
Making Peer-Assisted Content Distribution

Robust to Collusion Using Bandwidth Puzzles

Michael K. Reiter1, Vyas Sekar2, Chad Spensky1, and Zhenghao Zhang3

1 University of North Carolina, Chapel Hill, NC, USA
2 Carnegie Mellon University, Pittsburgh, PA, USA

3 Florida State University, Tallahassee, FL, USA

Abstract. Many peer-assisted content-distribution systems reward a
peer based on the amount of data that this peer serves to others. How-
ever, validating that a peer did so is, to our knowledge, an open prob-
lem; e.g., a group of colluding attackers can earn rewards by claiming
to have served content to one another, when they have not. We propose
a puzzle mechanism to make contribution-aware peer-assisted content
distribution robust to such collusion. Our construction ties solving the
puzzle to possession of specific content and, by issuing puzzle challenges
simultaneously to all parties claiming to have that content, our mecha-
nism prevents one content-holder from solving many others’ puzzles. We
prove (in the random oracle model) the security of our scheme, describe
our integration of bandwidth puzzles into a media streaming system, and
demonstrate the resulting attack resilience via simulations.

1 Introduction

Many systems that distribute content with the help of peer-to-peer (P2P) over-
lays measure peer contribution and incentivize participation. Peers who con-
tribute more are rewarded with better performance via higher priority in the
distribution overlay (e.g., [1–3]) or priority service through server-assisted down-
loads (e.g., [4]), or with other mechanisms (e.g., discount coupons [4]). We refer
to such systems as contribution-aware peer-assisted content distribution systems.

Unfortunately, mechanisms for demonstrating how much data a peer has
served are vulnerable to a simple form of “shilling” [5, 6], where colluding at-
tackers report receiving service from each other without actually transferring
content among themselves. In some systems, these attackers can degrade the
system, e.g., by gaining a powerful position in the distribution overlay and then
launching a denial-of-service attack [1, 2]. In others, this enables them to get
higher priority service while contributing only a limited amount of upload band-
width. Such attacks are not merely hypothetical, but occur frequently in widely
used P2P systems (e.g., [3, 7–9]). Fundamentally, what makes the problem diffi-
cult is that with today’s network infrastructure, it is impossible for a third party
to verify if a specific data transfer occurred between two colluding entities.

We propose a bandwidth puzzle mechanism to make contribution-aware P2P
content distribution robust to collusion attacks. With this mechanism, a verifier

can confirm that claimed transfers of content actually occurred. For example, in
P2P media streaming from a distinguished server (e.g., [1, 10, 2, 11]), or in P2P
systems that have a distinguished node for tracking content-transfer transactions
(e.g., [3, 4, 12]), this distinguished node can naturally play the role of the verifier.

There are two key insights behind our design. First, to those peers (or
“provers”) claiming to have some specific content, the verifier presents puzzles
for which the solution depends on the content. That is, the solution is computa-
tionally simple for a prover who has the content, but more difficult for a prover
who does not. Second, the verifier simultaneously presents these puzzles to all
peers who currently claim to have the content, so as to make it difficult for a few
peers who have the content to quickly solve both their own puzzles and puzzles
for collaborators who do not. The verifier checks the puzzle solutions and also
notes the time taken by the provers to report the solutions. Any peer whose
solution is incorrect or whose solution time is greater than a threshold θ is a
suspect for engaging in fake transactions. The verifier can either deny or revoke
credits granted in these transactions.

Our design is lightweight and easy to implement in peer-assisted content dis-
tribution systems. Its security analysis, however, is more subtle than the design
might at first suggest. An analysis must account for any strategy by which ad-
versaries might allocate portions of each puzzle’s search space so as to optimally
utilize the time θ that each has to invest and, more importantly, the content
bits that each possesses. We provide (in the random oracle model) a bound on
the expected number of puzzles that a collection of adversaries can solve in θ
time (using any such strategy), as a function of the number of content bits each
possesses at the time the puzzles are issued and the numbers of hash compu-
tations and additional content bit retrievals that each adversary can perform
in θ time. For example, this bound implies that for content of size n bits, an
instance of our puzzle construction ensures that all adversaries claiming to have
the content must download Ω(n) content bits to solve their puzzles in expecta-
tion, even if they retrieve up to nǫ bits on average before the puzzles are issued,
for some constant ǫ < 1. Moreover, this puzzle construction is efficient: It en-
ables the verifier to construct each puzzle in n ln n

n−nβ + O(1) pseudorandom
function computations in expectation and two hash function computations, for
a configurable constant 0 < β < 1, and to verify each puzzle in one comparison
of hash function outputs. (Note that ln n

n−nβ = o(1), and so n ln n
n−nβ = o(n).)

An honest prover invests 1

2
n1+α ln n

n−nβ + O(nα) time in expectation to solve
this puzzle, for a configurable constant α > 0 such that α + β > 1.

We demonstrate the viability of bandwidth puzzles by integrating them into
a functional multimedia streaming application. We find that a single verifier
can scale to challenging thousands of peers simultaneously with puzzles, even
while streaming content to other clients, and that puzzle distribution and solving
introduce minimal jitter into the stream. We also show the benefits of bandwidth
puzzles against attacks in a simulated large-scale P2P streaming deployment,
where we show that puzzles improve the legitimate clients’ stream quality 40-
300% (depending on the number of attackers) and reduce the attackers’ quality

2

by more than 2×. Moreover, the puzzle scheme limits the impact of such attacks
by providing legitimate clients with performance nearly identical to the scenario
when there are no attackers in the system.

To summarize, the contributions of this paper are: (i) the design of bandwidth
puzzles (§4), a practical defense against a documented form of attack on P2P
systems; (ii) analyses of our construction (in the random oracle model) that
bounds the success attainable by adversaries against it (§5); (iii) implementation
and evaluation of our construction in a functional streaming application (§6);
and (iv) a demonstration of the benefits of puzzles on a simulated large-scale
P2P streaming deployment (§7).

2 Related Work

Incentives in P2P systems: Several studies have demonstrated the limitations
of P2P protocols in the presence of selfish or malicious users [13, 7]. Rewarding
peer contributions can overcome these limitations (e.g., [1, 13]), but such mecha-
nisms cannot prevent colluding attackers from freely granting each other credits
for fake transactions. Bilateral (tit-for-tat) mechanisms such as BitTorrent ap-
pear robust to collusion attacks. However, several studies (e.g, [13–16]) point out
the limitations of bilateral mechanisms, and make the case for global mechanisms.
By equating peers’ debit and credit amounts for receiving and providing service,
respectively, collusion can be made to yield no net gain (e.g., [4]). However, there
are valid reasons to not equate the debit and credit amounts, such as asymme-
tries in upload and download bandwidth, and social considerations (e.g., [3]).
Some global contribution-awareness schemes use pricing mechanisms (e.g., [17]),
some of which are theoretically collusion-resistant (e.g., [16]). However, currency
management presents practical challenges for these schemes. These challenges
include bootstrapping new users in a Sybil-proof manner and ensuring rapid
price convergence and sufficient liquidity in the presence of system churn. Band-
width puzzles are a lightweight alternative to provide collusion resistance that
avoids currency management challenges, by seeking instead to directly detect
when collusion (including with Sybils) occurs.

Failure to report transactions or solve puzzles: Clients are responsible for
reporting transactions and solving puzzles in order to grant uploaders credits
for the transaction. This raises the possibility of downloaders failing to report
transactions or solving the puzzles and thus not giving adequate credit to their
uploaders. This problem is orthogonal to the collusion attacks we consider and
can be addressed by using fair-exchange [4] or proof-of-service [18] mechanisms.

Client puzzles: Client puzzles (e.g., [19–21]) force clients to demonstrate proofs-
of-work to a server. This is used to throttle the number of requests that a client
can issue to defend against spam and denial-of-service attacks. Our bandwidth
puzzle scheme is an adaptation of this approach, in order to “throttle” the reward
that a client can receive for claimed content transfers, by tying puzzle solving to
the content transferred and issuing puzzle challenges simultaneously.

3

Sybil attacks: Our adversary model – colluding attackers claiming to have con-
tributed more resources than they actually have – is similar to a Sybil attack.
Douceur [22] suggests that Sybils can be detected using simultaneous puzzle
challenges similar to our work. These puzzles validate that each claimed “iden-
tity” owns some amount of computation resources. Bandwidth puzzles instead
validate that each client has expended some amount of communication resources.
Proofs of data possession (PDP) and retrievability (POR): Our puzzle
mechanism ties the puzzle solution to some specific content. In this respect, our
construction is related to proofs of data possession (PDP) [23–25] and proofs
of retrievability (POR) [26–28], that enable a user to verify that a remote store
has not deleted or modified data the user had previously stored there. There
are several conceptual differences between PDP/POR schemes and our puzzle
scheme. First, PDP/POR focus only on the interaction between a single prover
and verifier, and do not deal with multiple colluding adversaries. Second, PDP
schemes minimize the communication between the prover and the verifier, with-
out requiring that there be an asymmetry in the computation effort they expend.
However, such an asymmetry and the ability to tune that asymmetry is crucial
for our scheme. In particular, the solving cost must be sufficiently high — even
with the claimed content — to prevent one prover with the content from solving
puzzles for many others, and at the same time puzzle generation and verification
must be very efficient since the verifier must do these simultaneously for many
provers. Third, PDPs/PORs presume that the verifier no longer possesses the file
about which it is querying. However, many settings in which we are interested
(e.g., multimedia streaming of live events) lend themselves to having a verifier
with access to the content being transferred.

3 System Model and Goals

Our system model consists of a designated verifier and untrusted peers, also
called provers. Any node can be a verifier, if it can obtain the list of peers that
purport to possess certain content and it has access to that content. We assume
that peers report to the verifier the content they claim to have downloaded from
others. P2P-assisted CDNs (e.g., [12], www.pandonetworks.com/cdn-peering),
P2P assisted file-hosting (e.g., www.vipeers.com), and P2P streaming (e.g., [10,
1, 2, 29]) have a central node that can (or already does) serve this role.

Our goal is to enable the verifier to ensure that the claimed bandwidth ex-
penditures to transfer that content actually occurred. The verifier does this by
simultaneously presenting puzzles to the peers claiming to have certain content,
and then recording the duration required by each prover to report its solution.
We presume that the network latencies for sending puzzles and solutions between
the verifier and the provers are stable over the timescales involved in puzzle solv-
ing [30]. On the basis of solution correctness and the puzzle-solving time, which
it compares to a threshold θ, the verifier generates a list of peers suspected of
not having the claimed content. The verifier can then take action to ensure that
the uploaders in these suspicious transfers do not receive credits for them.

4

These puzzles should have properties typical of puzzle schemes: (i) Provers
should be unable to precompute puzzle solutions, or use previous puzzle solutions
to generate new puzzle solutions. (ii) The verifier should incur low computational
costs to generate puzzles and check puzzle solutions, and should incur low band-
width costs to send the puzzles and receive the solutions. (iii) The verifier should
be able to adjust the difficulty of the puzzle, as appropriate.

Unlike previous puzzle constructions, however, bandwidth puzzles must also
ensure that for colluding provers to solve their puzzles within time θ, the con-
tent each receives in doing so, on average (possibly before receiving the puzzle
itself), is of size roughly proportional to the full content size. Were it not for the
simultaneity in issuing puzzles, this would be impossible to achieve: each chal-
lenged prover could forward its puzzle to a designated solving prover who had
the content, who could solve the puzzle and return it to the challenged prover.
By (ii) above, the puzzle and solution would be small, implying that the band-
width exchanged between the challenged prover and the solving prover would be
small. Simultaneous puzzle challenges preclude such a strategy, since the solving
prover is limited in the number of puzzles it can solve in time θ.

The above goal comes with three caveats. First, it is not possible for the
verifier to ascertain which (if any) of the colluders actually has the content, even
if it detects one or more of them as colluders via our scheme. For example, a
prover with the content could invest its time in solving another prover’s puzzle,
at the expense of solving its own. Second, the content must not be substantially
compressible. If it were, then provers could exchange the compressed version in
lieu of the original, and our goal could not be achieved. As such, in the rest of
this paper we treat the content as random, i.e., in which each bit is selected
uniformly at random.1 Third, due to churn, peers that previously downloaded
content might no longer be available for solving puzzles. These peers could,
however, aid collaborators that remain in the system by solving puzzles for them.
Our scheme is most effective if most content exchanges for which a peer should
be rewarded occur shortly after the initial distribution of the content, as would
be appropriate for, e.g., streaming video of a live event. In this way, any content
held by such “hidden” collaborators quickly becomes useless for solving puzzles.

4 The Construction

Let “ ← ” denote assignment; “x
R

← X” denote selection of an element from set
X uniformly at random and its assignment to x; and “||” denote concatenation.
Security parameters: There are three security parameters that play a role in
our construction. We use κ to denote the length of hash function outputs and
keys to pseudorandom functions (see below). A reasonable value today might be
κ = 160. The other two security parameters are denoted k and L, and together
combine to dictate the difficulty of puzzle solving, and the costs that the verifier
and prover incur in generating and solving puzzles, respectively.

1 Note that this incompressibility requirement is already true for many of the popular
formats (e.g., MPEG, DivX) in use today for transferring multimedia content.

5

Hash functions: We use two hash functions: hash : {0, 1}κ×{1 . . .L}×{0, 1}k →
{0, 1}κ and ans : {0, 1}k → {0, 1}κ. (Hash functions typically take a single string
as input; we can encode the three inputs to hash in an unambiguous fashion as a
single string input.) To prove security of our construction in §5, we model hash

as a random oracle, though collision-resistance of ans suffices.

Pseudorandom functions: A pseudorandom function family {fK} is a family
of functions parameterized by a secret key K ∈ {0, 1}κ. Informally, it is infeasible

to distinguish between an oracle for fK where K
R

← {0, 1}κ, and an oracle for a
perfectly random function with the same domain and range; see [31] for a formal
definition. We use families {f1

K : {1 . . . L} → {0, 1}κ} and {f2
K : {1 . . . k} →

{1 . . . n}}. We require that each f2
K be injective, and thus that k ≤ n, where n is

the content size in bits. We will discuss efficient implementations for f2 below.

Pseudorandom functions and hash functions achieve their desired properties
— indistinguishability from a random function in the first case, and collision-
resistance in the second — with all but negligible probability as a function of
κ.2 For the rest of this paper, we assume that these properties hold, ignoring
events that occur with probability negligible in κ.

verifier prover

K1

R
←{0, 1}κ

ℓ̂
R
←{1 . . . L}

K̂2 ← f1

K1
(ℓ̂)

ˆstr ← content(f2

K̂2

(1))|| . . .

. . . ||content(f2

K̂2

(k))

ĥ ← hash(K1, ℓ̂, ˆstr)
â ← ans(ˆstr)

K1,ĥ
-

measure
this

duration
dur

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

for ℓ ∈ {1 . . . L}
K2 ← f1

K1
(ℓ)

str ← content(f2

K2
(1))|| . . .

. . . ||content(f2

K2
(k))

if (hash(K1, ℓ, str) = ĥ)
a ← ans(str)
return a

a
¾

if (a 6= â ∨ dur > θ)
suspect prover

Fig. 1. One bandwidth puzzle

Construction: The puzzle
verifier generates puzzles to
challenge a collection of provers
simultaneously. Generally, we
assume that the verifier gen-
erates one puzzle per prover,
though there is no obstacle to
sending multiple puzzles per
prover. Each puzzle consists
of a hash value ĥ output from
hash and, intuitively, a col-
lection of index-sets I1 . . . IL.
Each index-set is a set of k
random content indices, i.e.,
uniformly random samples
from {1 . . . n}, without re-
placement. The verifier com-
putes ĥ as the hash of the con-
tent bits indexed by a ran-
domly chosen index-set, ap-
pended together in an un-
ambiguous order. Solving the
puzzle means finding which of
the L index-sets has this property and, more specifically, the string that hashes
to ĥ. This requires at most L computations of hash for a prover who possesses

2 A function g(·) is negligible if for any positive polynomial p(·), there is a κ0 such
that g(κ) ≤ 1/p(κ) for all κ ≥ κ0.

6

the content, but could require substantially more for a prover who is missing
some of the content indexed by the index-sets in the puzzle.

This construction, as described, would be inefficient. First, sending L index-
sets of k indices each would require computation proportional to kL to generate
the sets and then communication costs proportional to kL log2 n to transmit
them. To reduce these costs, the verifier generates index-sets pseudorandomly;
see Fig. 1. First, it randomly selects a key K1 for the family f1 and an index

ℓ̂
R

← {1 . . .L} to denote the index-set from which the challenge ĥ will be gener-

ated. Second, it generates a key K̂2 ← f1
K1

(ℓ̂) from which it generates index-set
Iℓ̂ = {f2

K̂2

(1) . . . f2

K̂2

(k)}. Note that the verifier never needs to generate the other

L − 1 index-sets, reducing its costs proportional to k alone. Simply sending K1

and ĥ suffices to enable the prover to search for ℓ̂, and incurs communication
costs proportional only to κ. Because f1 and f2 are pseudorandom, the prover is
unable to predict the index-sets better than random guessing prior to receiving
K1. Another way in which we reduce the communication costs is for the prover
to return ans(str) for the string str satisfying ĥ = hash(K1, ℓ̂, str), rather than
str itself. As we will see, it is generally necessary for k (and hence str) to grow
as a function of n, whereas there is no such need for κ (the size of ans outputs).

Finally, a subtle but important implementation challenge arises for f2, be-
cause our security analysis in §5 requires that f2 be injective. A natural ap-
proach to implement f2, then, would be as a pseudorandom permutation (PRP)
on {1 . . . n}, but known constructions of PRPs for small domains from ones for
larger domains (e.g., AES) are relatively quite expensive (e.g., [32]). The ap-
proach we use here exploits the fact that for any given key K, f2

K is evaluated in
our construction on all of 1 . . . k anyway. Specifically, for a pseudorandom func-
tion family {f3

K : {1, 2, . . .} → {1 . . . n}}, we define f2
K(k′) to be the k′-th distinct

value in the sequence f3
K(1), f3

K(2), . . .; i.e., we “skip over” repeat outputs from
f3

K . For this implementation, we prove the following:

Theorem 1. The construction of Fig. 1 has (i) expected puzzle generation cost
of one hash computation, one ans computation, and n ln n

n−k + O(1) pseudoran-
dom function computations, and (ii) expected puzzle solution cost (by an honest
prover) of 1

2
L hash computations, one ans computation, and 1

2
Ln ln n

n−k + O(L)
pseudorandom function computations.

Proof. The result follows by a “coupon collector” analysis. When generating
f2

K2
(1) . . . f2

K2
(k) for the ℓ-th index-set (i.e., K2 ← f1

K1
(ℓ)), let Xi be a random

variable denoting the number of computations of f3
K2

while having collected ex-
actly i − 1 distinct outputs of f3

K2
. Then, Xi is geometrically distributed with

parameter pi = 1 − i−1

n , and E [Xi] = 1

pi
= n

n−i+1
. So, the expected num-

ber of computations of f3
K2

is E

[

∑k
i=1

Xi

]

=
∑k

i=1
E [Xi] =

∑k
i=1

n
n−i+1

=

n
(

∑n
i=1

1

i −
∑n−k

i=1
1

i

)

= n ln n
n−k + O(1) since the harmonic number H(n) =

∑n
i=1

1

i satisfies H(n) = lnn + γ + O(1/n) for γ a constant. Given this, the puz-
zle generation cost can be calculated by counting up the other operations, and

7

the puzzle solving cost follows because the prover must generate 1

2
L index-sets

in expectation and invoke hash once per index-set to solve the puzzle.

Note that ln n
n−k = o(1) for any k = o(n), e.g., k = nβ for 0 < β < 1, as

discussed in §5. So, the cost of puzzle generation is sublinear in n.

5 Security

For proving the security of our construction, first recall that we assume that {f1
K}

and {f2
K} are pseudorandom function families [31], and that ans is a collision-

resistant hash function. The hash primitive is modeled as a random oracle in
our proof, which enables us to quantify the security of our scheme as a function
of the number of hash computations. That is, we cap the number qhash of hash

queries that any prover can complete in θ time, and then quantify the probability
with which the prover returns â as a function of qhash. Moreover, modeling hash

as a random oracle enables us to exploit the property in our proof that one
such computation provides no information about the computation of hash on
any other value.

Of course, the probability that an adversarial prover succeeds in returning
â within θ time (i.e., after making at most qhash queries to hash) also depends
on the number of content bits it receives before and during the puzzle-solving
process. We model a prover’s retrieval of content bits as calls to a random oracle
content : {1 . . . n} → {0, 1}. As discussed in §3, our construction requires that the
content being exchanged have sufficient empirical entropy to be incompressible,
as otherwise adversaries could “defeat” our verification by exchanging (in full)
the compressed content. Thus, we model the content as a random string of length
n, and track the number of bits that an adversary retrieves prior to returning a
puzzle solution by the number of queries it makes to its content oracle.

Theorem 2. Let hash and content be random oracles. Consider A collaborat-
ing adversaries, who are (i) collectively challenged to solve P puzzles; (ii) each
permitted qhash queries to hash; and (iii) collectively permitted Aqpre queries to

content before the distribution of the puzzles and Aqpost after. For any s and k̂

satisfying 1 ≤ s ≤ PL and log2(qhash +L)+2 ≤ k̂ ≤ k
(

1 −
qpre

n

)

−1, the expected
number of puzzles that these adversaries can solve collectively is at most

AP

L

(

sqpost

k̂ − log2(qhash + L) − 1
+ 1

)

+ PnΨ

(

s, PL,
k

n

)

+ P 2LΨ

(

k − k̂, k,
Aqpre

n

)

where Ψ(x, m, p) = P [X ≥ x] for a binomially distributed r.v. X ∼ B(m, p).

The proof of this result is too lengthy to include here; the interested reader is
referred to our companion technical report [33]. Very briefly, the second term of
this sum accounts for the possibility that some i ∈ {1 . . . n} appears in s or more
index-sets, and the third term accounts for the possibility that the adversaries
queried k − k̂ or more indices in some index-set before the puzzles were issued.

8

The first term, then, bounds the number of puzzles the adversaries solve in
expectation when neither of these events occur.

To see a consequence of Theorem 2, consider a constant number A of adver-
saries (i.e., constant as a function of n) challenged with a constant number P of
puzzles (typically P = A) and that seek to each retrieve some qpre ≤ nǫ content
bits on average, where 0 ≤ ǫ < 1, before the puzzles are issued. Suppose that
qhash = L, and consider setting L = nα for some α > 0 and k = nβ for some
0 < β < 1 where α+β > 1. Consider setting k̂ = k−k(δ+

Aqpre

n) for any constant

0 < δ < 1, in which case log2(qhash + L)+ 2 ≤ k̂ ≤ k
(

1 −
qpre

n

)

− 1 for sufficiently

large n and we can show that P 2LΨ
(

k − k̂, k,
Aqpre

n

)

→ 0 as n → ∞. Setting

s = (1 + δ′)PLk
n for δ′ > 0 implies PnΨ

(

s, PL, k
n

)

→ 0 as n → ∞. For this value
of s, Theorem 2 implies that qpost = Ω(n) for the adversaries to solve P (or any
constant number of) puzzles in expectation. This, in our opinion, is a strong
result: to solve the P puzzles in expectation, each adversary must retrieve, on
average, an amount of the content roughly proportional to its size, even if each
retrieves, on average, up to nǫ bits of the content before the puzzles are issued.

19 20 21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

A = 1
A = 5

A = 10

A = 20

A = 30

A = 40

A = 50

log
2
(n)

M
in

(P
,T

he
or

em
 2

 B
ou

nd
)

Fig. 2. An example of Theorem 2

Examples of Theorem 2 for dif-
ferent values of A and n are shown
in Fig. 2, which plots the minimum
of P and that bound for P = A,
L = 1

12
n71/100, k = 1

4
n3/10, qpre =

n3/10, qpost = n3/10, s = 21An1/100,

and k̂ chosen optimally in the range
log2(qhash +L)+2 ≤ k̂ ≤ k

(

1 −
qpre

n

)

−
1. For these parameters, presenting
puzzles every n = 222 bits ≈ 520KB
suffices to detect half of five collaborating adversaries in expectation, and pre-
senting puzzles for each n = 225 bits ≈ 4MB suffices to detect half of 50 col-
laborating adversaries in expectation. Moreover, our bound is loose in several
respects, and so the detection capability of this approach is even better than
shown in Fig. 2.

6 Evaluation in a Media Streaming System

We implemented and evaluated a contribution-aware peer-assisted content dis-
tribution system augmented with bandwidth puzzles. The system is designed
for streaming real-time media, e.g., a live broadcast of an event [10, 1, 2, 29]. It
uses a real-time transport protocol (RTP [34], jlibrtp.org) to stream media
to a set of seed clients; these clients can then stream this to other clients over
a P2P overlay. The server also acts as the verifier. In this role, it maintains
a persistent TCP connection with each client (including the seeds) over which
puzzle challenges and responses are communicated for each n bits of the media
stream. Each client solves puzzles using a separate thread from that which han-

9

dles the stream. Our puzzle implementation uses AES to implement f1 and f3

(and hence f2), and SHA-256 to implement hash and ans.

We evaluate our system on Emulab [35] using five classes of machines: 600MHz
Pentium III with 256MB of memory (Class A); 850MHz Pentium III with 256MB
of memory (Class B); 2GHz Pentium 4 with 512MB of memory (Class C); 3GHz
64-bit Xeon with 2GB of memory (Class D); and 2.4GHz Pentium Core 2 Duo
with 2GB of memory (Class E). The server/verifier was a Class E machine. The
server sends a 768Kbps stream3 to 50 seed clients4 over a 100Mb/s network.
We also configured the network with wide-area parameters in certain tests, as
described below. In all our experiments, we fixed L = 1

12
n71/100 and k = 1

4
n3/10,

and so the security bounds in Fig. 2 are representative for our experiments.

21 22 23 24 25
0

5

10

15

20

25 A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

log
2
(n)

R
at

io

Fig. 3. Ratio of 95th percentile puzzle-
solving time for Class-X machine (X ∈
{A, B, C, D, E}) to 50th percentile
puzzle-solving time for Class-E machine
during live streaming experiments.

Client heterogeneity and choice
of n: We first examine the impact
of n on puzzle-solving time and the
advantage that faster computers have
over slower ones, since the threshold θ
must allow for slower computers to re-
liably solve their puzzles. Fig. 3 shows
the ratio of the 95th percentile time
for a Class-X machine (X ∈ {A, B,
C, D, E}) to the 50th percentile time
for a Class-E machine. If the slowest
clients that the server accommodates
are of Class X, and the fastest are of
Class E, then Fig. 3 shows the num-
ber of puzzles that the Class-E client can solve in θ time, if θ is set so that the
Class-X client can solve one puzzle reliably.

Fig. 3 shows a large gap in puzzle-solving ability between the slowest and
fastest machines. That said, the slowest machines would presumably not meet
the minimum system requirements for viewing a live stream anyway; e.g., of
the classes we consider, only D and E meet ESPN360’s minimum requirements
(see espn.go.com/broadband/espn360/faq#21). So, we discard Classes A and
B (and conservatively include Class C) for the rest of our evaluation. Fig. 3 then
shows that an attacker with a Class-E machine can successfully impersonate
roughly seven Class-C machines, and so could inflate his claimed transfers by
7×. While not ideal, this provides a limit on the extent to which an adversary can
game the system. Designing memory-bound extensions of our scheme to reduce
the variability in solving time across different classes of machines [36, 21] is an
interesting avenue for future work.

Having chosen to focus on machine classes C, D, and E, we further narrow
our attention to puzzles for each n = 223 bits for the rest of our evaluation.

3 For example, ESPN360 requires 400Kbps and recommends 768Kbps, see espn.go.

com/broadband/espn360/faq#21.
4 As a point of comparison, the server in the popular P2P streaming system PPLive

supports 25 seed clients at 400Kbps [11].

10

Application Impact: We now consider the impact on jitter of introducing
puzzle solving into media streaming. Jitter [34] is an estimate of the statistical
variance of the RTP (application layer) data packet interarrival time. Fig. 4
shows the distribution of jitter of the media stream at clients for a duration
including 100 puzzle challenges, for different machine classes. Fig. 4 is a box-and-
whiskers plot; each box shows the 25th percentile, median and 75th percentile
values, and the whiskers extend to the 1st and 99th percentile values. As this
figure shows, puzzles have little impact on jitter for any of Classes C–E.

C+P C D+P D E+P E
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Machine Class
Ji

tte
r

Fig. 4. Jitter per machine class. “+P”
indicates with puzzles.

Verifier Scalability: To test scala-
bility, we fixed the number of clients
to which a Class E server streams con-
tent at 50, but had it simultaneously
generate and send puzzles to a num-
ber of clients (in addition to these 50)
ranging from 0 to 10000. Due to lim-
its on the number of available Emulab
computers, we co-located the puzzle-
receiving clients on a few machines,
but still established an independent
TCP connection to each one. We sampled the CPU and memory usage of the
verifier (both user and system) during the tests at half-second intervals using
top. Fig. 5(a) shows the distribution of CPU usage for the verifier in such a test.
The verifier’s median and even 75th percentile utilization is largely unchanged
by challenging 10050 clients, and also sending the stream to 50 of them. The
99th percentile does increase, though it never reaches 100%. (Memory utiliza-
tion exhibited moderate growth, and far less variance. It topped out at less than
75% in the 10050-client case.) We also confirmed the simultaneity of puzzle dis-
tribution in these tests: the time between sending the first puzzle and receiving
an application-level acknowledgement from the last client to which a puzzle was
sent (i.e., the 10050th) was at most 450ms. It is clear that even a moderately
well-provisioned verifier machine scales beyond 10000 clients, and a machine with
more cores and memory should easily scale far beyond that.

50 2050 4050 6050 8050 10050
40

50

60

70

80

90

100

Number of Clients

%
C

P
U

 U
sa

ge

(a) CPU usage for Class-E verifier node

1 2050 4050 6050 8050 10050
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clients

Ji
tte

r

(b) Jitter for one Class-E client

Fig. 5. Scalability tests in which 50 clients receive stream from verifier, and a variable
number of clients receive puzzle challenges from verifier.

11

We also monitored one of the 50 clients receiving the media stream during
these tests, to see the impact on its jitter as the number of puzzle-solving clients
is increased. Fig. 5(b) shows that the median jitter at this client when the server
challenges 10050 (including this one) is within 50% of the median jitter when
this client is served in isolation. This suggests that increasing the number of
puzzle-solving clients has little impact on individual clients’ stream quality.
Wide-area effects: The primary concerns with streaming in a wide-area setting
are latency and packet loss. Uniformly increased latency simply means that
the verifier waits correspondingly longer to receive puzzle solutions. If there is
significant diversity across provers in the latencies to reach them, the verifier can
send puzzles to more distant provers first, to increase simultaneity of distribution.
(Geolocation by IP address can provide latency estimates that would be difficult
for a prover to mislead.) Also, more puzzles or more difficult puzzles (i.e., by
increasing n or L) can be used to minimize the effects of both latency variance
across provers and transient latency variations per prover.

0 1 2 3 4

0

200

400

600

800

%Packet Loss

S
ol

vi
ng

 T
im

e
(m

s)

Fig. 6. Puzzle-solving time for a Class-E
client as a function of packet loss.

The more significant impact of
wide-area streaming is the risk of in-
creased packet loss. Distribution of
puzzles over TCP helps to deliver puz-
zles and their solutions reliably, but
the UDP-based RTP stream does not
guarantee reliable delivery of stream
packets. Consequently, during periods
of high packet loss, an honest prover
might be missing some of the content
bits indexed in an index-set; if so, it
searches through all possibilities for them. The effect of this searching on puzzle-
solving time is shown in Fig. 6, where the network packet loss rate ranges from 0%
to 4%. Even 2% represents an unusual packet loss rate that, e.g., justifies a “warn-
ing” indication at a real-time monitoring site like www.internetpulse.net; a
4% packet loss rate is “critical”. This figure shows that even at 2% loss, nearly
75% of the puzzle-solving times experienced are within those observed with 0%
loss, and the 99th percentile is within twice those observed with 0% loss. So, dou-
bling θ during periods of 2% loss (as indicated at, e.g., www.internetpulse.net)
should allow adequate puzzle-solving time, or θ could be permanently doubled
with the cost of allowing adversaries more slack.

7 Benefits in a Peer-Assisted Streaming System

In this section, we show via simulation the benefits of using bandwidth puzzles
in a contribution-aware peer-assisted streaming application (e.g., [10, 1, 2]).
Streaming Model: We assume that the multimedia stream is divided into
discrete epochs of size 1000 units of simulation time where each unit corresponds
to 100ms of real time. The content within each epoch is divided into suitably
encoded stripes [10, 1]. This encoding (e.g., [37]) has the property that a client can

12

access the original content as long as it is able to download at least one stripe
and it receives better performance (e.g., higher video quality) if it downloads
more stripes. Each stripe is broken into 1MB chunks and peers download the
chunks corresponding to each stripe using a suitable lookup mechanism.

Incentive Mechanism: We use an incentive scheme similar to Maze [3]. The
streaming server, to which peers authenticate and periodically report transac-
tions on a per-chunk basis, maintains a per-peer “points system”. Each peer
earns 1.5 points for every chunk uploaded and consumes 1 point per chunk
downloaded. New peers are given initial points to allow some free downloads
before they can contribute. Each peer queues incoming requests (i.e., asking it
to upload some content) in increasing order of rqsttime − 3 log ρ, where rqsttime
is the request arrival time and ρ is the current number of points the requester
has. (Intuitively, requests that arrived earlier and requests from peers with more
points are served earlier.) Free-riders, i.e., with zero points, are denied service.

Adding bandwidth puzzles: In traditional contribution-aware systems, the
server debits points from the downloader and credits points to the uploader on
receiving a transaction report. In a system with bandwidth puzzles, handling
transactions is slightly different. The server debits points from the downloader’s
account as before. However, it does not immediately credit the uploader for the
transaction. Rather, at the end of each epoch, the server issues simultaneous
puzzle challenges on a per-chunk basis in the role of the verifier; i.e., it iterates
through the chunks for this epoch one by one, and challenges the clients that
claimed to have received this chunk in the epoch. Upload credits are granted
when the corresponding downloaders correctly answer their puzzle challenges.5

Attack Model: We specify attacks as a collusion graph, where each vertex is a
malicious peer (actual or Sybil node). Each directed edge x → y represents an
fake uploader relationship: peer x reports “fake” transactions on behalf of peer
y, i.e., x requests the server to credit y for uploads even though y spends no
bandwidth for the transfer. Each such x periodically reports fake transactions
to the server in addition to its legitimate transactions (if any). We consider
a scenario where attackers create fake identities that pretend to receive the
stream. This helps attackers download more stripes (higher stream quality) and
receive content directly from the seeds (higher priority service). For example, in
a Star(200,19) graph, there are 200 nodes in the graph, organized in 10 “star”
graphs. Each star has 19 leaf nodes representing the fake (Sybil) identities and
the actual attacker is the center of the star. To model attackers’ responses to
puzzle challenges, we assume that a puzzle sent to a peer who does not have the
content or to a fake peer is solved with probability 0.1. In the Star(200,19) case,
this means that in expectation 19 × 0.1 = 1.9 fake transactions get validated.6

5 Detecting downloaders that habitually refuse to solve puzzles is a separate problem
that can be solved using fair-exchange or proof-of-service mechanisms; see §2.

6 Since 190 identities are fake, the attackers’ resources correspond to A = 10. If the
verifier issues puzzles per chunk (log

2
(n) ≈ 23), the value of the bound in Theorem 2

for A = 10, P = 200, and, e.g., L = 5

3
n71/100 and qpost = n1/10 (and otherwise

13

3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

Client quality index

F
ra

ct
io

n
of

 c
lie

nt
s

No puzzle
With puzzle
No attack

(a) Legitimate clients

1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Client quality index

F
ra

ct
io

n
of

 a
tta

ck
er

s

No puzzle
With puzzle

(b) Attackers

Fig. 7. Benefits in a P2P streaming system

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of attackers

A
ve

ra
ge

 c
lie

nt
 q

ua
lit

y

NoPuzzle
WithPuzzle

Fig. 8. Varying the number
of attackers

Simulation Framework: We implemented an event-driven simulator modeling
chunk exchanges, transaction reports, and puzzle challenges. We do not model
network congestion effects and assume that the only bandwidth bottleneck is
the upstream bandwidth bottleneck of the peers. The download requests at each
peer are queued based on the requester’s points as described above and served
one at a time without preemption. Each streaming session lasts 50 epochs with
all clients and attackers arriving at the start of the session. We assume that
there are 10 stripes, each of size 2MB. In each epoch, the server bootstraps 5
seed nodes in the system with the 10 stripes for the next epoch. Some clients
initially download stripes from these seed nodes and subsequently serve these to
others. All exchanges and transaction reports occur at a 1MB chunk granularity.
Performance Benefits: We define the user quality to be the average number
of stripes received by a client per epoch in the streaming session. Fig. 7(a) shows
the CDF of the client quality in a streaming system with 100 legitimate clients
under three scenarios: no attack, under a Star(200,19) attack without the puzzle
scheme, and under a Star(200,19) attack with the puzzle scheme in place. We
see that when the puzzle scheme is used the client quality with an attack is very
close to a system without attackers. In Fig. 7(b), there is more than 2× reduction
in the median attacker quality when bandwidth puzzles are used. Fig. 8 shows
the average legitimate client quality as a function of the attack size. Each attack
is of the form Star(X,19) where X is the number of attackers. As the number
of attackers grows, the decrease in quality is less severe when the puzzle scheme
is used. These results confirm that bandwidth puzzles can improve legitimate
client performance and deter attackers in P2P streaming systems.

8 Conclusions

Peer-assisted content distribution systems continue to be subject to adversaries
exploiting weaknesses in the underlying incentive mechanisms. In particular, a
group of colluding adversaries can implement a “shilling” attack, i.e., by re-
porting service from one another without spending any actual resources, to get
preferential service. Our work provides a simple, yet powerful primitive to thwart

the same parameters used for Fig. 2) is consistent with setting the puzzle solving
probability to be 0.1.

14

such collusion attacks in peer-assisted content distribution systems. It is based
on simultaneously challenging peers with bandwidth puzzles to demonstrate that
the purported data transfers actually took place. We quantify the security of our
scheme in the random oracle model. We also showed via an implementation in
a functional streaming system that our puzzles cost little in terms of scalability
or perceived stream quality. Finally, we showed by simulation that bandwidth
puzzles prevent colluding attackers from gaining undue advantage via shilling
attacks and from impacting the performance of honest peers.
Acknowledgements: We are grateful to Katie Benedetto for useful discussions,
and to the anonymous reviewers for their comments. This work was supported in
part by NSF awards CT-0756998, CNS-0326472, and ANI-0331653, and Florida
State University CRC award PG-022684.

References

1. Sung, Y., Bishop, M., Rao, S.: Enabling Contribution Awareness in an Overlay
Broadcasting System. In: Proc. ACM SIGCOMM. (2006)

2. Purandare, D., Guha, R.: BEAM: An Efficient Framework for Media Streaming.
In: Proc. IEEE LCN. (2006)

3. Lian, Q., Zhang, Z., Yang, M., Zhao, B.Y., Dai, Y., Li, X.: An empirical study of
collusion behavior in the Maze P2P file-sharing system. In: Proc. ICDCS. (2007)

4. Sirivianos, M., Park, J.H., Yang, X., Jarecki, S.: Dandelion: Cooperative Content
Distribution with Robust Incentives. In: Proc. USENIX ATC. (2007)

5. Dellarocas, C.: Immunizing online reputation reporting systems against unfair
ratings and discriminatory behavior. In: Proc. ACM EC. (2000)

6. Bhattacharjee, R., Goel, A.: Avoiding ballot stuffing in eBay-like reputation sys-
tems. In: Proc. ACM SIGCOMM P2P-ECON. (2005)

7. Sirivianos, M., Park, J.H., Chen, R., Yang, X.: Free-riding in BitTorrent networks
with the large view exploit. In: Proc. IPTPS. (2007)

8. Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent for fun (but
not profit). In: Proc. IPTPS. (2006)

9. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5 (2000)
10. Castro, M., et al.: SplitStream: High-bandwidth multicast in a cooperative envi-

ronment. In: Proc. ACM SOSP. (2003)
11. Huang, G.: Keynote: Experiences with PPLive. In: Proc. ACM SIGCOMM P2P-

TV Workshop. (2007)
12. Freedman, M.J., Freudenthal, E., Mazieres, D.: Democratizing content publication

with Coral. In: Proc. NSDI. (2004)
13. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust Incentive Techniques for

Peer-to-Peer Networks. In: Proc. ACM EC. (2004)
14. Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.: One hop reputations for

peer to peer file sharing workloads. In: Proc. NSDI. (2008)
15. Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for cooperation in peer-to-

peer networks. In: Proc. P2P Econ. (2004)
16. Aperjis, C., Freedman, M.J., Johari, R.: Peer-Assisted Content Distribution with

Prices. In: Proc. CoNeXT. (2008)
17. Belenkiy, M. et al.,: Making P2P accountable without losing privacy. In: Proc.

ACM WPES. (2007)

15

18. Li, J., Kang, X.: Proof of service in a hybrid P2P environment. In: Proc. ISPA
Workshops. (2005)

19. Dwork, C., Naor, M.: Pricing via processing, or, combatting junk mail. In: Proc.
CRYPTO. (1993)

20. Juels, A., Brainard, J.: Client puzzles: A cryptographic defense against connection
depletion attacks. In: Proc. NDSS. (1999)

21. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Proc. CRYPTO. (2003)

22. Douceur, J.: The Sybil attack. In: Proc. IPTPS. (2002)
23. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proc. ACM

CCS. (2007)
24. Filho, D.L.G., Barreto, P.S.L.M.: Demonstrating data possession and uncheatable

data transfer. http://eprint.iacr.org/2006/150.pdf (2006)
25. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and Efficient Prov-

able Data Possession. http://eprint.iacr.org/2008/114.pdf (2008)
26. Juels, A., Kaliski, Jr., B.S.: PORs: Proofs of retrievability for large files. In: Proc.

ACM CCS. (2007)
27. Bowers, K., Juels, A., Oprea, A.: Proofs of Retrievability: Theory and Implemen-

tation. http://eprint.iacr.org/2008/175.pdf (2008)
28. Shacham, H., Waters, B.: Compact Proofs of Retrievability. http://eprint.iacr.

org/2008/073.pdf (2008)
29. Yin, H., et al.: Design and Deployment of a Hybrid CDN-P2P System for Live

Video Streaming: Experiences with LiveSky. In: Proc. ACM Multimedia. (2009)
30. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the Constancy of Internet

Path Properties. In: Proc. IMW. (2001)
31. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.

ACM 33(4) (1984) 792–807
32. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: CT-RSA ’02.

(2002) 114–130
33. Reiter, M.K., Sekar, V., Spensky, C., Zhang, Z.: Making contribution-aware peer-

assisted content distribution robust to collusion using bandwidth puzzles. Technical
Report CMU-CS-09-136, Carnegie Mellon University (2009)

34. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol
for real-time applications. IETF RFC 3550 (July 2003)

35. White, B., et al.: An Integrated Experimental Environment for Distributed Sys-
tems and Networks. In: Proc. OSDI. (2002)

36. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM TOIT 5 (2005) 299–327

37. Goyal, V.K.: Multiple description coding: Compression meets the network. IEEE
Signal Processing Magazine (September 2001) 74–93

16

