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Abstract

The recent GPT-3 model (Brown et al.,

2020) achieves remarkable few-shot perfor-

mance solely by leveraging a natural-language

prompt and a few task demonstrations as in-

put context. Inspired by their findings, we

study few-shot learning in a more practical sce-

nario, where we use smaller language models

for which fine-tuning is computationally effi-

cient. We present LM-BFF—better few-shot

fine-tuning of language models1—a suite of

simple and complementary techniques for fine-

tuning language models on a small number of

annotated examples. Our approach includes

(1) prompt-based fine-tuning together with a

novel pipeline for automating prompt genera-

tion; and (2) a refined strategy for dynamically

and selectively incorporating demonstrations

into each context. Finally, we present a sys-

tematic evaluation for analyzing few-shot per-

formance on a range of NLP tasks, including

classification and regression. Our experiments

demonstrate that our methods combine to dra-

matically outperform standard fine-tuning pro-

cedures in this low resource setting, achieving

up to 30% absolute improvement, and 11% on

average across all tasks. Our approach makes

minimal assumptions on task resources and do-

main expertise, and hence constitutes a strong

task-agnostic method for few-shot learning.2

1 Introduction

The GPT-3 model (Brown et al., 2020) has made

waves in the NLP community by demonstrating as-

tounding few-shot capabilities on myriad language

understanding tasks. Given only a natural lan-

guage prompt and a few demonstrations of the task,

GPT-3 is able to make accurate predictions without

updating any of the weights of its underlying lan-

*The first two authors contributed equally.
1Alternatively, language models’ best friends forever.
2Our implementation is publicly available at https://

github.com/princeton-nlp/LM-BFF.

guage model. However, while remarkable, GPT-3

consists of 175B parameters, which makes it chal-

lenging to use in most real-wold applications.

In this work, we study a more practical scenario

in which we only assume access to a moderately-

sized language model such as BERT (Devlin et al.,

2019) or RoBERTa (Liu et al., 2019), and a small

number of examples (i.e., a few-shot setting), which

we can use to fine-tune the weights of the language

model. This setting is appealing as (1) such mod-

els can be trained on typical research hardware;

(2) few-shot settings are realistic, as it is generally

both easy to acquire a few annotations (e.g., 32

examples) and efficient to train on them; and (3)

updating parameters typically leads to better perfor-

mance. Inspired by GPT-3’s findings, we propose

several novel strategies for expanding its few-shot

learning abilities to our setting, considering both

classification and—for the first time—regression.

First, we follow the route of prompt-based pre-

diction, first developed by the GPT series (Radford

et al., 2018, 2019; Brown et al., 2020) for zero-shot

prediction and recently studied by PET (Schick and

Schütze, 2021a,b) for fine-tuning. Prompt-based

prediction treats the downstream task as a (masked)

language modeling problem, where the model di-

rectly generates a textual response (referred to as

a label word) to a given prompt defined by a task-

specific template (see Figure 1(c)). Finding the

right prompts, however, is an art—requiring both

domain expertise and an understanding of the lan-

guage model’s inner workings. Even if significant

effort is invested, manual prompts are likely to be

suboptimal. We address this issue by introducing

automatic prompt generation, including a pruned

brute-force search to identify the best working label

words, and a novel decoding objective to automat-

ically generate templates using the generative T5

model (Raffel et al., 2020)—all of which only re-

quire the few-shot training data. This allows us

https://github.com/princeton-nlp/LM-BFF
https://github.com/princeton-nlp/LM-BFF
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[CLS] No reason to watch . It was  [MASK] . [SEP] A fun ride . It was great . [SEP] The drama discloses nothing . It was terrible . [SEP]

[CLS]  No reason to watch . [SEP] [CLS] it's a [MASK] movie in every regard , and [MASK] painful to watch . [SEP]
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···

(a) MLM pre-training (b) Fine-tuning

(c) Prompt-based fine-tuning with demonstrations (our approach)

Demonstration for label:positive Demonstration for label:negativeTemplateInput

Vocab   
Label space    

Label mapping            

Vocab   

Figure 1: An illustration of (a) masked language model (MLM) pre-training, (b) standard fine-tuning, and (c) our

proposed LM-BFF using prompt-based fine-tuning with demonstrations. The underlined text is the task-specific

template, and colored words are label words.

to cheaply obtain effective prompts that match or

outperform our manually chosen ones.

Second, we adopt the idea of incorporating

demonstrations as additional context. GPT-3’s

naive “in-context learning” paradigm picks up to

32 randomly sampled examples, and concatenates

them with the input. This method is not guaran-

teed to prioritize the most informative demonstra-

tions, and mixing random examples from different

classes together creates long contexts which can

be hard to learn from. Additionally, the number of

usable demonstrations is bounded by the model’s

maximum input length. We develop a more refined

strategy, where, for each input, we randomly sam-

ple a single example at a time from each class to

create multiple, minimal demonstration sets. We

also devise a novel sampling strategy that pairs in-

puts with similar examples, thereby providing the

model with more discriminative comparisons.

We present a systematic evaluation for analyzing

few-shot performance on 8 single-sentence and 7

sentence-pair NLP tasks. We observe that given

a small number of training examples, (1) prompt-

based fine-tuning largely outperforms standard fine-

tuning; (2) our automatic prompt search method

matches or outperforms manual prompts; and (3)

incorporating demonstrations is effective for fine-

tuning, and boosts few-shot performance. Together,

these simple-yet-effective methods contribute to-

wards a dramatic improvement across the tasks we

evaluate on, and we obtain gains up to 30% abso-

lute improvement (11% on average) compared to

standard fine-tuning. For instance, we find that a

RoBERTa-large model achieves around 90% accu-

racy on most binary sentence classification tasks,

while only relying on 32 training examples. We re-

fer to our approach as LM-BFF, better few-shot

fine-tuning of language models: a strong, task-

agnostic method for few-shot learning.

2 Related Work

Language model prompting. The GPT se-

ries (Radford et al., 2018, 2019; Brown et al.,

2020) fueled the development of prompt-based

learning, and we follow many of its core concepts.

We are also greatly inspired by the recent PET

work (Schick and Schütze, 2021a,b), although they

mainly focus on a semi-supervised setting where a

large set of unlabeled examples are provided. We

only use a few annotated examples as supervision,

and also explore automatically generated prompts

and fine-tuning with demonstrations. Furthermore,

we deviate from their evaluation by providing a

more rigorous framework, as we will discuss in §3.

Finally, there is a large body of work on prompt-

ing for mining knowledge from pre-trained models

(Trinh and Le, 2018; Petroni et al., 2019; Davison

et al., 2019; Talmor et al., 2020, inter alia). Dif-

ferent from these works, we focus on leveraging

prompting for fine-tuning on downstream tasks.

Automatic prompt search. Schick and Schütze

(2021a) and Schick et al. (2020) explore ways

of identifying label words automatically, however,

none of these results lead to better performance

compared to hand-picked ones. In contrast, our

method searches over both templates and label

words, and is able to match or outperform our

manual prompts. Several other attempts have been

made in addition—yet these approaches either op-
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erate in limited domains, such as finding patterns

to express specific relations (Jiang et al., 2020), or

require a large number of examples for gradient-

guided search (Shin et al., 2020; Zhong et al., 2021).

Our approach aims to develop general-purpose

search methods that rely only on a few annotations.

Fine-tuning of language models. A number of

recent studies have focused on better methods for

fine-tuning language models (Howard and Ruder,

2018; Dodge et al., 2020; Lee et al., 2020; Zhang

et al., 2021). These works mainly focus on opti-

mization and regularization techniques to stabilize

fine-tuning. Here we use standard optimization

techniques, and instead mainly focus our efforts on

better prompt-based fine-tuning in a more extreme

few-shot setting. We anticipate that results of these

studies are largely complementary to ours.

Few-shot learning. Broadly speaking, our set-

ting is also connected to other few-shot learning

paradigms in NLP, including (1) semi-supervised

learning (Miyato et al., 2017; Xie et al., 2020; Chen

et al., 2020), where a set of unlabeled examples

are given; (2) meta-learning (Yu et al., 2018; Han

et al., 2018; Bansal et al., 2020a,b; Bao et al., 2020),

where a set of auxiliary tasks are given; and (3) in-

termediate training (Phang et al., 2018; Yin et al.,

2020), where a related, intermediate task is given.

We deviate from these settings by making minimal

assumptions about available resources: we only

assume a few annotated examples and a pre-trained

language model. Our focus is on understanding

how far we can push without any other advantages.

3 Problem Setup

Task formulation. In this work, we assume access

to a pre-trained language model L that we wish to

fine-tune on a task D with a label space Y . For

the task, we only assume K training examples per

class3 for the task’s training set Dtrain, such that

the total number of examples is Ktot = K × |Y|,
and Dtrain = {(xiin, y

i)}Ktot

i=1. Our goal is then to

develop task-agnostic learning strategies that gener-

alize well to an unseen test set (xtest
in , ytest) ∼ Dtest.

For model selection and hyper-parameter tuning,

we assume a development set Ddev, of the same size

as the few-shot training set, i.e., |Ddev| = |Dtrain|.
This distinction is important: using a larger devel-

opment set confers a significant advantage (see our

3For regression, we partition the data into two “classes”
according to being above or below the median value.

experiments in Appendix A), and subverts our ini-

tial goal of learning from limited data.4 For all of

the following experiments (unless specified other-

wise), we take L = RoBERTa-large and K = 16.

Evaluation datasets. We conduct a systematic

study across 8 single-sentence and 7 sentence-pair

English tasks, including 8 tasks from the GLUE

benchmark (Wang et al., 2019), SNLI (Bowman

et al., 2015), and 6 other popular sentence clas-

sification tasks (SST-5, MR, CR, MPQA, Subj,

TREC). All of the dataset details are provided in

Appendix B. For single-sentence tasks, the goal is

to make a prediction based on an input sentence

xin = x1, such as whether a movie review is posi-

tive or not. For sentence-pair tasks, the goal is to

take a pair of input sentences xin = (x1, x2) and

predict the relationship between them. We also in-

terchangeably refer to the inputs as <S1> or (<S1>,

<S2>). Note that we mainly use SST-2 and SNLI

for pilot experiments and model development, mak-

ing it close to a true few-shot setting, at least for all

the other datasets we evaluate on.

Evaluation protocol. Systematically evaluating

few-shot performance can be tricky. It is well-

known that fine-tuning on small datasets can suffer

from instability (Dodge et al., 2020; Zhang et al.,

2021), and results may change dramatically given a

new split of data. To account for this, we measure

average performance across 5 different randomly

sampled Dtrain and Ddev splits. This issue has also

been discussed in Schick and Schütze (2021b)—

they suggest using a fixed set of training examples.

We argue that sampling multiple splits gives a more

robust measure of performance, and a better esti-

mate of the variance. We also observe that hyper-

parameters can make a significant difference, thus

we sweep multiple hyper-parameters for each data

sample, and take the best setting as measured on

the Ddev of that sample (see Appendix C.1).

4 Prompt-based Fine-tuning

Given a masked language model L, we first con-

vert input xin to a token sequence x̃, and the lan-

guage model L then maps x̃ to a sequence of hid-

den vectors {hk ∈ R
d}. During standard fine-

tuning, we usually take x̃single = [CLS]x1[SEP]
or x̃pair = [CLS]x1[SEP]x2[SEP]. For down-

4In contrast, Schick and Schütze (2021a,b) do not use a
development set, and adopt a set of hyper-parameters based on
practical considerations. This is akin to “shooting in the dark”
on a setting that we show can have unintuitive outcomes.
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Task Template Label words

SST-2 <S1> It was [MASK] . positive: great, negative: terrible

SST-5 <S1> It was [MASK] . v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible

MR <S1> It was [MASK] . positive: great, negative: terrible

CR <S1> It was [MASK] . positive: great, negative: terrible

Subj <S1> This is [MASK] . subjective: subjective, objective: objective

TREC [MASK] : <S1> abbreviation: Expression, entity: Entity, description: Description

human: Human, location: Location, numeric: Number

COLA <S1> This is [MASK] . grammatical: correct, not grammatical: incorrect

MNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No

SNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No

QNLI <S1> ? [MASK] , <S2> entailment: Yes, not entailment: No

RTE <S1> ? [MASK] , <S2> entailment: Yes, not entailment: No

MRPC <S1> [MASK] , <S2> equivalent: Yes, not equivalent: No

QQP <S1> [MASK] , <S2> equivalent: Yes, not equivalent: No

STS-B <S1> [MASK] , <S2> yu: Yes, yl: No

Table 1: Manual templates and label words that we used in our experiments. STS-B is a regression task (§4.2).

stream classification tasks with a label space Y , we

train a task-specific head, softmax(Woh[CLS]),
by maximizing the log-probability of the correct

label, where h[CLS] is the hidden vector of [CLS],

and Wo ∈ R
|Y|×d is a set of randomly initialized

parameters introduced at the start of fine-tuning.

Similarly, for a regression task, we can introduce

wo ∈ R
d and optimize the mean squared error be-

tween wo ·h[CLS] and the gold label. In either case,

the number of new parameters can be substantial—

for example, a simple binary classification task will

introduce 2,048 new parameters for a RoBERTa-

large model—making it challenging to learn from a

small amount of annotated data (e.g., 32 examples).

An alternative approach to solving this problem

is prompt-based fine-tuning, in which L is directly

tasked with “auto-completing” natural language

prompts. For instance, we can formulate a binary

sentiment classification task using a prompt with

input x1 (e.g., “No reason to watch it .”) as:

xprompt = [CLS] x1 It was [MASK] . [SEP]

and let L decide whether it is more appropriate

to fill in “great” (positive) or “terrible” (negative)

for [MASK]. We now formalize this approach for

classification and regression (§4.1 and §4.2), and

discuss the importance of prompt selection (§4.3).

4.1 Classification

Let M : Y → V be a mapping from the task

label space to individual words5 in the vocabulary

5More generally, we can consider a one-to-many mapping

M : Y → 2
|Y| in which we map labels to sets of words.

However, we did not find significant gains in our experiments.

V of L. Then for each xin, let the manipulation

xprompt = T (xin) be a masked language modeling

(MLM) input which contains one [MASK] token.

In this way, we can treat our task as an MLM, and

model the probability of predicting class y ∈ Y as:

p(y | xin) = p ([MASK] = M(y) | xprompt)

=
exp

(

wM(y) · h[MASK]
)

∑

y′∈Y exp
(

wM(y′) · h[MASK]
) ,

(1)

where h[MASK] is the hidden vector of [MASK] and

wv denotes the pre-softmax vector corresponding

to v ∈ V . When supervised examples {(xin, y)}
are available, L can be fine-tuned to minimize the

cross-entropy loss. It is important to note that this

approach re-uses the pre-trained weights wv and

does not introduce any new parameters. It also re-

duces the gap between pre-training and fine-tuning,

making it more effective in few-shot scenarios.

4.2 Regression

We assume the same basic setup as in classifi-

cation, but treat the label space Y as a bounded

interval [vl, vu]. Inspired by Mettes et al. (2019),

we model the problem as an interpolation between

two opposing poles, {yl, yu}, with values vl and

vu respectively. For instance, we can formulate

our previous sentiment analysis task as a regres-

sion problem in the range [0, 1], where we slide

between “terrible” (vl = 0) and “great” (vu = 1).

In this way, we can express y as a mixture model:

y = vl · p(yl | xin) + vu · p(yu | xin), (2)

where p(yu | xin) is the probability of yu, and

p(yl | xin) = 1 − p(yu | xin). Then we define
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Template Label words Accuracy

SST-2 (positive/negative) mean (std)

<S1> It was [MASK] . great/terrible 92.7 (0.9)

<S1> It was [MASK] . good/bad 92.5 (1.0)

<S1> It was [MASK] . cat/dog 91.5 (1.4)

<S1> It was [MASK] . dog/cat 86.2 (5.4)

<S1> It was [MASK] . terrible/great 83.2 (6.9)

Fine-tuning - 81.4 (3.8)

SNLI (entailment/neutral/contradiction) mean (std)

<S1> ? [MASK] , <S2> Yes/Maybe/No 77.2 (3.7)

<S1> . [MASK] , <S2> Yes/Maybe/No 76.2 (3.3)

<S1> ? [MASK] <S2> Yes/Maybe/No 74.9 (3.0)

<S1> <S2> [MASK] Yes/Maybe/No 65.8 (2.4)

<S2> ? [MASK] , <S1> Yes/Maybe/No 62.9 (4.1)

<S1> ? [MASK] , <S2> Maybe/No/Yes 60.6 (4.8)

Fine-tuning - 48.4 (4.8)

Table 2: The impact of templates and label words on

prompt-based fine-tuning (K = 16).

M : {yl, yu} → V , and model p(yu | xin) the

same as Eq. (1). We fine-tune L to minimize the

KL-divergence between the inferred p(yu | xin)
and the observed mixture weight, (y−vl)/(vu−vl).

4.3 Manual prompts: the good and the bad

The key challenge is to construct the template T
and label words M(Y)—we refer to these two to-

gether as a prompt P . Previous works (Schick and

Schütze, 2021a,b) hand-craft both the templates

and label words, which usually requires domain

expertise and trial-and-error. Table 1 summarizes

manual templates and label words chosen for each

dataset in our experiments. These templates and

label words were designed by intuition, and by

considering formats used in previous literature.

To better understand what constitutes a good

template or label word, we conduct a pilot study

on SST-2 and SNLI. Table 2 shows that different

prompts can lead to substantial differences in final

accuracy. Specifically, when a template is fixed, the

better the label words match the “semantic classes”,

the better the final accuracy is (great/terrible >
good/bad > cat/dog). In extreme cases where we

swap plausible label words (e.g., terrible/great),

we achieve the worst overall performance.6 Fur-

thermore, with the same set of label words, even a

small change in the template can make a difference.

For example, for SNLI, if we put [MASK] at the

end, or swap sentence order, we observe a >10%

drop. The above evidence clearly underlines the

6It is unclear, however, why RoBERTa thinks that “cat” is
more positive than “dog”. The authors tend to disagree.

importance of selecting good templates and label

words. Searching for prompts, however, is hard,

as the search space can be very large—especially

for the template. Even worse, we only have a few

examples to use to guide our search, which can

easily overfit. We will address these issues next.

5 Automatic Prompt Generation

We now explore principled ways of automating

the search process for label words (§5.1) and tem-

plates (§5.2). Our goals are to reduce the human

involvement required to design prompts, and to find

more optimal settings than those that we manually

choose. Here, we assume a classification task, but

the process for regression is analogous.

5.1 Automatic selection of label words

We first study how to construct a label word

mapping M that maximizes accuracy on Ddev af-

ter fine-tuning, given a fixed template T . Naively

searching all possible assignments, however, is (1)

generally intractable, as the search space is expo-

nential in the number of classes; and (2) prone to

overfitting, as we will tend to uncover spurious

correlations given only a few annotations. As a

simple solution, for each class c ∈ Y , we construct

a pruned set Vc ⊂ V of the top k vocabulary words

based on their conditional likelihood using the ini-

tial L. That is, let Dc
train ⊂ Dtrain be the subset of

all examples of class c. We take Vc as

Top-k
v∈V







∑

xin∈D
c

train

logPL

(

[MASK] = v | T (xin)
)







, (3)

where PL denotes the output probability distribu-

tion of L. To further narrow down the search space,

we find the top n assignments over the pruned space

that maximize zero-shot accuracy on Dtrain (both

n and k are hyper-parameters, see Appendix C.2).

Then we fine-tune all top n assignments, and re-

rank to find the best one using Ddev. This approach

is similar to the automatic verbalizer search meth-

ods in Schick and Schütze (2021a); Schick et al.

(2020), except that we use a much simpler search

process (brute-force) and also apply re-ranking—

which we find to be quite helpful.

5.2 Automatic generation of templates

Next, we study how to generate a diverse set of

templates {T } automatically from a fixed set of

label words M(Y). To address this challenging

problem, we propose to use T5 (Raffel et al., 2020),
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Best template

Generated templates

Training examples for label:negative

T5

…
Training examples for label:positive

…

Decode

<S1> A [MASK] one.

<S1> This is [MASK].

…

<S1> A [MASK] one.

A fun ride. <X> great <Y>

A pleasure to watch. <X> great <Y>

No reason to watch. <X> terrible <Y>

This junk. <X> terrible <Y>
Fine-tune and
evaluate

positive: great, negative: terrible
Label mapping            

Figure 2: Our approach for template generation.

a large pre-trained text-to-text Transformer. T5 is

pre-trained to fill in missing spans (replaced by T5

mask tokens, e.g., <X> or <Y>) in its input. For

example, given the input “Thank you <X> me to

your party <Y> week”, T5 is trained to generate

“<X> for inviting <Y> last <Z>”, meaning that “for

inviting” is the replacement for <X> and “last” is

the replacement for <Y>. This is well suited for

prompt generation: we can simply take input sen-

tences from Dtrain and let the T5 model construct

the template T , without having to specify a pre-

defined number of tokens for it.

Given an input example (xin, y) ∈ Dtrain, we

consider the following simple conversions, denoted

as Tg(xin, y), for formulating the T5 model inputs:7

<S1> −→ <X>M(y) <Y> <S1>,

<S1> −→ <S1> <X>M(y) <Y>,

<S1>,<S2> −→ <S1> <X>M(y) <Y> <S2>.

As shown in Figure 2, we rely on the T5 model

to fill in the placeholders. When decoding, our goal

here is to find an output that can work well for all

examples in Dtrain, i.e., the output template T that

maximizes
∑

(xin,y)∈Dtrain
logPT5(T | Tg(xin, y)),

where PT5 denotes the output probability distribu-

tion of T5. It can be decomposed according to:

|T |
∑

j=1

∑

(xin,y)∈Dtrain

logPT5

(

tj | t1, ..., tj−1, Tg
(

xin, y
))

, (4)

where (t1, . . . , t|T |) are the template tokens.

We use beam search to decode multiple template

candidates. Concretely, we use a wide beam width

(e.g., 100) to cheaply obtain a large set of diverse

templates. We then fine-tune each generated tem-

plate on Dtrain and use Ddev to either pick the single

template with the best performance (Table 3), or

7We consider putting the label word both before and after
the input sentence for single-sentence tasks. However, we find
that it is always better to put the label words in the middle
(between the two sentences) for sentence-pair tasks.

the top k templates to use as an ensemble (Table 4).

Though it might appear to be expensive to fine-tune

the model on each individual template, this is fast

in practice due to the small size of Dtrain, and is also

fully automated: making it easy to use, compared

to manually tuning prompts for each dataset.

6 Fine-tuning with Demonstrations

In this section, we study whether we can leverage

demonstrations when fine-tuning medium-sized

LMs, and find better ways to exploit them.

6.1 Training examples as demonstrations

GPT-3’s naive approach to in-context learning

simply involves concatenating the input with up

to 32 examples randomly drawn from the training

set. This approach is suboptimal as (1) the num-

ber of available demonstrations is bounded by the

model’s maximum input length;8 and (2) mixing

numerous random examples from different classes

together creates extremely long contexts which can

be hard to leverage, especially for a smaller model.

To address these issues, we propose a simpler so-

lution: at each training step, we randomly sample

one9 example
(

x
(c)
in , y

(c))
∈ Dtrain from each class,

convert it into T
(

x
(c)
in

)

with [MASK] replaced by

M(y
(c)
)—we denote this as T̃

(

x
(c)
in , y

(c))
—and

then concatenate them with xin (Figure 1(c)):

T
(

xin
)

⊕ T̃
(

x
(1)
in , y

(1))
⊕ · · · ⊕ T̃

(

x
(|Y|)
in , y

(|Y|))
.

Here ⊕ denotes concatenation of input sequences.

During both training and inference we sample mul-

tiple demonstration sets for each xin. Note that

both xin and demonstration examples are sampled

from the same set Dtrain during training. At testing

time, we still sample demonstration sets from Dtrain

and ensemble predictions across all sets.

6.2 Sampling similar demonstrations

We observe that controlling the construction of

the demonstration examples {(x
(c)
in , y

(c)
)} is cru-

cial for good final performance. For example, if

the set of contrastive demonstrations x
(c)
in are all

dramatically different—from each other, or from

the query xin—then it becomes challenging for

the language model to decipher meaningful pat-

terns. As a result, the model may simply ignore

8GPT-3 uses a context size of 2,048 while most smaller
language models (e.g., RoBERTa) have a context size of 512.

9We also explored sampling multiple examples per class,
but did not observe any improvements.



3822

SST-2 SST-5 MR CR MPQA Subj TREC CoLA

(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Majority† 50.9 23.1 50.0 50.0 50.0 50.0 18.8 0.0

Prompt-based zero-shot‡ 83.6 35.0 80.8 79.5 67.6 51.4 32.0 2.0

“GPT-3” in-context learning 84.8 (1.3) 30.6 (0.9) 80.5 (1.7) 87.4 (0.8) 63.8 (2.1) 53.6 (1.0) 26.2 (2.4) -1.5 (2.4)

Fine-tuning 81.4 (3.8) 43.9 (2.0) 76.9 (5.9) 75.8 (3.2) 72.0 (3.8) 90.8 (1.8) 88.8 (2.1) 33.9 (14.3)

Prompt-based FT (man) 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0) 84.7 (2.2) 91.2 (1.1) 84.8 (5.1) 9.3 (7.3)

+ demonstrations 92.6 (0.5) 50.6 (1.4) 86.6 (2.2) 90.2 (1.2) 87.0 (1.1) 92.3 (0.8) 87.5 (3.2) 18.7 (8.8)

Prompt-based FT (auto) 92.3 (1.0) 49.2 (1.6) 85.5 (2.8) 89.0 (1.4) 85.8 (1.9) 91.2 (1.1) 88.2 (2.0) 14.0 (14.1)

+ demonstrations 93.0 (0.6) 49.5 (1.7) 87.7 (1.4) 91.0 (0.9) 86.5 (2.6) 91.4 (1.8) 89.4 (1.7) 21.8 (15.9)

Fine-tuning (full)† 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B

(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

Majority† 32.7 33.0 33.8 49.5 52.7 81.2 0.0 -

Prompt-based zero-shot‡ 50.8 51.7 49.5 50.8 51.3 61.9 49.7 -3.2

“GPT-3” in-context learning 52.0 (0.7) 53.4 (0.6) 47.1 (0.6) 53.8 (0.4) 60.4 (1.4) 45.7 (6.0) 36.1 (5.2) 14.3 (2.8)

Fine-tuning 45.8 (6.4) 47.8 (6.8) 48.4 (4.8) 60.2 (6.5) 54.4 (3.9) 76.6 (2.5) 60.7 (4.3) 53.5 (8.5)

Prompt-based FT (man) 68.3 (2.3) 70.5 (1.9) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3) 71.0 (7.0)

+ demonstrations 70.7 (1.3) 72.0 (1.2) 79.7 (1.5) 69.2 (1.9) 68.7 (2.3) 77.8 (2.0) 69.8 (1.8) 73.5 (5.1)

Prompt-based FT (auto) 68.3 (2.5) 70.1 (2.6) 77.1 (2.1) 68.3 (7.4) 73.9 (2.2) 76.2 (2.3) 67.0 (3.0) 75.0 (3.3)

+ demonstrations 70.0 (3.6) 72.0 (3.1) 77.5 (3.5) 68.5 (5.4) 71.1 (5.3) 78.1 (3.4) 67.7 (5.8) 76.4 (6.2)

Fine-tuning (full)† 89.8 89.5 92.6 93.3 80.9 91.4 81.7 91.9

Table 3: Our main results using RoBERTa-large. †: full training set is used (see dataset sizes in Table B.1); ‡:

no training examples are used; otherwise we use K = 16 (per class) for few-shot experiments. We report mean

(and standard deviation) performance over 5 different splits (§3). Majority: majority class; FT: fine-tuning; man:

manual prompt (Table 1); auto: automatically searched templates (§5.2); “GPT-3” in-context learning: using the

in-context learning proposed in Brown et al. (2020) with RoBERTa-large (no parameter updates).

the context, or even get confused by the additional

examples. To address this issue, we devise a simple

strategy in which we only sample examples that

are semantically close to xin. Specifically, we use a

pre-trained SBERT (Reimers and Gurevych, 2019)

model to obtain embeddings for all input sentences

(for sentence-pair tasks, we use the concatenation

of the two sentences). Here we just feed the raw

sentences without the templates into SBERT. For

each query xin and each label c ∈ Y , we sort all

training instances with the label x ∈ Dc
train by their

similarity score to the query cos(e(xin), e(x)), and

only sample from the top r = 50% instances for

each class to use as demonstrations.

7 Experiments

We present our main results, and address several

research questions pertaining to our LM-BFF ap-

proach. Implementation details are in Appendix C.

7.1 Main results

We use a RoBERTa-large model and set K =
16 in our experiments. A comparison of using

RoBERTa vs BERT can be found in Appendix D.

For automatic prompt search, in our main table

we report automatic template search only (which

consistently performs the best, see Table 5). To put

our results in perspective, we compare to a number

of baselines, namely (1) standard fine-tuning in

our few-shot setting; (2) standard fine-tuning using

the full training set; (3) simply taking the most

frequent class (measured on the full training set);

(4) prompt-based zero-shot prediction where we

take our manual prompts and use L “out-of-the-

box” without using any training examples; and (5)

“GPT-3” in-context learning, where we use the same

prompt-based zero-shot setting, but augment the

context with randomly sampled 32 demonstrations

(and still use RoBERTa-large, not GPT-3).

Single-prompt results. Table 3 shows our main

results using a single prompt, either from our man-

ually designed ones (Table 1) , or the best gener-

ated ones. First, prompt-based zero-shot prediction

achieves much better performance than the ma-

jority class, showing the pre-encoded knowledge

in RoBERTa. Also, “GPT-3” in-context learning

does not always improve over zero-shot prediction,

likely because smaller language models are not

expressive enough to use off-the-shelf like GPT-3.
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Prompt-based Fine-tuning MNLI RTE

Our single manual P 68.3 (2.3) 69.1 (3.6)

PPET 71.9 (1.5) 69.2 (4.0)

Pours, |Pours| = |PPET| 70.4 (3.1) 73.0 (3.2)

+ demonstrations 74.0 (1.9) 71.9 (4.6)

Pours, |Pours| = 20 72.7 (2.5) 73.1 (3.3)

+ demonstrations 75.4 (1.6) 72.3 (4.5)

Table 4: Ensemble models using manual prompts from

PET (Schick and Schütze, 2021a,b) and our automatic

templates. PET uses 4 prompts for MNLI and 5 for

RTE. We also use an equal number of templates in

|Pours| = |PPET| for a fair comparison.

SST-2 SNLI TREC MRPC

Manual 92.7 77.2 84.8 74.5

Auto T 92.3 77.1 88.2 76.2

Auto L 91.5 75.6 87.0 77.2

Auto T + L 92.1 77.0 89.2 74.0

Table 5: Comparison between manual prompts and

different automatic prompt generation methods: auto-

generated templates (Auto T), auto-generated label

words (Auto L), and their combination (Auto T + L).

Second, prompt-based fine-tuning can greatly

outperform standard fine-tuning, both when using

a manual prompt or a generated one. CoLA is one

interesting exception, as the input may be a non-

grammatical sentence which is out of the distribu-

tion of L. Generally, our automatically searched

templates can achieve comparable or even higher

results than manual ones, especially for tasks in

which constructing strong manual templates is less

intuitive (e.g., TREC, QNLI and MRPC).

Finally, using demonstrations in context leads to

consistent gains in a majority of tasks. In summary,

our combined solution—fine-tuning with automati-

cally searched templates and sampled demonstra-

tion sets—achieves a 30% gain on SNLI compared

to standard fine-tuning, and 11% gain on average.

Ensemble results. An advantage of automatic

prompt search is that we can generate as many

prompts as we want, train individual models, and

create large ensembles. PET (Schick and Schütze,

2021a,b) also ensembles multiple models trained

with manual prompts.10 In Table 4, we make a

direct comparison of our searched prompts and

PET’s manual prompts on MNLI and RTE (two

10They then use unlabeled data and distillation to get a
single model, which is outside of our scope.

SST-2 (positive/negative)

Auto T M(Y) = {great, terrible}
#1. <S1> A [MASK] one .

#2. <S1> A [MASK] piece .

#3. <S1> All in all [MASK] .

Auto L T (xin) = <S1> It was [MASK].

#1. irresistible/pathetic

#2. wonderful/bad

#3. delicious/bad

SNLI (entailment/neutral/contradiction)

Auto T M(Y) = {Yes, Maybe, No}
#1. <S1> . [MASK] , no , <S2>

#2. <S1> . [MASK] , in this case <S2>

#3. <S1> . [MASK] this time <S2>

Auto L T (xin) = <S1> ? [MASK] , <S2>

#1. Alright/Watch/Except

#2. Hi/Watch/Worse

#3. Regardless/Fortunately/Unless

Table 6: Examples of our automatically generated tem-

plates (Auto T) and label words (Auto L).

datasets that we evaluate in common).11 As the

results show, an ensemble with multiple templates

always improves performance. An ensemble of the

same number of automatic templates achieves com-

parable or better performance than the ensemble of

PET’s manual prompts. Increasing the number of

automatic templates brings further gains.

7.2 Analysis of generated prompts

Table 5 gives the results of using manual vs au-

tomatic prompts. For automatic prompts, we com-

pare template search (Auto T), label word search

(Auto L), and a joint variant (Auto T + L) in

which we start from manual label words, apply

Auto T, and then Auto L. In most cases, Auto T

achieves comparable or higher performance than

manual ones, and is consistently the best variant.

Auto L outperforms manual prompts on TREC and

MRPC—but is considerably worse on SNLI. Auto

T + L is often better than Auto L, but only some-

times better than Auto T. Table 6 shows examples

from Auto T and Auto L (A full list in Appendix E).

Auto T templates generally fit the context and la-

bel words well, but can contain biased peculiarities

(e.g., “{Yes/No}, no” in SNLI). For Auto L words,

things are mixed: while most look intuitively rea-

sonable, there are also some mysterious abnormali-

ties (e.g., “Hi” for the “entailment” class in SNLI).

11In the PET NLI templates, the hypothesis is put before
the premise, which we actually found to be suboptimal. In our
experiments, we swap the two and get better results.
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SST-2 SNLI TREC MRPC

Prompt-based FT 92.7 77.2 84.8 74.5

Uniform sampling 92.3 78.8 85.6 70.9

+ RoBERTa sel. 92.7 79.5 83.4 76.6

+ SBERT sel. 92.6 79.7 87.5 77.8

Table 7: Impact of demonstration sampling strategies.

Uniform sampling randomly samples demonstrations,

while selective (sel.) sampling only takes top sentences

measured by the sentence encoders (§6).

7.3 Analysis of demonstration sampling

Table 7 compares the performance of demonstra-

tions using uniform sampling to selective sampling

by SBERT. We acknowledge that SBERT is trained

on SNLI and MNLI datasets, thus we also tried

a simple sentence encoder using mean pooling of

hidden representations from RoBERTa-large. We

find that in either case, using selective sampling

outperforms uniform sampling, highlighting the

importance of sampling similar examples for incor-

porating demonstrations in context.

7.4 Sample efficiency

Figure 3 illustrates how standard fine-tuning and

our LM-BFF compare as K increases. For a simple

task such as SST-2 (also see MR, CR and MPQA in

Table 3), despite using only 32 total examples, LM-

BFF has already nearly saturated its performance

and is comparable to standard fine-tuning over the

entire dataset. On the harder task of SNLI, LM-

BFF continues to improve as K increases while still

maintaining a performance gap over standard fine-

tuning, until the two converge around K = 256.

8 Discussion

Reformulating NLP tasks as MLM has exciting

implications for few-shot learning, but also has lim-

itations. First, while LM-BFF greatly outperforms

standard fine-tuning, Table 3 shows that, overall,

the performance still substantially lags behind fine-

tuning with thousands of examples, especially for

harder tasks. Additionally, just like standard fine-

tuning, our results also suffer from high variance.

As described in §2, several recent studies have tried

to counter instability in few-shot fine-tuning and

we expect these methods to also help here.

With respect to automatic prompt generation, de-

spite its effectiveness, we still find it practically

challenging to expand the search space, or general-

ize well based on only approximately 32 examples.
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Figure 3: Standard fine-tuning vs our LM-BFF as a

function of K (# instances per class). For lower K, our

method consistently outperforms standard fine-tuning.

This is partly due to our lingering reliance on some

manual design—either manual templates (for label

word search) or manual label words (for template

search), which allows us to get our search off the

ground, but does also bias it towards areas of the

search space that we might have already imagined.

Finally, it is important to clarify that LM-BFF fa-

vors certain tasks which (1) can be naturally posed

as a “fill-in-the-blank” problem; (2) have relatively

short input sequences; and (3) do not contain many

output classes. Issues (2) and (3) might be ame-

liorated with longer-context language models (e.g.,

Beltagy et al., 2020). For tasks that are not straight-

forward to formulate in prompting, such as struc-

tured prediction, issue (1) is more fundamental. We

leave it as an open question for future work.

9 Conclusion

In this paper we presented LM-BFF, a set of

simple but effective techniques for fine-tuning lan-

guage models using only a few examples. Our

approach proposes to (1) use prompt-based fine-

tuning with automatically searched prompts; and

(2) include selected task demonstrations (training

examples) as part of the input context. We show

that our method outperforms vanilla fine-tuning by

up to 30% (and 11% on average). We concluded

by discussing the limitations of our approach, and

posed open questions for future study.

Acknowledgements

We thank the members of Princeton, MIT, Ts-

inghua NLP groups and the anonymous reviewers

for their valuable feedback. TG is supported by a

Graduate Fellowship at Princeton University and

AF is supported by an NSF Graduate Research Fel-

lowship. This research is also partly supported by

a Google Research Scholar Award.



3825

References

Trapit Bansal, Rishikesh Jha, and Andrew McCal-
lum. 2020a. Learning to few-shot learn across di-
verse natural language classification tasks. In Inter-
national Conference on Computational Linguistics
(COLING).

Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai,
and Andrew McCallum. 2020b. Self-supervised
meta-learning for few-shot natural language classi-
fication tasks. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Yujia Bao, Menghua Wu, Shiyu Chang, and Regina
Barzilay. 2020. Few-shot text classification with dis-
tributional signatures. In International Conference
on Learning Representations (ICLR).

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document Trans-
former. arXiv:2004.05150.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth PASCAL recognizing
textual entailment challenge. In TAC.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Empirical Methods in Natural Language Processing
(EMNLP).

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
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A Impact of Development Sets

Table A.1 shows how the size of the development

sets can affect the final performance of the model.

For “No Ddev”, we take the same hyper-parameters

from Schick and Schütze (2021a,b): batch size =

16, learning rate = 1e-5 and training steps = 250.

We also experiment with a variant that we sample a

development set of 10 times larger than the training

set. We can see that using larger development sets

leads to better performance, and this is why we

stick to |Dtrain| = |Ddev| in our few-shot setting.

Fine-tuning SST-2 SNLI TREC MRPC

No Ddev 79.5 49.2 83.9 77.8

|Ddev| = |Dtrain| 81.4 48.4 88.8 76.6

|Ddev| = 10|Dtrain| 83.5 52.0 89.4 79.6

Prompt-based FT SST-2 SNLI TREC MRPC

No Ddev 92.1 75.3 84.8 70.2

|Ddev| = |Dtrain| 92.7 77.2 84.8 74.5

|Ddev| = 10|Dtrain| 93.0 79.7 89.3 80.9

Table A.1: Impact of different sizes of development

sets. Standard deviations are omitted here to save space.

For No |Ddev|, we use the same set of hyper-parameters

as Schick and Schütze (2021a,b).

B Datasets

For SNLI (Bowman et al., 2015) and datasets

from GLUE (Wang et al., 2019), including SST-

2 (Socher et al., 2013), CoLA (Warstadt et al.,

2019), MNLI (Williams et al., 2018), QNLI (Ra-

jpurkar et al., 2016), RTE (Dagan et al., 2005;

Bar Haim et al., 2006; Giampiccolo et al., 2007;

Bentivogli et al., 2009), MRPC (Dolan and Brock-

ett, 2005), QQP12 and STS-B (Cer et al., 2017), we

follow Zhang et al. (2021) and use their original

development sets for testing. For datasets which re-

quire a cross-validation evaluation—MR (Pang and

Lee, 2005), CR (Hu and Liu, 2004), MPQA (Wiebe

et al., 2005), Subj (Pang and Lee, 2004)—we sim-

ply randomly sample 2,000 examples as the testing

set and leave them out from training. For SST-

5 (Socher et al., 2013) and TREC (Voorhees and

Tice, 2000), we use their official test sets. We show

dataset statistics in Table B.1.

C Experimental Details

C.1 Hyper-parameter selection

For grid search, we take learning rates from {1e-

5, 2e-5, 5e-5} and batch sizes from {2, 4, 8}. These

12https://www.quora.com/q/quoradata/

numbers are picked by pilot experiments on the

SST-2 and SNLI datasets. We also use early stop-

ping to avoid overfitting. For each trial, we train

the model for 1,000 steps, validate the performance

every 100 steps, and take the best checkpoint.

C.2 Prompt-based fine-tuning

Table 1 shows all the manual templates and la-

bel words we use in experiment. For automatically

template generation, we take the T5-3B13 model,

which is the largest publicly available one that can

fit on a single GPU. For automatically searching la-

bel words, we set k to 100 for all tasks except SST-5

and TREC. For SST-5 we set a smaller k = 30, as

it is a 5-way classification task. For TREC, we ob-

serve that filtering Vc using conditional likelihood

alone is still noisy, thus we set k = 1000, and then

re-rank Vc by the nearest neighbors of the original

manual label words and take the top 30 per class.

We set n to 100 in all experiments. Due to the

large number of trials in automatic search, we take

a fixed set of hyper-parameters in this part: batch

size of 8 and learning rate of 1e-5.

Since the idea of prompt-based fine-tuning is to

make the input and output distribution close to the

pre-training, the implementation details are crucial.

For templates, we put extra space before sentences

if it is not at the beginning of the input. Also,

we lowercase the first letter of the sentence if it is

concatenated with a prefix (e.g., <S2> in Table 1).

Also if one sentence is appended any punctuation

(e.g., <S1> in Table 1), then the last character of the

original sentence is discarded. Finally, we prepend

a space for label words in M(Y). For example,

we use “ great” instead of “great” in the RoBERTa

vocabulary, where “ ” stands for space.

C.3 Fine-tuning with demonstrations

When using demonstrations, we sample 16 dif-

ferent sets of demonstrations for each input and

average the predicted log probability for each class

during inference. We find that further increasing

the number of samples does not bring substantial

improvement. Additional, we have tried different

aggregation methods like taking the result with

the maximum confidence and we did not find a

meaningful improvement. For selective demonstra-

tions, we take roberta-large-nli-stsb

13We take the T5 1.0 checkpoint, which is trained on both
unsupervised and downstream task data. We compared it to
T5 1.1 (without downstream task data) and did not find a
significant difference in generated templates.

https://www.quora.com/q/quoradata/
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Category Dataset |Y| L #Train #Test Type Labels (classification tasks)

SST-2 2 19 6,920 872 sentiment positive, negative

SST-5 5 18 8,544 2,210 sentiment v. pos., positive, neutral, negative, v. neg.

MR 2 20 8,662 2,000 sentiment positive, negative

single- CR 2 19 1,775 2,000 sentiment positive, negative

sentence MPQA 2 3 8,606 2,000 opinion polarity positive, negative

Subj 2 23 8,000 2,000 subjectivity subjective, objective

TREC 6 10 5,452 500 question cls. abbr., entity, description, human, loc., num.

CoLA 2 8 8,551 1,042 acceptability grammatical, not grammatical

MNLI 3 22/11 392,702 9,815 NLI entailment, neutral, contradiction

SNLI 3 14/8 549,367 9,842 NLI entailment, neutral, contradiction

sentence- QNLI 2 11/30 104,743 5,463 NLI entailment, not entailment

pair RTE 2 49/10 2,490 277 NLI entailment, not entailment

MRPC 2 22/21 3,668 408 paraphrase equivalent, not equivalent

QQP 2 12/12 363,846 40,431 paraphrase equivalent, not equivalent

STS-B R 11/11 5,749 1,500 sent. similarity -

Table B.1: The datasets evaluated in this work. |Y|: # of classes for classification tasks (with one exception: STS-B

is a real-valued regression task over the interval [0, 5]). L: average # of words in input sentence(s). Note that we

only sample Dtrain and Ddev of K × |Y| examples from the original training set in our few-shot experiments (§3).

BERT-large SST-2 SNLI TREC MRPC

Fine-tuning 79.5 51.4 80.3 74.4

Prompt-based FT 85.6 59.2 79.0 66.8

+ demo (1-seg) 87.5 50.4 77.2 68.5

+ demo (2-seg) 86.1 61.3 77.9 73.2

+ demo (n-seg) 86.4 58.6 79.6 71.0

RoBERTa-large SST-2 SNLI TREC MRPC

Fine-tuning 81.4 48.4 88.8 76.6

Prompt-based FT 92.7 77.2 84.8 74.5

+ demonstrations 92.6 79.7 87.5 77.8

Table D.1: A comparison of BERT-large vs RoBERTa-

large. We use manual prompts in these experiments.

mean-tokens14 from Reimers and Gurevych

(2019) as our sentence embedding model.

D Comparisons of BERT vs RoBERTa

Table D.1 compares the results of BERT-large

(uncased) and RoBERTa-large in our settings. Pre-

trained BERT provides two segment embeddings

(A/B) for different parts of input. The common

practice, when fine-tuning BERT, is that using only

segment A for single-sentence tasks, and using seg-

ment A/B for the two sentences in sentence-pair

tasks. In our case of incorporating demonstrations,

however, we have more than two sentences. Thus

we explore the following different strategies for seg-

ments: (1) using the A segment for all sentences

14https://github.com/UKPLab/

sentence-transformers

(1-seg); (2) using the A segment for the original

input and the B segment for the demonstrations

(2-seg); (3) using different segment embeddings

for each sentence (n-seg), e.g., for SNLI, we use

different segments for each premise and hypoth-

esis in both the original input and the demonstra-

tions, which leads to a total number of 8 segment

embeddings. This introduces new segment em-

beddings (randomly initialized and learned during

fine-tuning) as the pre-trained BERT only has two.

Table D.1 shows that prompt-based fine-tuning

with demonstrations also works for BERT, and 2-

seg works the best when incorporating demonstra-

tions. Still, we take RoBERTa-large as our main

model, for RoBERTa performs much better than

BERT and RoBERTa saves the trouble to tune the

usage of segment embeddings.

E Generated Prompts

We demonstrate the top 3 automatically gener-

ated templates and label words for all tasks in Ta-

ble E.1. In general, most automatic templates are

reasonable and grammatically correct. For the label

words, the generated results look intuitive for most

single sentence tasks. For other tasks, the automatic

ones can be counterintuitive in some cases. It is

still unclear why the language model picks these

words and sometimes they actually work well. We

leave this for future study.

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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Task Auto template Auto label words

SST-2 (positive/negative)

<S1> A [MASK] one . irresistible/pathetic

<S1> A [MASK] piece . wonderful/bad

<S1> All in all [MASK] . delicious/bad

SST-5 (very positive/positive/neutral/negative/very negative)

<S1> The movie is [MASK] . wonderful/remarkable/hilarious/better/awful

<S1> The music is [MASK] . wonderful/perfect/hilarious/better/awful

<S1> But it is [MASK] . unforgettable/extraordinary/good/better/terrible

MR (positive/negative)

It was [MASK] ! <S1> epic/terrible

<S1> It’s [MASK] . epic/awful

<S1> A [MASK] piece of work . exquisite/horrible

CR (positive/negative)

<S1> It’s [MASK] ! fantastic/horrible

<S1> The quality is [MASK] . neat/pointless

<S1> That is [MASK] . magnificent/unacceptable

MPQA (positive/negative)

<S1> is [MASK] . important/close

<S1>, [MASK] ! needed/bad

<S1>. [MASK] . unexpected/shocking

Subj (subjective/objective)

<S1> It’s all [MASK] . everywhere/tragic

<S1> It’s [MASK] . everywhere/horrifying

<S1> Is it [MASK] ? something/surreal

TREC (abbreviation/entity/description/human/location/numeric)

Q: [MASK] : <S1> Application/Advisor/Discussion/Culture/Assignment/Minute

<S1> Why [MASK]? Production/AE/Context/Artist/Assignment/Minute

<S1> Answer: [MASK] . Personality/Advisor/Conclusion/Hum/Assignment/Minute

CoLA (grammatical/not grammatical)

<S1> You are [MASK] . one/proof

It is [MASK] . <S1> wrong/sad

I am [MASK] . <S1> misleading/disappointing

MNLI (entailment/neutral/contradiction)

<S1> . [MASK] , you are right , <S2> Fine/Plus/Otherwise

<S1> . [MASK] you’re right <S2> There/Plus/Otherwise

<S1> . [MASK] ! <S2> Meaning/Plus/Otherwise

SNLI (entailment/neutral/contradiction)

<S1> . [MASK] , no , <S2> Alright/Watch/Except

<S1> . [MASK] , in this case <S2> Hi/Watch/Worse

<S1> . [MASK] this time <S2> Regardless/Fortunately/Unless

QNLI (entailment/not entailment)

<S1> ? [MASK] . Yes , <S2> Okay/Nonetheless

<S1> ? [MASK] . It is known that <S2> Notably/Yet

<S1> ? [MASK] , however , <S2> Specifically/Notably

RTE (entailment/not entailment)

<S1> . [MASK] , I believe <S2> Clearly/Yet

<S1> . [MASK] , I think that <S2> Accordingly/meanwhile

<S1> . [MASK] , I think <S2> So/Meanwhile

MRPC (equivalent/not equivalent)

<S1> . [MASK] ! <S2> Rather/Alas

<S1> . [MASK] . This is the first time <S2> At/Thus

<S1> . [MASK] . That’s right . <S2> Instead/Moreover

QQP (equivalent/not equivalent)

<S1> ? [MASK] , but <S2> Me/Since

<S1> ? [MASK] , please , <S2> Um/Best

<S1> ? [MASK] , I want to know <S2> Ironically/Beyond

STS-B (yu/yl)
<S1> . [MASK] sir <S2> Note/Next

<S1> . [MASK] , it is not . <S2> Yesterday/meanwhile

<S1> . [MASK] . It is <S2> Yeah/meanwhile

Table E.1: Top 3 automatically generated templates and label words for all tasks based on one split of K = 16
training examples. Note that automatic template results are based on manual label words and automatic label word

results are based on manual templates provided in Table 1.


