URIs), and (c) a complex mapping using 
regular path expressions. (Examples 
omit FROM clauses.)

<Cell>
  <entity1 rdf:resource=”&foaf;Person”/>
  <entity2 rdf:resource=”&vc;VCard”/>
  <measure  rdf:datatype=”&xsd;float”>1.0 
 </measure>
  <relation>equivalence</relation> 
</Cell>

Figure 1. A sample correspondence in 
the Alignment format. 
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on reconciling the different proposed ex-
tensions toward a common prototype.
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Ontology Matching:  
Status and Challenges
Konstantinos Kotis,  
University of the Aegean
Monika Lanzenberger,  
Vienna University of Technology

Ontology matching is a significant Se-
mantic Web research topic and a critical 
operation in many domains—for example, 
heterogeneous systems interoperability, 
data warehouse integration, e-commerce 
query mediation, and semantic-services 
discovery. The matching operation takes 
two (sometimes more) ontologies as input, 
each consisting of a set of discrete entities 
and axioms, and outputs the relationships 
between the entities, such as equivalence or 
subsumption. 

Researchers have proposed many solu-
tions to the ontology-matching problem.1,2 
Although it’s a different problem from 
schema matching, the techniques developed 
for each of them has benefitted the other. 
Most research has focused on specific cri-
teria for evaluating and distinguishing be-
tween matching approaches according to

algorithm input—for example, entity la-
bels, internal structures, attribute types, 
and relationships with other entities;
matching-process characteristics—for 
example, the approximate or exact nature 
of its computation or the way it interprets 
input data (syntactic, external, or seman-
tic); and
algorithm output—for example, a one-
to-one matching or a one-to-many or 
many-to-many correspondence.

Other significant distinctions in the output 
results include the confidence and probabil-
ity percentages of the mapping results and 
the kinds of relations provided (equiva-
lence, subsumption, incompatibility, and 
so on).

Human involvement during the ontology-
matching process is usually a trade-off with 
the results’ precision and recall percent-
ages. Fully automated tools are still looking 
for higher accuracy. International contests 
such as the Ontology Alignment Evaluation 
Initiative (http://oaei.ontologymatching.
org) provide a forum and benchmarks for 
this task.3 Still, both automated and semi-
automated tools need to improve their per-
formance. For instance, most of them can’t 
handle large real-domain ontologies such as 

•

•

•

those in medicine and biology, although the 
research community has developed more 
and more realistic testbeds to evaluate tool 
solutions to the scalability problem.

Beyond ontology-matching methods, tools, 
and evaluation initiatives, recent efforts have 
focused on design frameworks for ontology-
matching tools, such as AUTOMS-F.4 Such 
frameworks let developers use APIs to not 
only develop ontology-matching methods but 
also, and more important, synthesize these 
methods into robust tools for producing more 
accurate mappings. Beyond this, existing 
methods need more work to improve their 
matching quality.

Dilemmas and Critical Questions
The research community’s efforts to provide 
diverse solutions to the matching problem by 
developing a variety of tools haven’t yet gen-
erated a dominant set of methods that can 
serve as a benchmark for designing other 
matching tools. This might reflect the vari-
ety of domain-specific user or application 
needs. In fact, we conjecture that the com-
munity couldn’t nominate “the best tool” be-
cause so many critical questions arise within 
a specific problem-solving context.

For example, should the tool be fully or 
semiautomated? To answer this question 
satisfactorily requires knowing the extent 
of human involvement, if any, and how this 
influences the accuracy of mapping results. 
How much time must users spend validat-
ing mapping results? Can we ensure that 
mapping results are valid without users’ 
involvement? Ultimately, the questions 
resolve to what is most critical for their ap-
plication: investing in human involvement 
to validate resources or automating the 
ontology-matching tool? If user interaction 
is essential, you must provide the means to 
analyze the matching results and under-
stand the source ontologies’ characteristics.

Another important question is whether 
the tool should provide very high precision 
and indifferent recall or vice versa. What 
balance between these parameters does the 
user’s application require? What are the 
trade-offs? Is there an optimal trade-off, and 
can users tune the methods to achieve it?

Performance involves another set of 
questions. Does the application call for 
a tool that supports high computational 
complexity and rather slow execution time, 
or are rapid results more important? What 
percentage of precision and recall are users 
willing to sacrifice to speed up the ontol-
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ogy-matching process and, consequently, 
their application? In the end, what is more 
critical for the application; to achieve the 
tool’s highest precision and recall or to ob-
tain the mappings as fast as possible?

All these questions require answers 
within the context of specific application 
and user needs.

Challenges
Despite many years’ progress toward solv-
ing ontology-matching problems, the re-
search community still reports open issues 
that impose challenges and underline new 
directions for the future work.

Scalability. Most implemented and evalu-
ated ontology-matching tools suffer perfor-
mance problems in handling large ontolo-
gies. Real problems in specific application 
contexts require scalable solutions as a first 
priority. Future ontology-matching tools 
should provide this capability.

Tuning speed, automation, and accu-
racy. Tools currently emphasize maximiz-
ing specific performance parameters such 
as speed, automation, or accuracy. Most 
commonly, a tool will maximize one pa-
rameter’s performance while neglecting—
or even impeding—the performance of the 
others. Future research should support fine 
tuning all parameters.

Background knowledge. The ontology-
matching process makes extensive use of do-
main-related background knowledge. Recent 
experiments to improve tool recall results 
have tried matching one ontology to another 
while using a third ontology (or more) that’s 
larger and more detailed ontology from the 
same domain as background knowledge.3 
But this process doesn’t seem to scale well. 

The challenge here is to adopt an ap-
proach that doesn’t sacrifice overall tool 
performance. 

Ontology-matching frameworks. Some 
design frameworks for ontology-matching 
tools exist,4 but their performance needs 
further investigation. Software develop-
ers need support not only for devising 
ontology-matching methods but also for 
synthesizing them into new tools that pro-
duce more accurate mappings. Scalability, 
speed, and compatibility between input 
ontology types also require further inves-
tigation to deliver a model framework that 

the research community could use to devise 
specific ontology-matching tools for spe-
cific user or application preferences.

Ontology-matching visualization. Hu-
mans must perform and decide several is-
sues in ontology matching to ensure the 
quality, appropriateness, and relevance of 
the matching results. Interpreting an entity 
of one ontology in the context of the knowl-
edge of another ontology is a cognitively dif-
ficult task that requires understanding the se-
mantic relations among entities of different 
ontologies.5 Visualizing ontology-matching 
results could support user understanding. 

The challenges in this domain grow with 
every advance in IT and the emerging eco-
nomic infrastructure it supports. Ontology-
matching results can manifest the same dif-
ficulties as the source ontologies: they can 
be large, complex, and heterogeneous. Yet 
so long as the information the ontologies are 
organizing continues to expand and differ-
ent ontologies turn up for the same informa-
tion, both academic and industry researchers 
will proceed to address these challenges.
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